
1	  

Towards	  a	  multi-‐‑source	  fusion	  approach	  for	  eye	  movement-‐‑2	  

driven	  recognition	  3	  

4	  

Ioannis Rigasa, Evgeny Abdulina, Oleg Komogortseva5	  

6	  

a Department of Computer Science, Texas State University, San Marcos, USA 7	  

rigas@txstate.edu, e_a146@txstate.edu, ok11@txstate.edu 8	  

9	  

10	  

 11	  

Correspondence to: 12	  

13	  

Dr. Ioannis Rigas 14	  

Postdoctoral Research Associate 15	  

Department of Computer Science 16	  

Texas State University 17	  

San Marcos, TX 78666, USA 18	  

Phone: (+1)-512-245-0349 19	  

Email: rigas@txstate.edu 20	  

21	  

22	  

23	  

24	  

25	  

This is a pre-print



	  

Abstract 26	  

This paper presents a research for the use of multi-source information fusion in the field of eye 27	  

movement biometrics. In the current state-of-the-art, there are different techniques developed to 28	  

extract the physical and the behavioral biometric characteristics of the eye movements. In this work, 29	  

we explore the effects from the multi-source fusion of the heterogeneous information extracted by 30	  

different biometric algorithms under the presence of diverse visual stimuli. We propose a two-stage 31	  

fusion approach with the employment of stimulus-specific and algorithm-specific weights for fusing 32	  

the information from different matchers based on their identification efficacy. The experimental 33	  

evaluation performed on a large database of 320 subjects reveals a considerable improvement in 34	  

biometric recognition accuracy, with minimal equal error rate (EER) of 5.8%, and best case Rank-1 35	  

identification rate (Rank-1 IR) of 88.6%. It should be also emphasized that although the concept of 36	  

multi-stimulus fusion is currently evaluated specifically for the eye movement biometrics, it can be 37	  

adopted by other biometric modalities too, in cases when an exogenous stimulus affects the extraction 38	  

of the biometric features. 39	  
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1. Introduction 53	  

The human body provides an invaluable source of distinctive information suitable to be used for the 54	  

task of biometric recognition [1]. The most well-studied and widely-adopted biometric modalities are 55	  

the fingerprints, the iris, and the face. Some other explored biometric traits include the palm, the hand 56	  

geometry, the ears, the nose, and the lips. The analysis of the blood-vessels morphology appears as 57	  

the main source of biometric features in methods like the vein matching, and the retinal scan. There 58	  

are also some biometric traits that enfold behavioral characteristics, i.e. traits that are partially 59	  

connected with the brain activity. Examples of this category involve the speech analysis and voice 60	  

recognition, the hand-written signature, keystroke dynamics, gait analysis, and the eye movement-61	  

driven biometrics. Considering the abundance of the existing biometric modalities and the 62	  

heterogeneity of the associated features, it may come as no surprise that there is a strong trend in the 63	  

biometric research towards the investigation and adoption of information fusion techniques. 64	  

1.1. Information Fusion in Biometrics 65	  

Information fusion can provide numerous benefits in the domain of biometric recognition. The most 66	  

obvious among them is the expected performance gain in terms of biometric accuracy due to the 67	  

combination of evidence gathered from multiple cues [2]. Also, the fusion techniques can be 68	  

employed for the selection and the promotion of the most informative features among a large set of 69	  

such features [3]. In addition, the combination of different sources of biometric information can open 70	  

the path for the creation of biometric systems with enhanced robustness against security flaws and 71	  

spoofing attacks [4]. 72	  

The fusion of biometric information can be implemented in multiple ways. A common approach is to 73	  

combine the information coming from different modalities (e.g. fingerprints, face, iris etc.). An early 74	  

work demonstrating such a multi-modal fusion scheme for fingerprint and face cues was presented in 75	  

the work of Hong and Jain [5]. Also, one of the first important studies evaluating the information 76	  

fusion of fingerprint, face, and hand geometry cues was presented by Ross and Jain in [6]. The study 77	  

presented by Yang et al. [7], investigated the fusion of characteristics that can be extracted 78	  

exclusively from the hand region, such as the fingerprints, the hand geometry, and the palm-prints. 79	  



	  

Analogously, several approaches focused on the fusion of information coming from the face and the 80	  

head area, given the abundance of distinct characteristics of these specific body regions. In the work 81	  

of Wang et al. [8], face and iris features were fused in order to combine the virtues of both modalities. 82	  

The study of Chang et al. [9] involved an appearance-based fusion scheme employing images of the 83	  

face and the ear. Another category of multi-modal fusion techniques proposed the combination of 84	  

physical and behavioral biometric cues. Voice and face were among the first combined features [2], 85	  

[10], whereas other scenarios involved the combination of face and keystroke dynamics [11], and face 86	  

and gait features [12].  87	  

A different type of information fusion in biometrics involves the combination of the data coming 88	  

from a single biometric modality by applying multi-algorithmic fusion techniques. In the field of 89	  

fingerprint biometrics there are several examples of information fusion implemented using multiple 90	  

algorithms in different stages of the recognition process [13], [14], [15]. The work presented by Vatsa 91	  

et al. [16] employed the iris as the single modality for implementing multi-algorithmic information 92	  

fusion. Different techniques for performing multi-algorithmic fusion were also evaluated for the face 93	  

biometrics [17], [18], in an attempt to use the variability of the features of this specific modality. In 94	  

the work presented by Han and Bhanu [19], a multi-algorithmic scheme was used for the behavioral 95	  

trait of gait via the analysis of the influence of the external conditions on the gait patterns. 96	  

Several multi-instance fusion techniques were developed in an effort to improve the accuracy of the 97	  

single-modality biometric systems in practical scenarios. The FBI’s IAFIS system [20] can capture 98	  

the fingerprints of all ten fingers and combines the information for producing more accurate results, a 99	  

technique proven to be particularly robust when operating on large databases. The work presented by 100	  

Prabhakar and Jain [21] suggested the fusion of the impressions of multiple fingers by employing 101	  

multiple (four) algorithms, thus creating a scheme for performing both multi-instance and multi-102	  

algorithmic fusion. Also, the work presented by Jang et al. [22] proposed a multi-unit fusion approach 103	  

for the iris biometrics, using the images coming both from the left and from the right eye in order to 104	  

address the quality issues often occurring when capturing a single instance of the iris. 105	  

Irrespectively of the use of a single or multiple modalities, the fusion methods can be also categorized 106	  

with respect to their involvement in the typical processing levels (modules) followed in the biometric 107	  



	  

recognition routine [6], i.e. the sensor level, the feature level, the comparison (or matching) score 108	  

level, and the decision level. Information fusion in the sensor level can be performed by using the 109	  

data captured by different types of sensors, e.g. optical and capacitance sensors [23]. Fusion in the 110	  

feature level can be implemented via the direct incorporation of the extracted features into a compact 111	  

feature representation [9], [24]. However, in several occasions, the nature of the feature vectors 112	  

prohibits such an operation. The combination of information in the comparison score level is by far 113	  

the most common strategy for implementing fusion in biometrics [2], [5], [6], [25], [26]. In this case, 114	  

the universal accessibility of the comparison scores and the minimal influence of the features’ 115	  

heterogeneity act catalytically for the creation of efficient information fusion schemes. Finally, 116	  

information fusion can be also performed in the classification stage either by using the identification 117	  

ranking information [27], or by using the decisions regarding the identity or the validity of a 118	  

verification claim [21, 28]. 119	  

1.2. Motivation and Contribution 120	  

Eye movements are an emerging biometric modality [29], however, the reported performance still 121	  

lacks the accuracy of the widely adopted modalities, such as the fingerprints and the iris. The existing 122	  

performance gap can be attributed to the complicated mechanisms involved in the generation of the 123	  

eye movements, which combine the physical characteristics of the internal eye structure [30], and the 124	  

behavioral cues related to the brain activity and visual attention [31]. This work presents a multi-125	  

source fusion scheme for the combination of eye movement characteristics extracted by different 126	  

algorithms (multi-algorithmic fusion) under the influence of different visual stimuli (multi-stimulus 127	  

fusion). Multi-stimulus fusion is a novel concept inspired by the practically proven influence of 128	  

different visual stimuli on different eye movement-driven biometric algorithms [32], [33], [34]. The 129	  

theoretical background for performing the multi-stimulus fusion is also supported by several psycho-130	  

visual studies, which demonstrate the interrelationships between the visual stimulus and the generated 131	  

eye movements [35], [36], [37]. 132	  

The contribution of the current research in the field of eye movement biometrics can be summarized 133	  

as follows: 134	  



	  

