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ABSTRACT 

The Traveling Salesman Problem has often been used as an exploration ground 

for building heuristics to calculate the shortest path of a complete graph that traverse 

every vertex exactly once. 

This has a number of important practical applications. Since it is an NP-hard 

problem, many heuristics have been proposed to obtain near-optimal solutions in 

polynomial time. 

The heuristic explored in this study is based on Kruskal’s algorithm, where the 

edges of a graph are sorted in non-decreasing order. The smallest edges that meet the 

eligibility criteria are included in the path until a tour that includes all vertices has been 

constructed. Whether an edge meets the criteria depends on which smaller edges have 

been inserted. This makes the algorithm difficult to parallelize. 

I combined previously published with new parallelization techniques and 

implemented the algorithm in OpenMP and CUDA. The resulting GPU code is very fast, 

taking just 0.06 seconds to process a graph with 11,849 vertices and 70,193,476 edges. 

This is approximately 8 times faster than the serial CPU implementation and has a 

solution quality that is within 18% of the optimal. Compared to the optimal solver 

CONCORDE, my code is 1,206,302 times faster.
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I. INTRODUCTION 

The Traveling Salesman Problem (TSP) is a puzzle-like rendition of a question that 

simply poses “Which is the shortest route that a salesperson can take to visit all cities on 

a map exactly once and return to the starting city while keeping the distance of the 

route at a minimum?”. In a complete and undirected graph, the vertices are analogous 

to the cities, and all the edges available from each vertex to every other vertex is 

analogous to the paths a salesperson can take.  The distances between the vertices 

correspond to the edge weights between the cities. 

One can see that the number of available route options quickly becomes 

overwhelming as the number of cities grows, where the number of edges available is 

given by the equation E = n ∙ (n-1) / 2, where E is the number of edges in the given graph 

and n is the number of vertices.  As the number of vertices in a graph grow, the number 

of edges grows quadratically, and the number of paths P exponentially P = n!.  With the 

vast number of possibilities available, the kind of problem posed by TSP is known as a 

Combinatorial Optimization Problem, and its primary goal is to find the Hamiltonian 

Path—that is, the path that traverses all vertices exactly once, keeping the cost (the 

weight of the used edges) associated with traversing the path at a minimum before 

returning to the starting vertex. 

The TSP has been used as a topic of study for a wide range of applications in 

science and engineering such as radiation hybrid mapping, where specific markers are 

located on a chromosome [2, 3, 22].  It is also used in Very Large-Scale Integration 

microchip manufacturing [6], X-ray crystallography [8, 17], routing, and production-
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scheduling [9].  It has been used to solve the path for which a laser cuts a board for 

wiring and has applications in network optimizations [5].  It also has applications in 

computer wiring, wallpaper cutting, and hole punching of metallic sheets in 

manufacturing plants [9].  Thus, finding time-efficient solutions is of great importance. 

Finding the optimal solution to a given TSP is a computationally-expensive task, 

where the problem is categorized as NP-hard and quickly becomes intractable for large 

problem sizes [4, 6, 16].   As a workaround to finding the optimal solution, there are a 

variety of heuristics that can achieve high-quality, near-optimal solutions, and each 

heuristic is associated with its own time-complexity.  Some heuristics are faster than 

others, but they all have polynomial time. 

Heuristics vary in their time complexity, ranging from O(n), where the amount of 

time needed to solve for a particular heuristic is linearly based on the input size n, to 

O(n2), where the time needed is correlated with the square of the input size, and the 

complexities can go well beyond that (i.e. O(n3), or O(n4), etc.).  Optimal solvers such as 

the Combinatorial Optimization and Networked Combinatorial Optimization Research 

and Development Environment (CONCORDE) [20] solve a given TSP graph to the lower 

bound [10].  Where the TSP has been solved by CONCORDE for optimal solutions of a 

given set of graphs, finding the optimal solution for practical applications is not always 

feasible.  One could theoretically compute an optimal solution by brute-forcing a given 

graph and analyzing every possible combination of edges.  However, this is unworkable 

for practical applications involving large input sizes.  Therefore, researchers aim to find 

heuristics that arrive at near-optimal paths in workable time.  Depending on the chosen 
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heuristic, there is typically a tradeoff between solution quality—that is, the relative 

difference in the heuristic’s final path length to the optimal—and computation time. 

For example, an easily-graspable heuristic can be thought of as “Random”.  A 

final path, or tour, is generated by selecting random, unvisited vertices from the graph 

as part of the current vertex’s next destination.  Associated with a time-complexity of 

O(n), this heuristic’s time to execute is linearly correlated with the input size, and the 

final solution could provide for a path length that is anywhere between the lower and 

upper bound of possible path lengths.  Another heuristic is the “Nearest-Neighbor”, 

where a vertex’s destination is chosen according to its distance from the current vertex.  

The time-complexity associated with the Nearest-Neighbor heuristic, however, is O(n2), 

where every other vertex that has not been visited needs to be considered as a possible 

next destination.  The closest vertex is chosen, and subsequently, every other vertex 

must again be compared for distance from the chosen vertex.  This repeats until the 

final path is constructed, and the path constructed by the Nearest-Neighbor heuristic is 

usually within 25% of the lower bound at the trade-off of requiring O(n2) time. 

The Greedy Heuristic that was implemented in this study is based on Kruskal’s 

Algorithm [23, 24, 27], where the tour that is constructed is dependent on the edge 

weights of the graph.  This heuristic takes all the edges in a complete, undirected graph 

and sorts them in non-decreasing order.  The edges are then considered, starting with 

the smallest, on an individual basis on whether they should be included in the final tour.  

Whether they are included ultimately depends on two conditions: whether (1) both 

vertices associated with the edge in question have a degree of less than 2, or (2) if both 
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vertices of the edge have a degree of 1, they must not be a part of the same set of 

connected edges.  Having a vertex that has a degree higher than 2 would result in an 

invalid final path.  This is due to the fact that a vertex with a degree of 3 or higher 

ultimately does not constitute a tour—that is, it does not allow for a vertex to be visited 

exactly once in the graph cycle that connects all vertices.  If a branching path were to be 

constructed from a vertex with a degree of 3, the return to that vertex (the edge leading 

to the vertex’s second visit) would prevent a valid solution.  Likewise, including an edge 

that would result in a cycle prior to the inclusion of all vertices in the tour would also be 

invalid because the cycle would not include all vertices. 

This heuristic proves difficult to parallelize due to the inherent sequential nature 

of considering each edge on an individual basis.  In other words, the inclusion of an edge 

cannot be determined based solely on any characteristic or trait associated with that 

edge—for example, its vertex at one end or the other or the edge’s weight—without 

consideration of all other edges, and its inclusion must be considered in relation to what 

edges have already been included in the tour.  It is only after previous edges have been 

included or excluded that any edge can be considered for inclusion in the tour.  

Nonetheless, there remain opportunities within the heuristic for parallelization.  For 

example, this heuristic requires sorting.  For implementation on the central processing 

unit (CPU), the sorting method is a form of recursive quicksort that makes use of the 

standard library’s std::partition and std::find functions, both of which can be called with 

a parallel execution policy.  For the graphics processing unit’s (GPU) implementation, 

functions similar to std::partition can be found in a library known as “CUB” [42]. 
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In this thesis, I serially implemented the presented heuristic.  I subsequently 

implemented the parallel CPU version using a combination of OpenMP and parallel 

standard library functions, and finally implemented the parallel version of the presented 

greedy heuristic on the GPU using NVIDIA’s Compute Unified Device Architecture 

(CUDA), an application programming interface (API) developed by NVIDIA for general 

purpose computing on GPUs. 
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II. RELATED WORK 

CONCORDE, developed by David L. Applegate, Robert E. Bixby, Vašek Chvátal, 

and William J. Cook, is an optimal solver that has previously been used to benchmark 

and publish a set of TSP graphs, the largest of which has had 85,900 cities [5].  

CONCORDE uses linear programming and branch-and-bound techniques to solve for the 

optimal solutions [10, 12], and can only find optimal solutions in sub-exponential time 

for certain inputs.  These benchmarks serve as a good reference point for comparison 

against heuristics that have been written in an attempt to achieve near-optimal 

solutions.  The following are several examples of heuristics. 

 

Random 

This heuristic is relatively easy to grasp considering there is no particular bearing 

on the order of the visited cities.  Essentially, a random city is chosen as the tour is being 

constructed, and therefore, the final tour length could range anywhere from best- to 

worst-case—that is, the final path may be anywhere from the lower to the upper bound. 

It generates a path in O(n), but may produce a solution quality that is anywhere 

between the lower and upper bound. 

 

Sequenced 

Unlike the Random heuristic, the Sequenced heuristic already has its path 

preconstructed, meaning that every vertex has a predetermined “next vertex” in its 

path, regardless of the weight of the edge connecting the two vertices.  Time complexity 
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is also O(n), but due to its predetermined order, reveals no new information or potential 

for exploration. 

 

“Smarter” Heuristics 

The heuristics that follow are examples of improved, “smarter” heuristics that 

can consistently achieve solutions that are closer to the lower-bound.  However, their 

implementations require more time to solve. 

 

Nearest Neighbor 

As an introduction to the first heuristic that has a type of algorithmic or rule-

based approach, the Nearest Neighbor [9, 19] heuristic provides insight into how 

applying constraints yields better results.  In this heuristic, a starting city is randomly 

chosen from the given set of vertices.  The path’s “next vertex” is determined by 

comparing all edges formed from the current vertex to every other vertex.  The shortest 

edge among them is chosen, and the vertex located on the other end of the edge is 

added to the tour.  The process then repeats for every other vertex, ignoring the 

vertices that have already been visited along the way.  Ultimately, the final path tends 

to have a result that is within 25% of the lower bound, but the trade-off comes in the 

heuristics time-complexity O(n2), where the amount of time that is needed to calculated 

the final path is dependent on the square of the number of vertices in the graph. 
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Nearest Insertion 

The Nearest Insertion heuristic uses a combination of rules for determining the 

specific order of which vertex to visit next [11, 19].  Given the current set of vertices that 

have been included in the tour, find the vertex that is closest to any vertex in the tour.  

To determine where in the tour to include the vertex—that is, to determine which edges 

should be used to include that vertex in the tour—find an insertion point between two 

cities where the insertion cost is minimal.  In other words, where can the vertex be 

inserted such that the increase in tour length is minimized when compared to all other 

possible insertion points.  Similar in the time complexity for the Nearest Neighbor 

heuristic, all possibilities must be considered for every vertex’s iteration during the 

construction of the path. 

