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Automatic Tuning of Scientific Applications

Apan Qasem

Abstract

Over the last several decades we have witnessed tremendous change in the landscape

of computer architecture. New architectures have emerged at a rapid pace with

computing capabilities that have often exceeded our expectations. However, the rapid

rate of architectural innovations has also been a source of major concern for the high-

performance computing community. Each new architecture or even a new model of a

given architecture has brought with it new features that have added to the complexity

of the target platform. As a result, it has become increasingly difficult to exploit the

full potential of modern architectures for complex scientific applications. The gap

between the theoretical peak and the actual achievable performance has increased

with every step of architectural innovation. As multi-core platforms become more

pervasive, this performance gap is likely to increase. To deal with the changing nature

of computer architecture and its ever increasing complexity, application developers

laboriously retarget code, by hand, which often costs many person-months even for a

single application. To address this problem, we developed a software-based strategy

that can automatically tune applications to different architectures to deliver portable

high-performance.

This dissertation describes our automatic tuning strategy. Our strategy combines

architecture-aware cost models with heuristic search to find the most suitable op-

timization parameters for the target platform. The key contribution of this work

is a novel strategy for pruning the search space of transformation parameters. By

focusing on architecture-dependent model parameters instead of transformation pa-

rameters themselves, we show that we can dramatically reduce the size of the search
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space and yet still achieve most of the benefits of the best tuning possible with exhaus-

tive search. We present an evaluation of our strategy on a set of scientific applications

and kernels on several different platforms. The experimental results presented in this

dissertation suggest that our approach can produce significant performance improve-

ment on a range of architectures at a cost that is not overly demanding.
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Chapter 1

Introduction

1.1 Motivation

Over the last several decades we have witnessed tremendous change in the landscape

of computer architecture. New architectures have emerged at a rapid pace and at the

same time, the complexity of microprocessor architecture has grown consistently. The

changing nature of the processor architecture and its ever increasing complexity has

made retargeting of applications a major concern for high-performance computing.

The advent of each new architecture and even a new implementation of a given

architecture has required retargeting and retuning of applications at considerable

cost. Manual tuning of programs is time consuming, tedious and error prone, not to

mention that repeated manual transformation of the code makes it unmaintainable.

In recent years, a novel alternative to manual tuning has been the the use of

empirically tuned libraries. In an empirical compilation system, the parameters for

program transformations are not chosen using static models. Instead, programs with

different optimization parameters are executed on the target machine and the program

variant that gives the best performance is selected. Empirically tuned libraries such

as ATLAS [78], are known to produce better code than native compilers across a

range of modern architectures and are recognized as practical alternatives to hand-

transformation of code in their respective domains.

In spite of the success of empirically tuned libraries, to date there has been no

general-purpose tool for automatically tuning whole programs using empirical meth-

ods. The principal bottleneck in this regard, has been the enormous time spent evalu-

ating the large number of alternate program variants. Over the years, compiler writers
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have developed a rich array of code improving transformations. However, determin-

ing good heuristics for applying these transformations across different architectures

has always been a major challenge. The profitability of program transformations is

sensitive not only to the input program but also, to a great degree, to certain architec-

tural parameters. Thus, applying transformations profitably often requires detailed

knowledge of the underlying architecture. Moreover, many program transformations

interact with each other in different ways, and much of this interaction is still not

fully understood by the compiler community. Any strategy for tuning scientific ap-

plications to different architectures needs to consider all these inter-related factors,

which gives rise to a large and complex multi-dimensional search space.

Researchers have approached the problem of this prohibitively large search space

from two different angles. One approach has been to develop efficient search strategies

that are able to find suitable transformation parameters by exploring only a small

fraction of the search space. Recent research by several research groups has progressed

in this direction [15, 44, 61, 27]. The other approach, which is complementary to

finding a good search strategy, is the the use of analytical models to prune the search

space to manageable proportions. Most recently, Yotov et al. [86] and Chen et al. [12]

have advocated this model-guided approach of empirical tuning. However, as we shall

discuss in Chapter 3, many of these recent research efforts have limitations that have

prevented the empirical approach from gaining wide acceptance as a viable strategy

for tuning scientific applications to different architectures.

1.2 Thesis

My thesis is that by combining architecture-aware cost models with heuristic search, we

can automatically pretune multi-loop computational kernels to different architectures

to obtain improved performance at a reasonable cost.

To support this thesis, we designed and implemented a framework for automatic

tuning of applications, conducted an experimental study evaluating different heuristic
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search strategies, and implemented a novel strategy for pruning the search space of

transformation parameters. In our pruning strategy, we move away from the search

space of parameterized transformations and instead focus on the search space of

architecture-dependent parameters embedded within the cost models. As we know,

the profitability of many program transformations are sensitive to certain machine

parameters. For example, tile sizes are constrained by the capacity of the target cache.

Compiler cost models use these architectural parameters as a means for picking the

best transformation parameters. However, in most cases these parameters are difficult

to determine accurately. For example, the fraction of cache that a code can exploit

depends on the size and associativity of the cache, the number of different arrays it

accesses in the program and, also, the size of each of those arrays. A static model

that attempts to capture all these parameters is unlikely to be totally accurate for

all architectures. The goal of our tuning strategy is to correct for these inaccuracies

in the cost model. We use empirical search to find the best estimates of the machine

parameters, which in turn deliver the best set of transformation parameters. Our

pruning strategy reduces the size of the search space in two ways. First, we can use

a single parameter to capture the effects of multiple transformations which reduces

search space dimensionality. For example, we can use the estimate of the cache size

parameter to tune both loop fusion and tiling parameters. Second, for transformations

that can have different parameters for different loops (i.e., tiling), we can again use

just a single parameter to tune each of the loops in the program. Thus, the search

space we explore does not grow with program size. For large applications with many

loop nests, this property can be very effective in limiting the size of the search space.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we present background mate-

rial for the heuristic cost models described in this dissertation. Chapter 3 discusses

related work and their limitations. Chapter 4 presents an overview of our automatic
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tuning framework. We discuss results of an experimental study with heuristic search

strategies in Chapter 5. In Chapter 6, we describe a strategy for automatically tun-

ing loop fusion parameters using estimates of machine parameters. This chapter also

introduces the model for effective cache capacity. In Chapter 7, we present a strategy

for pruning the fusion-tiling search space. Chapter 8 describes a global array padding

strategy that also incorporates fusion and tiling decisions. Evaluation of each of these

strategies is presented in the respective chapters. Finally, in Chapter 9 we outline the

major contributions of this work and discuss future work.
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Chapter 2

Background

This chapter reviews some of the fundamental concepts in memory hierarchy trans-

formations. Dependence theory and reuse analysis provide the foundations for the

compiler-based cost models described in this dissertation. The purpose of this chapter

is to re-acquaint readers with some of the fundamental ideas to help better understand

the models presented in later chapters.

2.1 Memory Model

We assume the standard hierarchical memory model found in almost all modern

microprocessor based systems. Memory is divided into multiple levels with each level

farther away from the processor having a larger capacity and slower access time. The

register set - the level of memory closest to the processor - is considered as the 0th

level of memory. Caches reside between the register set and the main memory and

have different degrees of associativity and different block sizes. In this document, we

define the capacity of a cache at some level k in terms of the number of cache blocks

at level k. We assume a least-recently-used (LRU) replacement policy for all caches.

All information regarding the memory model is obtained prior to compilation and is

used as input to our cost models.

2.2 Program Model

In our framework, a program is a collection of statements each enclosed by one or

more loops. Loops are perfectly nested and loop bounds are affine expressions of loop

iterators. All array references are uniformly generated, that is, the index expressions
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of all arrays references differ only in the constant term [25]. Without loss of generality,

we assume that arrays are aligned at cache line boundaries and they are stored in

column-major order. We also assume that fusible loops have already been aligned

with respect to each other.

2.3 Reuse Analysis

We use the notion of reuse as presented by Wolf and Lam [81]. Data reuse occurs

in a program, whenever the same data (or data residing in the same cache line) is

accessed multiple times. Reuse is generally classified into two categories: temporal

and spatial. When references access the same memory location multiple times, it is

said to exhibit temporal reuse. On the other hand, if references access multiple data

items within the same cache block it exhibits spatial reuse. Spatial and temporal

reuse is further classified into four classes based on the number of references that are

involved in the reuse behavior. When a single reference accesses the same memory

location at different times during the execution of the program that reference is said

to have self-temporal reuse. If a single reference accesses the same cache line it is

said to have self-spatial reuse. If a collection of references access the same memory

location, we say they have group temporal reuse and if they access the same cache

line, we say they have group spatial reuse.

Our cost models for memory hierarchy transformations consider all levels of the

memory hierarchy simultaneously. Hence, we make a further classification of temporal

reuse based on the memory level at which the reuse is exploited. We use the notion

of reuse distance of memory references to make this classification. Reuse distance is

defined as the number of distinct cache lines accessed between references to the same

memory location [4]. We use the ideas described by Ding and Zhong [21] as the basis

for computing reuse distances between references. In the general case, reuse distance

of a static reference with self-temporal reuse or two static references with group

temporal reuse constitutes a set where each element of the set refers to the reuse
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distance between two dynamic invocations of the static reference. However, under

the assumption of uniformly generated references, reuse distance of a static reference

remains constant through all its dynamic invocations. Hence, in our model we are

able to treat reuse distance as a single value rather than a set of values. We should

point out that the assumption of uniformly generated references in reuse distance

analysis can be overly simplistic in some cases [50]. If the same memory location

is accessed with varying reuse distances, then under the assumption of uniformly

generated references, only the most frequent reuse distance will be accounted for.

Omission of other reuse distances in the analysis may cause performance problems

for some applications. Our approach is to make the frequent case fast.

For reuse distance analysis, we assume loop bounds are known at compile time.

Although this is not a realistic assumption for many applications, making such an

assumption is not a problem in general. The issue of unknown loop bounds can be

handled in several different ways. One approach is to simply assume loop bounds are

large enough so that we get no reuse at any of the outer levels. Another approach is

to use tiling to get manageable reuse distance when we do not know the loop upper

bounds.
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Chapter 3

Related Work

We divide the discussion of related work into two parts. The first section of this

chapter reviews related work in memory hierarchy optimizations. The second section

surveys the literature on empirical tuning. The concluding section summarizes the

limitations of related work in automatic tuning.

3.1 Optimizations for the Memory Hierarchy

Memory hierarchy optimizations are an important class of program transformations

in high-performance computing. As the gap between processor and memory speed

continues to widen, the impact of memory hierarchy transformations in improving

application performance becomes even more critical. Because of this, over the years,

memory hierarchy transformations have received a lot of attention from the compiler

research community. Compiler researchers have developed a large number of program

transformations that attack the memory hierarchy problem form different angles.

Transformations such as tiling [81], data shackling [43] and loop interchange [45, 82]

attempt to improve cache locality in programs, whereas unroll-and-jam [8], loop dis-

tribution [1] and loop fusion [29] are primarily designed to improve register reuse.

Software prefetching [7] hides latency for compulsory cache misses, while data-layout

transformations such as array padding [65] and data copy [85] aim to reduce cache con-

flict misses. To improve the overall memory hierarchy performance of a a particular

program, one needs to carefully apply some or all of the transformations mentioned

above. A complete survey of all memory hierarchy transformations is beyond the

scope of this thesis. Therefore, we limit our discussion to three key optimization
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strategies. The three transformation strategies discussed in this section, are the ones

that are the primary focus of our research. Each transformation attempts to exploit

locality within the program in different ways and can have very different effects on

program performance. All three transformations depend on the underlying architec-

tural parameters for profitability and also interact with each other in complex ways.

Thus, this set of three optimization strategies form a good basis for evaluating our

automatic tuning strategy.

3.1.1 Loop Fusion

Fusion has been studied in the literature both as a tool for improving data locality

and increasing the granularity of parallelism [36, 46]. In this work, we look at fusion in

the context of improving data locality only. Fusion improves data locality by merging

loops and exploiting cross-loop reuse.

In its general form the task of finding the optimal fusion solution has been shown

to be NP-complete [18]. Several published algorithms use heuristics to find good

fusion solutions in reasonable time. Lim and Lam use affine transformations to apply

fusion [49]. Gao et al. use a max-flow-min-cut algorithm to partition loop nests into

fusible clusters [26]. Kennedy describes a fast greedy weighted fusion algorithm that

runs in polynomial time [35]. In our work, we are less interested in specific algorithms

for performing loop fusion than we are in establishing suitable profitability constraints

for legally fusible loops.

Many researchers have proposed models for performing loop fusion to improve

memory performance. Ding and Kennedy have looked at reducing effective bandwidth

through loop fusion [20]. Verdoolaege et al. [75] describe a greedy fusion algorithm

for incremental loop fusion at multiple levels. However, their locality models do not

consider input dependences or the costs associated with cache misses. Many scientific

applications are written in a way where data from a main array is read in multiple

loop nests to compute values for several auxiliary arrays. For such applications,
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considering input dependences becomes critical for improving performance through

loop fusion.

3.1.2 Tiling

Tiling has also been studied extensively as a way to improve memory hierarchy per-

formance of scientific computations [81, 9, 23, 10, 14, 11, 53]. Tiling reshapes an

iteration space over a data domain by partitioning it into tiles that fit comfortably

into cache.

The idea of using blocked computations for matrix operations was presented by

McKellar and Coffman back in 1969 [51]. Wolfe proposed the first algorithm for

restructuring a loop nest to achieve the effect of tiled computations [83]. Although

a very useful transformation for improving memory performance of scientific kernels,

finding suitable tile sizes to get the desired effect has proven to be a challenging task.

For this reason, much of the work in tiling over the past two decades has focused on

finding suitable tile sizes rather than improving existing algorithms for tiling a loop

nest.

Wolf and Lam [81] propose a tile size selection heuristic based on reuse vector

analysis. They use their model to predict the amount of self-interference in a given

loop nest and then select a small enough tile size that avoids interference. Although

their strategy achieves good performance, in many instances they choose very small

tile sizes that result in underutilization of the cache. Esseghir [23] describes an al-

gorithm for tile size selection where tile sizes are selected based on the maximum

number of rows of an array that fit into cache. His approach also eliminates self-

interference misses but suffers from underutilization of the cache in some cases. Cole-

man and McKinley [14] present a working set based algorithm for tile size selection

that eliminates self-interference misses and also minimizes cross-interference misses.

However, their algorithm is most effective for loop nests where locality is dominated

by a single array. Chame and Moon [11] describe a tile size selection algorithm that
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eliminates self-interference misses and also minimizes cross-interference and capacity

misses. They present experimental results comparing their strategy with the three

strategies described above. Their experimental results show that their strategy is able

to outperform each of the three strategies for three computational kernels including

matrix multiply.

Mitchell et al. [53] propose a tiling algorithm that considers multiple levels of the

cache. They also describe a strategy for tiling that minimizes TLB misses. Goto and

van de Geijn have described a specialized tiling algorithm for the matrix-multiply ker-

nel that can effectively reduce TLB misses on a number of different architectures [30].

However, their strategy does not have widespread application beyond matrix-matrix

multiplication.

3.1.3 Array Padding and Data Copy

The goal of data-layout transformations is to exploit locality by reorganizing the

data in the input program. Data-layout transformations are fundamentally different

from transformations such as loop fusion and tiling because they do not attempt to

reorder any computation within the program. These strategies are particularly useful

for eliminating conflict misses in cache. In many cases, conflicts in cache can be

eliminated only through reorganization of the program data. Thus, transformations

that do not touch the data layout are inherently limited in their ability to eliminate

conflicts in cache.

In this section, we review related work in array padding and data copy, two strate-

gies from the family of data-layout transformations. Array padding usually involves

inserting dummy elements between variables (or within a single variable, in case of

multi-dimensional arrays) to align them in a way such that they do not conflict in

cache. Array copy involves copying segments of array variables into non-conflicting

locations in memory.

Rivera and Tseng [65] approach the problem by manipulating the base addresses
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of array variables. They set the base addresses of array variables a fixed number of

cache lines apart. They use a heuristic to determine the optimal number of lines

between base addresses that avoids conflicts in cache. They mainly handle severe

conflict misses (i.e., conflict misses that occur in every iteration of a loop). They

also use intra-variable padding to avoid self-interference misses. In a later paper they

extend their model to handle multi-level caches [66]. Their model however, does not

take associativity into account when padding. Panda et al. [58] developed an array

padding strategy that takes tiling into account. They first select the tile size to make

the working set fit into cache. Once the tile size is selected, they use intra-variable

padding for each array to eliminate self-interference within a tile. They then separate

the base address for each array using a heuristic to eliminate cross-interference. Vera

et al. [74] use genetic algorithms to search for pad factors. A sequence in the GA is

a padding configuration for all arrays in the program. They use cache miss equations

to evaluate the objective function. Their strategy considers cache associativity and

is not limited to uniformly generated sets.

Temam et al. [69] present a strategy for selective copying. Three types of inter-

ference groups are identified for the references. For each group the cost and benefits

of copying the arrays are evaluated. Copying is only done if the benefits outweigh

the costs (hence, selective). Their strategy is mainly focused on tiled loops. Yi [85]

presents a general algorithm for applying data copy. Her algorithm works for non-

affine array index expressions and considers whole program locality. Her algorithm is

more general in the sense that copy operations can be inserted anywhere not just at

the beginning or end of a computation loop. Profitability is based on the number of

copies, size of the local buffer, location of copy operation, and reuse of references.

3.1.4 Combined Loop Transformations

Several researchers have looked at combining transformations for improved profitabil-

ity. Song et al. [67] present a model that combines loop fusion, loop alignment and
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array contraction. In their model, the primary goal is reducing bandwidth require-

ments by reducing the size of arrays. Although they apply conditions to check for

excessive register pressure and cache capacity they do not address the issue of conflict

misses. Wolf et al. [80] describe a strategy that combines loop distribution, loop fu-

sion, tiling and unrolling. Although they look at a larger class of transformations their

model does not capture all of the interactions between loop fusion and tiling. In their

model, the tiling decisions are made after the optimal loop structure has been de-

termined through fusion and distribution. Moreover, their cost model is based solely

on static estimators. No mechanism is provided for empirically tuning the model for

different architectures.

Lim et al. [48] have looked at combining tiling with array contraction using affine

partitioning. They demonstrate the effectiveness of their approach through exper-

imental results on a number of benchmarks. Pike and Hilfinger [60] explore the

problem of combining tiling with loop fusion and array contraction. They do not

employ any analytic modeling in combining these transformations. Instead the pa-

rameters are searched using a user-specified fitness criterion. Vera et al. [72] describe

a strategy for the combined application of tiling and array padding. They use a cost

model based on cache miss equations (CMEs) [28] that describes misses across differ-

ent levels of the memory hierarchy. A genetic algorithm is used to find fast solutions

to CMEs.