1) We introduce the concept of multi-stimulus fusion, i.e. fusion of different instances of the same 135	  

modality (eye movements) under the influence of different visual stimuli. 136	  

2) We propose a hierarchical weighted fusion scheme for the efficient combination of the comparison 137	  

(matching) scores generated by the different eye movement algorithms (multi-algorithmic fusion) 138	  

under the influence of diverse visual stimuli. Also, we suggest a weight-training method for the 139	  

calculation of the fusion weights, which is based on the identification performance of different 140	  

matchers. 141	  

3) We present a comprehensive investigation of the combined effects from the multi-source fusion 142	  

(multi-stimulus and multi-algorithmic) in the performance of the eye movement-driven biometrics. 143	  

We provide an extensive analysis regarding the parameters of our model, and demonstrate the 144	  

achieved performance improvement by using a large database of 320 subjects. 145	  

2. Research on Eye Movement Biometrics 146	  

The first study on biometric recognition via the eye movements was presented by Kasprowski and 147	  

Ober [38] a decade ago. It was based on the spectrum analysis of the eye movement signals, and used 148	  

a randomly ‘jumping’ point of light as the visual stimulus. The reported False Acceptance Rate 149	  

(FAR) was 1.36%, and the False Rejection Rate (FRR) was 12.59%. In the work of Bednarik et al. 150	  

[39], the Fast Fourier Transform (FFT) was used along with the Principal Component Analysis (PCA) 151	  

for the analysis of the eye movements during the observation of various stimuli (moving cross, 152	  

images, and text). The achieved Rank-1 IR reached the value of 56%, and the simple form of fusion 153	  

that was attempted failed to improve the results any further. The work of Kinnunen et al. [40] was 154	  

inspired from the field of voice recognition, and analyzed the recorded eye movement signals during 155	  

the observation of complex stimuli (text and video). The reported minimal EER was about 30%. In 156	  

the work of Komogortsev et al. [32], a model of the internal non-visible structure and functionality of 157	  

the eye was employed in order to implement the Oculomotor Plant Characteristic (OPC) biometrics. 158	  

In this case, the visual stimulus was a point of light making horizontal and vertical ‘jumps’, and the 159	  

reported Half Total Error Rate (HTER) was 19%. The Complex Eye Movement Behavior (CEM-B) 160	  

biometrics were introduced by Holland and Komogortsev in [33]. The used visual stimulus consisted 161	  



	  

of text excerpts, and the fusion of the comparison scores from the individual features led to an EER of 162	  

16.5%. An attempt to fuse the information of the OPC and the CEM characteristics was presented by 163	  

Komogortsev et al. [41], showing a possible performance improvement of 30% over the single 164	  

methods. In the work of Rigas et al. [42], a graph-based approach was used for comparing the spatial 165	  

distributions of the eye fixations during the observation of stimulus consisting of human face images. 166	  

The reported minimal EER was 30%. Face images were also used in the graph-based work of Cantoni 167	  

et al. [43], where a minimal EER of 25% was reported. In the study of Yoon et al. [44], images of 168	  

cognition-related dot-patterns were employed as the stimuli in a scheme that used Hidden Markov 169	  

Models (HMM) to analyze gaze velocity features. The reported Rank-1 IR was in the range of 53%-170	  

76%. The recent work of Rigas and Komogortsev [34] suggested a model based on the Fixation 171	  

Density Maps (FDMs) for representing the eye movements during the observation of dynamically 172	  

changing stimuli. In the proposed scheme, the information corresponding to the successive time 173	  

intervals of a video sequence was combined for achieving a minimal EER of 13%. 174	  

3. Methodology 175	  

3.1. General overview 176	  

As already mentioned, the overarching goal of our study was to investigate the effects from the multi-177	  

stimulus and multi-algorithmic information fusion in the field of the eye movement biometrics. For 178	  

this reason, we employed three algorithms originating from different principals, the Oculomotor Plant 179	  

Characteristic (OPC) biometrics (18-parameter version) [45], the Complex Eye Movement Behavior 180	  

(CEM-B) biometrics [33], and the Fixation Density Map (FDM) biometrics [34]. The selection of 181	  

these specific algorithms was decided for the following reasons: a) the features extracted by these 182	  

algorithms encapsulate information generated by a variety of underlying sources (physical and 183	  

behavioral), and b) the selected algorithms exhibit stimulus preference, i.e. they can perform more 184	  

efficiently for specific types of stimulus. Thus, the selected algorithms are suitable for exploring the 185	  

scenario involving the multi-source information fusion of eye movement-based characteristics. In Fig. 186	  

1, we show a graphical overview summarizing the basic properties of the employed eye movement 187	  

biometric algorithms in terms of the extracted features and the exhibited stimulus preference. 188	  



	  

In the current work, we developed a weighted fusion scheme for the combination of the information 189	  

in the comparison score level. Our decision was mainly driven by the heterogeneity of the features 190	  

extracted by the employed algorithms (see Section 3.2 for more details), which partially obstructs the 191	  

application of fusion directly at the feature level. Also, the fusion in the decision level was an 192	  

unattractive option for the particular scenario where the relative contribution of the different 193	  

algorithms and visual stimuli needs to be modeled. We should emphasize that although the suggested 194	  

scheme uses the rank identification performance for implementing information fusion, it should not 195	  

be conceived as a classical rank level fusion method where the ranking information is directly 196	  

employed at the decision level. In our method, the ranking information is used to modulate the 197	  

comparison scores and the fusion is performed in the comparison score level. 198	  

In the following section we present a detailed description of the employed eye movement biometric 199	  

algorithms. Then, in Section 3.3 we present the suggested multi-source weighted fusion scheme. 200	  

  201	  

Figure 1. Overview of the basic properties of the employed eye movement biometric algorithms. 202	  

3.2. Eye movement biometric algorithms 203	  
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This section describes the eye movement biometric algorithms used in the current work for the 204	  

implementation of the multi-source fusion. The presented description aims to unveil the details 205	  

regarding the features and the comparison modules (matchers) used by each algorithm, and further 206	  

clarify the rationale behind their selection for the developed weighted fusion scheme. 207	  

3.2.1 Oculomotor Plant Characteristic (OPC) biometrics 208	  

The algorithm for extracting the OPC features is based on a mathematical model describing the 209	  

oculomotor system’s operation, i.e. the oculomotor plant. The main operation of the algorithm is to 210	  

simulate the saccadic eye movements and compare them with the actual trajectory made by the real 211	  

eyes of a user. Thus, the algorithm extracts a number of parameters via the minimization of a cost 212	  

function during the comparison between the real and the simulated saccadic trajectories. In this work, 213	  

we adopted the OPC algorithm described in [45], which is supported by a linear homeomorphic 18-214	  

parameter model based on the following characteristics: Series Elasticity (AG/ANT), Length-Tension 215	  

Relationship (AG/ANT), Force-Velocity Relationship (AG/ANT), Passive Viscosity, Tension Slope 216	  

(AG/ANT), Inertial Mass, Activation Time (AG/ANT), Deactivation Time (AG/ANT), Tension 217	  