 

MST-based 

The minimum spanning tree (MST)-based heuristic uses the MST to create a 

route that attempts to find ways around already-visited nodes in O(n2 ∙ log2(n)) time 

[12].  It begins by first creating an MST, and subsequently, a path is created by 

traversing all the vertices from that tree.  When the tree branches, the terminal node at 

the end of the branch is connected to the next node ni that follows when returning from 

the traversal of that branch. This skips over duplicate vertices and ultimately forms the 

Hamiltonian Path by removing the edges that connect the origin of the branch to that 

next node ni. 
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Christophides 

A multi-step heuristic known as Christophides’ heuristic [9, 13] has a unique 

approach such that even though its time-complexity is O(n3), the final path is within 10% 

of the lower bound.  Similar to the MST-based heuristic, Christophides’ heuristic begins 

by forming an MST.  From the tree, all odd-degree vertices are removed from which a 

minimum-weight matching graph is made.  For the configuration in which the matching 

of vertices is optimal, they are matched back with the minimum-spanning tree.  An 

Eulerian cycle (a path that visits every edge once) is drawn on the resulting combined 

graph which then results in the Hamiltonian Path. 

 

Nearest Merger 

The Nearest Merger heuristic takes an approach that is similar to that of the 

Nearest Insertion heuristic, however, the Nearest Merger takes into account sets of 

vertices and vertices that might have already been included in other sets [13].  To 

elaborate on this, consider that all vertices begin as part of their own sub-tour.  In order 

to consider what merging to do next, the heuristic finds the two points that are nearest 

each other and combines their sub-tours depending on a small set of rules that 

minimizes the cost of combination.  If either of the vertices are independent (they are 

still their same, initial-state sub-tour), simply add the independent vertex to the other’s 

sub-tour.  If both sub-tours contain more than 1 vertex, find an edge in each sub-tour 

such that the cost of removal of those edges and addition of two other edges that 

connect each sub-tour’s vertices from the removed edges to each other is minimal.  The 
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heuristic repeats until all sub-tours have been combined and one final tour remains.  

Again, this is a heuristic in which all combinations of edges and vertices must be 

considered while the tour is being constructed, giving the heuristic a time complexity of 

O(n2). 

 

Clark-Wright 

As a more complicated heuristic, the Clark-Wright heuristic [14] also makes use 

of a randomly chosen vertex as its starting point.  The heuristic then creates a path to 

every other vertex in the graph, meaning that every vertex is visited and the path 

immediately returns to the starting vertex before visiting another.  This produces a 

starting cost, which is then used to compute a savings cost as the heuristic proceeds.  A 

list of saving-costs is generated by drawing an edge between all other vertices as if their 

path to the starting vertex was removed (i.e. starting vertex a has paths with b and c; 

instead of traversing via a-b-a-c-a, a savings cost is calculated by assessing path a-b-c-a).  

This list of saving-costs is then sorted, the smallest of which is added to the tour.  This 

process is then repeated until a proper, final cycle is formed between all the vertices. 

 

Other Heuristics 

The list of heuristics is virtually endless, ranging from simple to rather 

complicated with each heuristic offering insight and benefits that others might not, each 

with their own time- and space- complexity.  Furthermore, there are a couple of distinct 

categories that heuristics fall into termed as constructive or improvement [3].  
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Constructive heuristics aim to build a solution from scratch in that, as soon as a solution 

is found, the heuristic is complete and terminates, the best of which are capable of 

achieving between 10-15% of the optimal solution.  Improvement heuristics, however, 

take a premeditated, initial solution and iterate over successive calls that improve upon 

the solution (i.e. exchanging sets of edges that reduce the overall path length). Such 

heuristics include the K-Opt [18, 19, 20], the Held-Karp heuristic [11], the Lin-Kernighan 

heuristic [20] (which is an adaptive form of 2-Opt and 3-Opt) and its optimized Lin-

Kernighan-Helsgaun (LKH-1 and LKH-2) heuristics [9].  Improvement heuristics can be 

combined as an additional post-processing-step to construction heuristics such as the 

Greedy Heuristic presented here, but that is beyond the scope of this thesis. 

 

Parallelization 

Various heuristics each offer their own opportunities for parallelization, but 

oftentimes, direct parallelization of each heuristic may not be feasible.  Heuristics at 

times require a certain degree of dependencies that play a key role in what 

algorithmically happens next, be it choosing a next vertex, adding or removing an edge, 

or calculating a cost.  Other parts of heuristics are key opportunities for parallel 

implementation (i.e. sorting), and it is these opportunities that can be exploited to 

optimize a heuristic.  Parallelization by means of the CPU could be as simple as using a 

predefined, standard library function.  APIs such as OpenMP, MPI, and the usage of 

pthreads each offer their own systematic advantages for parallel implementations. 
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There have been a variety of multi-threaded approaches that have been 

implemented as a means of finding the MST [13, 20, 24], and this also includes an 

algorithm that makes use of “helper threads” as a means of “searching ahead” in the 

heuristic [25]. In Kruskal’s Algorithm, edges are sorted based on their lengths/weights, 

and edges are considered for inclusion in the final tour based on their cyclic-free 

connections.  The approach presented by Katsigiannis et al. [25] suggests that “helper 

threads” can scan “ahead of the list” for edges that would form a cycle based on the 

edges that have already been included so far.  This means that the edges that meet this 

condition can be excluded early, allowing the algorithm to essentially skip over the 

edges that have already been discarded and thus saving computation time.  The authors 

showed that this approach allowed for a speed up of 5.5 for 8 helper threads, revealing 

that this approach exhibits usefulness. 

As a further possibility of optimization, parallelization via the use of a GPU offers 

an advantage over using CPU parallelization.  GPUs offer better performance when it 

comes to the execution of parallel code, especially when the same instruction sets need 

be applied to large amounts of data.  Utilizing this advantage over CPU parallelization 

could offer faster execution times for particular heuristics. 

O’Neil and Burtscher [4] have shown that parallelism on the GPU can benefit in 

the optimization of the 2-Opt CPU-based heuristic, though at the tradeoff of smaller 

problem sizes.  The 2-Opt heuristic sought to exchange pairs of edges in a graph for 

edges that allow the tour to remain intact whilst reducing the overall path’s length.  In 

an approach termed the Iterative Hill Climb (IHC) [10, 15, 21, 26], a graph can undergo 
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many 2-Opt exchanges to reach a point where the graph’s path length can no further be 

reduced—that is, it reaches a local minimum.  Through many repetitions of the IHC, 

each beginning with a randomly-constructed tour at the start of the heuristic, many 

local minimums can be compared and eventually agree on what result is nearest the 

optimal solution (and therefore achieves a near-optimal solution). With parallelization, 

many threads can simultaneously run independent climbs on the same graph, and when 

ported to CUDA, their GPU code reflected that of a 61X speedup over the serial code.  

To re-emphasize, however, memory constraints on the GPU limited the problem size to 

110 cities.  O’Neil concludes that the GPU implementation is roughly equivalent to the 

performance of a pthreads implementation with 32 CPUs and 8 cores per CPU, which 

clearly shows that the GPU can improve parallel performance over the CPU.  Rocki and 

Suda [8] were able to demonstrate the heuristic with an approach that allowed 

approximately 6,000 cities on the GPU, taking into account that the distance (where 

needed) could be recalculated at runtime rather than store the distances in a matrix.  

Though it slowed the implementation, the storage requirement was reduced from O(n2) 

to O(n).  They were also able to demonstrate that another GPU implementation based 

on the 2-opt heuristic achieved a 5 to 45 times faster run time compared to the parallel 

CPU implementation on 6 cores [15]. 

Delévacq and others [31] describe an implementation that parallelizes a 

metaheuristic (a category of heuristics that can be used to generally solve a wider range 

of optimization problems rather than a more specific problem) known as the Ant Colony 

Optimization (ACO) on the GPU—specifically, the Max-Min Ant System (MMAS), which is 
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considered to be one of the most efficient ACO algorithms [30, 32, 41].  It is a 

constructive heuristic that uses an approach that is inspired by the behavior of ants 

when building a colony, and parallelization of ACO also comes in two forms: the building 

of a single ant colony and the building of multiple ant colonies. In the single-colony 

implementation, individual ants are used as separate computing elements, whereas in 

the multiple colony implementation, each colony is distributed.  This is further enhanced 

by the incorporation of a cooperation scheme between colonies that aims to reduce 

computing time and improve solution quality.  Delévacq [31] shows that a speedup of 

nearly 20X can be achieved, albeit different problem sets yielded different variations of 

speedups.  Hongtao and others [30], as well as Skinderowicz [33], were also able to 

show considerable speedups when using CUDA for the parallelization of the multiple 

colony ACO.  Chen and Chien [34] propose another parallel variation of the ACO 

heuristic that is based on genetics, but to the best of our knowledge, has not yet been 

implemented on the GPU.  Additionally, others [10] describe heterogenous variations of 

MMAS in which some component of the metaheuristic is computed on the GPU while 

other components are computed on the CPU, both of which are executed in parallel.  

Bai and others [30] describe a multiple-colony, parallel, GPU implementation that also 

parallelizes individual ants and can achieve a speed up of 32x over the CPU serial 

implementation. Jiening and others [36] describe an implementation that is written in a 

combination of C++ and Cg, a variant of NVIDIA’s coding language for utilizing their 

GPUs, that achieves a small speed up of 1.4x, but with a small problem size of 30 cities. 

Because the ACO metaheuristic involves two stages (tour construction and pheromone 
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updates), Cecilia and others [37] were able to demonstrate that the tour construction 

phase could achieve a speed up of 28x and the pheromone update phase could achieve 

a speedup of 20x when both phases are implemented on the GPU when compared to 

the serial CPU implementation (the pheromone update phase has typically been 

implemented on the CPU).  Fu and others [38] describe an MMAS implementation using 

MATLAB and the Jacket toolbox (a tool for writing and executing MATLAB code on the 

GPU in MATLAB’s native M-Language) in which the metaheuristic alternates phases 

between the CPU and GPU, with a general speedup of over 30x for the GPU+CPU 

implementation over the CPU implementation.  Other various CUDA-implemented ACO 

TSP solvers exist [16, 39, 40]. 