3.2 Empirical Tuning

The idea of feedback directed optimization can be traced back to Knuth’s 1971 study

of Fortran programs [42]. The proliferation of new architectural models has rekindled

interest in this area. Work in empirical tuning can be broadly classified into two

categories based on their scope: strategies that work on domain specific kernels and

those that attempt to tune whole applications.
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3.2.1 Self-tuned Libraries

A number of empirically-tuned library-generators have been quite successful in de-

livering high performance on a range of architectures. ATLAS [78] produces highly

optimized BLAS routines by probing the underlying hardware for platform-specific

information and using a global search to find the best transformation parameters,

searching for these parameters one transformation at a time. The transformations

considered by ATLAS include multi-level tiling, unroll-and-jam and pipeline schedul-

ing. Because of its ability to automatically generate hand-tuned quality code for

many modern architectures, ATLAS has become the de facto standard for evaluating

many of the other empirical tuning systems.

PhiPAC [5] generates empirically optimized matrix multiply code that is able to

achieve close to peak performance on a wide range of systems. The system includes a

parameterized code generator that generates portable C code and is able to perform

optimizations such as tiling when supplied with the parameters. PhiPAC uses a simple

sequential search strategy for finding the best tiling factors for matrices of different

sizes. Architectural parameters such as cache size and number of registers are taken

into account. These values are used to limit the search space of tile sizes.

One of the earliest efforts of domain specific empirical optimization was the Extent

programming environment [17]. In Extent, block recursive algorithms, such as FFT

and matrix multiply, are represented using tensor products. These tensor product

formulas are then translated into optimized parallel and/or vector code. The system

contains a performance monitor module that collects performance data for each run

and presents them to the user. These results are then used by the user to manually

tune the performance of the program.

Frigo et al. developed FFTW [24], a library for computing discrete Fourier trans-

forms which outperforms vendor libraries on most machines. The critical code in

this library is generated by the special purpose code generator called genfft. genfft

generates highly optimized codelets each of which computes a part of the Fourier trans-
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form. genfft employs both general (e.g. algebraic transformations, CSE) and DFT-

specific optimizations (e.g. converting negative FP constants to positive, scheduling

to minimize register spills). Once a suitable set of codelets has been generated, they

are combined by the executor and run on the target machine. The running time of

the code is measured and is used by the executor to select the next combination of

codelets. The process continues until the fastest combination of codelets have been

discovered for the target machine.

SPIRAL [62] is another self-tuning library that uses iterative techniques and the

mathematical properties of signal processing algorithms to choose an optimal algo-

rithm for implementation on the target architecture. SPIRAL is more general than

FFTW in that it is not specific to FFT. It can generate optimized code for a large

class of signal transforms such as the Walsh-Hadmard transform and the discrete co-

sine transform. Algorithms are expressed by mathematical formulas using a special

purpose language [84] and a suitable implementation is chosen based on matrix fac-

torization calculations and a simple sequential search. Execution time measurements

are used to choose the best implementation from all the versions generated by the

compiler.

Sparsity [34] is an automatically tuned library designed for sparse matrix compu-

tations. Sparsity uses some of the same optimization techniques used for dense-matrix

computations, such as tiling and unroll-and-jam. However, tuning sparse-matrix ker-

nels becomes more difficult because of irregular memory access patterns and the

non-zero structure of the matrices. Because of this, Sparsity uses a combination of

data reorganization strategies with conventional tiling to achieve higher performance

for sparse-matrix kernels on different high-performance architectures.

3.2.2 Whole Application Tuning

The success of automatically-tuned domain specific libraries has lead to consider-

able interest in applying empirical methods for tuning whole applications. In this
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section, we cover related work in whole application tuning. The research efforts in

whole application tuning can be broadly classified into two categories based on the

parameter search space on which they operate. Several ongoing research projects

tackle the phase-ordering problem using empirical methods. That is, they aim to find

the best sequence of transformations that minimizes some objective function such as

execution time or power. On the other hand, some of the other work in automatic

tuning concentrates on finding the best parameter values for transformations that use

numerical parameters. Although both these approaches deal with very large search

spaces, characteristics of these two search spaces can be quite different. Thus, strate-

gies used in exploring these two types of search spaces are also somewhat different.

In the remainder of this chapter, we first summarize work on empirical tuning of

compilation sequences and then look at work related to empirical tuning of numerical

parameters.

Optimization Phase Ordering

Cooper et al. [15] use a genetic algorithm (GA) to find the best sequence of compiler

phases. A sequence of transformations is represented as a chromosome in the context

of a genetic algorithm. Each transformation corresponds to a particular gene within

the chromosome. The GA is seeded with an initial random sequence and the fitness

value of the sequence is recorded. Then at each step, a genetic operation such as

crossover or mutation is performed on the sequence. The search converges after

a pre-specified number of steps. At convergence, the initial sequence evolves into

the fittest, and hence the best optimization sequence for the given program. Their

work targets embedded system architectures and hence they use dynamic instruction

count as their primary objective function. Their experiments show that GA is able

to dramatically reduce the static code size for several benchmark programs. In many

cases, the dynamic instruction count and also the performance of the program is

greatly improved. However, in terms of tuning time their algorithm proved costly,
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requiring as many 1000 program evaluations in finding the best optimization sequence.

Almagor et al. [3] have extended this work to include other search strategies such as

stochastic hill climbers and greedy constructive algorithms. They conduct extensive

experimental work in which they enumerate the search spaces of several benchmarks.

They use the results of the experiments to characterize the search space of opti-

mization sequences. They use this insight to improve their search algorithms. The

experiments with different search strategies show that GA is able to find marginally

better sequences at considerably higher cost (4,550 program evaluations). The hill

climber finds good values in least time. However, even for that search strategy the

tuning process requires as many as 600 program evaluations.

The OSE compiler [71] presents a practical approach to adopting empirical tech-

niques for a general-purpose compiler. OSE uses static models available in Intel’s

high-level optimizer to prune the search space of optimization sequences. In addi-

tion to finding the best optimization sequence they also perform search for a small

set of unroll factors. The OSE framework is able to tune applications both at pro-

gram level and individual function level. They use a static performance estimator

to select only the best program variants for runtime evaluation. They use no special

strategy for searching the optimization space. They perform an exhaustive search

on the pruned search space. They present experimental results for the SPEC95 and

SPEC2000 benchmarks on an Itanium workstation. Their results show, on average a

five percent performance improvement over the best optimization heuristic chosen by

the native compiler, when optimizing at program level granularity. Tuning applica-

tions at the function level yields a much higher performance improvement. Of course,

these performance improvements come at a cost of increased tuning time (a factor of

three when not using static performance estimators for pruning). Nevertheless, the

tuning time is much less than the tuning time required by some of the other empirical

strategies. This suggests that OSE does an effective job in pruning the search space of

compilation sequences. A key result of this work is the additional speedup obtained



18

by tuning applications at a finer granularity. We examine this issue in Chapter 4 and

discuss how we apply this result in our research.

Kulkarni et al. [44] describe efficient ways of reducing the running time of genetic

algorithms when searching for the best optimization sequence. They use techniques

such as detecting redundant sequences and identifying equivalent code to cut down

the number of program evaluations. Kulkarni et al. also describe ways to modify

the search so that fewer generations are required to achieve comparable performance.

These techniques prove to be extremely effective, reducing the number of program

evaluations in the search phase by as much 68%. These results advocate the use of

empirical search as a viable option for general application tuning.

Pinkers et al. [61] use a statistical method based on orthogonal arrays to choose

the optimal sequence of transformations. They set up a fractional factorial design

experiment using an N × M orthogonal array in which each column represents a

compiler option and each row represents a particular configuration for the set of

options. A program is compiled and run with each row configuration and the relative

effects of the options are computed. Each option is set or unset based on its effects of

the previous run. The process stops when all options have been set. This approach

works fairly well for the set of benchmarks used in their experiments. However, they

provide no measurements of tuning time. Thus, it is hard to evaluate the effectiveness

of their approach.

Pan and Eigenmann [57] have developed an algorithm for orchestrating a large

set of compiler optimizations. The main idea in their approach is to identify trans-

formations that degrade performance for a particular application and eliminate them

from the set of transformations that are to be applied. The elimination of candi-

date transformations happen both in batches or through an iterative process. Their

experimental results show that they are often able to identify the transformations

that cause the most performance degradation. In terms of tuning time, their strategy

outperforms both the OSE compiler and the statistical selection method proposed by
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Pinkers et al. On the other hand, they achieve comparable performance improvement

for most applications. However, one limitation of their approach is that all of the

tuning takes place offline. Adopting their strategy for online tuning is part of their

future plans.

Numerical Parameters

Kisuki et al. are among the first to address the issue of automatic tuning of numerical

optimization parameters [38, 40, 27, 41]. In their initial study [38], they examine the

combined search space of tile sizes and unroll factors. To explore this search space,

they use a variety of search techniques including genetic algorithm, simulated an-

nealing, pyramid search and random search. The parameter values required for these

search strategies are obtained experimentally. They compare their empirical strat-

egy with two well-known static techniques for selecting tile sizes. The experimental

results show that the empirical approach significantly outperforms both static tech-

niques on two matrix computation kernels. However, since their approach does not

use any analytic modeling to guide the exploratory search, the tuning time required

to find the optimal values is rather high. In some cases, they require as many as 400

program evaluations to find the best variant. A somewhat interesting and surprising

result of this work (and some of their latter work [40]) is that none of the search

strategies used in their system has a clear advantage over the others. In fact, in most

cases, random search performs just as well as some of the other more sophisticated

search techniques. This implies that either the search strategies are ineffective in this

context or the initial search space (including the parameters for the search strategies

themselves) needs to be set up more carefully using analytical models. We revisit this

issue in Chapter 5.

In subsequent work, Knijnenburg et al. [41] have examined the effects of cache

models on empirically tuning tiling and unrolling factors. They use static models

in combination with a cache simulator to filter out bad candidates with high cache
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miss rates from the parameter search space. Their results show that the use of cache

models can indeed speedup the tuning process significantly without a high sacrifice

in performance. However, in their experiments they only combine the cache models

with random search. Hence, no conclusions can be drawn about the effects of pruning

the search space for intelligent search methods. An interesting and important aspect

of this work is the use of slack factors to estimate the capacity of set-associative

caches. The slack factors are determined experimentally and incorporated into the

cost models. We believe, this is a very useful feature for an automatic tuning frame-

work. However, the slack factors can be better utilized if they are integrated into the

tuning system. Chapters 6 and 7 examine this issue in detail.

Fursin et al. [27] extend the search space of tiling and unrolling to include array

padding factors. Their experiments with three SPEC benchmarks show that they

significantly outperform native compilers on a variety of platforms. Their strategy

however does not use any intelligent search methods in exploring the search space.

Use of analytical models to prune the search space is also not considered. Thus, the

tuning time required to achieve the improved performance is considerably high.

Waterman [77] explores the parameterized search space of procedure inlining. In

his work, inlining directives are represented using bit strings at the command-line

level. An exhaustive search is used to determine the best inlining options.

Chen et al. [12] combines analytical models with empirical search to automatically

tune dense matrix computations to two different architectures. They cover a larger

set of transformations than any of the previous work. Loop interchange, unroll-and-

jam, tiling and software prefetching are among the transformations considered for

tuning. For each transformation, they use static models to generate a parameter

search space that is likely to contain the optimal parameter value. A binary search

is used to search the tile size search space. For each of the other transformations a

simple sequential search is used. A major strength of their approach is that their

cost models consider the trade-offs between different levels of the memory hierarchy.
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By combining their cache-conscious models with empirical search, they are able to

achieve performance comparable to that of ATLAS on the matrix multiply kernel.

The search process is about 2-4 times faster than that of ATLAS. Although they

conduct experiments only on dense matrix computations, the strategies described in

their work are much more general and can be applied to a general automatic tuning

tool. One weakness of this approach is that their cost models do not consider the

interaction between transformations and their search strategy - except for the tiling

search space - is unidimensional.

There has been some work in using statistical models to explore the search space

of optimization parameters. Vuduc et al. [76] establish an early stopping criteria

for search strategies based on an empirical cumulative distribution function (ecdf).

They also present a classifier system that uses regression analysis to select a near-

optimal program variant from a large collection of implementations. They validate

their models on the register-tile search space for the dense matrix multiply kernel.

Although the experimental results are limited to matrix multiply the authors claim

that these statistical methods can be used as complementary techniques for a general

automatic tuning system.

3.3 Limitations of Related Work

3.3.1 Target Application

Much of the work on automatic tuning has concentrated on optimizing kernels as

opposed to whole applications. Moreover, most of the kernels come from the domain of

linear algebra subroutines (in fact, some of the work focuses exclusively on optimizing

the matrix multiply kernel). It is important to focus on smaller problems to develop

a better understanding of the the problem domain as a whole. However, there are

several issues that come up when dealing with whole applications that are difficult to

address with techniques derived from optimizing individual kernels.

First, the number of transformations that constitute the search space, grows dra-
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matically for whole applications. For many kernels, it is usually known exactly which

optimizations will be beneficial (i.e. tiling for matrix multiply). Even if this informa-

tion is not known, the number of transformations that can be applied to a specific

kernel is usually limited. For whole applications, on the other hand, it is difficult to

determine a priori, exactly which transformations might be helpful. As a result, the

compiler may have to explore several different transformations, before deeming them

ineffective for a particular application and eliminating them from the search space.

Furthermore, if the execution time for an application is dominated by several loop

nests, then each individual loop nest can potentially have their own search space,

each with a different set of transformations and a different range of parameter values.

Thus, the search spaces used for tuning whole applications can be potentially much

larger than those of kernels.

The second major issue is the type of transformations that require tuning for

whole applications. When we move away from kernels, we cannot limit ourselves to

just single-loop transformations. For whole applications, it is important to look at

optimizations that have more of a global impact on performance. In particular, multi-

loop transformations such as loop fusion and global data-layout strategies are critical

in improving application performance. The search space representation for many of

these transformations is not as straightforward as those of single-loop transformations

such as tiling and unrolling (as we will discuss in Chapter 6). Thus, inclusion of multi-

loop and data-layout transformations can make the optimization search space even

more complex.

3.3.2 Search Strategy

As discussed in the previous chapter, many of the empirical tuning systems employ

a search strategy that is unidimensional in nature. That is, they search for the best

parameters one transformation at a time. When performing search in one dimension,

reference values are used for other dimensions. Although this strategy has worked
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reasonably well for ATLAS and some of the other empirical tuning systems, it has one

major limitation. And that is, the search strategy does not account for interaction

between transformations. It is well established that many transformations interact

with each other in complex ways and this complex interaction can have significant

impact on program performance. This is especially true for loop transformations

targeting the memory hierarchy. Thus, when searching for the best parameter values

for multiple transformations it is imperative that the search used is multi-dimensional

in nature.

Genetic algorithms are another search mechanism that have been used in several

empirical tuning systems. Although the search usually takes a relatively long time

to converge, experimental results have shown that they are effective in finding good

optimization sequences. However, their applicability in finding suitable numerical

parameters is somewhat limited. To employ GAs in the context of empirical search

we need to develop a representation for the search space that resembles the key GA

components: genes, chromosomes and individuals. This can be done in a straightfor-

ward manner when the search space in question is a sequence of transformations. In

such situations, a sequence of transformations can be represented as a string of bits

where each bit corresponds to a particular transformation. Each bit string can be

thought of as a chromosome while the individual bits can be thought of as genes in

the context of the genetic algorithm. In this representation, a GA operation such as

mutation implies enabling or disabling a particular transformation. When working

with numerical parameters however, the representation is not as simple. Since we are

not dealing just with binary decisions, we need to use multiple bits to represent a

single parameter value. Consequently, each transformation parameter is represented

using multiple genes. The main problem with this approach is that the basic GA

operations no longer make intuitive sense. In this set-up, a mutation operation which

involves flipping one of the genes in the chromosome, will change the value of the

transformation parameter, essentially, in a non-deterministic way. Thus, for numeri-
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cal parameters, using a GA is not too different from using a random search.

Previous research has shown that the search space for optimization parameters

is neither smooth nor continuous [15]. Thus, search strategies that depend on com-

puting derivatives for gradient descent are ill-suited for exploring the search space

of optimization parameters. Furthermore, it is very difficult to accurately model the

search space, since the characteristics of the search space may vary from platform to

platform, from program to program and even from one input set to another. Thus,

strategies that depend on some form of modeling of the search space are also not

well-suited for exploring the search space of optimization parameters. The notion

that model dependent search strategies are not as effective has been experimentally

verified by Knijnenburg et al. [40]. As discussed in Section 3.2.2, Knijnenburg et al.,

conducted an experiment where they explored the search space of tiling sizes and un-

roll factors for matrix-multiply using several different search techniques. The search

methods included simulated annealing, pyramid search, window search and a random

search. An interesting and somewhat surprising result of that experiment was that

random search performed as well (and in some cases even better than) the other more

sophisticated methods. The explanation for this is that all the other search techniques

assume certain properties to hold for the space that is being explored. For example,

simulated annealing uses a pre-computed value called temperature when exploring the

search space. At any time during the search, the decision to move to a new point is

based not only on the current function value but also on the value of the temperature

parameter. However, if the current temperature is computed without detailed knowl-

edge about the search space then it may not be useful in guiding the search in the

best direction. Similarly, both pyramid search and window search depend on certain

properties of the search space. These results emphasize the need for using a search

strategy that relies solely on function evaluations.
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3.3.3 Search Space Pruning

Most of the work in empirical tuning is centered around improving the search strat-

egy for optimization space exploration. Relatively few have addressed the issue of

using analytical models to prune the search space [71, 12, 41]. There are two major

limitations in the way analytical models have been used in empirical tuning systems.

The first issue is that the models used to guide empirical search do not take the inter-

action of transformations into account. Since we explore a multi-dimensional search

space, the analytical models that generate the search space also need to consider the

complex trade-offs among multiple transformations. Although there are several such

models in the literature, none of them have been used in the context of empirical

tuning.

The second major issue regarding search space pruning has to do with finding a

suitable representation for the search space. For some optimizations, such as tiling

and unrolling the search space representation is obvious. The effect of these trans-

formations on a loop can be captured by a single numerical parameter. However,

when considering multi-loop transformations such as fusion, or data-layout transfor-

mations such as padding, the search space representation becomes less obvious. Zhao

et al. [88] propose using all combination of loops in a program as a potential search

space for loop fusion. However, they also show that with this representation, the

search space for fusing n statements into m loops without any reordering can be as

large as
(

n−1
m−1

)

. Clearly, exploring such a large search space is infeasible for a general

purpose compiler. The main problem with this representation, however, is not that it

is extremely large, but the fact that the search space will grow both as a function of

the number of transformations and the number of loops in the program. For example,

if we include tiling, then for each fusion configuration we can potentially have a range

of tiling factors that corresponds to a valid point within the search space. Similarly,

the more loops we have in the program the larger the search space gets. This property

is likely to hold for any search space representation using parameterized transforma-
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tions. Thus, this approach can be a major impediment to tuning large applications

with many transformations in the search space. To make empirical tuning practical

for whole applications we need a mechanism to represent a search space that both

captures the interaction of different transformations and at the same time does not

increase with program size. We investigate this issue in Chapter 7.