Intercept, Neural Pulse (AG/ANT), and Neural Pulse Width. The abbreviations AG and ANT denote 218	  

the parameters corresponding to the agonist and antagonist roles of the extraocular muscles. From 219	  

each eye movement recording, the OPC biometric template 𝑋"#$ ∈ 𝑅'() is formed as a multivariate 220	  

distribution of m samples (one for each saccade) of a n-dimensional space (n = 18). The comparison 221	  

module used in the case of the OPC algorithm is the multivariate Hotelling T2 test [46]. In the 222	  

developed approach, the comparison scores generated by the OPC algorithm 𝐶"#$  are forwarded 223	  

directly at the input of the multi-source fusion scheme. 224	  

3.2.2 Complex Eye Movement Behavior (CEM-B) biometrics 225	  

In contrast to the OPC algorithm where the internal structure and functionality of the eye is directly 226	  

modeled, the algorithm for extracting the CEM-B features [33] analyzes the generated eye movement 227	  

signals for the extraction of a set of features describing the eye movement dynamics. As the CEM-B 228	  

algorithm was developed for the extraction of biometric features during complex visual tasks (e.g. 229	  

text-reading), it can model various properties (physical and cognitive) of the eye fixations and 230	  



	  

saccades. The extracted features are: fixation start time, fixation duration, fixation centroid 231	  

(horizontal/vertical), saccade start time, saccade duration, saccade amplitude (horizontal/vertical), 232	  

saccade mean velocity (horizontal/vertical), saccade peak velocity (horizontal/vertical). For each eye 233	  

movement recording, the CEM-B biometric template 𝑋$+,- = 𝑥0 𝑚 , 𝑥3 𝑚 ,… , 𝑥) 𝑚  is formed 234	  

as an ensemble of n = 12 univariate distributions of m samples (m = number of fixations and 235	  

saccades). The comparison module used in the case of the CEM-B algorithm is the Cramer-von Mises 236	  

two sample test [47]. In the current approach, the scores from every univariate distribution are 237	  

summed to form the final comparison scores 𝐶$+,- , which are then forwarded at the input of the 238	  

multi-source fusion scheme. 239	  

3.2.3 Fixation Density Map (FDM) biometrics 240	  

The FDM algorithm [34] works by extracting features for the representation of the attention-241	  

dependent strategies of the eye movements in the case of dynamically changing stimuli (e.g. video 242	  

sequences). The extracted features have the form of activation maps, which represent in a 243	  

probabilistic way the distributions of the fixation point positions. For each eye movement recording, 244	  

the FDM biometric template 𝑋56, = 𝑥0, 	  𝑥3, … , 𝑥)  is formed as a sequence of n fixation density 245	  

maps 𝑥8 (2-D grayscale images) representing the eye movement activity for sequential time intervals. 246	  

The number of maps (n) can be defined dynamically, based on the duration of the visual stimulus 247	  

presentation, and the selected time interval. The comparison module used in this incarnation of the 248	  

FDM algorithm was the similarity metric [48]. It should be mentioned that although in the original 249	  

FDM implementation [34] other measures resulted in better performance, during our experiments we 250	  

verified that the scores extracted with the similarity metric are more suitable to be used in the 251	  

developed multi-source fusion scheme, possibly due to the fact that the similarity metric represents an 252	  

actual metric. In the current approach, the scores from every fixation density map are summed to 253	  

form the final comparison scores 𝐶56, , which are then forwarded at the input of the multi-source 254	  

fusion scheme. 255	  

3.3. Multi-source weighted fusion scheme 256	  



	  

This section describes the details of the proposed scheme for performing the multi-source information 257	  

fusion. In Fig. 2, we present a schematic diagram showing the architecture of the developed approach. 258	  

Let us assume that a user observes different types of visual stimuli (in this example three types) while 259	  

an eye tracking system captures the performed eye movements. The visual stimuli are presented 260	  

sequentially to the user, and they can appear in arbitrary order or even have a time gap between them. 261	  

During the first stage of the developed scheme, multi-stimulus fusion is performed separately for 262	  

every single biometric algorithm. Initially, each algorithm extracts a number of features, and the 263	  

corresponding biometric templates are formed. Then, the comparison of the templates is performed, 264	  

and the calculated comparison scores corresponding to the different visual stimuli are fused using 265	  

stimulus-specific weights. The optimum weight-training method should be apt to quantify 266	  

effectively—in terms of performance and generalization—the relative contribution of the information 267	  

deriving from the different stimuli. In this work, we suggest and evaluate a specific weight-training 268	  

method which is based on the ranking identification performance. During the second stage of the 269	  

developed scheme, the information fusion is performed via the multi-algorithmic combination of the 270	  

comparison scores generated during the first stage (multi-stimulus fusion). The multi-algorithmic 271	  

fusion process quantifies the relative contribution of every algorithm (OPC, CEM-B, FDM) via the 272	  

use of algorithm-specific weights. Prior to their final combination, the comparison scores need to be 273	  

normalized with the use of an appropriate normalization function. We should note that the separation 274	  

of the multi-source fusion procedure in two distinct stages allows for the investigation of the relative 275	  

importance of the two different types of fusion (multi-stimulus vs. multi-algorithmic). Also, the 276	  

suggested scheme provides flexibility and robustness since it allows for the separate training of the 277	  

weights used for the two types of fusion, and if required, it permits the application of different 278	  

normalization functions in the two stages. 279	  

The developed multi-source fusion scheme can be mathematically described in the form of the 280	  

general equation: 281	  

𝐶9:;<= = 𝑤?@
A
8B0 ∙ 𝑓) 𝑆8 ,  𝑆8 = 𝑤;@

F
,
GB0 𝐶8

G    (1) 282	  



	  

In this formula, we denote with i the index of the biometric algorithm and with j the index of the 283	  

stimulus type. Thus, the term 𝐶8
G represents the summed comparison scores extracted from a specific 284	  

algorithm 𝑖 during the presentation of a specific stimulus 𝑗. The stimulus-specific and algorithm-285	  

specific weights are denoted with 𝑤;@
F and 𝑤?@ respectively. Finally, we denote with 𝑓) ∙  the 286	  

normalization function used prior to the multi-algorithmic combination. The operation of the block 287	  

diagram shown in Fig. 2 can be derived by Eq. (1) using the following parameters: N = 3 (OPC, 288	  

CEM-B, FDM) and M = 3 (‘jumping’ point, text, and video). It should be noted that during our 289	  

experiments we used four types of visual stimulus, since the ‘jumping’ point stimulus consisted of 290	  

two sub-cases, the horizontally ‘jumping’ point and randomly ‘jumping’ point. 291	  

 292	  

Figure 2. Diagram of the suggested scheme for performing multi-source fusion based on eye movement cues. 293	  
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3.3.1 Normalization of the comparison scores  294	  

Typically, the normalization procedure is required because the comparison modules employed by the 295	  

different algorithms usually result in the generation of scores which are dissimilar in their distribution 296	  

and numerical range. In the past, several methods of score normalization were proposed [49], 297	  

addressing different issues involved in the fusion process. In this work, we evaluated two 298	  

normalization techniques for our scheme: the Max-Min normalization technique (MM) and the Z-299	  

score normalization technique (ZS). In what follows, let us denote the set of K comparison scores 300	  

which need to be normalized as: 𝐶 → 𝑐Z , 𝑘 = 1,2, … , 𝐾, and the resulting set of normalized scores 301	  

as: 𝑁 → 𝑛Z , 𝑘 = 1,2, … , 𝐾. 302	  

3.3.1.1 Max-Min normalization technique (MM)  303	  

The Max-Min technique provides a simple and efficient approach for the normalization of the 304	  

comparison scores. In this technique the comparison scores are normalized based on the maximum 305	  

and the minimum values appearing in a set of scores. This approach has two important advantages: on 306	  

the first hand, the scores are transformed into a fixed common range [0, 1]. On the other hand, the 307	  

original form of the distribution of scores is retained. The Max-Min normalization technique can be 308	  

implemented using the following formula: 309	  

      𝑛Z =
`abcdea $

cfg
a

$bcde
a

$
      (2) 310	  

3.3.1.2 Z-score normalization technique (ZS) 311	  

The normalization using the Z-score technique is performed via the calculation of the arithmetic mean 312	  

and the standard deviation of a set of scores. The resulting distribution of scores has a mean of zero 313	  

and a standard deviation of one. A disadvantage of the Z-score normalization is that it does not 314	  

guarantee a common numerical range for the normalized scores. The Z-score normalization technique 315	  

can be implemented using the following formula: 316	  

 𝑛Z =
`abchfe	   $

'<?) $ b;i= $
     (3) 317	  

It should be noted that although both the Max-Min and the Z-score normalization techniques can be 318	  

sensitive to the presence of outliers, their performance in the scope of the proposed multi-source 319	  

fusion approach was found to be satisfactory in all cases. Furthermore, during our experiments we 320	  