 In a work that is closely related to the approach of this study, Osipov et al. 

describe a manner of efficiently building an MST using Kruskal’s algorithm [24].  In their 

approach, they make light of the fact that Kruskal’s algorithm is used for building MSTs, 

but rather than using trees directly, a forest is grown.  Separate trees are joined 

together by edges of increasing weight, but notably, Kruskal’s algorithm sorts all the 

edges before iterating through them until n – 1 edges are found.  The manner in which 

this inefficiency is addressed is by incorporating a form of “quicksort”, where, much to 

the likes of our approach, quicksorts the “lighter” side of the quicksort, applies the 

selection algorithm, and if the MST isn’t complete, recursively applies to the “heavier” 

side of the quicksort.  This approach is denoted as qKruskal.  To further improve upon 

the inefficiency, filtering—that is, the removal of heavier edges from the forest before 

iterating on them—is applied, which leads to considerable performance improvements. 
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III. APPROACH 

The heuristic taken in this study is based on Kruskal’s algorithm—using edges 

that are ordered by non-decreasing edge weights. TSPLIB [7], a standardized library of 

two-dimensional, Euclidian-space graphs that has been the basis for the majority of TSP 

research over the past couple of decades, was used for comparing the performance of 

the greedy heuristic in this study to others.  In this heuristic, a TSPLIB file is read, 

instantiating all the vertices to be processed, and all possible edges between all vertices 

are subsequently instantiated.  The edges are sorted in non-decreasing order, and the 

sorted list of edges is traversed, with each eligible edge being added to the final tour.   

The edges are said to be sorted in non-decreasing order due to the technical 

difference in describing the process of sorting.  A sorting method that sorts in 

“ascending” order implies that at every step of the sorted list, the sorting criteria 

increases at every step.  The term “non-decreasing” is used to imply that at every step 

of the sorted list, the criteria may or may not increase. 

Recall that an edge is considered eligible if either (1) both vertices associated 

with the edge in question have a degree of less than 2, and (2) if both vertices have a 

degree of 1, they must not be a part of the same set of connected edges (i.e. they must 

not form a cycle). During preprocessing, the C++ standard library’s std::partition is called 

to rearrange the currently-processing range of edges in such a way that all edges that 

meet the criteria for inclusion in the final tour are moved to the front half of the set (see 

below for the implementation’s definition of a “set”).  This makes for a more efficient 

sorting due to fewer edges being recursively rearranged during the sorting step, and as 
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an additional optimization, the preprocessing step (as is the sorting) can be carried out 

in parallel (specifically, the calls to std::partition and std::find as is outlined below).  This 

set is then passed to processing and sorting, where the preprocessed range of edges are 

sorted.  If the range of edges exceeds the current chunk size, the edges that exceed the 

limit of the chunk are passed in a list to the next main loop’s iteration.  After the range 

of edges are processed and sorted, the main loop iterates through the range of edges, 

adding eligible edges to the final tour and discarding the ineligible ones.  If the tour is 

complete (n – 1 edges have been added to the tour), the main loop terminates and the 

city-order is reconstructed from the array holding the city-connections (the edge array 

whose vertices appear in sequence).  The algorithm terminates, and the final path 

length is calculated, marking the end of the program.  The heuristic is outlined in Figure 

1. 
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Figure 1 – The Heuristic’s Implementation.  Shown above is the current implementation’s 
approach.  The edges are then processed in the main loop, where a range of edges are 
preprocessed, processed, and sorted. 

 

Std::Partition 

The standard library’s std::partition function is one of the two key components 

to parallelization in the current implementation (the other being std::find; see Figure 2).  

Partition takes as arguments an execution policy, a range, and a function that returns a 

Boolean that serves as the basis for partitioning the range.  Partition takes the elements 

pointed to by the specified range and segregates them according to the evaluating 

function—it places the elements whose conditional-check function’s return value is true 

in the front and sends the elements whose return value is false to the back of the range.  

In the preprocessing step, edges are rearranged according to whether they meet the 

criteria for inclusion in the final tour (that is, an edge’s vertex degrees are checked and 



 

19 

whether the inclusion of the edge will prematurely form a cycle in the currently-

constructed tour).  All edges that meet the criteria are rearranged such that any edges 

that meet the criteria precede the edges that do not meet the criteria.  This range, 

consisting solely of tour-eligible edges, is then passed into the processing step for 

sorting, and in the sorting step, a recursive quicksort in emulated by the same call to 

partition, albeit using a different condition.  The condition differs in that the condition is 

now checking the length of the edges against a pivot edge.  Edges that are smaller than 

the pivot are rearranged to precede the pivot, and edges that are larger are rearranged 

to follow the pivot edge.  A recursive call to quicksort is then made with new ranges 

“low to pivot – 1” and “pivot + 1 to high”.  This recursive call continues until the range of 

edges (the range defined as the chunk size that is supplied at runtime) is fully sorted, for 

which the main loop can then iterate through for inclusion in the final tour. 

 

 
Figure 2 – Std::Partition and Std::Find. Shown above is the result of the call to partition before and 
after edges are rearranged. 
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Disjoint-Set Data Structure – “Union Find” 

The approach taken to detect cycles in this study (one of two stipulations in the 

criteria for an edge’s inclusion in the final tour) uses a data structure termed Union Find, 

otherwise also known as a Disjoint-Set Data Structure [24, 25]. Its usefulness comes to 

light in its implementation, where every element is associated with a set that is 

identified by the integer at that index.  Initially, every element in an integer array is its 

index (where every vertex is a part of its own set). If the edge under consideration is 

included in the final Hamiltonian Path, the integer array is updated to reflect an 

association between the edge’s two vertices.  The data-structure accomplishes this by 

changing one of the index’s value to reflect the value in the other index. As vertices 

become connected through the iteration of edges formed by those vertices, the 

identifying set that a particular element belongs to is updated (see Figure 3). In the 

figure, when considering the edge formed by the use of the vertices indexed at 5 and 8, 

the disjoint-set data structure updates which set those vertices are a part of in real-

time.  If the edge is included in the final Hamiltonian Path, the integer array is updated 

to reflect an association between the two vertices via the edge that forms from their 

connection.  Shown in Figure 3 is how the integer at array index 8 is updated to 5, 

meaning that vertices 5 and 8 are a part of the same set.  Likewise, should the next edge 

to be considered consist of vertices 4 and 5, the inclusion of that edge in the final 

Hamiltonian Path means that vertex 4 is now a part of the set of associated vertices 

identified by the value 5.  Over the course of the algorithm’s execution, vertex sets are 

updated in real time, and the benefit of this data structure is that edges whose inclusion 
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would result in the formation of a premature cycle (because the vertices in that edge 

are already a part of the same set) are discarded, allowing other potential edges to be 

included.  In this manner, all vertices become associated with a particular set that 

distinguishes one connected set of edges from another.  Furthermore, when two edge 

“sets” are connected via the inclusion of an edge—that is, the edge in consideration has 

vertices that are already a part of two differently-identified sets—all vertices’ set 

identifiers (the value in the array at those vertices’ indices) are updated to reflect the 

new set, keeping a consistent record of all edge-segments as they form in the graph.  

This update is known as path compression, and depending on the application, may or 

may not be a part of the implementation (it is used in this implementation). This, thusly, 

prevents the formation of a cycle amongst the vertices, keeping the algorithm intact and 

valid. 
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Figure 3 – Disjoint-Set Data Structure. How the elements in a Union-Find are changed to 
reflect a vertex’s association to other vertices. Shown in the top half is the manner in 
which the data structure is represented in the array.  The bottom half visualizes what is 
happening in the graph as edges are joined. 
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The following paragraphs discuss each of the major steps in more detail. 

 

File Reading and Vertex Instantiation 

The implementation begins by reading a TSP file as input.  TSP graphs are taken 

from TSPLIB [7], which provides pre-calculated optimal solutions for comparison.  

Standard with every TSP file format is a handful of introductory lines detailing the list of 

vertices and the kind of graph associated with the file.  Vertex identification numbers, 

and their associated coordinates, are listed in sequential order following the details of 

the TSP graph.  The coordinates are stored as floats in a struct containing two values, 

one for each coordinate x and y.  Vertices are identified in the code according to their 

array index. 

 

Edge Instantiation 

The stored vertices are then used to instantiate all edges in the implementation.  

This was initially accomplished serially via the use of two for-loops that traversed all 

other vertices for a given vertex. Due to loop-carried dependency, this form of 

instantiation was not directly parallelizable.  The parallel implementation, however, 

makes use of a closed-form single for-loop that assigns Edge vertices based on 

constants.  This closed-form implementation was parallelized via OpenMP, utilizing its 

specific parallel-for preprocessing directive.  The length of each edge was not necessary 

to store, as the length is recalculated when needed (i.e. during sorting or tour length 

calculation).  For the GPU implementation, a kernel that launched one thread per edge 
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was used to simultaneously instantiate all edges in a graph, assigning each edge 

instance with both of its designated vertices. 

 

Implementation of the Main Loop 

The serial and parallel CPU implementation’s main loop of the chosen heuristic 

consists of four segments—preprocessing, processing, sorting, and inclusion—each of 

which are described below in detail. 

 

Preprocessing. The standard library’s std::partition is called to rearrange the 

currently-processing set of edges in such a way that all edges that meet the criteria for 

inclusion in the final tour are moved to the front half of the set.  Recall that the criteria 

for inclusion in the final tour is dependent on two stipulations: (1) if both vertices 

associated with the edge in question have a degree of less than 2, and (2) if both 

vertices have a degree of 1, they must not be a part of the same set of connected edges 

(otherwise, the inclusion of the edge in question would result in a cycle, meaning the 

final path would be invalid).  This preprocessing step aids the processing segment in that 

only edges that are deemed eligible to be included in the final tour are sorted, 

eliminating the need to sort edges that will ultimately be excluded. 

 

Processing and Sorting. As part of the implementation’s sorting, std::partition is 

used to implement an emulated recursive quicksort, and during the processing portion 

of the main loop, the currently-processing set of edges is sorted in a manner that is 
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consistent with the way a standard quicksort is implemented. A pivot edge is chosen, 

and based on its weight (in addition to its vertex IDs), all other edges are either placed 

preceding or following that particular edge via that call to std::partition.  Additional calls 

to quicksort are then recursively stacked, calling std::partition on the edges that were 

placed prior-to and after the previous pivot edge.  In other words, a recursive call to 

quicksort is made with the subranges specified as “low” to “pivotEdge – 1” and 

“pivotEdge + 1” to “high”.  To find the edge index at which the call to std::partition was 

completed (the pivot point in separating the edges), the standard library’s std::find is 

called to search in the range of currently-processing list of edges.  This index is returned 

and used in subsequent recursive calls to quicksort (and therefore std::partition). 

 

“Chunked” Sorting. As a means of optimization for the traversal of the list of 

edges that need to be sorted, a “chunk size” was introduced to the algorithm.  This 

means that the algorithm can dynamically account for how many edges to process at a 

time, potentially reducing the program’s runtime.  If a value of 1024 is supplied at 

runtime, 1024 edges will be iterated through before moving onto the next 1024 edges. 

The use of this “chunk size” introduces the opportunity to save time from the 

algorithm’s total time to execute.  This is especially true in the first iteration of edge 

traversal, where the entire list of edges would need to be sorted.  In using this “chunk 

size” parameter, only a certain number of edges need be rearranged at a time.  Total 

runtime does vary based on what chunk size is chosen at runtime, and correlations 

between chunk size and final runtime have yet to be analyzed, but a chunk size of 1024 
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has been used as a consistent runtime comparison between iterations of the algorithm 

implementation.  Edges that are excluded from processing due to the chunk size are 

included in a list that is then passed to the main loop’s next iteration. 