3.3.4 Feedback Metric

With the exception of the OSE compiler, almost all work in automatic tuning uses

whole program performance as the feedback metric. Collecting performance measure-

ments at the program level is usually sufficient when tackling small kernels, where one

loop nest dominates the entire execution. However, for larger applications in which

execution time is distributed over several loop nests, whole program granularity is no

longer sufficient. This is particularly true when dealing with loop transformations.

Loop transformations such as tiling, if applied to multiple loop nests within a pro-

gram, can have widely varying effects on each of those nests. Thus, to accurately

determine the effects of changing loop transformation parameters, we need feedback

information at a finer granularity. In particular, we need to know how transforma-

tion T affects loop nest L. Relying on whole program feedback can potentially lead

to longer search times.

Using whole program execution time as the only feedback metric has another

potential drawback. Basing all decisions in the search step solely on execution time,

may sometime camouflage the effects of certain transformations on the input program.

Although loop transformations will usually have some impact on program execution

time, often they will have a more conspicuous effect on some other performance

metric. For example, unroll-and-jam is a transformation that can improve register

reuse and cache locality by exploiting outer-loop reuse. However, unrolling too much

may cause excessive register pressure that may lead to register spills. The occurrence

of register spills may not be obvious if we one just looks at the total execution time,
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since the negative effects of register spills is likely to be somewhat ameliorated by

improved locality. Hence, in such situations it is useful to observe other performance

metrics (i.e, number of loads) to better discern the impact of unroll-and-jam on the

input program.
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Chapter 4

A Framework for Automatic Tuning

This chapter presents an overview of our automatic tuning framework. In building

our framework we have addressed several issues for making automatic tuning more

efficient. We discuss some of these issues as we describe the key components of our

framework.

4.1 Overview

Figure 4.1 gives an overview of our automatic tuning framework. The major compo-

nents of the framework include a source-to-source transformer (LoopTool), a set of

performance measurement tools, and a search module that uses the measurements to

guide selection of program transformations.

At each step in the tuning process, the search module generates a set of transfor-

mation parameters that are applied to the input program by LoopTool. The program

is then compiled using the native compiler and run on the target machine. Dur-

ing program execution, performance measurement tools collect a variety performance

measurements to feed to the search module. The search module uses these metrics

in combination with results from previous passes to generate the next set of tuning

parameters. This process continues until some pre-specified optimization time limit

is reached or the search algorithm converges to a local minima.

Although the structure of our autotuning framework is not dramatically different

from that of other systems, there are several key ideas that make our framework

unique. Unlike most other automatic tuning systems, our framework uses a full-

scale dependence-based transformation tool which enables us to verify the legality of



29

Binary

F77 Source

Vendor 

Compiler

LoopTool

hpcview

bloop hpcrun

Parameterized
Search Engine

Transformed
Source

Search Space

Architectural Specs

Profile 
Information

Program 
Structure

N
e
x
t Ite

ra
tio

n

P
a

ra
m

e
te

rs

Feedback
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cdir$ fuse 1
cdir$ uj 4
do j = 1, N
   cdir$ block 16
   do i = 1, M
      cdir$ block 16
      do k = 1, L
         a(k, i, j) = b(j, i) + 17
      enddo
   enddo
enddo

cdir$ fuse 1
do j = 1, N
   do i = 1, M
      do k = 1, L
         c(k, i, j) = a(k, i, j) + 13
      enddo
   enddo
enddo

Figure 4.2 : Source code directives used in LoopTool.

complex loop transformations. Another unique feature of our system is the use of

loop-level performance measurements and the application of transformations at loop-

level granularity. In addition, the search module can operate on both the search space

of parameterized transformations and the search space of architectural parameters.

The ability to search through the space of architectural parameters can be of great

advantage for automatic tuning, as we discuss later in Chapter 6. The rest of this

section discusses the core components of our framework in some detail.

4.2 Transformation Tool

We implemented a source-to-source transformation tool (LoopTool) [63] that is ca-

pable of performing a large class of high-level transformations. The transformations

supported by LoopTool include tiling, unroll-and-jam, loop fusion, array contraction,
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and iteration space splicing. The key feature in LoopTool that makes it a suitable

tool for use in an empirical tuning system, is its ability to provide fine-grain control

over transformation parameters. LoopTool provides this capability through the use

of source level directives. Fig. 4.2 shows example directives embedded in a sample

Fortran code. A directive is simply a comment line that specifies a particular trans-

formation and an optional parameter value. These directives can be associated with

any loop in the program. LoopTool processes these directives and applies the trans-

formations accordingly, thus, providing loop-level control over transformations. In

Fig. 4.2, the fuse directives associated with the outermost loops in each loop nest

implies that the two loop nests should be fused only at the outermost level. The

parameter value for the fuse directive specifies the fusion group of a particular loop.

All loops in the same fusion group are fused together. The uj directive in Fig. 4.2 says

that the outermost loop in the first loop nest should be unrolled four times. Note,

since the two loop nests will be fused at the outermost level, the uj directive indicates

unrolling of the fused loop body. Finally, the block directives in Fig. 4.2 specify the

blocking (or tiling) factors for the two inner loops in the first loop nest. As we can

see from this example code, the use of directives allows us to specify transformations

and transformation parameters for each individual loop in a program.

This level of fine-grain control over transformations is usually not available in

commercial compilers. For example, MIPSPro allows a user-specified tile size, but

applies it to every loop nest in the compilation unit. Loop-level optimization pa-

rameters cannot be specified at the command-line in any useful way. To specify an

unroll factor for a particular loop at the command-line, the user would need to specify

the index of the loop in lexical order and also its nesting depth. Specifying unique

parameters for multiple optimizations and multiple loops would require the user to

input a long complicated string that the compiler would then need to parse. Thus,

the use of source directives in LoopTool provides a novel and useful way of specifying

optimization parameters at loop-level granularity.
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Function-level control over transformations is usually acceptable for optimizing

compilers. However, as Waterman and Cooper argue, in the context of automatic

tuning, it is important to have finer control over transformation parameters that

are being tuned. There are multiple advantages to having loop-level control over

transformations. This feature allows us to specify separate tiling and unrolling factors

for each loop in the program. This enables application tuning at a finer granularity.

Having this feature also allows us to decouple the search process from the actual

application of the transformations. Moreover, it gives us the ability to construct

multiple search spaces within a single program. This feature can be exploited by

running multiple instances of a search on different code regions simultaneously and

thus speeding up the overall tuning process.

4.3 Performance Measurement Tools

We use tools from the HPCToolkit performance analysis toolkit [52] to gather loop-

level performance metrics to guide tuning. HPCToolkit collects metrics using hard-

ware performance counters during a program’s execution and then computes aggre-

gate metrics for each loop in the program. HPCToolkit aggregates metrics at the loop

level by analyzing an application’s executable, recovering the control flow graphs

(CFGs) for its procedures, applying interval analysis to recover information about

loops in each CFG, and using symbol table information to determine the statements

within each loop. This information is then delivered to the search engine for analysis.

There are two reasons for choosing HPCToolkit over a simpler performance mea-

surement tool that measures total execution time. First, we wanted the ability to

measure performance at the loop level. For most numerical applications, execution

time is concentrated around a few core loop nests. To get best results each loop nest

needs to be tuned individually using different sets of transformation parameters. In

many cases, these loop nests are independent from each other in the sense that the

effect of applying the transformations can be evaluated on a loop-nest-by-loop-nest
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basis. Loop-level performance measurements collected by HPCToolkit give us the

ability to treat each loop individually and tailor the transformation parameters ac-

cordingly. The second reason for using HPCToolkit in our framework is the ability to

collect performance metrics other than total running time. For instance, performance

metrics such as cache misses and pipeline stalls indicate causes of inefficiency; for this

reason, they may be better metrics than running time to use for guiding the search.

We use these performance metrics as part of a composite objective function to to help

guide our search strategies.

4.4 Search Module

At the heart of our framework is the search engine which integrates all of the com-

ponents. We have implemented a number of search algorithms within the search

module. These include pattern-based direct search [33], simulated annealing [37],

window search and random search. We provide brief descriptions of these search

algorithms below:

Direct Search

There are two main flavors of direct search that have been used for exploring the

optimization search space. The simplex method is usually applied for a continuous

search space, whereas the pattern-based method is used for discrete search spaces.

Since the search space of transformation parameters is discrete we, implemented the

pattern-based direct search method in our framework. This algorithm is described in

more detail in Chapter 5.

Simulated Annealing

Initially a random point is selected in the search space and its neighboring points are

explored. At each step, the search moves to a point with the lowest value or depending
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on the current temperature, to a point with a higher value. The temperature is

decreased over time and the search converges when no further moves are possible.

Window Search

In a window search, initially a window is defined over the entire search space. Then

at each subsequent step the window is shrunk until it converges to a single point.

At each step a sample of points is inspected in the current window and stored in a

priority queue. The next smaller window is defined around the best sample points.

Window search resembles the simplex search method used in exploring continuous

search spaces.

Random Search

A random search picks random points within the search space and keeps track of the

best value found at every step. Unlike the other search strategies described above,

random search does not use any heuristics and it does not have any convergence

criteria. The search is terminated after a pre-specified number of evaluations.

We have also implemented a simple sequential search that explores the search

space of architectural parameters. The search module reads in a configuration file that

describes the search space and the target machine. The search space can be described

either in terms of transformation parameters or architectural parameters. Description

of the target machine includes the size of the register set and the capacity, associativity

and line size of different levels of cache and TLB. After reading in the configuration

file the search module generates an initial set of transformation parameters. The

input program is compiled and run with this initial configuration. Then at each step

of the tuning process, the search module uses the configuration from the previous

run and the performance measurements from HPCToolkit, to generate the next set

of parameters. This process continues until the search converges to a local minima

or when a pre-specified tuning time has been reached.
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Table 4.1 : Benchmarks

Program Description Source LOC

advect3d 3D advection for weather model-
ing

NCOMMAS [79] 403

erle Differential equation solver T. Eidson [22] 686
liv18 2D Explicit hydrodynamics frag-

ment
Livermore Loops 130

lud LU decomposition (matrix-vector
multiply)

Netlib [56] 131

mm N x M matrix multiply textbook 35
mgrid Multi-grid solver SPEC FP 2000 344
swim Shallow water weather prediction SPEC FP 2000 282
vpenta 3D pentadiagonal inversion NAS kernel 145

4.5 Benchmarks

Our experimental testbed includes eight programs collected from various sources.

Table 4.1 displays a brief description, the source and the number of lines for each

program. The test suite includes both small kernels (e.g., mm) and medium-sized ap-

plications (e.g., erle). The benchmarks also exhibit different reuse patterns with

opportunities for applying a number of memory hierarchy transformations. During

the course of our work on automatic tuning, we have examined several other applica-

tions including: sweep3d - a neutron transport application, CF2 - an application for

analyzing free-surface liquid flows and s3d - a massively parallel solver for full com-

pressible Navier-Stokes equations that describe the conservation of mass, momentum,

and energy, and laws of gas behavior while simultaneously tracking the evolution of

reactive species on a rectangular mesh [54]. We did not include any experimental

results from these applications in this thesis. There are two reason for this omission.

One reason is that in order to improve application performance we used techniques
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that are beyond the scope of this dissertation. For example, we used loop unswitch-

ing and unroll-and-jam for improving s3d performance. Another reason we did not

include some experimental results is because we realized that our strategy is not ap-

plicable to a particular type of application. This was the case with CF2, where the

main computational loop uses a sparse matrix. As mentioned in the thesis statement,

our approach focuses on dense array computations. Hence, we were not able to apply

our strategy to CF2.

In the rest of this document we refer to each of the programs listed in Table 4.1

using the names listed in the first column.

4.6 Platforms

Since the goal of our tuning strategy is to deliver performance across different ar-

chitectures we have included a number of different platforms in our experimental

framework. Table 4.2 lists the memory hierarchy parameters for each platform. The

chosen platforms display wide variation in the number of floating-point registers and

cache organization. Hence, these platforms serve as a good basis for evaluating our

tuning strategy.

In the rest of the document, we refer to these platforms using the names listed in

Table 4.2.
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Table 4.2 : Platforms

Itanium MIPS

CPU 900 MHz Itanium2 300 MHz R12000
FP Regs. 128 32
L1 16 KB, 64 B/line, 4-way 32 KB, 32 B/line, 2-way
L2 256 KB, 128 B/line, 6-way 8 MB, 128 B/line 2-way
L3 1.5 MB, 128 B/line, 8-way -
TLB 128 entries, 16 K/p, Full 128 entries, 16 K/p, Full
Compiler Intel 8.1 MIPSPro 7.3.1

Alpha Opteron

CPU 667 MHz Alpha 21264A 1.5 GHz AMD Opteron 242
FP Regs. 32 8
L1 64 KB, 64 B/line, 2-way 64 KB, 64 B/line, 2-way
L2 8 MB, 64 B/line 1 MB, 64 B/line
TLB 128 entries, 8 KB/p, Full 1088 entries, 4 KB/p, Full
Compiler Compaq 5.5 GNU Fortran 3.3.4

PowerPC Pentium 4

CPU 2.5 GHz G5 2 GHz P4
FP Regs. 32 8
L1 32 KB, 128 B/line, 2-way 32 KB, 64 B/line, 4-way
L2 512 KB, 128 B/line 512 KB, 64 B/line, 8-way
TLB 1024 entries, 4KB/p, 4-way 128 entries, 4 KB/p, Full
Compiler IBM XL 8.1 Intel 9.1

Pentium III

CPU 800 MHz PIII
FP Regs. 8
L1 16 KB, 32 B/line, 4-way
L2 256 KB, 32 B/line, 8-way
TLB 8 entries, 4 MB/p, 4-way
Compiler Intel 8.1
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Chapter 5

Search Space Exploration

In this chapter, we discuss an experimental study that we conducted to evaluate

the performance of different heuristic search strategies in the context of empirical

tuning. This study reveals that a multi-dimensional direct search strategy can be very

effective in exploring the search space of transformation parameters. In addition, the

study provides key insight into the characteristics of the search space of two program

transformations.

5.1 Introduction

As we know, the search space of transformation parameters can be extremely large.

Even for modest-sized applications the number of points in the search can go up to

a million points. Clearly, an exhaustive exploration of such a large search space is

not feasible if we are to make automatic tuning a practical alternative to traditional

compilation. Hence, we need to use heuristic search strategies that can explore the

search space of transformation parameters efficiently and effectively. The question,

as to which particular search strategy to use is not easily answered, however. As

discussed in Chapter 3, a number of different search strategies have been used in the

context of automatic tuning, with mixed results. The main problem, of course is that

we still know relatively less about the nature of some of these search spaces, and

because of this we do not have models that can describe the search spaces with a high
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degree of accuracy. Since many of the search strategies require some modeling of the

search space for them to work efficiently, as yet, we have not found a suitable search

strategy for exploring the search space of transformation parameters.

To address this issue, we conduct an experimental study, in which we use different

heuristic search strategies to explore the search space of loop unrolling and tiling

parameters. The goal of this study is to find a search method that is most suitable for

exploring this search space. To evaluate the performance of various search strategies

we perform an exhaustive exploration of all points within the search space of each

program in our test suite. Although we consider several search methods, we are

primarily interested in determining the effectiveness of a pattern-based direct search

method [33]. Direct search has many of the desirable properties of an empirical search

strategy. Direct search is multi-dimensional, it is a derivative-free search method

and in this strategy minimizing the objective function depends solely on function

evaluations. Direct search is flexible in the sense that it allows tuning of the step size,

which provides control over when to stop the search. Because of these properties,

direct search turns out to be a good choice for use in empirical search of transformation

parameters.

5.2 Direct Search

Direct search methods for nonlinear optimization have been used by computational

scientists for over four decades [68, 55, 47]. The main feature of direct search that

sets it apart from other optimization techniques is that the decision making process

in direct search is based solely on function evaluation. So, unlike the quasi-Newton

methods, direct search does not require any derivative information to find a direction

of steepest descent. It was this particular feature that motivated us to apply direct
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search to our problem domain. In the following subsections we discuss the benefits

and problems associated with using direct search for our problem and describe the

algorithm implemented in our system.

5.2.1 Why Direct Search?

It has been observed by researchers [15] that the search space for optimization pa-

rameters is large enough to make iterative approaches based on exhaustive search

impractical. For example, if we are taking the iterative approach to finding the best

compilation sequence for a compiler that supports 10 transformations - a modest

number by today’s standards - then an exhaustive search would have to examine 1010

possible sequences. Even in the limited case of a few transformations, the search

space can be quite large if we consider transformations whose parameters can vary.

For transformations like loop unrolling, the optimization parameter determines how

many times loops are to be unrolled in the program. Hence, the values for these

transformation parameters can potentially be any integer. Moreover, these trans-

formations are usually most effective when we allow each loop to have a different

parameter for each transformation. So, even for a small kernel like matrix-multiply,

if we are considering tiling of two loops with tile sizes from 1 to 100 and unrolling of

one loop with unroll factor from 1 to 20, we end up with a search space that contains

100 x 100 x 20 or 200,000 points. Evaluating the kernel at all these points could

take several days even on a reasonably fast microprocessor. Our goal is to use direct

search to reap most of the benefits possible with exhaustive search for empirically-

based program tuning while only exploring a small fraction of the search space of

transformation parameters.

It is not just the size that makes exploring the transformation search space difficult.
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Studies have shown that the search space is neither smooth nor continuous [15, 39].

Transformations like tiling and instruction scheduling are highly sensitive to the un-

derlying architecture. Moreover, many of these transformations interact with each

other in complicated ways. As a result, the characteristics of the search space vary

from program to program, from platform to platform and even from one input set

to another. Building accurate models for this search space has become extremely

difficult. Hence, in the absence of such modeling, a derivative-free search method

becomes a good choice to explore this optimization space.

Knijnenburg et al. [40] conducted an experiment where they explored the search

space of tiling sizes and unroll factors for matrix-multiply using several different

search techniques. The search methods included simulated annealing, pyramid search,

window search and a random search. An interesting and somewhat surprising result

of that experiment was that random search performed as well (and in some cases even

better than) the other more sophisticated methods. The explanation for this is that

all the other search techniques assume certain properties to hold for the space that is

being explored. For example, simulated annealing uses a pre-computed value called

temperature when exploring the search space. At any time during the search, the

decision to move to a new point is based not only on the current function value but

also on the value of the temperature parameter. However, if the current temperature

is computed without detailed knowledge about the search space then it may not be

useful in guiding the search in the best direction. Similarly, both pyramid search

and window search depend on certain properties of the search space. In using direct

search to explore the transformation search space, we wanted to step away from the

search methods that uses some form of modeling and use a method that relies solely

on function evaluations.
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Like most other search techniques direct search is not guaranteed to find the global

minima. Hence, the result obtained through direct search may not always be as good

as the one obtained through an exhaustive search. However, given the long tuning

time associated with an exhaustive search this might not be that large a penalty.