	  

also evaluated the Hyperbolic Tangent Estimators normalization technique [49], a method which 321	  

presents robustness in the presence of outliers. The particular technique performed with acceptable 322	  

rates for the verification scenario but resulted in poor performance in the identification scenario. 323	  

Thus, it was considered as unsuitable to be also included in the analysis of the developed multi-source 324	  

fusion scheme. 325	  

3.3.2 Computation of the multi-source fusion weights  326	  

In this section we describe the procedure followed for the calculation of the multi-source fusion 327	  

weights based on the rank identification performance, with a special focus on the case of the Rank-1 328	  

identification performance. Furthermore, we briefly present a more traditional weight-training 329	  

procedure based on the verification performance (equal error rate - EER), a method originally 330	  

proposed in [50]. During the evaluation process, the three weight-training methods (Rank, Rank-1, 331	  

and EER) are compared and their special characteristics are discussed in details. 332	  

3.3.2.1 Weight-training method based on the rank identification performance 333	  

Let us denote with 𝑅 the full ranked list formed using the comparison scores computed for a probe 334	  

item 𝑖 with all the reference items—all items refer to a training dataset. Also, we denote with 𝑟8 the 335	  

rank of the first reference item in the list corresponding to the same identity with item 𝑖. In this case, 336	  

we can calculate the corresponding rank weight w(i) for each one of the K probe items as:   337	  

𝑤 𝑖 = 1 − l@b0
m
,	  	  	  	  	  𝑖 = 1, 2, … , 𝐾     (4) 338	  

In the case of 𝑟8=1 (item ranked first) the weight equals to one, whereas for 1 < 𝑟8 < 𝑅  the weight 339	  

value becomes successively lower as it approximates zero.  By calculating the weights for all the K 340	  

probe items, we can compute the total rank weight 𝑤'o  for a specific matcher (m) as: 341	  

𝑤'o =
p 8q

@rJ
s

       (5) 342	  

It should be noted, that in our case the term ‘matcher’ is used to denote both the modules that extract 343	  

scores from different stimuli (multi-stimulus fusion), and from different algorithms (multi-algorithmic 344	  

fusion). The final rank identification-trained weights are calculated by normalizing all the weights to 345	  

sum to unity: 346	  



	  

𝑤'm?)Z =
ptu

ptuv
trJ

     (6) 347	  

Now, let us consider the special case of using the Rank-1 identification rate for training the weights. 348	  

This case may be considered as a sub-category of the previous problem: here, instead of a full ranked 349	  

list containing ranks for all the reference items of the dataset, an individual probe item i can have 350	  

either a first rank match 𝑟8 = 1, 𝑤 𝑖 = 1  or not 𝑤 𝑖 = 0 . The total weight can be calculated by 351	  

averaging the weights for all the probe items in the training dataset, and the final Rank-1 based 352	  

weight 𝑤'm?)Z0 of a matcher can be calculated again using Eq. (6). 353	  

3.3.2.2 Weight-training method based on the verification performance 354	  

The weighting of the matchers based on the use of the equal error rate (EER) performance was 355	  

originally proposed in [50]. In this particular case, the fusion weights are calculated based on the 356	  

behavior of different matchers in the verification scenario. Using a training dataset containing the 357	  

comparison scores coming from different matchers, the corresponding Receiver Operating 358	  

Characteristic (ROC) curves can be constructed, and consequently, the EER performances 𝑒' can be 359	  

calculated and employed as the training criterion for the weights. The weights are inversely analogous 360	  

to the EER performance, and may be calculated using the following formula to ensure that they are 361	  

normalized to unity: 362	  

𝑤'++m =
0 J

yt
v
trJ

<t
     (7) 363	  

3.3.3 Weights transformation 364	  

After the calculation of the weights performed by either of the above described methods, we opted to 365	  

implement a transformation procedure aiming at the optimization (fine-tuning) of the weight values. 366	  

The specific procedure can be performed via the application of a single-parameter linear range 367	  

transformation, described by the following equation: 368	  

𝑤'
98)?z =

ptbcdet {

cfg
t

{ bcde
t

{
∙ 1 − 𝑤|}i + 𝑤|}i   (8) 369	  

Here, 𝑤' is the weight of a specific matcher, W is the set of weights from all the matchers, and 𝑤|}i 370	  

is the optimization parameter that can be automatically trained by monitoring the escalation of the 371	  



	  

recognition rates in a development (training) dataset. The exact details regarding the training process 372	  

and the final global value selected for the optimization parameter are described in Section 5.2. 373	  

4. Experimental procedure 374	  

4.1. Visual stimuli 375	  

The eye movement recordings were performed using the following categories of visual stimuli: two 376	  

types of ‘jumping’ point stimulus (HOR and RAN), text stimulus (TEX), and video stimulus (VID). 377	  

In the case of the ‘jumping’ point stimulus a white circular point of light with a black center was 378	  

making ‘jumps’ in the black background of a computer screen, jumping from one position to another 379	  

at predefined time intervals of 1 second. The participants were instructed to follow the point with 380	  

their eyes, forcing thus the execution of eye saccades. There were two separate experiments involving 381	  

the ‘jumping’ point stimulus: the horizontally ‘jumping’ point (HOR), inducing horizontal saccades, 382	  

and the randomly ‘jumping’ point (RAN), inducing random oblique saccades. The total duration of 383	  

each experimental trial was 1 minute and 40 seconds. 384	  

In the case of the text stimulus (TEX) a number of text excerpts were presented in a computer screen, 385	  

and the participants were instructed to freely read them. The used excerpts were from the poem of 386	  

Lewis Carroll “The Hunting of the Snark”. The specific poem was chosen due to its specific writing 387	  

style, which encourages the observer to actively process the text while reading it. The total time given 388	  

to the participants to read the text excerpts in each experimental trial was 1 minute. 389	  

In the case of the video stimulus (VID) a segment from a movie trailer was presented on a computer 390	  

screen, and the participants were instructed to freely observe the video. The chosen video segment 391	  

was from the official trailer of the Hollywood film “Hobbit 2: The Desolation of Smaug (2013)”. The 392	  

specific trailer was used due to the diversity of its content, which contains both dynamic action scenes 393	  

and static parts with emotional content. The total duration of each experimental trial was 1 minute. 394	  

4.2. Participants 395	  

The experiments for the collection of the eye movement recordings were performed with the 396	  

participation of 320 subjects (170 males/150 females), ages 18-46, (M = 22, STD = 4.23). Texas State 397	  



	  

University’s institutional review board approved the study, and the participants provided informed 398	  

consent. Every subject participated in two recordings sessions. The time interval separating the two 399	  

recording sessions was approximately 20 minutes. In every session, the four used types of visual 400	  

stimulus were presented on a computer screen while the eye movements of the participant were 401	  

recorded. This led to the formation of a database of 2560 unique eye movement recordings. Between 402	  

the experimental trials for each visual stimulus the subjects performed various eye movement tasks 403	  

and had short periods of rest to mitigate eye fatigue. 404	  

4.3. Apparatus 405	  

The eye movement recordings were performed using an EyeLink 1000 eye tracker [51], with a 406	  

sampling frequency of 1000 Hz. The device has a vendor reported spatial accuracy of 0.5° and a 407	  

spatial resolution of 0.01° RMS. The capturing device was positioned at a distance of 550 millimeters 408	  

from the computer screen where the stimulus was presented. The size of the computer screen was 474 409	  

x 297 millimeters and the resolution 1680 x 1050 pixels. The heads of subjects were comfortably 410	  

stabilized with the use of a chin-rest with a forehead in order to ensure the high quality of the 411	  

recorded data. The quality of the capturing procedure was evaluated with the experimental 412	  

measurement of the calibration accuracy and the recording validity (i.e. number of samples indicated 413	  

by the device as tracked). The recorded datasets were captured with a measured average calibration 414	  

accuracy of 0.49° (STD = 0.17°), and an average recording validity of 96.77% (STD = 4.96%). 415	  