 

Main Loop Edge Iteration. The final portion of the main loop consists of iterating 

over the edges that have been preprocessed, processed, and sorted.  This means that as 

edges are added to the final tour, their respective vertices are updated in the Union Find 

data structure, their respective vertex degrees are updated (which will be used to 

determine an edge’s inclusion in the preprocessing step), and the counter for included 

edges is incremented.  Additionally, an array that keeps track of what cities are 

connected via the included edges is updated—this array is recalled during the city-order 

reconstruction step after the main loop.  The edge iteration loop terminates either after 

the current chunk size is reached or after the last edge is included in the tour (this is 

known via a counter that keeps track of how many edges have been included in the final 

tour; the tour is complete once n – 1 edges have been included in the final tour, where n 

is the number of vertices in the graph). 

 

GPU Main Loop Implementation 

 The GPU implementation is similar to the CPU’s parallel implementation with the 

exception of the Main Loop’s Edge Iteration; std::partition has been replaced with 

cub::DevicePartition and std::find has been replaced with a CUDA kernel that finds the 

pivot edge and swaps it for the first edge that returns false for the call to partition.  
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What may not be immediately clear is that the range of partitioned edges that reside 

above the pivot edge (that is, the partition’s condition that returns false for edges that 

are larger than the pivot) does not necessarily contain the pivot edge as the first “false” 

element.  Therefore, the pivot edge must be found in the range of false-partitioned 

edges and swapped for the first edge for the quicksort implementation to be carried out 

correctly. 

 The GPU’s implementation of the Main Loop’s Edge Iteration segment, though 

similar in approach, can be observed to have characteristics that would inherently occur 

faster than the serial iteration of every edge in the chunk (see Figure 4).  When the GPU 

is evaluating a chunk of edges (e.g. edges #1024 - #2048 that would comprise the 

second chunk when a chunk size of 1024 is chosen), a keen observation can be made 

about the vertices of each of those edges:  there is a distinction between edges 

according to their vertices, and edges that contain unique vertices in the chunk have no 

bearing on other edges with different vertices.  In other words, when considering to 

include an edge in the final tour or not, an edge with vertex IDs of 1 and 2 do not exert 

an influence on whether the edge with vertices 3 and 4 is included or excluded.  

Furthermore, it can be determined whether an edge will be included or excluded based 

purely on the vertices’ degrees.  For example, if no edge containing vertices 5 and 6 has 

been included in the tour, and the current edge under consideration for inclusion in the 

tour is the edge with vertices 5 and 6, it can be safely concluded that this edge can be 

included in the tour because the list of edges is sorted and, therefore, is the shortest 

edge containing those two vertices.  Including the edge with vertices 5 and 6 will 
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consequently increase their degree by 1, meaning that the next time an edge contains 

either of those vertices is considered alongside whichever vertex is located at the other 

end of each of those edges. 

Bearing the aforementioned in mind, the example in Figure 4 can now be traced. 

During the GPU’s main loop initialization, every edge is given a designation as “Ready” 

or “Done”, and this designation depends on the same criteria mentioned before: (1) if 

either of the edge’s vertices have a degree of greater than 1, the edge is designated as 

“Done”, and likewise (2) if both of the edge’s vertices are already a part of the same set 

(from the Union Find data structure), the edge is also designated as “Done”.  In the 

figure, the edges marked as “Done” are colored red, meaning they have been excluded 

from the tour based on the fact that those vertices have already been used, and this 

leaves a certain set of edges to be considered by the next step.  As mentioned 

previously, edges that contain unique vertices in the chunk have no influence from 

other edges that also utilize those same vertices.  It can be seen that vertex 0 appears in 

edge 3 and 5.  Similarly, vertex 2 makes an appearance in edges 3 and 7, vertex 4 first 

makes an appearance in edge 4, and vertex 5 first makes an appearance on edges 4 and 

5.  These facts mean that at this point in the algorithm, vertices 0, 2, 4, and 5, are 

eligible for inclusion in the tour, and therefore, their respective edges can be included in 

the tour.  Edges 5, 7, and others that contain vertices that have already made 

appearance in previous, eligible edges must wait an iteration in order to correctly 

determine whether or not they are eligible for inclusion (and this is the main 

dependency of the heuristic that is taken advantage of in relation to the serial 
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implementation).  After those edges have been included in the tour, their state is 

designated at “Done”, and are excluded from further iterations of the chunk.  The 

subsequent iterations of the chunk take into account previously included edges, and are 

instead considered for inclusion in the tour based on the new set of circumstances on a 

vertex’s degree and set.  This iteration of the main loop repeats until all edges have 

been designated as “Done” (colored in black in the figure), and the implementation can 

then proceed to analyze the next chunk of edges (after they are preprocessed and 

sorted as denoted in the heuristic’s outline). 

 

 
Figure 4 – GPU Main Loop Implementation. Shown above is an example of how the GPU’s main loop 
kernel carries out the edge inclusion/exclusion process of the heuristic. 
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City-Order Reconstruction 

Once the final tour is complete, the implementation reconstructs the city-visit 

order.  This is accomplished by first finding one of the two vertices that have a degree of 

1.  This means that that particular vertex is the terminal-vertex at one end of the 

connected-set of edges that is the tour.  From there, the array used to keep track of 

what cities are connected to each vertex is used to construct an array of vertices that is 

the visit-order.  This is accomplished by the same means on the GPU for the parallel 

implementation due to the inherent nature of the data structure.  Although a truly 

parallel approach could be derived from the portion of the heuristic that reconstructs 

the city-visit-order, the amount of time the heuristic spends reconstructing the order is 

negligible. 

 

Calculating the Tour’s Length 

After the heuristic completes, the tour’s length is found by re-calculating and 

totaling the distances between the vertices provided by the city-visit order array.  This is 

the value that is ultimately compared to the data provided by TSPLIB in order to analyze 

solution quality.  This step is also carried out identically for both the CPU and GPU 

versions of the heuristic.  
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IV. METHODOLOGY 

Parallelism in the CPU implementation has been introduced by calls to 

std::partition and std::find as well as the use of OpenMP for the edge instantiation 

portion.  The C++ standard library provides for an overloaded function call to both 

std::partition and std::find, where an execution policy can be defined for those 

functions.  The execution policy supplied to the function can dictate whether the calls to 

partition and find will be executed serially or in parallel, and to decide whether a call 

should be made serially or in parallel, a threshold is used.  If the number of edges to 

preprocess or sort exceeds this threshold, the call is carried out in parallel with the 

standard library’s std::execution::par_unseq execution policy.  Alternatively, if the 

number of edges to preprocess or sort falls below this threshold, the call to 

std::partition is carried out serially.  The threshold was defined as 512 * 512, where 

various execution times were measured for optimization (data not shown). 

Results for this algorithm are interpreted through two primary points: (1) the 

final path length calculated and (2) the time taken for the program to run.  The time 

taken for the program to run is measured as the best run time achieved, and multiple 

runs are necessary to account for other possible processing tasks in the background, 

eliminating the potential for inconsistent times.  Performance of the implemented 

heuristic is measured based on both the amount of time taken to complete as well as 

the heuristic’s final path length relative to the optimal.  Measuring these two factors will 

allow for an effectiveness comparison between the TSPLIB optimal solutions as well as 

other, related heuristics’ implementations.  The greedy heuristic’s implementation 
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makes use of timestamps for measuring how long a particular section in the heuristic is 

taking during the program’s execution.  All execution times are measured in seconds 

rounded to the fourth decimal place, with execution times comprised of the Setup time, 

Main Loop Time (which consists of the List Processing, Preprocessing, and Sorting 

sections), City Order Build Time, and Deletion time.  Although the heuristic’s individual 

segments were timed (data not shown), the metric primarily used for comparison was 

the overall runtime, as other work can only be compared according to the total time it 

takes to execute (rather than individual segments that are not directly comparable).  

The current system “Ithaca” runs Fedora 30 (Server Edition), kernel version Linux 

5.6.13-100.fc30.x86_64 with a 64-bit architecture.  The additional specifications are as 

follows: 

 CPU: AMD Ryzen Threadripper 2950X 16-Core Processor with 2 threads per core 

(32 total CPU logical cores) 2149.175 MHz processor with boost speed of up to 

3500 MHz. 

 L1d cache: 32K 

 L1i cache: 64K 

 L2 cache: 512K 

 L3 cache: 8192K 

 48 GB of memory with 2 non-uniform memory architecture nodes (logical cores 

0 – 15 on node 0 and logical cores 16-31 on node 1) 
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All GPU comparisons in this study were performed on an NVIDIA GV100 TITAN V.  

The TITAN V specifications are as follows: 

 12 GB of global memory  

 96 KB per SM L1 cache 

 4.5 MB L2 cache 

 “Volta” architecture 

 Base clock speed: 1.2 GHz with boosting up to 1.455 GHz 

 5,120 CUDA cores 

The CPU implementations were compiled using the GNU C++ compiler “g++” 

version 9.3.1, along with optimization option level 3 “-O3”. Flags “-march=native”, “-

std=c++17”, “-fopenmp”, and “-ltbb” are also used in compilation to support instruction 

optimization flags that are specific Ithaca’s hardware, use the 2017 C++ standard, enable 

the usage of openMP, and enable the Threading Building Blocks C++ template library, 

respectively. The CUDA code was compiled on Ithaca using the CUDA Toolkit v11.0.167 

with the NVCC compiler [28] build version cuda_11.0 with the flags “-std=c++17”, “-

arch=sm_35”, “-O3”, and “-ltbb”. 

Inputs analyzed were taken from TSPLIB’s collection of TSP graphs [7, 29], and 

final outputs of the computed path lengths and calculation times were compared to 

TSPLIB’s optimal solutions.  The TSPLIB graphs serve as a basis for reference comparison, 

as available optimal solutions have been proven mathematically. 

The program’s times of execution were measured via timestamps for each 

section. However, only total execution time is comparable to other heuristics.  Also, the 



 

34 

final path length calculated from the heuristic was compared to that of TSPLIB’s optimal 

solutions.  Final path length is calculated after the algorithm’s termination and is 

recalculated as part of the returned city-visit order array during a loop that references 

every vertex’s coordinates from each edge. 

