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ABSTRACT
In the Quadratic Assignment Problem (QAP), n units (usu-
ally departments , machines, or electronic components) must
be assigned to n locations given the distance between the lo-
cations and the flow between the units. The goal is to find
the assignment that minimizes the sum of the products of
distance traveled and flow between units. The QAP is a
combinatorial problem difficult to solve to optimality even
for problems where n is relatively small (e.g., n = 30). In
this paper, we solve the QAP problem using a parallel al-
gorithm that employs a 2-opt heuristic and leverages the
compute capabilities of current GPUs. The algorithm is
implemented on the Stampede cluster hosted by the Texas
Advanced Computing Center (TACC) at the University of
Texas at Austin and on a GPU-equipped server housed at
Texas State University. We enhance our implementation
by fine tuning the occupancy levels and by exploiting inter-
thread data locality through improved shared memory al-
location. On a series of experiments on the well-known
QAPLIB data sets, our algorithm, on average, outperforms
an OpenMP implementation by a factor of 16.31 and a
Tabu search based GPU implementation by a factor of 58.61.
Given the wide applicability of QAP, the algorithm we pro-
pose has very good potential to accelerate the discovery in
scholarly research in Engineering, particularly in the fields
of Operations Research and design of electronic devices.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; I.2.8 [Artificial Intelligence]:
Search—Heuristic Methods
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1. INTRODUCTION
The Quadratic Assignment Problem (QAP) is an NP-hard

combinatorial optimization problem [18, 22, 31]. The prob-
lem is to assign n units to n locations to minimize the total
cost measured as the sum of the products of flows between
units and distances between locations [25]. Flow and dis-
tance matrices are assumed to be known. QAP has applica-
tions [4, 9] being the most common one the design of facil-
ity layouts in manufacturing systems. In such application,
the QAP finds an optimal allocation of n facilities (depart-
ments, machines, or workstations) to sites to minimize the
total layout costs [8]. Other applications of QAP include
the placement of modules on board positions so that the
total wire length to connect them is minimized (i.e. com-
puter backboard wiring [23]), campus planning [12], hospital
layout [13], ergonomic design [1] (i.e., keyboard and control
panel design [21]), scheduling problems [14], placement of
electronic components [20], and memory layout optimiza-
tion in signal processors [30].

The QAP has attracted many researches not only because
of its practical and theoretical importance but also due to its
complexity. In general, instances with n > 30 are difficult
to solve by exact methods in reasonable time [1, 18]. This
fact has motivated the use of the problem as a benchmark
to test solution methodologies. Metaheuristic approaches
have been applied most often than heuristics [2]. QAPLIB
serves as the most prominent source for problem instances
and known solutions [6]. Besides QAPLIB, others in the
the scientific community have facilitated research work by
posting instances and optimal or best known solutions. An
increased interest in parallel computing to solve the QAP
was evidenced in the 1990’s [18]. This trend began with the
development of CPU parallel implementations such as the
ones in [7] and [24]. In the last few years there has been a
shift to finding solutions using GPUs [3, 11, 19, 26, 27, 31].

GPU’s are powerful accelerators, require less energy than
other computing devices, and are widely available and rela-
tively cheap. These GPU characteristics and the fact that
GPU computing has been identified as a very promising di-
rection in the field of Operations Research, motivated the
authors of this paper to solve the QAP using the GPU.

In this paper, we present a single instruction multiple data
2-Opt algorithm for the QAP implemented on the GPU. The



computational framework used is the TACC Stampede clus-
ter at the University of Texas at Austin. TACC is one of
the XSEDE partner institutions. The computational study
in this paper consists of three parts. First, we investigate
the performance and accuracy of the proposed GPU imple-
mentation. The performance is assessed by comparing our
implementation to a parallel one under OpenMP and to the
tabu search GPU implementation described in [31]. Next,
we perform an occupancy study varying threads per block
and total number threads for QAP’s ranging from 30 -100
units. In the third part, we study the effect of using shared
memory to further reduce the computational time.