4.4. Datasets partitioning 416	  

The recordings for the different visual stimuli were used to form four separate datasets denoted with 417	  

the corresponding abbreviations: HOR, RAN, TEX, and VID. We performed 20 random splits in 418	  

order to partition each dataset in development and evaluation sets. In every split, each dataset was 419	  

partitioned in two halves. All the data from half of the subjects (160 subjects) were employed for the 420	  

development set, and used for training the multi-source fusion weights. All the data from the other 421	  

half of the subjects (160 subjects) were employed for the evaluation set, and used for the evaluation 422	  

procedure. It should be emphasized that the partitioning of the data in development and evaluation 423	  

sets was done with no overlap of the used subjects in order to ensure that the evaluation procedure 424	  



	  

will not be affected by any kind of overfitting effects. All the experimental results presented in the 425	  

following sections were extracted by taking the average over the above-mentioned 20 random splits. 426	  

5. Results Evaluation 427	  

5.1. Performance evaluation metrics 428	  

Rank-1 Identification Rate (Rank-1 IR): during the identification scenario, the biometric system aims 429	  

to detect the real identity of a user by comparing the current biometric sample with the templates 430	  

stored in the database. The most popular metric for the evaluation of the identification accuracy is the 431	  

Rank-1 Identification Rate, defined as the ratio of the testing samples that were assigned to the correct 432	  

identity divided to the total number of the testing samples of the dataset. 433	  

Equal Error Rate (EER): during the verification scenario, the biometric system aims to check the 434	  

validity of a claim of a user that his/her biometric template belongs in the database. A user whose the 435	  

template belongs in the database is called a genuine user, whereas a user that does not belong in the 436	  

database is called an impostor. The correct acceptance of a genuine user from the system raises the 437	  

Genuine Acceptance Rate (GAR). Inversely, the false acceptance of an impostor from the system 438	  

raises the False Acceptance Rate (FAR). Finally, the false rejection of a genuine user from the system 439	  

raises the False Rejection Rate (FRR). A Receiver Operating Characteristic (ROC) curve can be 440	  

constructed by changing the acceptance threshold and calculate the respective GAR and FAR. The 441	  

EER can be computed as the point of the ROC curve where the FAR equals the FRR (FRR = 100% - 442	  

GAR). In this work, we used the vertical averaging technique described in [52] for averaging the 443	  

ROC curves constructed from the 20 random splits. 444	  

GAR at 0.1% FAR: this measure can be used to complementarily assess the verification accuracy of a 445	  

biometric system. The GAR at 0.1% FAR expresses the verification performance of a biometric 446	  

system in the region of the low FAR values, which is usually of particular importance. We decided to 447	  

use this additional measure in order to perform a more detailed comparison of the tested weight-448	  

training methods during the task of multi-source information fusion (see Section 5.5). 449	  

5.2. Training of the weight optimization parameter (wopt) 450	  



	  

In Section 3.3.3, we described the transformation step performed for the optimization of the weight 451	  

values. In order to calculate the exact value for the optimization parameter wopt we performed a 452	  

training procedure using the development datasets. For each of the tested weight-training methods 453	  

(WMRank1, WMRank, WMEER) we scanned the range of the allowed wopt values [0, 1], and calculated the 454	  

resulting identification and verification performances (in terms of the achieved Rank-1 IR and EER). 455	  

In Fig. 3, we show the effects of varying the value of the optimization parameter wopt for each 456	  

separate weight-training method. Each diagram is shown in a double-vertical axis mode so that the 457	  

co-variation of the Rank-1 IR and EER performances can be inspected in tandem. Only the values in 458	  

the range [0.05, 0.75] are shown, since out of these bounds the performance deteriorates considerably. 459	  

    460	  

Figure 3. Performance curves demonstrating the dynamics of the joint training procedure used for the selection 461	  

of the global value for parameter wopt. 462	  
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As we can observe, the exact points (wopt values) where the EER minimization and the Rank-1 IR 463	  

maximization occur can be slightly different. Thus, in order to select a common value for the 464	  

optimization parameter (wopt) that can be used for all the weight-training methods and for both 465	  

recognition scenarios (identification and verification) we adopted the following joint optimization 466	  

rules: 467	  

𝑤|}i = 𝑚𝑒𝑎𝑛 𝑤|}i�m , 𝑤|}i++m                      (9) 468	  

𝑤|}i�m = 𝑚𝑒𝑎𝑛 𝑎𝑟𝑔𝑚𝑎𝑥
p

𝐼𝑅 𝑊𝑀m?)Z0 , 𝑎𝑟𝑔𝑚𝑎𝑥
p

𝐼𝑅 𝑊𝑀m?)Z , 𝑎𝑟𝑔𝑚𝑎𝑥
p

𝐼𝑅 𝑊𝑀++m             (10) 469	  

𝑤|}i++m = 𝑚𝑒𝑎𝑛 𝑎𝑟𝑔𝑚𝑖𝑛
p

𝐸𝐸𝑅 𝑊𝑀m?)Z0 , 𝑎𝑟𝑔𝑚𝑖𝑛
p

𝐸𝐸𝑅 𝑊𝑀m?)Z , 𝑎𝑟𝑔𝑚𝑖𝑛
p

𝐸𝐸𝑅 𝑊𝑀++m    (11) 470	  

Using the development set and the Eq. (9-11) we calculated the globally optimal value wopt = 0.26, 471	  

which was then routinely used throughout our experiments. 472	  

5.3. Analysis of the multi-source fusion weights 473	  

In this section, we present a detailed analysis for the multi-source fusion weights trained with the 474	  

three tested weight-training methods. This analysis demonstrates the efficacy of the used algorithms 475	  

in modeling the fusion weights, and additionally it provides further insights for our motivation to 476	  

extract and combine stimulus-specific and algorithm-specific weights during the fusion process. 477	  

In Fig. 4, we show a comparison of the trained stimulus-specific weights 𝑤;m?)Z0, 𝑤;m?)Z, 𝑤;++m  for 478	  

the three weight-training methods. These bar diagrams are created by averaging the calculated weight 479	  

values using the data from the development sets (20 random splits). We also show the corresponding 480	  

error bars with the error margins in 95% confidence intervals.  A close inspection of the trained 481	  

weights provides the first practical evidence regarding the stimulus-preference exhibited by the 482	  

different eye movement biometric algorithms. For the OPC algorithm, the weight contribution of the 483	  

horizontal ‘jumping’ point stimulus (HOR) clearly predominates compared to the other types of 484	  

visual stimuli. The stimulus with the least contribution in this case is the video stimulus (VID). For 485	  

the CEM-B algorithm, the calculated weights reveal that the text stimulus (TEX) is the preferred type 486	  

of stimulus since it presents the larger value across all weight-training methods. Finally, for the FDM 487	  

algorithm, the larger weight values are assigned to the video stimulus (VID). 488	  



	  

 489	  

Figure 4. Diagrams of the trained weights 𝑤;m?)Z0, 𝑤;m?)Z, 𝑤;++m  for the three tested weight-training methods, 490	  

in the case of the multi-stimulus fusion. The error bars correspond to 95% confidence intervals. 491	  