 

Metrics 

Two metrics were used for the comparison of the heuristic’s performance to 

other heuristics: solution quality and execution time.  Solution quality is defined as the 

final path length calculated for the constructed tour.  This final path length is then 

compared to the optimal length as designated by TSPLIB, and a measurement of percent 

difference is taken into account.  In a similar fashion, execution times are measured in 

terms of seconds.  How long the algorithm took was compared to how other 

implementations fared in their execution times.  
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V. RESULTS 

CPU Serial and CPU Parallel Comparison 

 Direct comparison between the serial CPU and parallel CPU implementations 

revealed that the parallelization had an overall positive effect on the program’s 

runtimes.  The GPU implementation also exhibited similar improvements over the 

parallel CPU implementation.  See Table 1 (faster runtimes have been bolded) for a 

comparison of the serial CPU, parallel CPU, and GPU implementations and Figure 5 for a 

comparison of the smallest and largest eight TSPLIB graphs. 

 The GPU implementation was able to achieve a best speedup of 8 over the serial 

CPU implementation (see graph rl11849.tsp). However, all other graph speedups 

remained below a speedup of 4.  Surprisingly, a few graphs, though faster on the GPU 

over the serial implementation, had their runtimes execute the fastest on the parallel 

CPU implementation (see graphs pcb3038.tsp, fl3795.tsp, and rl5915.tsp). 

 Solution quality, measured as a percent difference from TSPLIB’s reported 

optimal path length, remained below 18%, with the best solution quality presenting for 

graph ts225.tsp at 2.54%.  There is no clear correlation between the number of nodes a 

graph has and the solution quality achieved by the heuristic.  Similarly, there does not 

appear to be a correlation between the number of nodes in a graph and the execution 

time, though generally speaking, runtime does tend to increase as the number of nodes 

increases. 

 The heuristic was able to achieve a throughput of 668,000 nodes per second (see 

graph pr1002.tsp)  
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Table 1 – CPU and GPU Total Runtime Comparison. Shown below are each graph’s results for each run of 
the serial CPU, parallel CPU, and GPU implementations.  Percent difference is a measure of how far the 
solution quality is from the optimal path.  Runtimes were measured in seconds (best of 10 runs), the fastest 
of which has been bolded.  Due to hardware constraints, the largest of the TSPLIB graphs could not be run 
on the GPU.  Additionally, the speedup gained by GPU execution over the serial CPU implementation is 
shown. 

 

 

Filename Nodes

%   
Difference 

from 
Optimal

CPU 
Runtime 
(Serial)

CPU 
Runtime 
(Parallel)

GPU 
Runtime

GPU 
Speedup 
over CPU 

Serial
kroE100.tsp 100 5.80% 0.0013 0.0008 0.0004 3.25
ts225.tsp 225 2.54% 0.0016 0.0016 0.0005 3.20
rat575.tsp 575 10.31% 0.0023 0.0023 0.0014 1.64
pr1002.tsp 1002 12.90% 0.0050 0.0068 0.0015 3.33
vm1084.tsp 1084 11.31% 0.0060 0.0068 0.0030 2.00
pcb1173.tsp 1173 15.54% 0.0049 0.0058 0.0028 1.75
d1291.tsp 1291 8.75% 0.0061 0.0060 0.0029 2.10
rl1304.tsp 1304 10.02% 0.0059 0.0066 0.0028 2.11
rl1323.tsp 1323 9.06% 0.0072 0.0088 0.0043 1.67
fl1400.tsp 1400 9.20% 0.0070 0.0108 0.0034 2.06
u1432.tsp 1432 15.41% 0.0085 0.0082 0.0051 1.67
fl1577.tsp 1577 5.60% 0.0075 0.0071 0.0037 2.03
vm1748.tsp 1748 13.54% 0.0204 0.0111 0.0092 2.22
u1817.tsp 1817 10.71% 0.0091 0.0079 0.0051 1.78
rl1889.tsp 1889 14.45% 0.0110 0.0082 0.0042 2.62
d2103.tsp 2103 9.14% 0.0130 0.0112 0.0079 1.65
u2152.tsp 2152 16.39% 0.0119 0.0094 0.0063 1.89
u2319.tsp 2319 9.59% 0.0139 0.0116 0.0076 1.83
pr2392.tsp 2392 16.14% 0.0175 0.0168 0.0061 2.87
pcb3038.tsp 3038 17.37% 0.0275 0.0216 0.0249 1.10
fl3795.tsp 3795 6.90% 0.0369 0.0235 0.0362 1.02
fnl4461.tsp 4461 14.51% 0.0380 0.0183 0.0105 3.62
rl5915.tsp 5915 9.91% 0.0769 0.0364 0.0399 1.93
rl5934.tsp 5934 12.23% 0.0693 0.0284 0.0204 3.40
pla7397.tsp 7397 12.84% 0.0909 0.0402 0.0294 3.09
rl11849.tsp 11849 11.82% 0.4804 0.1301 0.0600 8.01
usa13509.tsp 13509 14.82% 0.4254 0.1420
brd14051.tsp 14051 13.90% 0.7722 0.2409
d15112.tsp 15112 14.55% 0.9673 0.2444
d18512.tsp 18512 14.05% 1.5961 0.4240
pla33810.tsp 33810 12.41% 2.4651 1.3114
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Figure 5 – CPU and GPU Runtime Comparison of the Smallest and Largest Graphs.  Shown on the left is the runtime comparison of the 8 smallest TSPLIB graphs.  
The parallel CPU implementation can be seen to not consistently improve up on the runtime when compared to the serial implementation.  The GPU 
implementation, however, consistently outperformed the serial and parallel CPU implementations.  Shown on the right is the runtime comparison of the largest 
8 graphs.  It can be seen that the GPU implementation did not always achieve the best performance.  The largest graph, however, did directly benefit from CPU 
and GPU parallelization.
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IHC 2-Opt Comparison 

 The following data is the greedy heuristic’s comparison to Burtscher and O’Neil’s 

[4] previous implementation of the IHC 2-Opt TSP heuristic.  Recall that the IHC 2-Opt is 

a combination of constructive (IHC) and improvement (2-Opt) heuristics.  The path is 

initially constructed using the random heuristic and is improved upon by the 2-Opt 

heuristic until it finds a local minimum.  This minimum is then compared with however 

many other IHC runs were initiated during the program run. Table 2 and Figure 6 outline 

the data obtained.    For Table 2, the optimal path listed by TSPLIB is notated alongside 

the graph name, with the greedy heuristic’s runtime and calculated final path length 

noted directly below it (shown as row “v9.8”).  The lower columns denote the runtime 

and path length achieved by Burtscher and O’Neil’s IHC 2-Opt.  The column on the left 

denotes how many restarts were used and, therefore, the runtime and final length 

acquired for that run.  Blacked out cells indicate that the run could not be executed due 

to hardware constraints.  Figure 6 visualizes the tabulated data.  Graphs kroE100.tsp 

and ts225.tsp were able to achieve the optimal result for restarts of 65,536 and upwards 

and 262,144, respectively.  No other instance of IHC 2-Opt was able to achieve optimal 

result.  Runtime for the greedy heuristic was far superior to the IHC 2-Opt, running even 

the largest graph of 11,849 nodes in under approximately 0.06 seconds.  Recall that this 

performance may come at a tradeoff of solution quality.  Figure 6 aids in visualizing the 

observation that the greedy heuristic outperforms the IHC 2-Opt in both solution quality 

and runtime for graphs d2102, rl5915, and rl11849.  Depending on the number of 

restarts used, the rest of the graphs varied in solution quality for IHC 2-Opt, not 
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achieving better solution quality for a lower number of restarts, but surpassing the 

greedy heuristic for larger numbers of restarts.
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Table 2 – IHC 2-Opt comparison to the greedy heuristic.  The optimal path listed by TSPLIB is notated alongside the graph name, with the greedy heuristic’s 
runtime and calculated final path length noted directly below it (shown as row “v9.8”).  The lower columns denote the runtime and path length achieved by 
Burtscher and O’Neil’s IHC 2-Opt.  The column on the left denotes how many restarts were used and, therefore, the runtime and final length acquired for that 
run.  Blacked out cells indicate that the run could not be executed due to hardware constraints. 

 

kroE100 22068 ts225 126643 rat575 6773 pr1002 259045 vm1084 239297 pcb1173 56892 d1291 50801
v9.8 0.0004 23349 0.0005 129854 0.0014 7471 0.0015 292449 0.003 266350 0.0028 65735 0.0029 55247

Restarts Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length
2 0.0012 23354 0.0077 131745 0.0918 7555 0.4426 283470 0.5742 262952 0.6817 64334 0.9387 56969
4 0.0012 22791 0.0077 131745 0.0937 7412 0.4413 282663 0.5825 259129 0.6887 62250 0.9389 56969
8 0.0012 22791 0.0077 128353 0.0937 7412 0.4502 282286 0.5895 258470 0.6894 62250 0.9411 56781

16 0.0012 22791 0.0078 128353 0.0937 7412 0.4507 282227 0.5894 258470 0.6925 62250 0.9533 55793
32 0.0012 22791 0.0078 128353 0.0937 7370 0.4508 281379 0.5885 258470 0.6967 62250 0.9539 55793
64 0.0012 22521 0.0080 128353 0.0953 7370 0.4499 278597 0.5870 255196 0.6965 62250 0.9604 55793

128 0.0013 22470 0.0087 127893 0.1033 7338 0.4992 279147 0.6548 255196 0.7759 62170 1.0700 55273
256 0.0014 22470 0.0102 127463 0.1296 7235 0.6544 276953 0.8539 253727 1.0174 62484 1.4218 54914
512 0.0018 22359 0.0143 127536 0.1904 7335 1.0167 275999 1.3374 253727 1.5850 62407 2.2062 55204

1024 0.0026 22359 0.0243 127296 0.3342 7231 1.8288 275999 2.4095 253022 2.8751 62472 4.0181 54511
2048 0.0054 22307 0.0538 127296 0.7402 7294 4.1276 275999 5.2987 254290 6.3140 62047 9.1440 54702
4096 0.0100 22117 0.1003 127396 1.3390 7289 7.6762 275999 10.0108 251262 11.7744 62146 16.7200 54411
8192 0.0189 22117 0.1902 126880 2.6501 7277 14.6537 275281 19.5846 253262 23.3522 61721 32.4649 54150

16384 0.0370 22117 0.3530 126809 5.0193 7273 28.4877 274936 37.7007 251190 45.0404 61915 66.1463 54386
32768 0.0736 22100 0.6953 126873 10.0116 7250 56.7630 274778 78.2803 251190 94.4421 61739 135.8891 54122
65536 0.1449 22068 1.3568 126783 19.8261 7235 118.7882 274931 158.3493 252024 188.9999 61751 270.2249 54107

131072 0.2752 22068 2.6960 126783 39.5461 7234 240.2684 272296 317.6040 251485 378.8874 61712 540.3628 53922
262144 0.5353 22068 5.3683 126643 79.0569 7247 x x x x x x
524288 1.0599 22068 10.7160 126726 x x x x x x

1048576 2.1070 22068 x x x x x x
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Table 2 (cont’d) – IHC 2-Opt comparison to the greedy heuristic.  The optimal path listed by TSPLIB is notated alongside the graph name, with the greedy 
heuristic’s runtime and calculated final path length noted directly below it (shown as row “v9.8”).  The lower columns denote the runtime and path length 
achieved by Burtscher and O’Neil’s IHC 2-Opt.  The column on the left denotes how many restarts were used and, therefore, the runtime and final length acquired 
for that run.  Blacked out cells indicate that the run could not be executed due to hardware constraints. 