The paper is organized as follows. Section 2 presents for-
mulations for the quadratic assignment problem and a brief
description of 2-opt heuristic search for QAP in a serial envi-
ronment. Section 3 provides an overview of GPU computing,
a description of the 2-Opt search implementation in GPU,
and a literature review focused on work solving QAP using
GPU. Section 4 presents the computational experiments and
the numerical results. Section 5 summarizes the conclusions
and discusses future research.

2. QUADRATIC ASSIGNMENT PROBLEM
FORMULATION

2.1 Koopmans-Beckman QAP Formulation
Koopmans and Beckmann provide the following formula-

tion for the QAP [16]: let F and D be two given n × n
matrices that represent flows between units and distances
between locations such that F = [fkl] and D = [dij ]. Con-
sider the set of positive integers 1, 2, ..., n and let Πn be the
set of all permutations of 1, 2, ..., n. The QAP can be defined
as finding a permutation π∗ ∈ Πn such that the sum of the
products below is minimized.

zπ =

n∑
i=1

n∑
j=1

fπiπj · dij (1)

2.2 Quadratic 0-1 Formulation
Koopmans and Beckmann also stated a quadratic 0-1 in-

teger programming formulation [16]. In this formulation,
X = [xmk] represents an n× n matrix of decision variables.
xki takes the value of 1 if unit k is assigned to location i
and 0 otherwise. The solution to this formulation finds the
values of all variables xki and xlj that minimize the sum of
the products of flows and distances (Eq. 2) and satisfy the
constraints expressed in Eqs. 3-5. Constraints in (3) assign
each unit k to a single location i. Constraints in (4) assign
only one unit to each location. Constraints in (5) force the
decision variables to take binary values

min z =

n∑
k=1

n∑
l=1

n∑
i=1

n∑
j=1

fkldijxkixlj (2)

s.t

n∑
i=1

xki = 1, k = 1, 2, ...., n (3)

n∑
k=1

xki = 1, i = 1, 2, ...., n (4)

xki ∈ {0, 1} k = 1, 2, ...., n i = 1, 2, ...., n (5)

The information encoded in a permutation π in Πn has a
one-to-one correspondence to the information stored in the
n × n matrix X = [xki] since xki equals to 1 if πi = k. It
means the quadratic 0-1 and the Koopmans-Beckman for-
mulations are equivalent. In the remainder of the paper we
will call Eq. (2) (or alternatively Eq. (1)) the objective func-
tion. Its value (or cost) permits to assess and rank different
problem solutions.

2.3 Serial 2-Opt Search for QAP
As part of this study we wanted to develop a relatively

simple heuristic and concentrate our efforts on learning about
the GPU capabilities and how to exploit them. We selected
the 2-Opt heuristic as the search strategy to implement.
This heuristic was originally proposed by Croes for the trav-
eling salesman problem [10]. In a serial environment, the
2-Opt heuristic for QAP starts with an initial random per-
mutation array π (i.e. a feasible solution in the language
of quadratic programming). The cost of the random per-
mutation is computed as in Eq. (1) (or as in Eq. (2)) .
The permutation array and its costs are stored in the best-
solution array and the best-cost-so-far variable, respectively.
To get a single neighborhood solution, two positions i and
j in π are randomly selected and a pairwise exchange of
their content is performed. Burkard and Rendl [5] provide
a formula to compute the change (i.e. delta) in the objec-
tive function value after a pair-wise exchange (i.e. a swap).
The advantage of this formula is that it can be evaluated in
O(n) operations for all potential O(n2) swaps. In contrast,
the computation of cost using Eq. (1) requires O(n2) oper-
ations. Following is the formula in [5] for the case in which
both flows and distances are asymmetric.