Another issue with direct search is that it is known to take a long time to converge

when dealing with a large number of parameters (usually more than 10) [70]. This

can potentially increase the compilation time to a point where it is no longer feasible

to use direct search in an autotuning system. However, for our problem domain we

do not necessarily need the search to converge to a local minima. By keeping track

of the best value found so far we can stop the search after a pre-specified number of

iterations. The experimental results from Section 5.3 suggest that this approach can

be useful in finding good values even in cases when we do not wait for the search to

converge to a local minima.

5.2.2 The Algorithm

To explore the search space of tiling and unrolling factors, we use a version of the

pattern-based direct search method first proposed by Hookes and Jeeves [33]. We

introduce the following terms to describe the algorithm.

• N denotes an n-dimensional search space, where each dimension represents a

transformation parameter that is being tuned

• p = (p1, p2, ...pn) denotes a point in the search space where pi is the value of

the ith parameter

• f(p1, p2, ...pn) denotes the execution time for the program compiled with trans-

formation parameters p1, p2, ...pn
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• s denotes the step size, this value determines the size of the subspace that is

explored during the exploratory moves

The goal of the search algorithm is to find a point (p1, p2, ...pn) in N such that

f(p1, p2, ...pn) is minimized. The algorithm proceeds by making a set of exploratory

moves and pattern moves. The smaller exploratory moves identify a promising direc-

tion of movement from the current position. Once this direction has been identified,

the search takes a larger jump in that direction (pattern move) and then explores

that new location. This process continues until the exploratory moves fail to find a

new promising direction. The major steps of the algorithm are sketched below:

Step 1: Pick an initial base point p. This is done by choosing the midpoint within

the range for each parameter.

Step 2: Make exploratory moves. For each parameter pi we first increment its value

by step size s and evaluate the program at p′(p1, ...pi +s, ..., pn). If the execution time

at p′ is less than the current minimum then we set the value of parameter pi to

(pi +s) and move on to the next parameter. Otherwise we decrement the value of the

parameter by s and evaluate the program at p′(p1, ...pi−s, ..., pn). If f(p′) is less than

the current minimum then we set the value of parameter pi to (pi − s). Otherwise

the value of the parameter remains unchanged. Once all the parameters have been

explored, we move to Step 3

Step 3: Make pattern move. The series of exploratory moves gives us a new point

p′ in N where we are likely to find a value that is less than the current minimum.

The pattern move moves the base point in the direction of p′, that is p← p′− p. The

execution time at this new point is evaluated. If this execution time is less than the

current base point execution time then we go to Step 2. Otherwise we move to Step

4.
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Table 5.1 : Search space properties

Benchmark Loops Loops Search Space Points in Search
Unrolled Blocked Dimension Space

advect3d 1 1 10 x 100 1,000
lud 2 0 30 x 30 900
mm 1 2 200 x 10 2,000
vpenta 1 1 10 x 100 1,000
swim 1 4 10 x 100 x 100 100,000
mgrid 1 2 10 x 100 x 100 100,000

Step 4: Reduce step size. If we have reached the minimum step size then we move

to Step 5. Otherwise, we reduce the step size by the step size reduction factor and

go back to Step 2.

Step 5: Done.

5.3 Evaluation

5.3.1 Experimental Setup

For these experiments, we chose six of the benchmarks listed in Table 4.1: advect3d,

lud, mm, vpenta, swim and mgrid. Table 5.1 lists the applied transformations and

the dimensions of the search space for each program. The total number of points in

the search space is also listed. Each transformation parameter whose value is being

searched by the search algorithm corresponds to a dimension of the search space for

that program. The possible range of values for each transformation parameter is

chosen by hand prior to performing the search. For example, two loops are unrolled

in lud and the maximum unroll factor considered for each loop is 30. Hence, for lud

we have a two-dimensional search space with 900 points. For swim four loops are tiled



45

and one loop is unrolled. The four loops that are tiled come from two different loop

nests and in searching for the tiling parameters we only consider square tile sizes (i.e.

the same tile size is used for loops in the same loop nest). For the unrolled loop the

maximum unroll factor considered is 10, whereas the tiling sizes range between 1 and

100. Hence, for swim we have a three-dimensional search space consisting of 100,000

points.

A major argument for automatic tuning is its ability to deliver improved perfor-

mance across a range of architectures. Hence, to determine the effectiveness of the

different search strategies, we run experiments on four different platforms from Ta-

ble 4.2: Itanium, MIPS, Alpha and Pentium 4. On each platform, we first compile

the program with the native compiler with full optimization turned on. We run this

program to get the baseline execution time. We then use direct search to search for

the best tiling and unroll factors for the core loop nests of each program. At each

step of the search process, the search module generates a set of parameters values

that correspond to a feasible point in the search space. LoopTool interprets these pa-

rameter values and applies the transformations accordingly. The transformed source

is then fed into the native compiler to produce the binary for the target platform.

When compiling the transformed source with the native compiler, we disable tiling

and unrolling whenever possible. This step is necessary since in some cases the native

compiler actually degrades performance when it re-applies transformations that have

already been applied by our high-level transformer. For each program, we allow the

search to continue for 30, 60, 90 and 120 iterations, where one iteration corresponds

to an evaluation of a new point in the search space either as a result of an exploratory

move or a pattern move.
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Table 5.2 : Performance improvement and tuning time on Itanium using direct search

Program DS 30 DS 60 DS 90 DS 120
Speed Time Speed Time Speed Time Speed Time

advectd3d 1.19 13:23 1.19 25:20 1.19 49:34 1.19 49:34
lud 3.52 6:05 4.07 9:01 4.07 9:01 4.07 9:01
mm 1.17 4:52 1.21 9:28 1.22 14:11 1.22 16:39
vpenta 1.36 2:33 1.54 5:13 1.54 6:27 1.54 7:36
swim 1.22 41:07 1.24 1:09:11 1.24 1:56:34 1.24 2:25:02
mgrid 1.12 31:00 1.15 1:04:00 1.15 1:47:50 1.15 1:47:50
Mean 1.60 1.73 1.74 1.74

Table 5.3 : Performance improvement and tuning time on MIPS using direct search

Program DS 30 DS 60 DS 90 DS 120
Speed Time Speed Time Speed Time Speed Time

advect3d 1.00 41:23 1.05 1:21:32 1.05 2:05:02 1.05 4:17:24
lud 2.98 56:00 2.99 1:44:45 2.99 2:05:12 2.99 2:05:12
mm 1.54 19:10 1.58 56:04 1.59 1:22:30 1.59 1:55:45
vpenta 1.61 22:17 1.65 41:23 1.65 1:06:03 1.65 1:20:03
swim 1.04 3:30:19 1.04 5:30:56 1.05 8:12:46 1.05 8:12:46
mgrid 1.04 2:23:00 1.04 3:25:12 1.04 4:45:00 1.04 4:45:00
Mean 1.54 1.56 1.56 1.56

5.3.2 Performance Across Architectures

Tables 5.2–5.5 list performance improvement and tuning time using direct search

for each platform. For each platform, the reported speedup is the speedup that is

obtained over the fully optimized version of the native compiler. The total tuning

time includes program evaluations, compilation and search analysis time. It should

be noted however, that total tuning time is generally dominated by program exe-

cution time. Thus, generally the number of program evaluations can be used as a
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Table 5.4 : Performance improvement and tuning time on Alpha using direct search

Program DS 30 DS 60 DS 90 DS 120
Speed Time Speed Time Speed Time Speed Time

advect3d 1.58 7:47 1.58 14:44 1.63 19:35 1.63 41:22
lud 1.07 11:02 1.25 17:28 1.25 21:25 1.25 21:25
mm 1.02 6:41 1.02 12:12 1.02 18:01 1.02 38:02
vpenta 1.41 8:28 1.41 16:00 1.42 21:16 1.42 23:29
swim 1.03 1:06:03 1.04 1:59:41 1.04 3:18:50 1.04 3:44:24
mgrid 1.17 58.29 1.17 1:40:21 1.17 2:24:34 1.17 3:01:04
Mean 1.21 1.25 1.26 1.26

approximate measure for the actual tuning time.

The results presented in Tables 5.2–5.5 show that our approach can yield signifi-

cant performance improvement across a range of architectures. Overall, the biggest

benefits are obtained on Pentium 4, on the Alpha provides the least improvements∗.

There is some variation in performance for different programs as well. But this is

mostly due to the applicability of the two transformations for a particular applica-

tion. For example, tiling and unrolling affects a small fraction of the executed code

in mgrid. Thus, understandably, the performance improvement on this application

is less than some of the other smaller kernels. Overall, the mean speedup for all

programs across all platforms is about 1.70. These results suggest that automatic

tuning can improve on the performance delivered by current state-of-the-art commer-

cial compilers.

∗The Compaq Compiler on the Alpha does not allow selective disabling of transformations. Hence,

we compiled the transformed code with the -O4 option, whereas the baseline version was compiled

with full optimizations turned on (-O5 option). This may explain some of the reduced performance

on this platform.
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Table 5.5 : Performance improvement and tuning time on Pentium 4 using direct
search

Program DS 30 DS 60 DS 90 DS 120
Speed Time Speed Time Speed Time Speed Time

advect3d 1.23 3:33 1.27 5:20 1.27 5:37 1.27 5:37
lud 1.52 6:43 1.53 10:33 1.53 10:33 1.53 10:33
mm 6.46 5:05 6.60 5:28 6.65 7:35 6.75 9:35
vpenta 5.75 2:06 5.75 4:00 5.75 14:01 5.75 14:01
swim 1.00 1:10:43 1.00 1:56:03 1.00 2:11:40 1.00 2:11:40
mgrid 1.05 1:15:32 1.05 2:02:07 1.05 2:02:30 1.05 2:02:30
Mean 2.84 2.87 2.88 2.89

5.3.3 Direct Search Performance

To determine the effectiveness of the direct search strategy, we first compare its

performance results against results obtained using an exhaustive search. We evaluate

all points in the search space for each program on the Itanium. We then use exhaustive

search to find the best value within each search space. Having exhaustive data on the

search spaces allows for quantitative evaluation of the performance of direct search.

Table 5.6 lists the speedup obtained using exhaustive search. Table 5.6 also lists

speedup obtained from direct search as a percentage of the speedup obtained from

exhaustive search. Table 5.7 lists the tuning time for the two search strategies in

a similar fashion. When limiting direct search to 30 iterations about 93% of the

performance is gained at about 1.7% of the cost. Increasing the number of iterations

gets us closer to the best speedup obtained from exhaustive search. For lud and mm

we are able to find the best solution within the search space after 60 and 90 iterations

respectively. The results in Table 5.6 and 5.7 show that direct search can come very

close to the performance of exhaustive search at only a fraction of the cost.
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Table 5.6 : Performance comparison between direct search and exhaustive search on
Itanium

Program Exhaustive DS 30 DS 60 DS 90 DS 120
Speedup % of Best % of Best % of Best % of Best

advectd3d 1.23 96.75% 96.75% 96.75% 96.75%
lud 4.07 87.48% 100.00% 100.00% 100.00%
mm 1.22 95.90% 99.18% 100.00% 100.00%
vpenta 1.57 86.62% 98.08% 98.08% 98.08%
swim 1.27 96.06% 97.63% 97.63% 97.63%
mgrid 1.17 95.34% 97.89% 97.89% 97.89%
Mean 1.56 92.93% 98.25% 98.38% 98.38%

Table 5.7 : Tuning time comparison between direct search and exhaustive search on
Itanium

Program Exhaustive DS 30 DS 60 DS 90 DS 120
Time % of Time % of Time % of Time % of Time

advectd3d 8:27:11 2.64% 4.99% 9.77% 9.77%
lud 2:28:23 4.10% 6.08% 6.08% 6.08%
mm 4:08:34 1.96% 3.81% 5.71% 6.70%
vpenta 2:31:19 1.69% 3.45% 4.26% 5.02%
swim 664:28:09 0.10% 0.17% 0.29% 0.36%
mgrid 831:23:45 0.06% 0.13% 0.22% 0.22%
Mean 22:13:45 0.77% 1.44% 2.13% 2.33%

The performance improvements that we obtain does come at a cost however. This

cost comes in terms of longer tuning times. The total tuning time for the set of

benchmarks ranges from a few minutes to several hours. This of course is a natural

consequence of any iterative approach. The tuning time is mostly dominated by

program execution time. As we can see from the results, increasing the number of

iterations results in a proportional increase in tuning time. Also the two applications

that have the longest running times suffer the longest tuning time as well.



50

Another observation to be made from the results is that performance benefits

start to diminish rapidly as we run the search algorithm for longer iterations. For all

platforms except Itanium, 98% of the benefits are realized after 30 iterations. Even

for Itanium, going from 30 to 60 iterations yields a modest 10% extra improvement

whereas the total tuning time is almost doubled. Interestingly, this behavior holds

true for swim and mgrid whose search space is significantly larger than the search

space of the kernels. These results suggest that the optimal cut-off point for direct

search is fewer than 30 iterations. To investigate this issues further, we ran another

set of experiments with a lower cut-off point for the search. The results from those

experiments showed that for some programs direct search was able to find reasonably

good values in as few as 15 iterations. However, for some of the other programs

suitable tile sizes and unroll factors were not discovered until after 25 iterations.

5.3.4 Comparison with Heuristic Search Strategies

The comparison with exhaustive search suggests that direct search can be very ef-

fective in finding good values for transformation parameters fairly quickly. However,

to determine if direct search is a good choice for automatic tuning, it is important

to compare its performance with performance of other heuristic search strategies. In

this section, we compare performance of direct search with random search, simu-

lated annealing and window search. We briefly described each of these strategies in

Chapter 4.1.

To compare direct search with other search strategies we run a set of experiments

on the search space data generated on the Itanium through exhaustive search. These

experiments are run offline. This means that each search strategy operates on the

same performance data generated once through exhaustive search. This ensures that
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Figure 5.1 : Performance comparison of different search strategies.

all search strategies explore identical search spaces and provides a more objective

comparison.

Fig. 5.1 summarizes the performance of the four search strategies for all bench-

marks. For each search strategy, Fig. 5.1 reports the fraction of best performance

obtained as a function of tuning time. The fraction of best performance is computed

using the following formula:

100− ((FoundMin− TrueMin)/TrueMin ∗ 100)

where FoundMin is the best value discovered through search and TrueMin is the

best value in the entire search space. Tuning time in Fig. 5.1 is reported in terms of

number of program evaluations.

We observe that direct search outperforms each of the other search strategies.

When stopping the search at 30 iterations the performance gap between direct search

and other search strategies is about 2%. This gap increases slightly when we allow

the searches to continue for more iterations. Thus, direct search proves to be a better



52

choice for exploring the search space than any of the other search strategies. It is

interesting to note however, that random search, which uses no heuristics at all,

performs quite well in these experiments. In fact, for 60 and 90 evaluations it does

better than some of the other heuristic search strategies. Also, as we have observed,

the performance gap between direct search and random search is not that large. This

suggests that the benefits of improved search heuristics is somewhat limited in this

context. On re-examining the search spaces, we discovered that this limited benefit is

largely due to the construction of the search spaces themselves. To reap more benefits

from search heuristics we first need to generate a suitable search space. We address

this issue in the concluding section of this chapter.

5.4 Summary

The results of this study show that direct search strategy is able to find suitable

tile sizes and unroll factors by exploring only a small fraction of the search space.

The results also support the notion that an iterative approach is able to deliver

performance across architectures at the cost of extra compilation time.

There are several issues that still remain open. For our experiments the selection

of loops and the generation of the search space was done by hand. The choice of

loops to unroll or tile and the initial search space used by the search strategy has a

strong impact on how well the search performs. Finding suitable ways to generate

the search space automatically require further exploration. Another issue that needs

to be explored is the cost of tuning time. If the iterative approach is to be employed

in a production environment we need to find out the level of performance it needs to

deliver so that the compilation cost is amortized over many runs of the program. We

explore the issue of model-guided tuning in the following chapters.
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Chapter 6

Model-guided Automatic Tuning of Loop Fusion

In this chapter, we present a model-guided approach for automatically tuning loop

fusion parameters to different architectures. We describe an architecture-sensitive

cost model for fusion that is integrated into a constraint-based algorithm. We then

describe how the cost model can be parameterized for use with empirical search. We

present an evaluation of our strategy on seven different platforms.

6.1 Introduction

Loop fusion is recognized as an effective program transformation for improving mem-

ory hierarchy performance of applications. It is used in several commercial compilers

and is gaining increased importance because of the increased usage of array assign-

ments in languages like Fortran 95. Although fusion is a useful transformation it is

not always profitable. Previous research has shown that unconstrained application of

fusion can sometime lead to performance loss [20, 10].

Consider the code in Fig. 6.1. In the first loop nest we compute values of array

b(). These same values are then used in the second loop nest. We can exploit

this locality in b() by performing a two-level fusion. In the fused loop nest, shown in

Fig. 6.1(b), the two references to array b() are temporally close enough to be put into

a register. Thus, as a result of fusion we can potentially save NM memory operations.

However, there is also outer-loop reuse of a() at references a(i,j-1) and a(i,j-2)



54

   l1: do j = 1, N                                
           do i = 1, M

              b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)

           enddo

        enddo

    l2: do j = 1, N

           do i = 1, M

              c(i,j) =  b(i,j) + d(i,j)

           enddo

        enddo

outer-loop reuse of a()

cross-loop reuse of b()

(a) code before fusion

(b) code after two-level fusion

l12: do j = 1, N 

           do i = 1, M 

               b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)

               c(i,j) =  b(i,j) + d(i,j)

           enddo

        enddo

lost reuse of a()

 saved loads for b()

Figure 6.1 : Example of un-profitable fusion.
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in loop nest l1 that we need to consider. In the unfused version, the same memory

locations in array a() are touched in every iteration of the outer loop. In the fused

version, although we do touch the same locations in a(), the amount of data that

we bring into cache between reuses has increased. In the fused version, we will be

accessing locations in arrays b(), c() and d() before we get to the reused reference

of a(). If the intermediate data between reuses is larger than the cache capacity

then we will incur 2NM cache misses due to the references to a(). Moreover, by

bringing in data from different arrays between reuses we also increase the likelihood

of conflict misses. The occurrence of conflict misses in the loop nest can be even more

damaging to performance because it can lead to lost spatial locality in both c() and

d(). Thus, for many situations the code in Fig. 6.1 fusion will not yield an overall

profit. We observe that these issues can be ameliorated by tiling the loop that results

after fusion. We discuss the interaction of tiling with fusion in Chapter 7.

Fusion can also degrade memory performance by increasing register pressure for

the innermost loop. When fusing loops at the innermost level, the register demand

may increase to the point where a large number of register spills occur. The cost of

these spills may offset any benefits gained by improved locality in the fused loop. The

possibility of exceeding the instruction cache capacity is also a concern when fusing

loops with large instruction counts in the innermost loop bodies. However, as noted

by Waterman, the growth in the size of instruction caches has made instruction cache

overrun a relatively rare occurrence on modern architectures [77].