 

rl1304 252948 rl1323 270199 fl1400 20127 u1432 152970 fl1577 22249 vm1748 382112
v9.8 0.0028 278302 0.0043 294680 0.0034 21978 0.0051 176549 0.0037 23494 0.0092 336556

Restarts Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length
2 0.9967 283163 1.0381 297170 1.0911 21244 1.1182 171713 1.6402 25020 2.3402 366627
4 1.0165 282040 1.0438 293227 1.0915 21244 1.1186 171236 1.6720 23851 2.3417 365116
8 1.0203 279097 1.0568 293227 1.0921 20998 1.1323 171236 1.6769 23851 2.3375 365116

16 1.0208 275899 1.0560 292838 1.0943 20871 1.1268 169959 1.6967 23851 2.3388 365116
32 1.0206 273993 1.0571 291953 1.0983 20863 1.1456 167253 1.6876 23851 2.3507 364664
64 1.0245 269484 1.0568 291953 1.1046 20820 1.1458 167253 1.6974 23797 2.3594 363404

128 1.1452 269484 1.1840 289689 1.2322 20692 1.2865 168991 1.8936 23643 2.6294 363404
256 1.5253 269484 1.5597 289689 1.6315 20786 1.7110 168139 2.5308 23555 3.5449 362379
512 2.3687 269450 2.4928 289647 2.5640 20664 2.6546 168161 3.9868 23531 5.6056 361968

1024 4.2852 269450 4.4485 289359 4.6764 20634 4.8375 168264 7.2330 23381 10.1940 360975
2048 10.0497 268573 10.1326 288779 10.2943 20657 10.6175 167103 16.5294 23360 23.2903 360222
4096 18.1324 268988 18.5393 286290 19.1878 20627 20.4914 166710 30.2735 23389 42.8607 360043
8192 35.2735 267095 36.6249 286290 37.8876 20559 38.8256 166625 61.5420 23263 87.6391 360957

16384 68.5698 266978 70.8741 286732 77.1384 20491
32768 141.8876 266787
65536 283.8886 266551

131072 566.1644 265854
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Table 2 (cont’d) – IHC 2-Opt comparison to the greedy heuristic.  The optimal path listed by TSPLIB is notated alongside the graph name, with the greedy 
heuristic’s runtime and calculated final path length noted directly below it (shown as row “v9.8”).  The lower columns denote the runtime and path length 
achieved by Burtscher and O’Neil’s IHC 2-Opt.  The column on the left denotes how many restarts were used and, therefore, the runtime and final length acquired 
for that run.  Blacked out cells indicate that the run could not be executed due to hardware constraints. 

 

u1817 57201 rl1889 316536 d2103 80450 u2152 64253 u2319 234256 pr2392 378032 pcb3038 137694
v9.8 0.0051 63329 0.0042 362289 0.0079 87800 0.0063 74784 0.0076 256713 0.0061 439056 0.0249 161615

Restarts Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length
2 2.4678 65443 2.9539 348149 3.8057 93151 4.0304 72831 4.4010 252451 5.6702 422800 11.2115 154678
4 2.4678 65443 2.9638 344845 3.8031 93151 4.0301 72831 4.3980 251720 5.6895 421718 11.2959 153703
8 2.4750 64932 2.9997 344845 3.8105 92276 4.0277 72831 4.3949 251681 5.6927 420107 11.2960 153703

16 2.5199 64643 2.9876 344845 3.8757 92276 4.0296 72831 4.4161 250304 5.7332 420107 11.2982 153703
32 2.5209 64557 3.0039 344845 3.8615 92038 4.0503 72649 4.4316 250304 5.7353 419362 11.3590 152730
64 2.5071 64204 3.0009 344845 3.8599 90785 4.0663 72595 4.4324 250304 5.7593 418056 11.3586 152730

128 2.7860 64000 3.3702 344350 4.3116 91030 4.5608 72547 5.0287 250062 6.4628 418453 12.8792 153326
256 3.7395 64117 4.5499 342594 5.8415 91181 6.1716 72216 6.7983 249403 8.7932 416769 17.4464 153091
512 5.9269 63979 7.1670 340932 9.2372 90068 9.7807 72114 10.7267 249358 13.8490 414940 27.6220 152674

1024 10.7718 63665 13.0898 341252 16.8716 90829 17.7932 72032 19.5798 249415 25.3184 414937 50.9162 152561
2048 23.7896 63554 30.9299 340315 37.3678 89988 40.6762 72069 44.8716 249630 58.9094 415839 121.7172 152781
4096 45.9845 63403 55.5633 337373 75.8613 89747 77.9760 71851 85.0558 248770 231.5837 151806
8192 93.3413 63407 148.2330 89999

16384 184.7253 63470 289.4093 89919
32768 369.8695 63031 578.3940 89552
65536 1144.0993 89378
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Table 2 (cont’d) – IHC 2-Opt comparison to the greedy heuristic.  The optimal path listed by TSPLIB is notated alongside the graph name, with the greedy 
heuristic’s runtime and calculated final path length noted directly below it (shown as row “v9.8”).  The lower columns denote the runtime and path length 
achieved by Burtscher and O’Neil’s IHC 2-Opt.  The column on the left denotes how many restarts were used and, therefore, the runtime and final length acquired 
for that run.  Blacked out cells indicate that the run could not be executed due to hardware constraints. 

 

fl3795 28772 fnl4461 182566 rl5915 565530 rl5934 556045 pla7397 23260728 rl11849 923288
v9.8 0.0362 30757 0.0105 209061 0.0399 621577 0.0204 624046 0.0294 26248277 0.06 1032389

Restarts Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length Runtime Length
2 22.4951 32085 35.1204 202505 92.4223 639616 91.9893 628726 165.1220 25827828 741.6745 1051691
4 22.8023 31204 35.1175 202505 92.8680 638001 92.5841 625091 166.4640 25698456 742.4362 1051691
8 22.7973 31204 35.1697 202505 92.8765 636543 92.5926 623799 167.4434 25641951 744.2086 1042867

16 22.8029 30548 35.6342 202505 92.8655 632066 93.3550 622591 167.5170 25544020 747.9204 1042867
32 22.8648 30548 35.6362 202171 92.8397 632066 93.5277 622591 168.3295 25534893 747.8780 1042867
64 22.8910 30548 35.6346 202171 93.0942 632066 93.5107 622591 168.2361 25534893 763.7597 1042867

128 26.0922 30497 40.8956 202127 107.0453 630126 107.6986 624241 194.1727 25560558 857.8493 1042447
256 35.3507 30612 55.0980 202176 143.6880 631865 144.2281 620152 257.6325 25484836 1140.3858 1038796
512 56.0552 30424 87.5686 201143 232.3392 628919 234.3094 620448 432.0093 25463609 1889.1486 1039033

1024 108.6311 30127 168.4478 201392 439.6970 629912 443.0789 621075 3544.7993 1039334
2048 387.2900 201617 1036.2319 627612
4096 733.3511 201654 1847.6337 626669
8192 3640.1165 627325

16384 7056.9592 625011
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Figure 6 – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from Table 
2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed line.  
The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is shown 
as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path length 
is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is 
shown as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path 
length is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is 
shown as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path 
length is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is 
shown as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path 
length is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is 
shown as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path 
length is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is 
shown as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path 
length is shown as a solid red line.  
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Figure 6 (cont’d) – Visualization of IHC 2-Opt comparison to the greedy heuristic. Shown here is the visualization of the tabulated data from 
Table 2.  The IHC 2-Opt runtime is shown on the left axis as the blue dots, whereas the greedy heuristic’s runtime is denoted as a blue hashed 
line.  The right axis shows the final path lengths calculated by IHC 2-Opt as the red dots, whereas the greedy heuristic’s final path length is shown 
as the red hashed line (recall that the greedy heuristic is deterministic and always achieves the same path length). The optimal path length is 
shown as a solid red line. 
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CONCORDE Comparison 

 The following data show the comparison between the greedy heuristic and the 

TSP solver, CONCORDE, for graphs that were runnable on the system configuration used 

for this study (see Table 3 and Table 4; some graph runs were unfeasible due to the 

extended times benchmarked by TSPLIB; i.e. the benchmark time for graphs rl11849 and 

usa13509 is shown as approximately 155 days and 4 years, respectively). Again, the run 

time performance of the greedy heuristic exhibited far superior run times in comparison 

to the CONCORDE solver.  According to CONCORDE’s documentation [5], benchmarks 

were performed on version 99.12.15 with a flag of “-s 99” to define the random seed on 

a 500 MHz Compaq XP1000 workstation.  Likewise, the comparison runs on Ithaca used 

the same flag for obtaining the CONCORDE runtime.  The greedy heuristic was able to 

achieve a solution quality that was at most 16% from the optimal (see graphs pcb1173 

and pr2392), and a highest speedup of 1,206,302 over CONCORDE (see graph u2319). 
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Table 3 – CONCORDE runs compared to the greedy heuristic.  Shown here are the run 
comparisons between the system configuration used for this study and the greedy 
heuristic’s performance, including the percent difference over the optimal length, the 
run time, and speedup over CONCORDE performance. 

 

 

Table 4 denotes the benchmark times achieved by the developers of CONCORDE 

for the listed graphs.  Due to the extended run times, the graphs were not tested on 

CONCORDE with this study’s system.  Still, comparing CONCORDE’s benchmark times to 

the greedy heuristic shows that the greedy heuristic exhibits superior run time 

performance relative to the benchmark.  For example, the TSP solver takes 

approximately 155 days to compute the optimal path for graph rl11849, but the greedy 

heuristic takes 0.06 seconds!  As shown before however, this run time superiority comes 

at tradeoff of a solution quality that is just under 12% from the optimal solution (see 

Table 1’s data for rl11849). 