∆ij = (dji − dij)(fπiπj − fπjπi)

+
∑

k∈n\{i,j}

((djk − dik)(fπiπk − fπjπk )

+ (dkj − dki)(fπkπi − fπkπj )) (6)

Once the costs of all neighbor solutions obtained by pair-
wise exchange is computed, it is checked if the best-solution
array and the best-cost-so-far variable need to be updated.
If a neighboring solution has a cost lower than the one in
best-cost-so-far, an update occurs. To start a new itera-
tion, best-solution replaces the initial random permutation.
The process of neighborhood generation and evaluation is
repeated for a predetermined number of iterations. When
a pre-determined number of iterations is reached the best-
solution array and the best-cost-so-far value are output as
the problem solution. It can be the optimal solution if n is
small or more likely a suboptimal solution if n is large.

3. GPU COMPUTING
Microprocessors based on a single central processing unit

(CPU) drove rapid performance increase and cost reduc-
tions in computer applications. This drive slowed due to
the energy-consumption and the heat-dissipation that lim-
ited the clock frequency and the level of productive activities
performed in each clock period within a single CPU [15].
Semiconductor industry then settled on two main trajec-
tories for designing microprocessors, multi-core and many-
core. Multi-core aimed to maximize the speed of sequential
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Figure 1: 2-Opt Search in GPU

programs while the many-core trajectory focuses more on
enhancing the execution throughput of parallel applications.

In the past, graphics processing units (GPU) were special-
purpose hardwired application accelerators, suitable only for
conventional graphics applications. Modern GPUs are fully
programmable, autonomous parallel floating point proces-
sors which may simultaneously execute the same program
instruction on different data. Nvidia, the leading manu-
facturer of GPUs, released CUDA, a parallel computing
platform and programming model that provides a C pro-
gramming language interface to program the GPU hard-
ware. CUDA enables dramatic increases in computing per-
formance by harnessing the power of the GPUs.

One appealing characteristic of the GPU is that it effi-
ciently launches many threads and executes them in parallel
to enable computational throughput across large amounts of
data. Each thread runs the same program named a kernel.
Threads are grouped into thread blocks and all threads in
a thread block may cooperate to solve a sub problem. A
block has a dimensionality of one, two or three. A grid is
a set of blocks which are completely independent. A grid
has dimensionality of one or two. A warp is a group of
threads within a block that are launched together and exe-
cute together. Warp size is typically 32 threads on current
generations of GPUs. Shared memory can be accessed by
all threads within a block but not across blocks. Luong et
al. describe several factors that affect the performance of
GPU-based QAP applications [19]. These include efficient
distribution of data processing between CPU and GPU, the
level of required communication and synchronization among
threads, the optimization of data transfer between the dif-
ferent parts of the memory hierarchy, and the capacity con-
straints of these memories.

3.1 The 2-Opt Search in GPU
This section describes the algorithm implemented in this

work to heuristically solve the QAP. Using specific seed val-
ues, a set of N initial random permutations of size n is gener-
ated and stored in a matrix of size N×n. Each permutation
is assigned to a single GPU thread which computes its cost
using Eq. (1) described in Section 2.1. In each thread, the
permutation is also copied in an array named best-solution-
so-far. The associated permutation cost is copied to a vari-
able named best-cost-so-far. Fig. 1 illustrates the case in
which five random permutations (i.e. N=5) of size n=4 are
assigned to five threads. Next, each thread independently
performs all 2-Opt interchanges to produce a neighborhood
of n × (n − 1)/2 new permutations. This neighborhood is
explored by computing the associated costs of the permuta-
tions using Eq. (6) from Section 2.3. The systematic way in
which the six 2-Opt interchanges are done for a permutation
of size four is illustrated in Fig. 2. This figure is similar to
the one in [2]

To evaluate a single new permutation the flow and dis-
tance matrices are needed. These matrices are maintained
in global memory to be accessible by all threads. As men-
tioned later in Section 4.5, the time to evaluate the costs of
the 2-Opt neighborhood is reduced if copies of these matrices
are kept in the kernel shared memory.