The problem of finding the optimal fusion solution has been shown to be NP-

complete [18]. Hence, for large applications with many fusible loops finding a good

fusion solution involves using good heuristics. In this chapter, we present a strategy

that combines an architecture-sensitive cost model with empirical tuning to perform
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profitable loop fusion. Our cost model considers the size, associativity and latency of

various levels of the cache in determining if it is profitable to fuse a pair of loops. We

incorporate this cost model into a constraint-based fusion algorithm. We formulate

two constraints for the fusion algorithm to ensure that performance does not degrade

as a result of increased pressure on system resources due to fusion. Finally, we use

empirical search to fine-tune fusion configurations for different architectures.

6.2 Cost Model

6.2.1 Quantifying Reuse in Fusible Loops

Determining Safety

The first step in quantifying reuse is to identify loops in the program that are legally

fusible. We use the dependence analyzer in our autotuning framework to determine if

two loops can be safely fused. Two loops can be safely fused if they are adjacent and

there are no fusion-preventing dependences between them [2]. A fusion-preventing

dependence is a loop-independent dependence, which, after fusion, is carried by the

fused loop in the reverse direction. We identify all such dependences between loops.

Any pair of loops that have at least one fusion-preventing dependence between them

are not considered for fusion. Note that two loops that are not adjacent can still

be legally fused as long as there are no intervening statements that fall in a path

of loop-independent dependences from the first loop to the second. To simplify the

analysis we only consider adjacent loops for fusion. However, before fusing loops,

we run a statement motion algorithm which moves all intervening statements to the

top of the first loop in the subroutine [63]. Only statements that are not involved

in a dependence with any of the loops are moved upwards. Thus, at the end of the
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statement motion phase, the set of loops that are adjacent are the ones that can be

legally fused (assuming they do not have a fusion-preventing dependence).

Capturing Inter-loop Reuse

To determine if it is profitable to fuse a pair of loops we first need to compute the

amount of reuse that is exploited as a result of fusion. Fusion improves locality by

merging loops that access the same data. Thus, any memory location that is accessed

in the first loop nest and then re-accessed in the second loop nest is a candidate for

potential reuse. This inter-loop reuse can be captured in a dependence graph through

the use of loop-crossing dependence edges. A loop-crossing dependence is defined as

follows:

Definition 1 Let l1 and l2 be two adjacent fusible loop nests where reference r1

accesses location M in some iteration i in l1 and reference r2 accesses location M ′

in some iteration j in l2. Then there is a loop-crossing dependence from r1 to r2 if

M = M ′.

To quantify reuse in fusible loops we start with the dependence graph for single

loop nests. Then for each pair of adjacent loop nests we add loop-crossing dependence

edges between the two dependence graphs. This extended dependence graph is able

to identify points of potential reuse in fusible loops. However, in some cases the graph

might overestimate the amount of reuse exploited by fusion. Consider the example

in Fig. 6.2. There are two loop-crossing dependences from the reference to a(i,j) in

l1 to a(i,j-1) and a(i,j) in l2. It might appear that by fusing the loop nests l1

and l2 we will be able to save 2NM memory operations for references to array a() in

l2. However, we note that there is temporal reuse carried by the outer loop between
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do j = 1, N

do i = 1, M

        d(i,j) = a(i,j)  + b(j)

enddo

enddo

l1:

l2: do j = 1, N

do i = 1, M

        c(i,j) = a(i,j-1) + a(i,j)

enddo

enddo
outer
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Figure 6.2 : Multiple loop-crossing dependences in fusible loops.

a(i,j-1) and a(i,j). Since the memory location that is accessed by a(i,j) in l1

will be accessed by a(i,j) in l2 before it is accessed by a(i,j-1), the reuse distance

we need to consider to quantify reuse in a(i,j-1) is the distance for the outer loop

reuse and not the loop-crossing reuse.

Pruning the Dependence Graph

To account for the above situation we need to prune the graph so that the sink of

each loop-crossing dependence represents a potential savings in memory operations.

We note that if there are multiple loop-crossing dependences emanating from the

same source reference then all but one of the loop-crossing dependence edges can be
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eliminated. The edge that remains is the one that points to the sink reference that

has no incoming dependence edge from within the loop nest. Similarly, if there are

multiple loop-crossing dependences that have a single reference as their sink we can

eliminate all but one of the edges. In this case, the edge that remains is the one that

has a source with no dependence edges flowing into it from within the loop nest.

In addition to handling the loop-crossing dependences we also need to prune the

dependence graph for each loop nest so that the pruned graph has at most one

predecessor for each reference and that predecessor refers to the most recent use of

the sink. This pruning is essential for our cost model which assumes one predecessor

per sink in order to avoid double counting of cost on particular references. We adopt

strategies described by Carr [8] and Allen and Kennedy [2] to perform this pruning.

The strategy involves eliminating all killed dependences from the graph and in cases

of group temporal reuse keeping only those edges that have the smallest dependence

threshold. A typed fusion algorithm is used in finding name partitions and eliminating

redundant input dependences.

Hierarchical Classification of Reuse

Once we have the pruned dependence graph we need to augment it to include infor-

mation about reuse distances and memory hierarchy levels. The effects of fusion may

not be beneficial across all levels of the memory hierarchy. As we observed in the

example presented in the previous section, fusing the pair of loops improved register

reuse but had an adverse effect on cache locality. Hence, to improve overall memory

performance we need to be able to quantify reuse that is exploited at each level of

the memory hierarchy.

The reuse classification described by Wolf and Lam [81] is not suitable for han-
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dling multiple levels of the memory hierarchy. To address this, we introduce a new

classification of temporal reuse based on the level at which locality is exploited. We

associate with each sink node in the dependence graph a value that expresses the

level at which the reuse is exploited. This term is called the reuse level of a reference

and we define this formally as follows:

Definition 2 Let Li refer to the memory at level i. Then the reuse level of a reference

r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ Capacity(Lk)

where Capacity(Lk) is the number of lines that can simultaneously occupy the cache

at level k.

6.2.2 Accounting for Conflict Misses using Effective Cache Capacity

Conflict misses can be a big concern for profitable fusion. When fusing loops we often

bring accesses to a number of different arrays within the iterations of a single loop

nest. If the array locations overlap in cache then we must pay the penalty of increased

conflict misses. To account for conflict misses, we extend the cache associativity model

described by Hill and Smith [32]. We compute the probability of a cache line being

evicted before it is reused based on the size and associativity of the cache and the

reuse distance. We use the following notation to describe this probabilistic model:

r1 and r2 references to the same cache line

m reuse distance between r1 and r2

s number of sets in cache

a associativity
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If we assume that each line from m is equally likely to be mapped to any of the sets

(a reasonable, but questionable, assumption that will be revisited in Section 6.4.1)

then

Pr[a lines landing in line occupied by r1] = Pr[conflict miss on r1]

=

m
∑

i=a

(

m

i

)[

1

s

]i [
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Now, we introduce a tolerance term T that expresses how high a probability of a

conflict miss we are willing to accept. We then have,

T ≥ Pr[conflict miss on r1] = 1−
a−1
∑

i=0

(

m

i

) [

1

s

]i [
s− 1

s

]m−i

Let us define MaxReuseDistance(a, s, T ) as the maximum integral reuse distance m

such that Pr[conflict miss on r1] ≤ T . Given a tolerance term T and the size and

associativity of a cache at level k we can express a formula for effective cache capacity

(ECC) as follows

ECC(Lk) = MaxReuseDistance(ak , sk, T ) (6.1)

where, sk and ak refer to the size and associativity of the cache at level k. Using this

model of effective cache capacity we can adapt the definition for the reuse level of a

reference to take conflict misses into account.

Definition 3 Let Li refer to the memory at level i. Then the reuse level of a reference

r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ ECC(Lk)
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6.2.3 Estimating Profitability

With reuse information and the heuristics for conflict miss in place we are now able to

estimate the profitability of fusing a pair of loops. For each loop-crossing dependence

in the pruned graph we want to determine how many memory operations are saved

as a result of placing the source and the sink within the same iteration of the fused

loop. We use the following in describing our profitability model:

l1, l2 candidate loops for fusion that have the same nesting

depth

D set of loop-crossing true and input dependences between

l1 and l2

C set of dependences carried by either l1 or l2

ReuseLevelpre(d) reuse level of d before fusion

ReuseLevelpost(d) reuse level of d after fusion

Lk cache at the kth level where 0 ≤ k ≤ L, where L0 is the

register level LL is main memory

cost(Lk) cost of a miss access to Lk

Then, for each d ∈ D we assign a weight w based on the following condition:

if ReuseLevelpre(d) > ReuseLevelpost(d)

then

w(d) =

ReuseLevelpre(d)−1
∑

i=ReuseLevelpost(d)

cost(Li)

else

w(d) = 0

Then total weight is just
∑

d∈D

w(d)
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Computing the number of memory accesses saved from loop-crossing dependences,

by itself, is not enough to determine if fusion is profitable. As illustrated in the

example in Fig. 6.1, in some cases fusion may reduce locality within loop nests: when

fusing two loops the reuse distance of any carried dependence increases if that reuse

is also not involved in a loop-crossing dependence. We need to account for all such

cases where fusion might lead to loss of potential reuse.

For each c ∈ C we need to compute the cost based on the following condition:

if ReuseLevelpre(c) < ReuseLevelpost(c)

then

w(c) =

ReuseLevelpost(c)−1
∑

i=ReuseLevelpre(c)

cost(Li)

else

w(c) = 0

Then total cost is
∑

c∈C

w(c)

Hence, the final formula for computing the weight between two fusible loops is:

W (l1l2) =
∑

d∈D

w(d)−
∑

c∈C

w(c)

6.2.4 Resource Constraints

A detailed analysis of the savings in memory cost does not guarantee beneficial fusion.

There are several factors that can affect fusion that are not captured by the model we

presented for computing weights. Most of these factors have to do with the resource

requirements of the fused loop. If the requirements for a particular resource is higher

than what is available to the program then the benefits of improved locality through
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fusion may not be realized. In this section, we establish a set of constraints that need

to be considered by a constraint-based fusion algorithm [19].

(i) Register Pressure: If the number of required registers for the fused loop body

is more than what is available then we have to pay the price for spill costs. To

account for register pressure we enforce the following constraint:

RegisterPressure(lf) ≤ Register Set Size

where lf refers to a fused loop nest. We use the methods presented by Carr [8]

to estimate register pressure in a loop body. Information about the number of

registers available to the program is collected before compilation.

(ii) Instruction Footprint: If the number of instructions in the fused body exceeds

the size of the instruction cache then we must pay the penalty of fetching those

instructions from memory. Again, this phenomenon should be considered when

fusing two loops.

Instructions(lf) ≤ Capacity(Ik)

where lf refers to a fused loop nest and Ik is the instruction cache at level k.

Note that, although data cache capacity is another critical resource requirement

for a program, we do not include it as a constraint here. When using our cost model

with a weighted fusion algorithm the weights of the individual edges account for the

data cache miss costs. Thus, we need not consider the total data requirements of the

fused loop as a separate constraint.
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6.2.5 Using the Model with a Greedy Fusion Algorithm

The cost model and resource constraints that we formulated can be incorporated

into a constraint-based weighted pair-wise fusion algorithm [19]. In this algorithm,

fusion is formulated as a graph clustering problem in which vertices represent loops

in the program and weights represent the amount of benefit obtained by fusing the

endpoints. Pair-wise greedy fusion considers for fusion only prime edges - edges whose

endpoints are joined by no other path. At each step, the algorithm picks for fusion

the heaviest prime edge in the graph whose endpoints can be fused without exceeding

the resource constraints. After each fusion operation, weights are recomputed and

the graph is updated with new successor, predecessor and prime edge information.

At termination the algorithm produces the best set of fused loops according to the

greedy heuristic.

The chief issue that needs to be considered in incorporating our model with the

greedy algorithm is the cost associated with recomputing the weights at every step.

Since we perform a detailed analysis in calculating the benefits of fusing two loops, we

need to annotate the graph with more information to make the re-weighing process

more efficient. We construct the pruned dependence graph with reuse information as

described previously. We then group the references within each loop nest and label

the subgraphs as supernodes. We compute the weights between each pair of fusible

loops according to the procedure described in Section 6.2.3. We connect each pair

of supernodes using these weights. Hence, each pair of supernodes has only one node

connecting them that represents the net gain from fusing the two loops.

Now, the pair-wise fusion algorithm can proceed normally on the supernodes and

the edges between them. After fusing a pair of loops, edge weights between supernodes

have to be updated and the loop-crossing dependence edges adjusted. For this step, we
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need to examine each loop-crossing dependence coming into and going out of the fused

loop nest. The edges within the supernodes representing outer-loop reuse also have to

be examined. We note however, that the number of edges in both cases is bounded

above by the number of arrays in the loop. Hence, the complexity of a re-weighing

operation will be O(A) where A is the number of arrays in the program. Having the

complexity of the update operation bounded by the number of arrays ensures that

the fast greedy algorithm will be able to maintain its original asymptotic time bound,

in spite of the more detailed profitability analysis.

6.3 Empirical Search

Even the most detailed analytical models may not produce the optimal fusion solution.

Profitable fusion depends on a number of architectural features and it is often difficult

to determine a priori how these features will interact with the fusion choices. The

task of estimating machine parameters becomes particularly difficult because we see

the underlying hardware through the compiler’s lens∗, which distorts our view of the

target platform. For example, using the model presented in Section 6.2.3 we may be

able to make a prediction about the possibility of conflict misses but we cannot say

how good our prediction is until the program is actually run on the target machine.

Similar uncertainties remain in measuring register pressure and cache footprints. Our

approach to dealing with these uncertainties is the use of empirical tuning. In this

section, we show how our cost model for loop fusion can be parameterized and used

in an empirical tuning framework.

The basic idea behind our algorithm for empirically tuning fusion parameters is to

identify key architectural parameters (e.g. available registers) that impose constraints

∗phrase coined by Keith Cooper
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on fusion choices. Then, for each such parameter P , we introduce a tolerance term

Tp and construct a function that computes the effective capacity of P based on the

given value of Tp.

P ′ = EffectiveCapacity(Tp, P, ...) s.t. P ′ ≤ P

The rationale for using the concept of effective capacity is that generally the amount

of resources that can be exploited by a program is some fraction of the resources that

is actually available on the target machine. For example, the effective cache size at a

particular level is reduced by the possibility of conflict misses, as we shall see below.

Hence, to apply resource-dependent transformations (i.e. fusion) profitably, we need

to use analytical models that can estimate how much of a given resource is available

to the program. However, the amount of resource available is determined by a host

of factors. For example, the fraction of cache we can exploit depends on the size

and associativity of the cache, the number of different arrays accessed in the program

and the size of each of those arrays. Moreover, memory allocation and optimization

strategies employed by the compiler also have an impact on the amount of cache

that is available to a program. A static model that attempts to capture all these

parameters is unlikely to be totally accurate for all architectures. The goal of our

tuning strategy is to correct for these inaccuracies in the cost model.

Fig. 6.3 gives an abstract algorithm for our tuning strategy. For each tuning

parameter in the search space, we start off conservatively with a low tolerance term

and increase the value of Tp at each subsequent iteration. We stop the iterative

process either when performance degrades or when we have reached the availability

threshold of a particular resource. Since at each step we only relax some fusion

constraint, it is easy to show that the set of fused loops grows monotonically during

the tuning process. Because of this property, to find the best fusion configuration,
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/* src is source of program to be tuned */

/* ~T is a vector of tolerance values */
/* numDims is number of dimensions in the search space */

~T ← InitTolerance()

curV ariant← ApplyGreedyPairWiseFusion(src, ~T)
execT ime← CompileRunMeasure(curV ariant)
bestT ime← execT ime
bestV ariant← curV ariant
for i = 1 to numDims do

repeat

/* increase tolerance and generate new program variant*/
repeat

~T ← IncTolerance(~T , i)

curV ariant← ApplyGreedyPairWiseFusion(src, ~T)
numInc++

until curV ariant 6= bestV ariant and !ReachedThreshold(~T , i)
execT ime← CompileRunMeasure(curV ariant)
/* keep track of best execution time and best program variant */
if (execT ime ≤ bestT ime) then

bestT ime← execT ime
bestV ariant← curV ariant

else
~T ← DecTolerance(~T , i, numInc)

end if

until (execT ime > bestT ime)
/* stop search in this dimension when performance no longer improves */

end for

Figure 6.3 : Algorithm for empirical search of fusion configurations.
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we choose a search strategy that is sequential and orthogonal. For n resources we

have an n-dimensional search space where the size of each dimension is the range of

tolerance values for a particular resource. For each dimension we perform a sequential

search. When searching in a particular dimension we use reference values for all other

dimensions.

Our model includes three memory hierarchy resources: data cache capacity, register

set size and instruction cache capacity. Although these three resources are somewhat

similar, they interact with fusion choices in different ways and hence constitute indi-

vidual search dimensions. We discuss the tolerance terms and feedback parameters

for each of these resources next.

(i) Effective Cache Capacity: We compute the effective cache capacity using Eq. 6.1.

Intuitively, Eq. 6.1 tells us what fraction of the cache we can use so that there

is T probability of a conflict miss between two accesses to the same memory

location. So, in this case we have

Effective Cache Capacity = E(a, s, Tcache)

where E(a, s, Tcache) is obtained from Eq. 6.1. We start off with a low value for

Tcache (Tcache < 0.02) and at each step increment Tcache by 0.05 and measure

the number of data cache misses at different levels. We stop the search in

this dimension when we reach a Tcache for which the number of cache misses

increases.

(ii) Effective Register Set: We use the register pressure constraint to moderate

register pressure in the fused loop. For this constraint, we have the following

equation for the tolerance term Treg:

Effective Register Set = ⌈Treg × Register Set Size⌉ where 0 ≤ Treg ≤ 1
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For our experiments, the value of Treg for the register pressure constraint ranges

between 0.5 and 1.0. The increment value is 0.1. Feedback parameters we use

here are total loads and cycle count. Both parameters serve as good indicators

about the occurrence of register spills.

(iii) Effective Instruction Cache Capacity: The instruction cache constraint is dealt

separately since we do not compute reuse distances for instructions and we are

mainly concerned with capacity misses. So, in this case we have:

Effective I-Cache Capacity = ⌈Ticache × Capacity(I-Cache)⌉ where 0 ≤ Ticache ≤ 1

The range and increment values of Ticache in this case are identical to values

used in the register pressure constraint. For feedback, we measure instruction

cache misses directly.

6.4 Evaluation

6.4.1 Accuracy of the Effective Cache Capacity Model

The cache miss model presented in Section 6.2.1 makes the assumption that memory

accesses between any two reused references are essentially random. Although this

scheme works well when integrated with the rest of our framework, it is important to

evaluate the accuracy of the model on its own. In this section, we present experimental

results that compare the accuracy of the miss rate predicted by our model against

measured miss rates on three different programs.

Our conflict miss model does not predict the miss rate in a program directly.