  

Nodes File
Concorde 

Runtime (s)

GPU Length % 
Difference over 

Optimal

GPU 
Runtime

GPU 
Speedup 

over 
Concorde

100 kroE100.tsp 0.2 6% 0.0004 500
225 ts225.tsp 2.25 3% 0.0005 4,500
575 rat575.tsp 23.35 10% 0.0014 16,679
1002 pr1002.tsp 3.65 13% 0.0015 2,433
1084 vm1084.tsp 65.23 11% 0.0030 21,743
1173 pcb1173.tsp 39.52 16% 0.0028 14,114
1304 rl1304.tsp 27.07 10% 0.0029 9,334
1323 rl1323.tsp 626.79 9% 0.0028 223,854
1400 fl1400.tsp 3027.75 9% 0.0043 704,128
1432 u1432.tsp 73.95 15% 0.0034 21,750
1577 fl1577.tsp 1765.57 6% 0.0051 346,190
1748 vm1748.tsp 145.68 14% 0.0037 39,373
2319 u2319.tsp 11097.98 10% 0.0092 1,206,302
2392 pr2392.tsp 12.35 16% 0.0051 2,422
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Table 4 – The greedy heuristic’s runtime in comparison to 
CONCORDE’s benchmark times.  Shown here are the greedy 
heuristic’s runtimes achieved for the listed graphs.  In this 
study’s system configuration, however, CONCORDE runs of the 
listed graphs were unfeasible due to the extended run times 
listed by CONCORDE’s benchmarks. 

 

Ant Colony Systems Comparison 

 The following data show the greedy heuristic’s performance to that of 

Skinderowicz’s Ant Colony System [32] (see Table 5).  All runs were performed with the 

flag “--alg=mmas_wrs_bt” denoting the node selection scheme for the run.  It is 

apparent that this particular heuristic performs well in terms of solution quality, 

generally keeping the final solution length within 1% from the optimal with a few 

exceptions whose solution quality was within 4% (see graphs pcb3038, fnl4461, pla7397, 

and rl11849; see Figure 7). Similar to Burtscher and O’Neil’s implementation, the 

heuristic was able to achieve the optimal result for graphs kroE100 and ts225.  Still, run 

times exceeded that of the greedy heuristic for even the smallest of graphs, and solution 

quality did remain consistent relative to that of the greedy heuristic. 

FILENAME Benchmark Time (s) GPU (Runtime)
d1291.tsp 27393.72 0.0029
u1817.tsp 449230.55 0.0051
rl1889.tsp 10023.02 0.0042
d2103.tsp 11179253.91 0.0079
u2152.tsp 45204.53 0.0063
pcb3038.tsp 80828.87 0.0249
fl3795.tsp 69886.48 0.0362
fnl4461.tsp 53420.13 0.0105
rl5915.tsp 2319671.71 0.0399
rl5934.tsp 588936.85 0.0204
pla7397.tsp 428996.2 0.0294
rl11849.tsp ~155 Days 0.0600
usa13509.tsp ~4 years
brd14051.tsp OPEN
d15112.tsp ~22.6 years
d18512.tsp OPEN
pla33810.tsp OPEN



 

54 

Table 5 – Ant Colony System performance.  Shown here is the 
performance of the Max-Min Ant System on the TSPLIB graphs.  
The table denotes the graph’s optimal length as reported by 
TSPLIB, the solution length as computed by the Ant System, 
followed by the percent difference the length is from the optimal 
and run time. 

 
 

FILENAME Optimal Length
Final Solution 
Path Length

% Diff Time (s)

kroE100.tsp 22068 22068 0.00% 0.3414
ts225.tsp 126643 126643 0.00% 0.8384
rat575.tsp 6773 6797 0.35% 3.6877
pr1002.tsp 259045 259537 0.19% 8.3668
vm1084.tsp 239297 239988 0.29% 11.3875
pcb1173.tsp 56892 57245 0.62% 12.3012
d1291.tsp 50801 50885 0.17% 16.2311
rl1304.tsp 252948 253558 0.24% 19.1571
rl1323.tsp 270199 271206 0.37% 20.3273
fl1400.tsp 20127 20167 0.20% 21.0434
u1432.tsp 152970 153753 0.51% 20.1726
fl1577.tsp 22249 22269 0.09% 23.7505
vm1748.tsp 336556 338601 0.61% 38.2227
u1817.tsp 57201 57517 0.55% 32.2369
rl1889.tsp 316536 316968 0.14% 44.9916
d2103.tsp 80450 80479 0.04% 40.9954
u2152.tsp 64253 64793 0.84% 46.1069
u2319.tsp 234256 236405 0.92% 61.4841
pr2392.tsp 378032 379912 0.50% 55.8826
pcb3038.tsp 137694 139490 1.30% 101.9360
fl3795.tsp 28772 29010 0.83% 159.9340
fnl4461.tsp 182566 188081 3.02% 262.2600
rl5915.tsp 565530 569111 0.63% 452.2410
rl5934.tsp 556045 560071 0.72% 452.0720
pla7397.tsp 23260728 23960336 3.01% 645.5420
rl11849.tsp 923288 956706 3.62% 1955.2600
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Figure 7 – Comparison of the solution quality of the Ant Colony System to the greedy heuristic. Shown here is the solution quality comparison for each of the 
TSPLIB graphs included in this study.  The greedy heuristic is listed as “v9.8” and the Ant System is denoted as “ACO 
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VI. SUMMARY 

The Traveling Salesman Problem continues to be a topic of study for many 

researchers, as it has many applications in a diverse set of disciplines.  Having many 

possibilities for any one particular graph, this combinatorial optimization problem seeks 

a heuristic that reaches near-optimal results, for finding the optimal solution is both 

computationally expensive and intractable for large problem sizes.  In this study, a 

heuristic based on Kruskal’s algorithm was implemented—a complete, undirected 

graph’s edges are sorted in non-decreasing order and iterated through for inclusion in 

the final tour, keeping the tour’s overall path length at a minimum.  As edges are 

traversed, edges are included in the final tour based on the following criteria: (1) if both 

vertices associated with the edge in question have a degree of less than 2, and (2) if 

both vertices have a degree of 1, they must not be a part of the same set of connected 

edges.  The second criteria are determined by the use of a data structure known as a 

Union Find, a data structure that is efficiently able to keep track of what vertices are 

associated with what other vertices to make a set, thusly being able to prevent the early 

formation of cycles.  Additionally, the Greedy Heuristic implementation used here 

makes use of a chunk-size that dictates how many edges to process before checking for 

completion of the tour.  If the tour is not complete, the heuristic continues with the next 

chunk of edges, and the process repeats.  This implementation also makes use of the 

C++ standard library’s std::partition and std::find to emulate a form of quick-sort, where 

std::partition rearranges a range of elements based on a condition—in this case, 

whether an edge is shorter than a pivot edge—as well as OpenMP for the parallel 



 

57 

instantiation of edges.  Serial implementations show that the most time-consuming 

portions of the heuristic involve sorting, and to further improve the sorting’s execution 

time, a range of edges are separated according to whether they are eligible to be 

included in the final tour before the range is passed for sorting.  In this way, edges that 

are not eligible for inclusion are automatically excluded from sorting, allowing for a 

quicker execution time.  Moreover, the calls to std::partition and std::find can be called 

to execute with a parallel execution policy.  Once the tour is complete, the city-order is 

reconstructed and the Hamiltonian Path’s length is calculated.  Parallelism in the 

heuristic’s implementation has shown that execution times can be reduced, and this 

parallelism was exploited in CUDA, where the GPU was utilized for its better efficiency in 

handling parallel tasks over the CPU.  This included a novel method of iterating over 

edges in the heuristic’s main loop.  Edges were primarily considered for tour-inclusion 

on the basis of their degree and their association with other vertices (namely, which set 

they were a part of). 

 

Serial to Parallel Implementation 

Transitioning from the serial implementation to the parallel CPU implementation 

did not show changes in performance for graphs that were below 1,748 nodes, but this 

is merely a side effect of the heuristic’s implementation.  Since the majority of the 

heuristic’s execution time was spent in the sorting phase (data not shown), the 

parallelism defined by the implementation was not engaged.  That is, the parallelism 



 

58 

was only engaged for graphs that exceed a particular threshold as defined by the 

implementation. 

In this study, the threshold chosen for engaging parallelism in the preprocessing 

and sorting phase was 262,144 (512 * 512).  When the number of edges that needed to 

be preprocessed or sorted exceeded that of the threshold, the parallel execution 

policies were engaged.  Otherwise, the calls to std::partition and std::find were executed 

serially.  This threshold was chosen by data collected on the run times achieved by 

selected different thresholds (data not shown), and a selection of 512 * 512 performed 

well.  This value was then used for collecting data on the rest of the graphs. 

In regards to the larger graphs, transitioning to the parallel implementation did 

consistently show better run time performance, at times exceeding the performance of 

that of the GPU implementation (see graphs pcb3038, fl3795, and rl5915).  This could be 

due to a number of different possibilities that were not investigated in this study.  For 

example, there was no correlation established between graph topologies and run times.  

In other words, the manner in which the graph’s vertices are dispersed could have an 

effect on the efficiency of the heuristic, such as the potential for handling the 

magnitudes of the vertex coordinates themselves.  Some graphs contain coordinates 

that are relatively close (i.e. x and y coordinates that remain under a value of 10,000) 

whereas other graphs may have vertices that are farther apart (i.e. x and y coordinates 

that exceed the hundreds of thousands).  The heuristic may also have a disadvantage for 

the relative difference between all edges in the graph.  For example, if the graph 

contained a large number of edges that were the same magnitude, the algorithm itself 
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may be encumbered by these large collections of same-weight edge instances.  These 

aspects, however, were not investigated as part of this study. 

One could notice that the runtime of the heuristic is not necessarily correlated 

with that of the number of nodes it contains.  For example, graph d2103 has a 

CONCORDE benchmark time of 11,179,253.91 seconds (approximately 130 days), but 

the benchmark time for pr2392 (a graph with slightly more vertices) is just over 12 

seconds.  Likewise, the benchmark time for u1432 (a graph with fewer vertices) has a 

benchmark time of just under 74 seconds.  For the greedy heuristic, rl5915 had a 

runtime of 0.0399 seconds, but graphs fnl4461 and rl5934 had runtimes of 0.0105 

seconds and 0.0204 seconds, respectively.  This discrepancy was not investigated as part 

of this study. 

The same thinking could be applied to the differences in the heuristic’s percent 

difference from the optimal length of the graph.  Some graphs perform better than 

others in terms of the heuristic’s implementation, but the specific nature of the 

reasoning behind this performance discrepancy was not investigated.  There was, 

however, consistency between the final path lengths of the serial and parallel 

implementations of this study, which provides a solid point of reference for each 

implementation’s runtime comparison. 