After computing the costs of the 2-Opt neighborhood of an
original random permutation, it is possible that best-cost-so-
far and best-solution-so-far need to be updated. This is done
by selecting the lowest cost of the new permutations and
comparing it to the value currently stored in best-cost-so-far.
If the cost of a new permutation is lower than best-cost-so-far
then this single new permutation is stored in best-solution-
so-far and its cost is stored in best-cost-so-far. Also the
new permutation with the lowest cost replaces the original
random permutation. This sets the start another iteration.
The total number of iterations the algorithm is repeated
is set as a function of the problem size n. After the total
number of iterations is reached, each thread returns its best-
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Figure 2: 2-Opt Swaps for a Permutation of Size 4

solution-so-far and best-cost-so-far values. The process of
comparing the results returned by the threads and finding
the single permutation with the minimum cost is done in the
CPU. Once the solution and its cost is identified and output
to a file the 2-opt algorithm terminates.

3.2 Previous Work on Solving QAP using GPU
Luong et al. proposed a GPU based iterated tabu search

for solving the quadratic 3-D assignment problem, an ex-
tension of the QAP and of the axial 3-D assignment prob-
lem [19]. The motivation for using the GPU was to enlarge
the neighborhood structure without incurring an expensive
computational process. The quadratic 3-D problem searches
for a double permutation which minimizes a cost function.
Each new solution is based on the exchange of two positions
in either the first permutation or the second one. Thus, the
size of the neighborhood is (n × (n − 1)/2)2. The authors
concluded that GPU permitted to exploit parallelism in the
neighborhood search and improve the quality of the solu-
tions obtained. The authors propose as further research a
multi-GPU idea. It is partitioning the neighborhood set and
assign each partition to a single GPU.

Zhu et al. proposed a single-instruction multiple data
tabu search (SIMD-TS) for the QAP using a single GPU [31]
on a personal computer. The parallelization consisted of
running 6144 simultaneous independent tabu searches (6144
threads, 32 blocks, 192 threads per block) on 128 processors.
Texture memory (a fast read-only memory) was used to
store the distance and flow matrices. To assure each thread
searches a different but promising area the authors imple-
mented diversification and intensification operations every
m iterations. The authors demonstrated the implemented
algorithm was fast and effective. They used instances of
different sizes (30 < n < 90) from QAPLIB and the worst
performance gap was 0.73%. The authors also stated that
the cache size (8k) of the texture memory affected the exper-
imental performance. Since their tabu search implementa-
tion only had short-term memory, as a future research they
proposed to develop long-term memory.

Czapinski proposed an effective parallel multistart tabu
search (PMTS) for the QAP on the CUDA platform [11].
The technique consisted of diversifying an initial solution,
running multiple tabu searches on each diversified solution,
and re-starting the search with the best solutions after a
certain number of iterations. The set of tabu searches to
run in different threads results from systematic swaps of an
initial solution. It permits the author to conclude that each
thread can save just two rows or two columns of the flow and
distance matrix for symmetric matrices. It avoids keeping

the whole matrices in shared memory. In the non-symmetric
case, two rows and two columns of the matrices are needed.
To get a full-benefit of coalescing transposed copies of the
matrices are stored. The proposed search also benefits from
communication between parallel tabu search instances which
is achieved by passing the best obtained solutions to the
CPU, examining them and choosing new configurations in
the CPU, and re-starting the parallel tabu search in the
GPU. From initial experiments the author agreed with [31]
that 192 threads per block was the best choice. Instances of
size 50-70 ran faster in GPU when compared to a six-core
MPI implementation.

Other work related to solving QAP with genetic algo-
rithms using GPU is the one in [26]. Also [27] proposes
a fast QAP solver which implements Ant Colony Optimiza-
tion (ACO) and Tabu Seach on GPU.