However, using Eq. 6.1, we can derive an upper bound for the miss rate for a given

cache configuration and a tolerance term T . If the number of reused references in a
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program is n and all reuse distances in the program are less than the effective cache

capacity then, according to our model,

Expected Misses ≤ nT

From the above we get,

Expected Miss Rate =
Expected Misses

Total Reused References
≤ nT/n = T

We use Eq. 6.1 to generate effective cache capacity for a fixed size cache with varying

degrees of associativity. For each cache the tolerance term T is set to four different

values: 0.01, 0.05, 0.10 and 0.15. We then force the maximum reuse distance in the

program to be less than the computed effective cache capacity by picking a small

enough data set size.

To get accurate measurements without interference from other architectural fea-

tures we conducted experiments using a cache simulator instead of a real machine.

We use the Simplescalar [6] cache simulator to simulate several different cache con-

figurations. Here, we present and analyze results from a direct-mapped and a 2-way

set associative cache both 32KB in size with 32B lines.

The first set of experiments is performed on randaccess, a synthetic benchmark

we wrote to validate our model. In randaccess we iterate over an array several

times. Between each iteration we access m distinct random locations in memory each

of which land in a different cache line and none of which overlap with locations in

the array. Thus the reuse distance for each reused reference in randaccess is exactly

m cache lines and the reuse pattern conforms to the assumption that each cache line

accessed within the reuse distance is equally likely to cause a conflict miss. Hence, for

randaccess we expect our predicted miss rate to closely match the measured miss

rate.
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Figure 6.4 : Accuracy of cache miss model on randaccess.

The results from experiments on randaccess are presented in Fig. 6.4. The mea-

sured miss rates reported in the graph are average miss rates over 100 runs of the

program. The data points on the x axis correspond to the effective cache capacity

computed by our model for the two cache configurations. As expected, when we

enforce random access of memory locations between reuses of the same location the

model is able to predict the miss rate in the program quite accurately. For both the

direct-mapped and 2-way cache, the difference between the predicted rate and the

measured rate is never more than 1%.

We realize however, that the reuse pattern in a real application is unlikely to

be totally random. Hence, we want to determine how much the accuracy of our

model drops when the assumption of random access to memory locations is violated.

We perform the second set of experiments on a C-implementation of erle. The

experimental results are presented in Fig. 6.5. In this case, we see that our prediction

does not match the measured miss rates as closely. For smaller reuse distances the

discrepancy is not that high but as we move on to larger data sets with more variability
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Figure 6.5 : Accuracy of cache miss model on erle.

in reuse distances the difference between the predicted rate and the measured rate

goes up to as high as 10%. We observe however, that the predicted miss rate is always

greater than the measured miss rate. Thus, as an upper bound for the miss rate the

model still works well. In most cases, a conservative estimate of the effective cache

capacity is good enough to make the right fusion choices through empirical tuning.

However, in some cases a conservative estimate may lead to an underutilized cache

and also have adverse effects on other transformations such as tiling. We address

these issues later in the section.

It is difficult to predict exactly what kind of reuse pattern we will observe in

any given program. However, for many scientific applications it can be generally

summarized as a set of loops sweeping through a number of contiguous arrays. We

wrote our third benchmark arraysweep with this reuse pattern in mind. arraysweep

sweeps through k arrays a fixed number of times producing reuse in each of the k

arrays. The inner loop is tiled with respect to the outer so that the reuse distance

of each reference can be controlled by varying the tiling factor. For our experiments,
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Figure 6.6 : Accuracy of cache miss model on arraysweep.

we derive the sweep length using the following formula:

Sweep Length = Effective Cache Capacity/k

For arraysweep we also wanted to eliminate the effects of the compiler’s allocation

strategy on the conflict miss rate of a program. Simplescalar uses the GNU C compiler

(GCC) which uses an optimized malloc() for allocation of larger arrays. To avoid

the impact of GCC’s optimized memory allocation strategy, we control allocation of

each array in arraysweep and ensure that each array starts off at a random location

in memory. The experimental results with arraysweep using 4 arrays are presented

in Fig. 6.6. As was the case with erle our model over predicts the miss rate for

arraysweep. However, the discrepancy between the predicted rate and the measured

rate is smaller in this case. This increased accuracy in the predicted miss rate is

explained by two factors. First, the reuse distance for each reference in arraysweep

is the same number of cache lines. If there are reused references with small reuse

distances that are not affected by the effective cache capacity then those references

will have a positive impact on the miss rate regardless of what effective cache capacity
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is chosen. Thus it is likely that the inner loop carried dependences in erle contribute

to the larger gap between the predicted miss rate and the measured miss rate. The

second factor that improves the accuracy of our prediction for arraysweep is the

allocation strategy we use. We notice in Fig. 6.5 that in some cases the measured

miss rate for erle decreases slightly as we increase the data set size. This is a direct

consequence of the optimized allocation strategy used by GCC for the larger data

sets. Forcing the arrays in arraysweep to start in random locations results in more

predictable behavior. We observe a steady increase in the measured miss rate as the

data set size is increased. Since our model does not account for any optimizations in

the allocation strategy, it fares better on arraysweep then on erle.

In summary, the experimental results in this section suggest that our model is

able to predict an upper bound for the conflict miss rate with reasonable accuracy.

However, the predicted upper bound for the miss rate may be significantly greater

than the actual miss rate of the program. Although a conservative estimate suffices for

profitability estimates of transformations such as fusion it is important to consider its

implications on other transformations. A key transformation for improving memory

performance in numerical applications is tiling. If we use our conflict miss model with

tiling then the effective cache capacity would directly determine the tile factor for a

given loop nest. In that case, a conservative estimate would imply choosing a smaller

tile size which in turn may lead to lost reuse in inner loops. In such situations we

need a cost model that accounts for these trade-offs. We discuss such a cost model

in the next chapter.



76

6.4.2 Comparing Different Search Spaces

In this section, we illustrate some of the characteristics of the fusion configuration

search space using a simple experiment. For this experiment, we only consider fusion

of innermost loops and tuning of the effective register set parameter. We first explain

the fusion parameter search space, then the search space for the effective register set

and then present results from an experiment comparing the two search spaces.

If reordering of loops is not allowed, the number of different ways to fuse k loops

is 2k−1. Thus, the number of points in the fusion search space of k loops is 2k−1. We

can represent the search space of different fusion configurations using a bit pattern

where each bit corresponds to an edge between two fusible loops. A bit is set if the

corresponding adjacent loops are fused. For example, if we have eight fusible loops

then we need bit strings of length seven where bit string 0000000 corresponds to no

loops being fused and 1111111 corresponds to all loops being fused.

As explained in Section 6.3, the size of effective register set search space depends

on the range of tolerance values used in the search. Hence, the number of points in

the search space is determined by how finely we wish to tune the parameter. For

example, if we increase our tolerance by 0.05 at each step then we will have just 20

points in the search space. Note, that if increasing our tolerance does not result in a

larger effective register set or a different fusion configuration then that point in the

search space does not need to be evaluated. Thus, the number of points in the search

space is bounded above by the size of the register set of the target platform and in

practice, the number of points that need to be evaluated is likely to be much smaller

than this upper bound.

To compare the two different search spaces we perform a simple experiment with

the advect3d kernel. The advect3d kernel has a total of 24 loops divided into
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Figure 6.7 : Performance curve for fusion configuration search space on Opteron
(advect3d).
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Figure 6.8 : Performance curve for effective register set search space on Opteron
(advect3d).
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eight loop nests which are perfectly nested. All loop nests are fully fusible. For

this experiment, we consider fusing only the innermost loops without any reordering.

Thus, the fusion search space for advect3d contains 28−1 = 128 points. The size of

the search space of the register set parameter is dependent on the tolerance value

increments and the number of physical registers in the target platform. We present

performance results for these two search spaces on an Opteron and a Pentium 4

with 32 and 8 floating-point registers, respectively. For both platforms, we increase

tolerance by 5% at each step. Hence, for both platforms, the register set search space

contains 20 points. However, since the number of registers on Pentium 4 is less than

20, the number of points that result in different fusion configurations is bounded

above by the number of physical registers.

The performance of all possible fusion configurations on the Opteron is shown in

Fig. 6.7. As expected, the performance line is very jagged with many peaks and

valleys. The performance curve for the effective register set search space on the same

platform is shown in Fig. 6.8. This search space is much smaller than the search

space of fusion configurations. However, the important point to note here is that

the performance line for this search space is relatively smooth. Not only that, the

performance line follows a specific pattern. Initially, when we increase tolerance from

very low values (i.e. 0.1) performance keeps increasing. Then, when Treg = 0.55, there

is a big drop in performance. According to our search heuristic, Treg = 0.55 represents

the threshold point and no further exploration of the search space is necessary. Indeed,

we observe that none of the points beyond this threshold produce better performance.

Hence, we could stop our search after evaluating just seven points in this search space.

Another issue to note, is the leveling-off of the tail-end of the performance curve. This

happens because all eight loops in advect3d are fused at the 0.55 tolerance level and
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Figure 6.9 : Performance curve for fusion configuration search space on Pentium 4
(advect3d).

the fusion configuration does not change for any value of Treg beyond that point.

Hence, even if we were doing an exhaustive search we would not need to evaluate this

portion of the search space.

The performance curves for advect3d on Pentium 4 are presented in Figs. 6.9

and 6.10. We notice very similar results on this platform as well. A jagged perfor-

mance line for the fusion configuration search space and a smooth line for the search

space of the effective register set parameter. Since Pentium 4 has so few floating-

point registers, only a single pair of loops is fused when we increase our tolerance to

a 1.0. This explains the long flat segment at the beginning of the performance line

in Fig. 6.10. Our search heuristic does not evaluate points beyond the 1.0 thresh-

old. Hence, the search on this platform stops at Treg = 1.0 after fusing just one pair

of loops. To verify that this conservative approach is indeed the right one, on this

platform, we forced the search strategy to evaluate points beyond Treg = 1.0. As the

results in Fig. 6.10 show, going beyond the maximum threshold and trying to fuse
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Figure 6.10 : Performance curve for effective register set search space on Pentium 4
(advect3d).

more loops makes the performance worse. Thus, for this platform it is best to stop

at Treg = 1.0.

6.4.3 Tuning Strategy Performance

We implemented our cost model and search algorithm in our autotuning framework

described in Chapter 4. In this section, we present an evaluation of our strategy using

experimental results on seven different platforms described in Table 4.2. For these

experiments, we select four programs from the set of programs listed in Table 4.1:

advect3d, erle, liv18 and mgrid. All four programs present several opportunities

for loop fusion and thus serve as a good test suite for evaluating our strategy. We apply

our cost model to each program and use LoopTool to restructure the code with the

desired fusion configuration. The transformed source is then compiled using the native

compiler on the target platform. To avoid conflicts with the optimization strategies

of the native compiler, transformed programs are compiled with fusion turned off
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Platform Compiler Flags for baseline version
Itanium Intel 8.1 -O3 -tpp2 -ipo -static -

mP2OPT hlo fusion=F -132
MIPS MipsPro 7.3.1 -O3 -R12000 -OPT:Olimit=0

-TARG:platform=IP27 -
LNO:fusion=0

Alpha Compaq 5.5 -O4 -align dcommons -
assume noaccuracy sensitive
-math library fast -arch EV67
-tune EV67

Opteron GNU Fortran 3.3.4 -O3 -m64 -march=opteron
-ffixed-line-length-132

PowerPC IBM XL 8.1 -O4 -qarch=g5 -qcache=auto -
qhot -qipa=level=2 -qtune=g5 -
qfixed=132

Pentium III Intel 8.1 -O3 -mP2OPT hlo fusion=F -132

Table 6.1 : Compiler flags used on different platforms

whenever possible. Flags used to compile programs on different architectures are

listed in Table 6.4.3.

In the discussion that follows, we use the following terms to refer to the different

optimization strategies:

baseline no fusion

model-based model-based tuning strategy described in this chapter

simple fusion of all loops that share data

native fully optimized version generated by native compiler

MIPS

Figs. 6.11 and 6.12 show performance results for the four applications on the MIPS.

On this platform, the most significant improvement is observed for liv18. In this case,

model-based decides to fuse all three loops to the innermost levels. The MIPSPro



82

1.67

5.075.07

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cycles Loads L1 Misses L2 Misses TLB

Misses

I1 Misses I2 Misses

Performance Metric

N
o
rm

a
liz

e
d
 C

o
u
n
t

base model-based simple native

(a) advect3d

0.971.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cycles Loads L1 Misses L2 Misses TLB

Misses

I1 Misses I2 Misses

Performance Metric

N
o
rm

a
liz

e
d
 C

o
u
n
t

base model-based simple native

(b) erle

0.700.90

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cycles Loads L1 Misses L2 Misses TLB

Misses

I1 Misses I2 Misses

Performance Metric

N
o
rm

a
liz

e
d
 C

o
u
n
t

base model-based simple native

(c) liv18

0.600.59

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cycles Loads L1 Misses L2 Misses TLB

Misses

I1 Misses I2 Misses

Performance Metric

N
o
rm

a
liz

e
d
 C

o
u
n
t

base model-based simple native

(d) mgrid

Figure 6.11 : Memory performance on MIPS.
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Figure 6.12 : Performance improvement on MIPS.

compiler, by contrast, refrains from fusing the third loop nest. It is not totally

clear as to why the MIPSPro compiler decides not to fuse the third loop nest. We

speculate this may be due to alignment issues or because of a heuristic used in the

compiler to account for register pressure. For this benchmark, the initial fusion

configuration recommended by our cost model is less aggressive. Because of the

possibility of increased register pressure and conflicts in the L1 cache, our cost model

suggests performing outer-loop fusion for all three loops and then fusing only the

last two loops to the innermost levels. However, the empirical search in our strategy

determines that the loss due to increased loads is more than offset by the benefits

from reduced cache misses when we perform a more aggressive fusion. Hence, on this

platform model-based fuses all three loop nests to the innermost levels. Thus, this

is one instance where empirical search is able to achieve additional gains from loop

fusion.

On advect3d and erle, native performs worse than base. For advect3d, native

does an overly aggressive fusion resulting in a large inner loop body which causes a



84

number of register spills and also introduces conflicts in the L2 cache. On the other

hand, model-based refrains from fusing some of the loops because of the register

pressure constraint.

On mgrid, model-based shows only marginal improvement over baseline. On this

application, native is able to get higher performance than model-based. Inspecting

the code generated by the MIPSPro compiler, we found that it performs a more

aggressive fusion for mgrid, increasing both register pressure and the possibility of

conflict misses within the fused loop nest. However, the MIPSPro compiler then

applies tiling to the fused loop nest to improve locality for the cache. This combined

transformation strategy is effective in improving the memory performance for mgrid.

We observe a similar situation with advect3d where MIPSPro applies tiling to the

fused loop nest. However, in that case, tiling is not able to mitigate the excessive

register pressure caused by fusion. In fact, for advect3d, applying tiling to the fused

loop nest further aggravates the loss in performance. These results emphasize the need

for considering the interaction of loop fusion with other program transformations. We

address this issue in Chapter 7.

Note that, for both advect3d and erle there is a significant increase in the nor-

malized count of level one I-cache misses for native. However, in absolute terms the

total number of I-cache misses is quite small. Thus, the relative increase of I-cache

misses does not have a significant impact on performance for either of these applica-

tions. In fact, for all four applications on all platforms the number of I-cache misses

is never large enough to have a major impact on performance.
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Figure 6.13 : Memory performance on Itanium.



86

0.70

0.85

1.00

1.15

1.30

1.45

advect3d erle liv18 mgrid

S
p
e
e
d
u
p
o
v
e
r
b
a
s
e
li
n
e

model-based simple native

Figure 6.14 : Performance improvement on Itanium.

Itanium

Performance results on the Itanium for the four applications are presented in Figs. 6.13

and 6.14. These results show that model-based is quite effective on this platform.

The Itanium has a large number of floating-point registers, which allows us to fuse

loops more aggressively to improve cache locality without incurring the cost of ex-

cessive registers spills. In fact, on this platform, the fused loop structures generated

by model-based is the same as those generated by simple for all four applications.

Thus, we do not see any performance difference between these two strategies.

Itanium is the only platform where fusing all 27 loops in advect3d into one single

loop nest turns out to be profitable. This aggressive fusion does create a large inner

loop body but because of the larger register set, the machine is able to withstand the

high register pressure. Thus, we see the most significant performance improvement for

advect3d on this platform. model-based achieves locality at both the level two and

level three cache and also improves register reuse as indicated by the fewer number



87

of loads in Fig. 6.13(a).

On liv18, model-based achieves improved locality for both the cache levels but

incurs 20% extra loads. This result is somewhat surprising since the register pressure

for the fused loop nest in liv18 is estimated to be much less than the register pressure

of the fused loop nest in advect3d. On closer inspection of the code, we discovered

that the native compiler unrolls the fused loop nest in liv18 by several factors which

creates a much larger inner loop body than that of advect3d. Our cost model does

not account for register pressure when the loop is unrolled. Hence, model-based is

unable to prevent the increase in the number of loads in this case. Although this does

not result in overall performance loss for liv18, the effect of unrolling on fused loop

nests needs to be considered for improved profitability.

Performance of native on this platform is at par with model-based for both

advect3d and mgrid. However, the fusion strategy of native results in performance

loss for erle, whereas model-based achieves a 15% speedup on this application.

Alpha

Figs. 6.15 and 6.16 show performance results on the Alpha. Although model-based

outperforms native on all programs, it performs worse than baseline on erle. This

loss in performance comes because of the large number of TLB misses incurred when

fusing two of the loops in erle. Since our model does not have an explicit constraint

designed to account for TLB pressure, model-based is unable to prevent this unwise

fusion choice. Although most locality enhancement strategies are easily extended to

the TLB, there are situations when we need to consider the effects on TLB separately.

The two loop nests in erle is one such case. In the future, we plan to incorporate a

constraint in our model to prevent TLB conflicts.
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Figure 6.15 : Memory performance on Alpha.
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Figure 6.16 : Performance improvement on Alpha.

On this platform, native performs much worse than baseline. However, all of

this loss in performance is not attributed to poor fusion choices of the native com-

piler. The Compaq compiler does not provide specific control over the application of

loop fusion. Thus, to avoid conflicts with the fusion strategy of the native compiler

we compile the baseline version at a lower optimization level. The lower level of op-

timization turns off loop fusion along with some other loop transformations. Hence,

the poor performance from native is a result of unwise fusion choices as well as neg-

ative effects of loop fusion’s interaction with other optimizations. Without fine-grain

control over the application of transformations, it is difficult to determine exactly

what transformations contribute to the performance loss. However, inspection of the

optimized code suggests that there is negative interaction between loop fusion and

tiling which causes a large number of TLB misses on this platform. Thus, as was the

case on the MIPS, fusion profitability is majorly influenced by the choices made in

tiling the fused loops.
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Figure 6.17 : Memory performance on PowerPC.

PowerPC

Figs. 6.17 and 6.18 show performance results on the PowerPC. We observe significant

performance improvement for both advect3d and liv18. For advect3d, native

decides to fuse only two loop nests all the way through, leaving the other six loop

nests untouched. On the other hand, model-based performs a more aggressive fusion

and is able to exploit more register reuse. Although there is some loss in locality in

the L1 and L2 caches, this loss is offset by the gains obtained from the large reduction
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Figure 6.18 : Performance improvement on PowerPC.

in the number of loads. For liv18, we observe improvement in terms of both register

reuse and improved cache locality.