When transitioning to the parallel GPU implementation, the effect on runtime 

can be easily noticed.  With a few exceptions, the GPU outperformed that of the serial 

and parallel CPU implementations in terms of runtime.  Generally, speedups achieved 

varied between 1 and 4, but the largest speedup between the serial CPU 
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implementation and the parallel GPU implementation was observed for rl11849 at a 

speedup of 8.  There were a few instances that performed better on the parallel CPU 

implementation than that of the GPU (see graphs pcb3038, fl3795, and rl5915).  This 

could be due to a number of possibilities as mentioned before.  Perhaps the cumulative 

time needed to transfer data between the CPU and GPU exceeded that of the time 

needed to execute the heuristic on the CPU, but again, these specifics were not 

investigated as part of this study.  Generally, speaking however, the heuristic did benefit 

from the GPU’s implementation.  Additionally, a maximum throughput of 668,000 nodes 

per second was achieved for graph pr1002. 

 It should also be noted that, due to the deterministic nature of the greedy 

heuristic’s implementation—that is, the fact that the heuristic performs the same 

calculations in the same order for every run—the average runtime’s standard deviation 

for the GPU implementation was 1.46 x 10-4, providing a consistent basis for measuring 

the runtime metric (data not shown). 

 

Parallelization of the Main Loop 

 The centerpiece of this study comes from the parallelization of the main loop’s 

responsibilities: iterating through sorted edges, considering each one on an individual 

basis on whether its inclusion in the final tour is valid.  Due to an edge’s dependencies 

on whether previous edges have been included, parallelization of the main loop is 

difficult.  Nonetheless, there is a key property of the main loop that can be exploited to 

introduce parallelization—the fact that the inclusion of an edge is solely dependent on 
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the status of its vertices, namely the degrees, in relation to previously-included edges 

that share those vertices.  This implies that a range of edge may be considered 

simultaneously so long as the edges don’t contain the same vertices.  If difference edges 

happen to include the same vertices, the heuristic must still rely on an iteration of the 

sorted first-edge before considering the second (and potentially third, fourth, etc.). 

Furthermore, inclusion of the longer edge depends on whether the smaller edge was 

included.   Due to the fact that a graph has a large number of edges, the main loop need 

only iterate fewer times than considering a single edge per iteration.  This immensely 

reduces the time needed to compute the path, as (potentially) over a thousand edges 

can be considered at once. 

 

IHC 2-Opt Comparison 

 In comparing the results achieved by the greedy heuristic to that of the IHC 2-

Opt implementation, it can be observed that performance can vary based on the 

parameters used for a heuristic’s execution.  For example, in considering graph rl1304, 

solution quality was weaker than that of the greedy heuristic for restarts of 8 and fewer, 

but for restarts of 16 or greater, solution quality was better.  Some graphs exhibited 

consistently poorer quality even when the number of restarts increased.  For example, 

graph d2103 could not achieve solution qualities that were better than the greedy 

heuristic even when the number of restarts was 65,536.  This leads to the conclusion 

that different heuristics offer different performance benefits in terms of runtime and 

solution quality that depends on the nature of the problem.  Some graphs perform 
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better with one heuristic that other graphs would perform better with the same 

heuristic.  Furthermore, performance benefits vary based on the parameters chosen for 

the given heuristic.  In this case, the number of restarts affected the final solution 

quality at the expense of runtime.  Generally speaking, the higher the number of 

restarts used for the IHC 2-Opt heuristic, the better the solution quality and higher the 

runtime.  This was not fully consistent however.  For example, when running the IHC 2-

Opt heuristic on graph ts225 with 256 restarts, a final length of 127,463 was achieved, 

but when running the same graph with 512 restarts, the final path length achieved was 

127,536.  The same situation occurred with graph pr1002, where the final path length 

was longer when using 128 restarts compared to that of the final path length when 

using 64.  Again, this could be due to the nature of the heuristic.  Part of the IHC 2-Opt 

heuristic involves a degree of randomness when instantiating the graphs before they 

undergo the 2-Opt improvement heuristic.  Naturally, some executions would fare 

better than others.  Nonetheless, the IHC 2-Opt heuristic was able to achieve the 

optimal result in two graphs (see kroE100 and ts225), whereas the greedy heuristic 

came as close as 2.54% to the optimal (see graph ts225).  In terms of the run time, 

however, the greedy heuristic consistently outperformed the IHC 2-Opt heuristic, 

achieving an average speed up of 1384.994.  The maximum speedup achieved was 

12,361.  Ultimately, the chosen heuristic for a particular problem depends on whether 

the user is looking for better solution quality or faster run times. 
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CONCORDE Comparison 

 When comparing the greedy heuristic’s runtimes to that of CONCORDE, it is 

immediately apparent that the greedy heuristic vastly outperforms CONCORDE in terms 

of runtime.  The greatest speedup obtained by the GPU was 1,206,302 for graph u2319, 

but if the GPU runtime was compared to the CONCORDE benchmark time of d2103, the 

estimated speedup becomes 1,415,095,432! 

In terms of comparing the greedy heuristic to that of a solver, the considerations 

one must bring forth now reside purely on how much of the solution quality would be 

sacrificed for run time benefits.  In other words, the solver can achieve the optimal 

result, but at the expense of consuming a much larger amount of time to arrive at the 

solution.  This is most apparent in the largest graph compared, rl11849, where the 

solver was benchmarked at 155 days.  If the solution from the greedy heuristic was 

used, the solution, given in 0.06 seconds, comes at a sacrifice of nearly 12% of the 

optimal in terms of final path length.  Additionally, graphs such as d15112 (not tested in 

this study) have a CONCORDE runtime of approximately 22.6 years, and some graphs, 

such as brd14051 and d18512, have yet to achieve a CONCORDE benchmark.  Of course, 

the downside of this particular heuristic is that, considering the hardware constraints 

given in this study, such large graphs are intractable.  Further study is open for 

opportunity in this regard. 

CONCORDE also supports the notion that a graph’s run time is not necessarily 

correlated with the number of nodes in the graph.  For example, the runtime for graph 

u2319 was 11097.98 seconds, but the run times for graphs vm1748 and pr2392 were 
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145.68 seconds and 12.35 seconds, respectively.  Graph topology, amongst other factors 

such as mode of edge weight (that is, the potential for a large number of edges to 

possess the same length), could play a role in the performance of the heuristic.  The 

amount that each of these other factors would also vary on the effect’s magnitude 

towards any particular heuristic and ultimately depends on the nature of the heuristic 

itself. 

 

Ant Colony Optimization Comparison 

 The Ant Colony System shows its strength in its ability to get high quality results 

in relatively shorter run times.  With a mere handful of exceptions, the ACO was able to 

obtain solution qualities below 1% in under a minute.  The largest of the percent 

differences presented itself in graphs pcb3038, fnl4461, pla7397, and rl11849, and these 

graphs, as one would come to expect, have the longer of the runtimes.  Still, the greedy 

heuristic was able to outperform the ACO in terms of runtime.  The longest runtime for 

the greedy heuristic was 0.06 seconds, but the fastest ACO was 0.3414 seconds.  This 

reiterates the notion that different heuristics offer different benefits.  The ACO heuristic 

benefits in that solution quality is high with final path lengths that are very-near 

optimal.  Run time is still longer, but certainly not as long as when compared to 

CONCORDE.  The run times for ACO are still considered feasible in the sense that they 

do not take many years to compute.  The greedy heuristic in this study managed to 

achieve a maximum speedup of 32,588 on graph rl11849 over ACO, but generally, the 

larger the number of nodes in a graph, the greater the speedup benefit. 
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 Skinderowicz [32] continues to explain in his study of ACO that other so-called 

metaheuristics are also capable of achieving optimal results and at times, with faster run 

time.  He compares his heuristic’s implementation to that of the “Artificial Bee Colony 

with a Modified Choice Function” heuristic, an implementation that was able to achieve 

optimal results in a large majority of TSP graphs over ACO.  Quite often though, these 

run times were only slightly slower than ACO.  This is also enlightening in the sense that 

different approaches and heuristics, however complex they may be, offer different 

benefits when it comes to solution quality and runtime.  They may also reveal additional 

details in terms of sub-algorithms in their heuristics.  For example, the greedy heuristic 

revealed that edge iteration can be much faster by taking an alternate approach to 

analyzing the properties of vertices.  Perhaps some aspect of these other heuristics is 

applicable to the greedy heuristic in order to improve upon solution quality. 
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VII. FUTURE WORK 

There yet remains further possibility for study in this heuristic’s implementation.  

For example, heuristics, however useful they may be for some graphs, may exhibit 

weaker or stronger performance on other graphs.  Establishing a correlation between 

the heuristic and the graph topology would be useful for alternative implementations 

that can potentially further reduce the heuristic’s runtime. 

Other heuristics also combine constructive and improvement heuristics for 

better solution quality and the expense of longer runtimes.  The heuristic implemented 

here exhibited extremely fast performance in finding valid tours, and the performance 

benefit is extended in that the heuristic is deterministic.  That is, the heuristic will 

always perform the same steps in the same order for every execution.  Other heuristics’ 

approach, at times, makes use of a random number generator for their chosen mode of 

attack for a particular graph.  Such heuristics are termed metaheuristics, and they show 

a distinct disadvantage in that some execution times are arbitrarily faster or slower than 

others.  This heuristic being deterministic provides ample opportunity for combination 

with improvement heuristics such as the K-Opt or Lin-Kernighan heuristics for both fast 

execution times and high-quality solutions. 

Though negligible in the time it takes to execute, the heuristic’s final city-visit-

order could use some reevaluation for a truly parallel implementation.  Currently, the 

heuristic’s implementation merely executes sequential steps on parallel hardware, 

which makes the implementation no different that the CPU serial implementation.  

Further opportunity for parallelization, therefore, can be explored here. 
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Another opportunity for study is the investigation into changing the fundamental 

data types that the GPU implementation uses for its execution with the aim of 

supporting larger inputs. 

Specific to Texas State University’s Efficient Computing Laboratory’s Ithaca Linux 

environment, further exploration for larger graph CONCORDE benchmarks remains 

open.  For example, TSPLIB’s CONCORDE benchmarks place graph rl11849.tsp’s compute 

time at approximately 155 days, but this benchmark is from a series of tests that took 

place more than a decade ago.  Computing power has inevitably become more 

developed and accessible, and establishing a benchmark for the larger graphs could 

prove insightful. 

Reimplementation of the heuristic in a manner that makes efficient use of a 

GPU’s warp utilization or global memory coalescing, as well as the reduction of thread 

divergence, may prove beneficial to the heuristic’s overall runtime.  The implementation 

in this study, as remarkable as the execution times have been shown to achieve, did not 

take an approach that took such aspects into consideration during its development. 

Further exploration into alternative, more powerful GPUs is also a considerable 

option for gathering data on larger TSP graphs.  Current memory constraints prohibit 

the program’s GPU execution of graphs that were larger than 11,849 nodes.  Perhaps 

even an alternative implementation that utilizes multi-GPU processing may prove 

beneficial towards characterizing the limits of this heuristic. 
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