4. EXPERIMENTAL RESULTS

4.1 GPU Platforms
The computational experiments were executed on the Stam-

pede cluster on the TACC system. Stampede is a 10 PFLOPS
Dell Linux Cluster based on 6,400+ Dell Zeus PowerEdge
server nodes, each outfitted with 2 Intel Xeon 8-Core 64-bit
E5 processors (2.7 GHz) and an Intel Xeon Phi Co-processor
(1.1.GHz). Each node runs Centos 6.3 (2.6 32x86 64 Linux
kernel) . The nodes are managed with batch services through
SLURM 2.4. Stampede has 128 compute nodes outfitted
with a single Nvidia K20 GPU on each node with 5GB
of on-board GDDR5 memory. Each K20 GPU has 2496
CUDA cores distributed over 13 streaming multiprocessors
(SM’s). Each SM can hold a maximum of 2048 thread con-
texts, which amounts to 26624 (13*2048) threads that can
simultaneously be active on the GPU. The clock speed for
each core is 0.706 GHz, L1 cache size is 64 KB/SM and L2
cache size is 768 KB (shared).

For all experiments, the serial CPU and the OpenMP vari-
ants of the code were compiled with GCC Version 4.4.7.
The CUDA code was compiled with nvcc using CUDA ver-
sion 5.5. The sbatch script was used to submit jobs to the
cluster and to specify the node configuration. For our exper-
iments we ran four jobs simultaneously by assigning each job
to a different Stampede node. This significantly expedited
our evaluation process.

In addition to the Stampede cluster we also ran several
experiments on a local server with a six-core Intel proces-
sor based on the Sandybridge architecture. The server is
equipped with a Tesla K20c NVIDIA GPU. This GPU also
has a total of 2496 cores grouped into 13 stream multipro-
cessors (SM’s). The amount of shared memory available per
block is 48K. On this platform, the CPU code was compiled
with GCC Version 4.6.3 and the CUDA code was compiled
with nvcc with CUDA version 5.5 The server runs Ubuntu
12.04 as its operating system.

4.2 Benchmark Data Sets
The instances we used to test our 2-opt algorithm come

from QAPLIB, a library of published test problems for the
QAP described in [6]. We selected 2 instances from [17], 7
from [24], and 8 from [25] to do a direct comparison with
the work reported in [31] (Table 4 page 1044). The Lipa
instances come from problem generators described in [17].
These generators provide asymmetric instances (i.e. non-



Table 1: Computational results for problems from the QAPLIB

Problems Best known cost Cost Gap Time
1 tai30a 1,818,146 1,838,184 1.10% 3.84
2 tai30b 637,117,113 637,117,113 0.00% 3.78
3 tai35a 2,422,002 2,464,946 1.77% 7.03
4 tai35b 283,315,445 283,349,722 0.01% 6.90
5 tai40a 3,139,370 3,187,882 1.55% 11.83
6 tai40b 637,250,948 637,349,459 0.02% 11.68
7 tai50a 4,938,796 5,026,692 1.78% 29.40
8 tai50b 458,821,517 459,528,298 0.15% 29.17
9 tai60a 7,205,962 7,386,338 2.50% 62.15
10 tai60b 608,215,054 609,612,341 0.23% 61.19
11 tai64c 1,855,928 1,855,928 0.00% 81.13
12 tai80a 13,515,450 13,833,332 2.35% 202.11
13 tai80b 818,415,043 822,630,127 0.52% 199.20
14 tai100a 21,054,656 21,550,036 2.35% 501.65
15 tai100b 1,185,996,137 1,196,603,999 0.89% 493.62
16 lipa70a 169,755 171,068 0.77% 117.08
17 lipa90a 360,630 362,948 0.64% 327.19

symmetric flow and/or distance matrices) with known op-
timal solutions. The instances named Taixxa are uniformly
generated and proposed in [24]. The other problems were
introduced in [25]. Problems instances labeled as Taixxb are
asymmetric and randomly generated. Instances Taixxc oc-
cur in the generation of grey patterns. We ran the 2-Opt al-
gorithm in each problem instance eight times and computed
the average values as well as the standard deviation, mini-
mum, maximum, and coefficient of variation (standard de-
viation/average). All coefficients of variation are low. Con-
sequently, in the tables and figures in the next sub-sections
we report the average values found for each instance.