Opteron

Performance results for the Opteron are presented in Figs. 6.19 and 6.20. Our tuning

strategy is the least effective on this platform. One of the reasons why model-based

is not as effective is because of the limited number of registers on the target machine.

The Opteron has only 8 x87 floating-point registers, which imposes a severe restriction

on the size of the fused loop body. Because of this constraint, model-based is able

to fuse only outer-level loops in advect3d and liv18, sacrificing potential benefits in

cache. Indeed, our empirical search reveals that fusing any more loops in either of

these two programs results in performance loss. This is further verified in the poor

performance shown by simple on these two applications.

Another factor that explains the lower performance on the Opteron is the choice

of the back-end compiler. We were unable to obtain a commercial compiler for this
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Figure 6.19 : Memory performance on Opteron.
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Figure 6.20 : Performance improvement on Opteron.

platform at the time of running these experiments. Hence, we use the GNU Fortran

compiler as the back-end compiler on this machine. It is possible that the register

allocation strategy of the GNU Fortran compiler is unable to exploit some of the

register reuse enabled through loop fusion. Note, since the GNU Fortran compiler

does not have a loop fusion strategy, we compile both baseline and native with the

same compiler options. Because of this, there is no performance difference between

baseline and native on this platform.

Pentium 4

Performance results for Pentium 4 are presented in Figs. 6.21 and 6.22. Like the

Opteron, Pentium 4 shows very little performance improvement from loop fusion.

This result is not surprising, since, like the Opteron, Pentium 4 has just eight floating-

point registers. For all four programs, limited number of floating-point registers im-

pedes fusing loops at the innermost level. Hence, neither model-based nor native is

able to exploit any reuse at the innermost level on this platform. However, heuristics
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Figure 6.21 : Memory performance on Pentium 4.
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Figure 6.22 : Performance improvement on Pentium 4.

used for fusing outer loops to exploit cache locality proves successful for liv18, result-

ing in a 16% speedup over the baseline version. The little performance improvement

we get for erle and mgrid is also due to exploited locality at the outer levels.

Pentium III

Figs. 6.23 and 6.24 show the performance results on Pentium III. Although Pentium

III, like the Opteron and Pentium 4, has only 8 floating-point registers, model-based

is still able to achieve significant performance improvement on this platform. One

factor that contributed to this speedup is the improved locality in the L2 cache . The

limited number of registers prevents model-based from fusing loops at the innermost

levels. However, the outer-loop fusion applied by model-based is effective in exploit-

ing locality at the level two cache. We do not observe similar improvements for the

Opteron or Pentium 4 because they both have much larger L2 caches with higher

degrees of associativity and thus exhibit good locality even for the unfused program

variants.
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Figure 6.23 : Memory performance on Pentium III.
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Figure 6.24 : Performance improvement on Pentium III.

6.4.4 Summary

We summarize the results of our experiments in Fig. 6.25. These results show that

a cache-conscious analytical model combined with empirical search can lead to prof-

itable fusion on a range of architectures. With the exception of erle on Alpha,

model-based achieves performance improvement for all four applications on all seven

platforms. We also observe that on several instances, model-based is able to ob-

tain good performance, while the fusion heuristics employed by native compilers lead

to performance loss. In most cases, this loss in performance is a result of exces-

sive register pressure and conflicts in cache on the target architecture. Hence, these

results reiterate the need for careful tuning of parameters for architecture-sensitive

transformations such as loop fusion

The experimental results also expose several key aspects of fusion profitability.

We observe that fusion is more profitable for machines that have larger register sets.
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Figure 6.25 : Mean performance across platforms.

The average speedup obtained on the Itanium with its 128 registers is almost twice

as much as that of the Opteron which has only eight registers. We also observe

that fusing of outer loops helps improve locality in cache. Thus, in cases where

limited number of registers prevents fusing of loops at the innermost level, it is still

profitable to fuse loops at the outer levels. A more subtle aspect of fusion profitability

revealed by the experimental results, is the interaction of loop fusion with other

transformations. In particular, tiling can have a major impact on fusion profitability.

In some situations, tiling is able to mitigate some of the performance loss caused

by aggressive loop fusion. In other cases, tiling interacts negatively with fusion and

causes further performance loss. We address this issue in the next chapter, where we

describe a cost model that captures the complex interaction of tiling and loop fusion

and exposes key architectural parameters for empirical tuning.
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Chapter 7

Pruning the Fusion-Tiling Search Space

In this chapter, we show how the model-guided tuning strategy presented in Chapter 6

can be extended to cover multiple memory hierarchy transformations. In particular,

we show, how the notion of effective cache capacity can be used to linearize the

multi-dimensional search space of fusion and tiling parameters. We present an inte-

grated cost model that characterizes the interaction between loop fusion and tiling.

We then construct a combined search space for these two transformations based on

architecture-dependent parameters embedded within the cost model. We present an

evaluation of our strategy on seven different architectures.

7.1 Introduction

Tiling, like loop fusion, is a well-known transformation for improving memory hierar-

chy performance [81, 9, 23, 10, 14, 11, 53]. It aims to exploit locality within a single

loop nest by splitting the iteration space into smaller blocks, where each block fits

into some level of cache. Tiling has been widely used in commercial compilers for

optimizing dense matrix computations. Although very effective when applied pru-

dently, tiling suffers from some of the same problems as loop fusion. The profitability

of this transformation is highly-sensitive to parameters of the underlying architecture

as limited by the compiler’s ability to generate effective code. In particular, esti-

mating the capacity of the target cache is critical in improving program performance
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through tiling. Also, as is the case with loop fusion, tiling can have different effects

at different levels of the memory hierarchy. In many cases, improved performance at

some level of cache comes at a cost of higher register spills or reduced performance

at some other level of memory. Thus, in the absence of detailed architectural infor-

mation, compilers are forced to resort to heuristics that favor one level of memory

hierarchy over another. This of course implies a compromise in overall application

performance.

The problem of how best to use loop fusion and tiling becomes even more dif-

ficult when we try to apply the two transformations in concert. Fusion and tiling

interact with each other in complex ways. Because of this, the effectiveness of one

transformation is often strongly influenced by decisions made in applying the other

transformation. As evidence of this interaction, we present in Figs. 7.1 and 7.2,

results from running a set of benchmarks with both fusion and tiling. For each

benchmark, we adjust the flags in the native compiler to generate four different vari-

ants: baseline applies no fusion or tiling, fuse applies only fusion, tile applies only

tiling and fuse-tile applies both transformations. We evaluate the effect of these

two transformations on both the L2 cache and the TLB on a MIPS machine. The

experimental data in Figs. 7.1 and 7.2 suggest considerable interaction between fusion

and tiling. Consider the case of advect3d. Applying fusion to this benchmark results

in improved performance for both the L2 cache and the TLB. Tiling by itself has

only minimal impact on memory performance. However, when both fusion and tiling

are applied together the number of L2 misses increases by almost 20%. Thus, this is

an instance where fusion and tiling interact negatively to hurt program performance.

Similar negative interaction in the level two cache is observed for equake. On the

other hand, consider the case of vpenta. Fusion and tiling individually have very little
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Figure 7.1 : Effects of fusion and tiling on L2 Cache Misses.
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Figure 7.2 : Effects of fusion and tiling on TLB Misses.

impact on the L2 miss rate. However, when applied together L2 misses are reduced

by as much as 60%. We also see positive interaction between fusion and tiling for

mgrid. In this case, fusion is able to mitigate some of the large number of TLB misses

caused by tiling. These experimental results emphasize the need for considering the

interaction between loop fusion and tiling at different levels of the memory hierarchy.

Applying these transformations in isolation without considering their joint effects on

multiple levels of memory can lead to less than desired performance.
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Complex interactions between loop fusion and tiling and their sensitivity to mem-

ory hierarchy parameters makes it necessary to use empirical methods to achieve con-

sistent improved performance from these two transformations. Automatically tuning

fusion and tiling parameters, however, poses an even bigger problem. Because the

two transformations are intricately related, we need to consider their combined search

space for tuning. But the combined search space of these two transformations can be

extremely large. The fusion search space consists of all combinations of fusible loops

at a particular nesting depth. On the other hand, for tiling, we have a set of values

for each tiled loop and the overall search space is the Cartesian product of all of those

sets. Moreover, since loop fusion changes the loop structure in a program, we can

have a different tiling search space for each fusion configuration. Clearly, exploring

such a large space is infeasible for a general-purpose compiler. For automatic tuning

to be practical, we need an efficient method of exploring this enormous search space.

In this chapter, we present a strategy for pruning the combined search space of loop

fusion and tiling parameters. Our approach is based on the key observation that a

single architectural parameter can affect the profitability of multiple transformations.

For example, the capacity of the target cache has an impact on both fusion and tiling

profitability. However, as discussed earlier, it is difficult to come up with an accurate

estimate of the effective cache capacity using static heuristics. For this, we need

to turn to empirical techniques. Experimental results from Chapter 6 suggest that

finding a good estimate for the effective cache capacity leads to more profitable fusion

configurations. We use this same principal to find the best parameters for both loop

fusion and tiling. The main benefit of this approach is that although we are looking

at multiple transformations, there is no significant increase in the size of the search

space. Of course, for this approach to work, we first need a model that captures the
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interaction between the two transformations and exposes the effective cache capacity

as a parameter for tuning through empirical search. In the sections that follow, we

explain the interaction between loop fusion and tiling, present an integrated cost

model for applying the two transformations together, define the combined search

space for fusion and tiling and describe our search method and finally, present an

evaluation of our strategy on seven different architectures.

7.2 Fusion-Tiling Interaction

Loop fusion and tiling interact with each other in complex ways. Fusing two loops

increases the working set size of the resulting loop nest, which imposes a constraint on

the tile size to be selected. On the other hand, tiling causes cache misses on references

with inner loop reuse. Some of these misses may be avoided if the loops are not fused

in the first place.

In this section, we use an example code to explain some of the interactions between

loop fusion and tiling. The code in Fig. 7.3(a) has two loop nests LA and LB. In LA,

values of a() are used to compute values of b() and in LB, values of b() and d()

are used to compute c(). We observe several types of reuse in this code. There is

cross-loop reuse of b(i,j) from LA to LB, some inner-loop reuse of d(j) in LB and

also some outer-loop reuse of a() at reference a(i,j-1) in LA. We now look at the

trade-offs in applying fusion and tiling to this code in order. (i.e. fusion before tiling

and vice versa).

Fusion first: If we fuse LA and LB as shown in Fig. 7.3(b), references to the same

locations in b() will be located within the same iteration of the innermost loop. This

can potentially lead to saved loads of b(). However, in the fused loop nest we will

access roughly twice as much data as compared to each of the unfused loop nests.
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L1: do j = 1, N                                    

         do i = 1, M

            b(i,j) = a(i,j) + a(i,j-1)

         enddo

      enddo

  L2: do j = 1, N

         do i = 1, M

            c(i,j) = b(i,j) + d(j) inner loop reuse of d()

         enddo

      enddo

outer loop reuse of a()

cross-loop

reuse of b()

L12: do j = 1, N 

           do i = 1, M 

              b(i,j) = a(i,j) + a(i,j-1)

              c(i,j) = b(i,j) + d(j)

           enddo

        enddo

(a) code before transformations

  (b) code after two-level fusion

lost reuse of a()

 saved loads of b()

do i = 1, M, T

   do j = 1, N

      do ii = i, i + T - 1

         b(ii,j) = a(ii,j)+ a(ii,j-1)

         c(ii,j) = b(ii,j) + d(j)

      enddo

   enddo

enddo

reduced reuse of d()

extra misses when b() is not aligned

at cache line boundary

  (c) code after fusion and tiling

Figure 7.3 : Effects of fusion and tiling on reuse.
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This implies that the reuse distance for the outer-loop-carried reuse in a(i,j-1) will

increase in the fused nest, potentially leading to cache misses on every iteration of

the outer loop. Moreover, since we access more arrays, we also increase the chances

of conflict misses. A good heuristic for loop fusion is likely to consider these negative

effects on cache use and refrain from fusing the two loops, sacrificing the saved loads

of b().

Of course, some of the negative effects of loop fusion can be ameliorated by tiling

the fused loop nest. Tiling the inner loop will reduce the reuse distance for a(i,j-1)

and ensure that reused blocks of a() remain in cache during each iteration of the

outer loop. The potential for conflict misses can also be reduced by picking tile sizes

that make the working set significantly smaller than the cache size. Thus, if we do

not consider tiling when making our fusion decision this code is likely to suffer some

performance loss.

Tiling first: A good tiling heuristic will be able to pick a tile size for LA to exploit

the outer-loop reuse of a(). However, after fusion, the working set of the fused nest

will increase and hence, the original tile size will no longer be effective. Thus, we

would need to readjust the tile size to fit the new larger working set in cache. This

however, does not solve the entire problem. We notice that tiling LB will reduce some

of the inner-loop reuse of d(). The amount of lost reuse will increase for smaller tile

sizes. Hence, we need to pick a tile size that is large enough to minimize the loss of

inner-loop reuse and at the same time small enough to exploit the reuse in the outer

loop. If we cannot find such a tile then we need to reconsider our decision to fuse the

two loops.

There is also a more subtle issue to consider in the example code. If the arrays are

not aligned at cache line boundaries, then we would need to bring in one extra cache
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line for every execution of the inner tile. This can lead to an extra miss for each array

on each iteration of the outer loop. The smaller the tile size, the more misses we are

likely to incur.

7.3 Cost Model

In this section, we present a cost model that captures the complex interactions be-

tween loop fusion and tiling. Based on this model, we present an algorithm that

performs the task of applying the two transformations together.

7.3.1 Modeling Fusion-Tiling Interaction

We first look at the effects of fusion and tiling on reuse separately. We then present

the analysis that determines the combined effect of these two transformations. For

simplicity, we limit the discussion to a two-level loop nest. We use the following

notation:

l1, l2 loop nests considered for fusion

j, i outer and inner loop in each loop nest, respectively

ii tiled loop

N , M loop bounds of outer and inner loops, respectively

FP(i,l1) footprint of one iteration of loop i in loop nest l1

T tile size

B line size of target cache

In building a combined cost model for loop fusion and tiling we need to consider

both intra- and inter-loop reuse. We discussed methods for quantifying inter-loop

reuse in Chapter 6. For the combined cost model, we merge our inter-loop reuse

information with intra-loop reuse information. In the single loop nest model reuse
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is classified as being self-temporal, self-spatial, group-temporal or group-spatial. In

addition, a reuse can also be classified by the level of the loop that carries the reuse

(inner and outer for a two-level loop). In our cost model, we do not explicitly handle

spatial reuse∗. Thus, combining our inter-loop reuse model with the single loop nest

model gives rise to nine different classes of reuse as shown below:

R1 : {loop-crossing}

R2 : {self, inner}

R3 : {group, inner}

R4 : {self, outer}

R5 : {group, outer}

R6 : {loop-crossing, self, inner}

R7 : {loop-crossing, self, outer}

R8 : {loop-crossing, group, inner}

R9 : {loop-crossing, group, outer}

We augment our dependence graph by labeling each sink as having one of the

above types of reuse. As we will see in the discussion that follows, fusion and tiling

can have different effects on each of these nine types of reuse.

Fusion Effects

Loop-crossing reuse is our prime target for improving locality with loop fusion. Prior

to fusion, the source and the sink of any loop-crossing reuse is executed in the first and

second loop nest respectively. If we apply a two-level fusion then both the source and

the sink will be executed in the same iteration of the innermost loop of the fused loop

∗Spatial locality is exploited by selecting tile sizes that are multiples of the cache line size on the

target platform
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nest. Prior to fusion, reuse distance for such a reference is N ∗ FP(j,l1). After fusion,

this reuse distance becomes FP(i,l1). Hence, the reuse distance for any loop-crossing

reuse will decrease as a result of fusion. If the sink of a loop-crossing reuse is also

involved in an outer loop-carried reuse then the reuse distance for that reference will

decrease from FP(j,l2) to FP(i,l1). The effect of fusion on references that are involved

in loop-crossing reuse and also an inner loop carried reuse depends on the relative

size of the footprint of the inner loops of the two loop nests. If FP(i,l2) < FP(i,l1) then

there is no change in the reuse distance otherwise the reuse distance is reduced to

FP(i,l1). This leads us to our first observation:

Observation 1 Fusion decreases the reuse distance of any loop-crossing depen-

dence [R1] and any loop-crossing dependence that is also involved in a carried depen-

dence [R6, R7, R8, R9].

Loop fusion has a negative impact on any carried reuse that is not involved in

a loop-crossing reuse. After fusion the footprint of the inner loop in the fused nest

increases to FP(i,l1) +FP(i,l2). Consequently, the footprint for the outer loop increases

to FP(j,l1) + FP(j,l2). Hence, we have:

Observation 2 Reuse distance of any outer or inner loop carried dependence that is

not involved in a loop-crossing dependence [R2, R3, R4, R5] increases as a conse-

quence of fusion.

Tiling Effects

When we tile the inner loop with respect to the outer loop, reuse distance of any

outer-loop-carried dependence is reduced from FP(j,l1) to T ∗ FP{ii, l1}. Since the
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source and the sink of the loop-crossing reuse reside in two separate loop nests tiling

will not impact their reuse distance. This leads to the following observation:

Observation 3 Tiling decreases the reuse distance for any reuse carried by the

outer loop [R4, R5, R7, R9]. Tiling has no impact on references that are only involved

in a loop-crossing reuse [R1].

By splitting the iterations, tiling can adversely affect the locality in the inner

loop. In an untiled loop nest, the most recent use of an inner-loop dependence with

a threshold of d always occurs d iterations before the current iteration of the inner

loop. On the other hand, in a tiled loop nest, every time we begin working on a new

tile, the sink of the reuse is separated from its source by N ×T iterations of the inner

loop. Thus, we can state the following about the effects of tiling on inner loop reuse:

Observation 4 Tiling increases the reuse distance for some instances of inner-

loop-carried reuse [R2, R3, R6, R8]. The number of instances for which the reuse

distance is increased is M/T .

Combined Fusion and Tiling Effects

From Observations 2 and 3 we know that fusion and tiling affect the reuse distance of

outer-loop-carried reuse in opposing directions. However, the increased reuse distance

due to fusion can generally be compensated by choosing a smaller tile size. This will

ensure that the reuse distance for any outer-loop-carried reuse is small enough for the

reused value to still be in cache. The only place where this approach will not work

is if we are forced to pick a tile size that is smaller than one cache line. The above

observation leads us to the following observation:
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Observation 5 If Capacity(L) > T > B then applying both fusion and tiling will

result in saved memory operations for any reuse carried by the outer loop.