 492	  

Figure 5. Diagrams of the trained weights 𝑤?m?)Z0, 𝑤?m?)Z, 𝑤?++m 	  for the three tested weight-training methods, 493	  

in the case of the multi-algorithmic fusion. The error bars correspond to 95% confidence intervals. 494	  
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All the three tested weight-training methods can model consistently the stimulus preference 495	  

characteristics of each of the biometric algorithms, thus confirming the behavior anticipated from the 496	  

theoretical analysis. An important observation is that the contribution from the other types of stimuli 497	  

can be also relevant, and that the relative significance of this contribution can vary based on the 498	  

selected biometric algorithm. The calculated error margins are sufficiently low (< 0.021), revealing 499	  

thus the high stability of the weight-training procedure in all cases. A one-way ANOVA for the error 500	  

margins across the weight-training methods (for all stimuli and all algorithms) showed no significant 501	  

main effect F(2, 33) = 0.76, p = 0.48, supporting the equivalent behavior of the weight-training 502	  

methods in terms of stability. 503	  

In Fig. 5, we present the corresponding diagrams for the weights trained during the multi-algorithmic 504	  

fusion stage 𝑤?m?)Z0, 𝑤?m?)Z, 𝑤?++m , which is applied immediately after the multi-stimulus fusion 505	  

stage. The comparative overview of the calculated weights for the three used biometric algorithms 506	  

shows the strong dominance of the CEM-B algorithm across all weight-training methods. As we 507	  

show in the next section, the dominance of the CEM-B algorithm practically reflects the large 508	  

performance improvement for this specific algorithm during the first stage of fusion, i.e. the multi-509	  

stimulus fusion. We should emphasize, though, that the weights for the other two algorithms are not 510	  

negligible, and they can practically contribute to the further improvement of the biometric recognition 511	  

performance. In terms of stability, the behavior of the three weight-training methods is even better 512	  

than previously, with the error margins in 95% confidence interval being lower than 0.007 in all 513	  

cases. 514	  

5.4. Single algorithm multi-stimulus fusion performance 515	  

In this section, we evaluate the effects of the multi-stimulus fusion (first stage of fusion) in the 516	  

performance of each of the employed biometric algorithms. Table 1 shows the baseline Rank-1 IR 517	  

performances achieved by each of the biometric algorithms for every type of visual stimulus 518	  

separately, and also, the respective rates obtained after the application of the multi-stimulus fusion 519	  

(M-ST) with the use of the three tested weight-training methods. A first observation is that the 520	  

baseline performances seem to confirm the already discussed stimulus preference exhibited by the 521	  



	  

different biometric algorithms. For the OPC algorithm, the top baseline Rank-1 IR is 21.50% and 522	  

occurs for the HOR stimulus. The CEM-B algorithm presents a top baseline Rank-1 IR of 47.45% for 523	  

the TEX stimulus, and the FDM algorithm performs with a top baseline Rank-1 IR of 27.12% for the 524	  

VID stimulus. After the application of the multi-stimulus fusion the identification rates improve 525	  

considerably, reaching the best case values of 28.40% for the OPC algorithm, 82.03% for the CEM-B 526	  

algorithm, and 30.69% for the FDM algorithm. A close inspection of the rates achieved from the three 527	  

tested weight-training methods (M-STRank1, M-STRank, M-STEER) portrays the differentiations in their 528	  

performances. A one-way ANOVA (using values from 20 random splits) revealed a main significant 529	  

effect for Rank-1 IR across the evaluated weight-training methods in all cases, with F(2, 57) = 5.68, p 530	  

< 0.01 for the OPC algorithm, F(2, 57) = 11.87, p < 0.001 for the CEM-B algorithm, and F(2, 57) = 531	  

56.32,  p < 0.001 for the FDM algorithm. 532	  

Table 1. The Rank-1 IR performances in the case of the multi-stimulus (M-ST) fusion for each single biometric 533	  

algorithm.  534	  

Rank-1 Identification Rate (STD) % 

Algorithm 
Single Stimulus Baselines Multi-Stimulus Fusion 

HOR RAN TEX VID M-STRank1 M-STRank M-STEER 

OPC 21.50 
(3.26) 

7.17 
(1.18) 

7.39 
(1.54) 

5.11 
(0.97) 

28.19 
(2.26) 

26.05 
(2.42) 

28.40 
(2.62) 

CEM-B 33.83 
(2.77) 

32.44 
(3.15) 

47.45 
(2.53) 

16.86 
(2.21) 

82.03 
(2.01) 

81.42 
(2.40) 

78.55 
(2.77) 

FDM 10.41 
(1.56) 

7.98 
(1.27) 

3.69 
(1.28) 

27.12 
(2.64) 

30.69 
(2.47) 

19.45 
(3.29) 

23.83 
(4.15) 

In Table 2 we show the respective performance results for the verification scenario. In this case, the 535	  

baseline EER values are 14.43% for the OPC algorithm and the HOR stimulus, 15.01% for the CEM-536	  

B algorithm and the TEX stimulus, and 26.93% for the FDM algorithm and the VID stimulus. As for 537	  

the case of the identification scenario, the application of the multi-stimulus fusion leads to a 538	  

generalized improvement of the verification rates, with the calculated best case values for the EER 539	  

reaching 13.72% for the OPC algorithm, 7.28% for the CEM-B algorithm, and 22.97% for the FDM 540	  

algorithm. 541	  



	  

 542	  

Table 2. The EER performances in the case of the multi-stimulus (M-ST) fusion for each single biometric 543	  

algorithm. 544	  

Equal Error Rate (STD) % 

Algorithm 
Single Stimulus Baselines Multi-stimulus Fusion 

HOR RAN TEX VID M-STRank1 M-STRank M-STEER 

OPC 14.43 
(0.73) 

21.54 
(0.85) 

25.09 
(1.06) 

28.09 
(1.36) 

13.86 
(0.85) 

13.83 
(0.90) 

13.72  
(0.86) 

CEM-B 18.39 
(1.24) 

20.21 
(1.58) 

15.01 
(1.11) 

22.78 
(1.31) 

7.50  
(1.12) 

7.92  
(1.27) 

7.28    
(1.05) 

FDM 35.03 
(1.35) 

44.07 
(1.10) 

35.28 
(1.53) 

26.93 
(1.21) 

22.97 
(1.07) 

24.12 
(1.40) 

23.34   
(1.19) 

 545	  

Figure 6. The constructed ROC curves for each single biometric algorithm before and after the application of 546	  

the multi-stimulus (M-ST) fusion. 547	  



	  

The largest improvement in the verification performance was again achieved by the CEM-B 548	  

algorithm. However, in the case of the EER the differences among the three tested weight-training 549	  

methods are less noticeable. A one-way ANOVA (using values from 20 random splits) revealed no 550	  

significant main effect for the EER values across the weight-training methods, with F(2, 57) = 0.15, p 551	  

= 0.87 for the OPC algorithm, F(2, 57) = 1.61, p = 0.21 for the CEM-B algorithm, and F(2, 57) = 552	  

4.54,  p = 0.01 for the FDM algorithm. In Fig. 6, we present the constructed ROC curve clusters, 553	  

which exhibit the overall performance before and after the multi-stimulus fusion for each single 554	  

biometric algorithm (OPC, CEM-B, FDM). In each case, we show the baseline ROC curves for every 555	  

single visual stimulus (HOR, RAN, TEX, VID), and the resulting ROC curve after the application of 556	  

the multi-stimulus fusion using the best performing weight-training method in each case. 557	  

5.5. Multiple algorithm multi-stimulus fusion performance 558	  

In this section, we present the achieved performances for the case of the multi-source (M-SRC) 559	  

fusion, i.e. application of both stages of fusion—multi-stimulus followed by multi-algorithmic fusion. 560	  

In Table 3, we show the Rank-1 IR values obtained by the three weight-training methods and the two 561	  

tested normalization schemes. For comparison reasons, we also show the achieved rates using two 562	  

other fusion approaches: the first one is the simple mean (SM) fusion (equivalent to the sum rule 563	  

fusion), and the second is a method following a different rationale (a classification based approach) 564	  

with the use of the Random Forests (RF) fusion algorithm [53]. Our current experiments were 565	  

implemented using the regression Random Forests algorithm with the number of trees set to 100. It 566	  

should be noted that during our preliminary experiments we also tested other fusion approaches, such 567	  

as the product rule, the maximum rule, and the minimum rule. These approaches did not succeed on 568	  

producing any competitive rates, and as a result they were not included in our analysis. An inspection 569	  

of the values in Table 3 reveals that, in all cases, the weighted fusion methods outperform both the 570	  