4.3 Performance and Accuracy
Table 1 reports the performance and accuracy of the GPU

accelerated 2-opt algorithm (referred to as 2-opt in the rest
of the section). Numbers are reported for the 17 differ-
ent instances selected from the QAPLIB data sets. For
each instance, the number of initial random solutions was
N = 6144. The total number of threads, blocks and threads
per block were set to 6144, 24, and 256, respectively. The
best known cost for a particular instance is derived from
previously published results [6]. We measure performance
in terms of total execution time (seconds) of the GPU ker-
nel. Accuracy is the percent difference between the best
known cost and the cost discovered by our algorithm.

We observe that 2-opt yields good accuracy across differ-
ent problem instances. For several instances the computed
cost is within 0.1% of the best known value while the average
accuracy over all instances is 1%. The execution times re-
ported in Table 1 show that 2-opt is able to attain this high
level of accuracy within a reasonable amount of time even
for large data sets. The longest running time is 8 minutes
21 seconds for tail100a. As a quick comparison, a sequential
implementation on a high-end CPU takes more than 2 days
to compute the solution for this same instance.

To better evaluate our algorithm, we compare its perfor-
mance and accuracy with two other parallel implementations

1. OpenMP: an OpenMP-based CPU implementation of
2-opt
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Figure 3: 2-opt and OpenMP performance compari-
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Figure 4: 2-opt and OpenMP accuracy comparison
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Figure 5: 2-opt and Tabu performance comparison
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Figure 6: 2-opt and Tabu accuracy comparison

2. Tabu: a GPU implementation of tabu search for QAP
performed by Zhu et al. [31].

Figs. 3 and 4 show the performance and accuracy compar-
isons between 2-opt and OpenMP. 2-opt achieves at least a
factor of 16 speedup over OpenMP on all problem sizes. We
attribute this performance gains mainly to the additional
computation power available on the GPU. OpenMP was im-
plemented using 16 threads which proved to be optimal for
the compute node configurations on the Stampede cluster.
On the other hand, 2-opt was designed to make use of all
available SMs on the target GPU allowing it achieve more
parallelism on different problem instances. In terms of accu-
racy, there is no clear advantage for either OpenMP or 2-opt.
On some instances 2-opt performs significantly better while
on others OpenMP yields a better solution. This is an ex-
pected result as both versions employ a random heuristic for
searching.

Fig. 5 reports the speedup obtained by 2-opt over Tabu.
Tabu numbers were obtained from previously published re-
sults in [31]. Then the comparison is not totally straight-
forward since the computing resorces used in the two imple-
mentations were different. This particular implementation
of Tabu uses 6144 threads and was executed on an Nvidia
GeForce 8800 GPU. We observe that 2-opt yields impres-
sive speedups over Tabu. For most Taillard instances, 2-opt
improves performance by a factor of 40 or more. Overall,
performance gains on Taillard sets are higher than those for
Lipa data sets. But even for Lipa, 2-opt achieves a 38-fold
speedup on average. Some of the performance improvements
can be attributed to the more powerful GPU used for our
experiments. However, most of the benefits come from in-
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Figure 7: Lipa70 performance for varying thread
configurations
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Figure 8: Lipa90 performance for varying thread
configurations

creased parallelism, fewer synchronizations and an efficient
cost calculation formula.

Although 2-opt yields significantly higher performance it
lags behind Tabu in terms of accuracy, as depicted in Fig. 6.
On average Tabu delivers results that are 0.77% closer to
the best known solution. The improved accuracy can be at-
tributed to the more sophisticated search heuristic and the
CPU-based double-precision cost recalculation algorithm used
in Tabu. It should be noted, however that the difference in
accuracy is fairly small and in several instances 2-opt pro-
duces similar accuracy as Tabu. Among the different in-
stances, 2-opt performed poorly on data sets that were uni-
formly generated (i.e., data sets with a specific pattern).
Since 2-opt uses a random heuristic it is not too surprising
that it was not able to exploit the patterns in the data set to
its advantage. Nevertheless, the accuracy on uniform data
sets is an important consideration and we intend to address
this issue in future work (see Section 5).

4.4 Thread Block Configuration
Determining the right thread hierarchy is an important

consideration for any GPU implementation. We ran a se-
ries of experiments to find a suitable thread configuration
for 2-opt. We parameterized the algorithm and executed
the code with different thread and block parameters to vary
the number of active warps per SM and attain different lev-
els of occupancy. Figs. 7-10 present selected results from
these experiments. These experiments reveal that the best
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Figure 9: Taillard100a performance for varying
thread configurations
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Figure 10: Taillard100b performance for varying
thread configurations

performance for 2-opt is not necessarily achieved at maxi-
mum threads per block, in spite of the fewer synchronization
events occurring on those implementations. For both Lipa
and Taillard data sets, the highest performance is achieved
at 256 threads per block. We attribute this performance
gain to better register usage and shared memory utiliza-
tion. These results corroborate results from earlier studies
on GPU occupancy and data locality [28, 29].

4.5 Shared Memory
To optimize memory access, two key data structures, flow

and distance, were allocated to shared memory. Fig. 11
shows performance results for the implementation of 2-opt
with shared memory allocation. We notice that the shared
memory implementation provides yet more performance im-
provements over the highly efficient non-shared version of
2-opt. These gains stem from two different sources. First,
allocation into shared memory replaces many of the global
memory accesses with accesses to shared memory with lower
latencies. Second, because each thread in a block accesses
the data structures in every iteration, the shared memory
allocation helps exploit the abundant inter-thread data lo-
cality exhibited by these threads.

5. CONCLUSIONS AND FUTURE WORK
This paper presented an efficient parallel solution to QAP,

an important problem in the domain of Operations Research
(OR). Experimental results show that the described algo-
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Figure 11: 2-opt performance with shared memory
allocation

rithm can provide impressive speedups over a comparable
GPU implementation while incurring only a small penalty
in terms of accuracy. In many contexts, the sacrifice in accu-
racy for improved and scalable performance is considered to
be a worthwhile trade-off. Thus, by providing a fast solution
to QAP, the proposed 2-Opt algorithm has the potential to
accelerate discovery in OR. Practical OR problems that may
be impacted are in the contexts of facility layout optimiza-
tion ergonomics, health care optimization and scheduling.
The OR community researching on exact solutions to the
QAP may benefit also from this 2-Opt accelerated heuristic.
Fast and reasonably accurate heuristics are useful to estab-
lish bounds at the initial stages of exact solution approaches
such as the branch-and-cut and branch-and-bound methods.
Besides, the OR community may hybridize the accelerated
2-Opt heuristic with other heuristic or meta-heuristics to in-
vestigate possible accuracy gains. Also, the proposed 2-Opt
algorithm may be used by electronic industries working in
the layout of electronic devices in computer backboards and
memories in signal processors.

The experimental results revealed a weakness in our ap-
proach in finding suitable costs for uniformly generated data
sets (i.e. Taixxa instances). We will address this issue by re-
starting the GPU portion of the algorithm multiple times.
Fifty percent of the threads will get a diversified solution of
the last permutation stored and the remaining fifty percent
will re-start with the best-so-far solution. Also we plan on in-
corporating a more sophisticated heuristic in our search such
as tabu with long term memory and/or other enhanced fea-
tures. We will investigate additional avenues of extracting
parallelism and exploiting locality including parallelization
of the swap operations and division of the solution set into
disjoint search spaces. The accessibility to the Stampede
cluster reduced significantly the time to complete the exper-
imentation phase. The on-line documentation from TACC
and the suggestions from its staff members were clear and
appropriate to accomplish the objectives. These facts should
motivate more OR practitioners to use a computational cy-
berinfrastructure similar to the Stampede cluster.
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