SM fusion method and the RF fusion method. The multi-source fusion using the weight-training 571	  

method based on the Rank-1 identification performance (M-SRCRank1) achieves the top Rank-1 IR of 572	  

88.62%, whereas the other two weight-training methods (M-SRCRank, M-SRCEER) achieve competitive 573	  

but lower rates of 81.02% and 84.36% respectively. The Random Forests (RF) fusion method 574	  



	  

performs with a Rank-1 IR of 80.48%, whereas the Simple Mean (SM) fusion method achieves a 575	  

lower rate of 76.83%. A one-way ANOVA (using values from the 20 random splits) for Rank-1 IR 576	  

across the three tested weight-training methods (M-SRCRank1, M-SRCRank, M-SRCEER) verifies that the 577	  

exhibited differences in performance are statistically significant, both for the Max-Min (MM) 578	  

normalization scheme F(2, 57) = 107.89, p < 0.001, and for the Z-Score (ZS) normalization scheme 579	  

F(2, 57) = 84.34, p < 0.001. However, the one-way ANOVA for Rank-1 IR across the normalization 580	  

schemes (using 20 random splits and all weight-training methods) revealed no significant main effect 581	  

F(1, 118) = 0.16, p = 0.69. 582	  

In Table 4, we present the corresponding EER performances for the verification scenario. In this case, 583	  

the M-SRCRank method leads to the optimum rates, with the minimal EER of 5.83%. The M-SRCEER 584	  

method presents an EER of 5.88%, and the M-SRCRank1 scheme achieves an EER of 6.03%. 585	  

Furthermore, the corresponding EER values for the Random Forests (RF) and the Simple Mean (SM) 586	  

methods reach the comparable levels of 6.03% and 6.57% respectively. In contrast to the case of the 587	  

Rank-1 IR, in this case the variation in performance for the three tested weight-training methods (M-588	  

SRCRank1, M-SRCRank, M-SRCEER) is not statistically significant. This can be verified by the results of 589	  

the one-way ANOVA (using values from 20 random splits) for the EER values across the weight-590	  

training methods, revealing no statistical significant effect both for the Max-Min (MM) normalization 591	  

scheme F(2, 57) = 0.27, p = 0.76, and for the Z-Score (ZS) normalization scheme F(2, 57) = 0.29, p = 592	  

0.75. As for the case of the Rank-1 IR, the selection of a specific normalization scheme seems to have 593	  

a low impact on the EER performance, since the one-way ANOVA for the EER values across the 594	  

normalization schemes revealed no statistically significant effect F(1, 118) = 0.07, p = 0.79. 595	  

Table 3. The Rank-1 IR performances in the case of the multi-source (M-SRC) fusion. 596	  

Rank-1 Identification Rate (STD) % 

Normalization 
Multi-source (multi-stimulus and multi-algorithmic) Fusion 

M-SRCRank1 M-SRCRank M-SRCEER RF  SM 

MM 88.62 (1.43) 80.62 (2.05) 84.36 (1.63) 80.25 (2.48) 72.03 (2.83) 

ZS 88.19 (1.50) 81.02 (2.12) 83.62 (1.61) 80.48 (2.95) 76.83 (2.06) 



	  

 597	  

Table 4. The EER performances in the case of the multi-source (M-SRC) fusion. 598	  

Equal Error Rate (STD) % 

Normalization 
Multi-source (multi-stimulus and multi-algorithmic) Fusion 

M-SRCRank1 M-SRCRank M-SRCEER RF  SM 

MM 6.03 (0.86) 5.83 (0.85) 5.92 (0.96) 6.09 (0.65) 6.79 (0.84) 

ZS 6.08 (0.86) 5.94 (0.86) 5.88 (0.88) 6.03 (0.85) 6.57 (0.71) 

In order to provide a more comprehensive analysis of the performance differences among the three 599	  

tested weight-training fusion methods, we opted to use the complementary performance measure of 600	  

GAR at 0.1% FAR, for inspecting their behavior in the critical area of the low FAR values. Table 5 601	  

shows the calculated values for the GAR at 0.1% FAR for the three weight-training methods (M-602	  

SRCRank1, M-SRCRank, M-SRCEER). The weight-training method based on the Rank-1 IR performance 603	  

presents the highest value of GAR at 0.1% FAR, reaching the rate of 76.72%. The weight-training 604	  

method based on the Rank identification performance presents the lowest rate of 67.66%, and the 605	  

weight-training method based on the EER performance achieves the rate of 73.97%. A one-way 606	  

ANOVA (using values from 20 random splits) for GAR at 0.1% FAR across the three weight-training 607	  

methods revealed that the differences in performance are statistically significant, both for the Max-608	  

Min (MM) normalization scheme F(2, 57) = 37.36, p < 0.001, and for the Z-Score (ZS) normalization 609	  

scheme F(2, 57) = 28.38, p < 0.001. 610	  

Table 5. The GAR at 0.1% FAR performances in the case of the multi-source (M-SRC) fusion. 611	  

GAR at 0.1% FAR (STD) % 

Normalization 
Multi-source (multi-stimulus and multi-algorithmic) Fusion 

M-SRCRank1 M-SRCRank M-SRCEER 

MM 76.72 (2.67) 66.59 (4.72) 73.97 (3.83) 

ZS 76.62 (2.70) 67.66 (4.84) 73.03 (3.52) 



	  

 612	  

Figure 7. Comparative ROC curves using a logarithmic FAR-axis for the three weight-training methods used 613	  

for the multi-source (M-SRC) fusion. 614	  

In Fig. 7, we additionally show the constructed ROC curves for the three weight-training fusion 615	  

methods using a log FAR-axis. These diagrams allow for a clear investigation of the differences in the 616	  

behavior of the three tested weight-training fusion methods in the important area of the low FAR 617	  

values. 618	  

6. Discussion 619	  

6.1. The effects of multi-source fusion on biometric accuracy 620	  

The main objective of our research was to investigate the general effects of multi-source fusion on the 621	  

eye movement-driven biometrics. For this purpose, we proposed a two stage weighted mean fusion 622	  

approach, which can be used for the combination of the comparison scores generated from different 623	  

algorithms under the influence of diverse visual stimuli. The suggested methodology can lead to an 624	  

improved biometric performance compared to the performance achieved by each algorithm for each 625	  

stimulus separately. The best achieved results of the proposed fusion methodology were a top Rank-1 626	  

IR of 88.6% (for M-SRCRank1 and MM normalization), a minimal EER of 5.8% (for M-SRCRank and 627	  

MM normalization), and a top GAR at 0.1% FAR of 76.7% (for M-SRCRank1 and MM normalization). 628	  

These results comprise a substantial improvement for the field of the eye movement-driven 629	  

MM ZS 



	  

biometrics, and underscore the significance of the multi-source information fusion in the specific field 630	  

of research. 631	  

The second objective of our research was to analyze the relative contribution of the multi-stimulus 632	  

and the multi-algorithmic fusion in the overall performance. A close inspection of the results in 633	  

Tables 1 to 4, reveals a clear edge of the process of multi-stimulus fusion in terms of performance 634	  

improvement. Specifically, the CEM-B algorithm improves considerably its baseline rates of 47.4% 635	  

Rank-1 IR and 14.4% EER, to 82% Rank-1 IR and 7.3% EER. This performance equals to a relative 636	  

improvement of 72.9% for the Rank-1 IR, and a relative improvement of 51.5% for the EER. Multi-637	  

stimulus fusion also improves the performances of the other two employed biometric algorithms. For 638	  

the OPC algorithm, there is a relative improvement of 32.1% for the Rank-1 IR, and of 4.9% for the 639	  

EER, whereas for the FDM algorithm there is relative improvement of 13.2% for the Rank-1 IR, and 640	  

14.7% for the EER. The application of the multi-algorithmic fusion after the multi-stimulus fusion 641	  

can lead to the improvement of the biometric accuracy even further. Although it is not as drastic as in 642	  

the case of the multi-stimulus fusion, the additional relative improvement of 8% for the Rank-1 IR 643	  

and 19.9% for the EER, is considerable. 644	  

6.2. Characteristics of the weighted mean fusion scheme 645	  

The third objective of our research was to assess the benefits of the proposed weight mean fusion 646	  

scheme in comparison to other alternatives. In our case, the two-stage fusion mechanism allows 647	  

training of the weights by taking into consideration the behavior of different algorithms for different 648	  

stimuli. It should be also noted that the suggested scheme allows the incorporation of more than one 649	  

matcher per algorithm, since it permits the utilization of different normalization functions during the 650	  

two stages of fusion. In overall, the proposed weighted mean fusion scheme outperforms the tested 651	  

alternatives of the Simple Mean and the Random Forests fusion, both in the identification and in the 652	  

verification scenario (Tables 3 and 4). The importance of these results can be further emphasized 653	  

considering the high computational cost of the Random Forests algorithm, which is a method based 654	  

on ensemble learning. 655	  



	  

The fourth objective of our research was to evaluate the efficacy of the proposed weight-training 656	  

method based on Rank-1/Rank identification performance, compared to the more traditional approach 657	  

based on the verification performance (EER). Such an investigation can be additionally supported by 658	  

studies showing that the good verification performance does not always imply a good identification 659	  

performance, and vice versa [54]. The bar diagrams showing the calculated weights (Fig. 4 and 5) 660	  

demonstrate that all the evaluated weight-training methods can extract the fusion weights with 661	  

satisfactory stability. This stable behavior can be attributed mainly to the large volume of training 662	  

subjects used in this work. The evaluation experiments showed that the suggested method based on 663	  

training with the Rank-1 IR provides the optimum biometric performance for the identification 664	  

scenario, and performs similarly with the other two weight-training methods for the verification 665	  

scenario. Compared to the classic EER-based weight-training method, the proposed rank 666	  

identification-based method can be a more favorable solution for systems needed to operate on both 667	  

modes of biometric recognition (identification and verification). Furthermore, the training procedure 668	  

based on the Rank-1 IR can be also the preferable choice considering the computational cost, since it 669	  

does not demand the construction of the ROC curves which are needed for the calculation of the EER. 670	  

6.3. Practical considerations and dynamic biometric scenarios 671	  

Given that the aim of the current work was to assess in a concrete way the improvements that can be 672	  

achieved by the multi-source stimulus fusion compared to the baseline eye movement-driven 673	  

approaches, several steps were adopted to ensure the high quality of the recorded data. In order to 674	  

capture the eye movements we employed a commercial high-grade eye tracking device. Also, during 675	  

data capturing we stabilized the heads of the subjects using a chinrest with a forehead. Thus, the 676	  

application of the developed scheme in a more practical scenario imposes the recording of the eye 677	  

movements with a relative tolerance in head movements and lighting conditions. The evolution of the 678	  

eye-tracking technology already shows considerable progress to this direction, with the development 679	  

of more robust remote eye trackers [55], and wearable-based eye-tracking solutions [56]. There are 680	  

also attempts to make the eye-tracking technology more affordable, with the development of low-cost 681	  

devices of satisfactory accuracy [57].   682	  



	  

Another practical consideration involves the time needed to record the eye movements. Since the eye 683	  

movements are evolving dynamically in time, they cannot be captured within a single frame as it can 684	  

be done for the iris and the fingerprint images. Although this is a limitation of the eye movement 685	  

biometrics, at the same time, the dynamic and behavioral nature of the eye movement provides unique 686	  

advantages in terms of counterfeit resistance. Thus, the eye movement-driven algorithms can find 687	  

application as soft biometric modules in traditional biometric systems, in order to provide anti-688	  

spoofing resistance [58, 59] and continuous identity monitoring [60]. 689	  

The proposed multi-source fusion scheme can also provide practical advantages for creating more 690	  

dynamic biometric recognition systems. In our method the information is combined with the use of 691	  

stimulus-specific and algorithm-specific weights. Thus, the relative duration and/or the order of 692	  

stimuli presentation can be dynamically chosen, allowing for the development of adaptive biometric 693	  

systems. Next, we provide an example of an adaptive biometric recognition scenario. Let us assume 694	  

that the user initially enrolls into the system by observing the four types of stimulus with equal time 695	  

durations. In this case, if we denote with 𝑑i|i the total duration of presentation, the user will register 696	  

0.25 ∙ 𝑑i|i for the HOR stimulus, 0.25 ∙ 𝑑i|i for the RAN stimulus, 0.25 ∙ 𝑑i|i for the TEX stimulus, 697	  

and 0.25 ∙ 𝑑i|i for the VID stimulus. Now, let us assume that during a subsequent recognition 698	  

attempt, the system dynamically changes the relative duration (and/or the order) of stimuli 699	  

presentation, for example 0.4 ∙ 𝑑i|i for the TEX stimulus, 0.1 ∙ 𝑑i|i for the RAN stimulus, 0.3 ∙ 𝑑i|i  700	  

for the HOR stimulus, and 0.2 ∙ 𝑑i|i for the VID stimulus. In this case, the biometric system which 701	  

generates the stimuli presentation can also modulate the stimulus-specific and algorithm-specific 702	  

weights in response to the current presentation settings, with the aim to maximize the probability of 703	  

an accurate recognition result. Inversely, let us assume that someone tries to spoof-attack the 704	  

biometric system, e.g. by recording the eye movements during the initial enrollment and replay the 705	  

recording during a next trial. In this case, the difference in the stimulus presentation settings during 706	  

the subsequent recognition attempt will lower the possibilities of a successful spoofing attack by 707	  

replaying the previously recorded eye movements, given the different modulation of the employed 708	  

fusion weights. 709	  



	  

6.4. Limitations 710	  

Our current research is subject to certain limitations. The experiments for collecting the eye 711	  

movement recordings were conducted within the same day. Previous research has shown that the 712	  

biometric accuracy can be affected by the appearance of template aging effects [61, 62]. Thus, an 713	  

investigation with a database recorded over a longer time period would allow for an evaluation of the 714	  

relative effects of the multi-source fusion for larger time intervals. Furthermore, the constructed 715	  

database consists of two recordings per subject for every stimulus. Although the large number of 716	  

subjects supports the stability of the extracted results, it would be interesting to investigate the 717	  

behavior of the evaluated weight-training methods in the case of multiple recordings per subject. 718	  

Finally, it should be noted that the proposed multi-source fusion scheme practically requires separate 719	  

time for making the recording for each stimulus. However, the disadvantage of this prolonged 720	  

recording duration can be partially counterbalanced by the advantages provided by the use of multiple 721	  

visual stimuli in terms of the achieved performance improvement and the creation of dynamic 722	  

biometric recognition scenarios. 723	  

7. Conclusion 724	  

This work investigated the effects of multi-source information fusion in the emerging field of eye 725	  

movement-driven biometrics. The behavioral characteristics of the eye movements induce a certain 726	  

degree of inaccuracy on the extracted features. To this context, the combination of information 727	  

coming from different sources provides a useful mechanism for facilitating performance 728	  

advancements in terms of recognition accuracy and robustness. In this paper, we introduced and 729	  

evaluated the new concept of multi-stimulus fusion, i.e. the combination of information extracted 730	  

from the eye movements while observing different visual stimuli. Additionally, we investigated the 731	  

potential of the multi-algorithmic fusion by taking into consideration the existing interrelationships 732	  

between the eye movement-driven algorithms and the different types of visual stimuli. Our 733	  

experimental results suggest that the application of multi-source weighted fusion can lead to 734	  

significant improvements in performance, when compared to the single-algorithm and single-stimulus 735	  

baselines. In our future work, we plan to investigate the characteristics of the proposed fusion scheme 736	  



	  

for recordings of limited duration, and for datasets that contain multiple enrollments per subject. Also, 737	  

our future research will focus on the effects of template aging on the developed fusion scheme. 738	  
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