It follows directly from Observations 1 and 3 that fusion and tiling applied together,

is beneficial for references involved only in loop-crossing reuse or a loop-crossing

reuse and an outer-loop reuse. When a loop-crossing dependence is involved in an

inner-loop-carried dependence, we get the full benefits from the loop-crossing reuse

due to fusion. Moreover, the negative effects of tiling on the reuse distance are no

longer observed. After fusion, the sink of any loop-crossing reference always gets the

value from its most recent use, which is in the same iteration of the innermost loop.

Therefore, we can state the following about loop-crossing dependences:

Observation 6 Applying fusion and tiling together results in a net gain in memory

operation cost for any reference that is involved in a loop-crossing dependence.

Both fusion and tiling have a negative impact on references that are involved only

in inner-loop-carried dependences. Thus, when applying tiling and fusion together

we will suffer additional misses on such references.

Observation 7 Applying fusion and tiling together will increase the reuse distance

for some instances of the sink of any inner loop reuse which is not involved in loop-

crossing reuse. The number of additional misses incurred is inversely related to the

tile size.

Based on the observations outlined in this section, we can characterize the inter-

action between fusion and tiling as follows: generally, fusion and tiling will interact

favorably to reduce the number of cache misses for both loop-crossing and outer-loop-

carried reuse. However, by increasing the footprint of the inner loop, fusion imposes
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a constraint on the tile size to be selected. Meeting this constraint may imply loss of

locality in the inner loops. In cases where this loss exceeds the gains from fusion, it

will be more profitable to tile the loops separately.

7.3.2 Combined Fuse-Tile Algorithm

Once we have developed a combined cost model for loop fusion and tiling, we

need to design an algorithm that will allow us to apply these two transformations

simultaneously. To perform this task, we revisit the weighted pair-wise fusion algo-

rithm described in Chapter 6. The main consideration for using our cost model in a

weighted fusion algorithm is incorporating tiling decisions within the algorithm. To

do this we, need to have additional information associated with each edge and each

loop node. In the combined fuse-tile algorithm we tag each edge with a parameter

T that represents the tile size of the resulting fused loop nest. This tag is updated

each time we update the edge weights in the graph. T ≤ 1 implies no tiling for the

fused loop nest whereas a negative weight implies that the two loops should be left

unfused. In such cases, the parameter T is a pair that represents the individual tiling

sizes of the two loops. Tiling of all such loops is performed in a separate pass at the

end of the greedy phase.

A high-level sketch of our fuse-tile algorithm is depicted in Fig. 7.4. In the initial

phase, we iterate over the loop nests of the program and compute both intra and

inter-loop reuse information. Next, we use the reuse information to compute weights

between each pair of fusible loops. The weights in this case represent the total gain

from fusion and tiling of the two loops. Also, as mentioned above we associate a tag

with each edge that determines whether the fused loop nest should be tiled. Once we

have built the weighted graph, the algorithm proceeds as it would for a greedy fusion
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procedure FuseTile(src)

/* src is source program */
/* L is number of loop nests in src */
/* deepest is deepest nesting depth */
/* edges contains fuse-tile profitability info */

/* derive inter and intra-loop reuse information */
for i = 1 to L do

BuildReuseInfo(lni)
end for

for i = 2 to L do

AddInterLoopReuseInfo(lni, ln(i−1))
end for

/* compute weighted edges and fuse loops starting from the outer most level */
for m = 1 to deepest do

for i = 1 to num edges at level m do

edges(i).w = CostAnalysis(li, li+1)
edges(i).t = CostAnalysis(li, li+1)

end for

repeat

edgeij = PickHeaviestEdge(edges)
if (edgeij.w > 1) then

Fuse(li, lj)
end if

if (edgeij.t > 1) then

Mark(lij , t)
end if

UpdateEdges()
until V isitedAll(edges)

end for

/* tile all loops in a separate pass */
for i = 1 to L do

T ileLoops(li)
end for

Figure 7.4 : Algorithm for applying loop fusion and tiling.
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Figure 7.5 : Mapping of tolerance values to transformation parameters.

algorithm. The only difference is that when selecting two loops for fusion we need to

mark loops for tiling if the tag field has a value greater than one.

7.4 Empirical Search

We apply the same principal in exploring the fusion-tiling search space as we did for

exploring the search space of different fusion configurations. Our search strategy does

not search parameters for individual transformations directly. Instead our approach

is to identify key architectural resources that can affect the profitability of a set

of transformations. For each such resource, we define a tolerance and construct a
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function that computes the effective size of that resource, for a given tolerance value.

We then apply a search on the set of tolerance values, which leads us to the best

set of transformation parameters. The mapping of tolerance values to transformation

parameters is depicted in Fig. 7.5. Among the set of memory hierarchy parameters

we examine, only the effective cache capacity has a direct impact on both loop fusion

and tiling. Hence, the discussion in this section focuses mainly on the search space of

the effective cache capacity. In this section, we describe the fusion-tiling search space

and show how it relates to the search space of effective cache capacity. We compare

the size and characteristics of these two types of search spaces and then lay out our

search strategy.

Zhao et al. conducted a study to explore the search space of different fusion con-

figurations [88]. In their study, they examined the search space of fusion parameters

for cases when reordering of loops is allowed and also when a loop is allowed to be

embedded within another loop (i.e. fusion of loops at different levels). However, their

study also showed that situations where reordering or embedding of loops is beneficial

is relatively rare. Hence, in our framework, we only consider fusing loops at the same

level without any reordering. If reordering of loops is not allowed, the number of

different ways to fuse L loops is 2L−1. Thus, the fusion search space can be thought

of as a single dimensional search space with 2L−1 points. On the other hand, the

set of feasible tile sizes constitutes the search space of a single tiled loop. A feasible

tile size is an integer t, where 2 ≤ t < ub, and ub is the upper bound of the loop in

question. Therefore, the tiling search space of l loops is the Cartesian product of L

sets of feasible tile sizes. If we assume, for simplicity, the number of feasible tile sizes

for each loop is N , then the tiling search space is an L dimensional search space with

NL points.
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Characterizing the search space for fusion and tiling separately is not too difficult

a task. However, it becomes more problematic when we want to consider the two

search spaces together. Since loop fusion changes the loop structure in a program, we

can have a different tiling search space for each fusion configuration. For example, if

we have L loops and all of them are fused into one loop, then we have just one loop

we can tile. On the other hand, if none of the loops are fused then potentially we can

tile each of the L loops. Thus, the number of dimensions in the tile size search space

depends on the fusion configuration.

The size of the search space for effective cache capacity depends on the range of

tolerance values and the increment used in the search process. If R is the range of

tolerance values and t is the value by which we increment our tolerance during the

search process then the size of the search space is R/t. For effective cache capacity we

use the probability of a conflict miss as tolerance. Hence, the range for the tolerance

value is between 0%−100%, and if we use the minimum increment of 1% then we get

the maximum size of the search space, which is 100 points. And this is true for all

applications since this search does not depend on the number of loops in the program.

Clearly, this is a much smaller search space then the search space of transformation

parameters. Even if we have just a few loops in the program, the search space of

transformation parameters is likely to be much larger than the effective cache capacity

search space.

7.5 Comparison with Other Model-guided Tuning Strategies

As mentioned earlier, several researchers have recently advocated the model-guided

approach for automatic tuning. In this section, we compare our model-guided ap-

proach with that of Yotov et al. [86]. For readability, in the rest of this section, we
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refer to the model-guided approach adopted by Yotov et al. as the Yotov approach.

The Yotov approach uses carefully constructed models to find near-optimal param-

eters for a set of memory hierarchy optimizations. They then employ a local search

to find the most suitable parameters around the points chosen by their models. Their

approach is very much focused in tuning the level 3 BLAS. The set of parameters they

search for are precisely the ones used by ATLAS. The transformations used in the

Yotov approach include: tiling, unroll-and-jam (referred to as register tiling), loop

unrolling, scheduling and data copy. Their search space consists of eight parameters,

two of which are boolean, while the rest are integer parameters.

The Yotov approach considers a larger set of transformations than we do in our

framework. As such, the Yotov approach is more inclusive. However, some of their

transformations are customized for optimizing matrix operations in the BLAS. In

particular, their scheduling and data copy algorithms are specifically designed for the

matrix multiply operation. Our framework considers more general application of the

transformations.

One of the main strengths of our model-based approach is the ability to explore

the combined search space of multiple transformations in a non-orthogonal manner.

Although the Yotov approach considers some interaction between transformations

(i.e., tiling and unroll-and-jam), the search strategy they use is orthogonal. For this

reason, their approach is less likely to find points that are discovered through a non-

orthogonal exploration of the search space.

The search space explored by the Yotov approach consists mostly of transforma-

tion parameters. They have one architectural parameter in their search space called

MulAdd, which checks the existence of a multiply-add instruction in the target ar-

chitecture. Although searching for the MulAdd parameter is useful in optimizing the
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scheduling of the matrix multiply operations, it does not help in narrowing down the

overall search space. The architectural parameters used in our framework allows us

to reduce the size of the search space and make the search space non-orthogonal at

the same time.

Finally, in terms of performance, the Yotov approach produces very impressive

results. They show that their approach can achieve performance comparable to AT-

LAS on a series of platforms. We cannot provide a direct comparison with the Yotov

approach because our approach is based on multi-loop transformations, whereas their

approach deals with transformations that only involve a single loop nest. We speculate

that the Yotov approach is going to achieve better performance on matrix-multiply

like kernels because it is more specialized. However, on general scientific applications,

the performance of these two approaches is likely to be more competitive, with our

approach requiring less tuning time.

7.6 Evaluation

We implemented our cost model and search algorithm in our autotuning framework

described in Chapter 4. In this section, we present an evaluation of our strategy using

experimental results on different platforms. We divide the discussion into two parts.

First, we evaluate the effectiveness of our empirical tuning strategy by comparing

performance results with native compilers on seven different platforms. Next, we focus

on the search itself and compare our strategy with multi-dimensional direct search

- a search strategy known to be effective in finding good values for transformation

parameters [64, 87].
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7.6.1 Experimental Setup

We select four programs from the set of programs listed in Table 4.1: advect3d, erle,

liv18 and mgrid. All four programs present opportunities for both loop fusion and

tiling and thus serve as a good test suite for evaluating our strategy. We apply our

cost model to each program and use LoopTool to restructure the code with the desired

optimization parameters. The transformed source is then compiled using the native

compiler on the target platform. To avoid conflicts with the optimization strategies of

the native compiler, transformed programs are compiled with fusion and tiling turned

off whenever possible. In the the discussion that follows we use the following terms

to refer to the different optimization strategies:

baseline no fusion or tiling

native fully optimized version of the native compiler

model-based tuning strategy described in this chapter

direct cost model + direct search on tile sizes

7.6.2 Tuning Strategy Performance

MIPS

Performance results on the MIPS for the four applications are presented in Figs. 7.6

and 7.7. These results show that model-based is able to outperform both baseline

and native on each application. The most significant improvement is observed for

liv18. This is not surprising since all the work in liv18 is done in three fusible

loop nests. Our fusion strategy in this case decides to fuse all three loops all the way

through. The MIPSPro compiler, by contrast, refrains from fusing the third loop nest.

This may be due to alignment issues or because of some heuristic used in the compiler

to account for register pressure. We note, that although our model-based strategy
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Figure 7.6 : Memory performance on MIPS.

incurs some extra loads because of the aggressive fusion, we are able to compensate

for the loss with a reduction in L2 and TLB misses.

For advect3d and erle the optimization strategies of the MIPSPro compiler re-

sults in overall performance loss. The tile sizes chosen by the native compiler for

erle caused conflicts in both the level two cache and the TLB. For TLB this conflict

is quite severe causing almost 10 times as many TLB misses over the baseline ver-

sion. The model-based strategy is able to pick tile sizes good enough to improve L2

performance without causing conflicts in the TLB. For advect3d the native compiler
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Figure 7.7 : Performance improvement summary on MIPS.

does an overly aggressive fusion which creates a large inner loop body. This results in

a high number of register spills and conflict misses as indicated by the measurements

in Fig. 7.6(a). Our fusion strategy refrains from fusing all the loops because of the

register pressure constraint.

For mgrid our strategy shows only marginal improvement over the native compiler.

Looking at the different memory system performance metrics in Fig. 7.6(d), we note

that in this case the model-based strategy improves locality in the two caches but

pays a severe penalty in the TLB. For mgrid the tile sizes chosen by our model

are very small. For all the outer loops the tile sizes chosen by model-based is the

minimum allowed within the search space. To find out why our model exhibited such

poor performance for TLB, we manually changed the lower bound for the outer tile

size and ran the code with smaller tile size values. This resulted in severe misses in

the level one and level two caches (most likely due lost spatial locality and high loop

overhead). Thus, choosing tile sizes any smaller and reducing the working set further

is unable to avoid the conflicts in the TLB for mgrid. This result suggests that tiling
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Figure 7.8 : Memory performance on Itanium.

alone is not enough to exploit locality in this case. To fully exploit locality in mgrid,

we need to explore data layout optimizations. We address this issue in Chapter 8.

Itanium

Performance results on the Itanium are presented in Figs. 7.8 and 7.9. The most

significant performance improvement on the Itanium is observed for erle. In this

case, model-based is able to reduce the number of misses for both levels of the cache

and also the TLB. The number of level two cache misses is reduced by almost 60%
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Figure 7.9 : Performance improvement summary on Itanium.

as we observe in Fig. 7.6(b). This reduction was a direct result of the improved tile

sizes selected by our framework.

For advect3d the performance improvement from our strategy is not as great as it

was for the MIPS. In this case, the Intel compiler, like the MIPSPro, decides to fuse

the loops all the way through. However, since the Itanium has a much larger register

set, it is able to withstand some of the register pressure of the large inner loop body.

For liv18 the Intel compiler did not perform any fusion or tiling. The model-based

strategy in this case is able to improve locality at both the level three cache and the

TLB. For mgrid, both model-based and native perform about the same. model-based

does not suffer from TLB thrashing as it did on the MIPS. However, our strategy

is not able to exploit much locality at either of the cache levels. Most of the im-

provement we observe for mgrid is because of the reduced number of loads due to

fusion.
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Figure 7.10 : Performance improvement summary on Alpha.

Alpha

Fig. 7.10 shows performance results on the Alpha. Although model-based outper-

forms native on all programs, it performs worse than baseline on erle. This result

is somewhat puzzling, since there is no significant drop in any of the memory hier-

archy performance metrics. On closer inspection of the code, we discovered that the

loss in performance is caused by the excessive stalls in the processor pipeline. The

Compaq compiler on the Alpha applies software prefetching and pipelining at the -O4

optimization level (the level at which both baseline and model-driven version were

compiled). We speculate that fusing two the loops in question, inhibits the effective-

ness of these two transformations resulting in higher number of processor cycle stalls.

Thus, this negative result highlights the complex interaction of loop fusion with two

other program transformations.
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Figure 7.11 : Performance improvement summary on PowerPC.

PowerPC

Performance results on the PowerPC are presented in Fig. 7.11. We observe the most

significant performance improvement on this platform. For advect3d we are able to

fuse all loops without a corresponding increase in register spills. This behavior can

be attributed to the larger register set on the PowerPC. We also observe significant

performance improvement for erle and liv18. For these two programs our cost

model chooses to tile for the 32KB L1 cache and is able to find tile sizes that make

the working sets small enough to fit in the cache. The PowerPC has a relatively large

cache line size for the L1 cache (16 words). In each case, our cost model chooses large

enough tile sizes that fully exploit the spatial locality on these larger cache lines.

Opteron

Performance results on the Opteron are presented in Fig. 7.12. Our tuning strategy

is the least effective on this platform. Although we see about a 20% speedup for
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Figure 7.12 : Performance improvement summary on Opteron.

both erle and liv18, there is no improvement for advect3d and a slight loss in

performance for mgrid. The reason for this performance loss is the increased L1

misses incurred when tiling the loops. The TLB structure of the Opteron is unique

among the seven platforms in that it has a large number of entries with relatively

smaller pages. Because of this, mgrid suffers very few TLB misses even without tiling.

Thus, when tiling for the outer loop we pay the penalty of increased L1 misses without

a corresponding benefit in TLB performance. Thus, in this case the native compiler

does a good job in tiling the code for the TLB.

Pentium 4

Fig. 7.13 shows performance results on Pentium 4. model-based achieves significant

performance improvement for both advect3d and erle. In our earlier experiments

with loop fusion, neither program showed much performance improvement on this

platform. However, by applying tiling to the fused loops we are able to ameliorate

some of the ill-effects of aggressive fusion. This results in overall improved perfor-
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Figure 7.13 : Performance improvement summary on Pentium 4.

mance for both advect3d and erle. For liv18 and mgrid tiling does not provide any

additional benefit over fusion. However, even for these two programs, model-based

outperforms the native Intel compiler on this platform.

Pentium III

Fig. 7.14 shows performance results on Pentium III . The main architectural feature

we are able to exploit on this machine is the large size of the TLB pages. Having

large TLB pages allows us to fuse more loops without causing too many conflicts in

the TLB. Moreover, we also have the freedom to explore larger tile sizes for the outer

loops, which allows us to exploit more instances of the outer loop reuse. With liv18,

for example, the outer tile size we choose for this platform is 32. This tile size is small

enough to avoid TLB conflicts, yet large enough to exploit a good amount of outer

loop reuse.
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Figure 7.14 : Performance improvement summary on Pentium III.
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Summary

The mean performance results for all platforms is presented in Fig. 7.15. With the

exception of erle on Alpha and mgrid on Opteron, model-based achieves significant

performance improvement for all seven platforms. In several instances, model-based

is able to achieve good performance, while the optimization strategies of the native

compiler results in performance loss. We should note, however, that the effectiveness

of our tuning strategy varies from one platform to another. The effectiveness of our

strategy depends, to a get degree on how well we are able to model the underlying ar-

chitecture. The performance is also influenced by the interaction of our strategy with

the optimization strategies of the native compiler. Sometimes the optimizations used

by the native compiler may make fusion or tiling less effective or in other instances

it can actually have an overall negative impact on performance.

7.6.3 Comparison with Direct Search

Being able to linearize a multi-dimensional search space is the key to the success of

our tuning strategy. In this section, we first compare the search spaces generated

by our model-based approach with those generated by a more conventional search

method. We then compare the performance vs. cost ratio of model-based with that

of direct. We conclude the section with a discussion on the best transformation

parameters generated by the two strategies.

Comparing Search Spaces

For this discussion, we focus on the parameter search space of advect3d. As men-

tioned earlier, the parameter search space of fusion and tiling is orthogonal. Thus,

we are not able to search through (or visualize) the combined search space of these
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direct search

Figure 7.16 : Fusion configuration search space for advect3d on Opteron.

two transformations. The fusion parameter search space of advect3d is shown in

Fig. 7.16. advect3d has eight loop nests. Fig. 7.16 shows the performance of the ap-

plication for all different fusion combinations. For simplicity, we only consider fusing

of loops at the innermost levels. As expected the performance curve for the fusion

parameter search space is jagged with no discernible pattern. Fig. 7.17 shows the tile

size search space corresponding to fusion configuration number four. We choose this

particular configuration because this is the best configuration discovered by direct.

The tile size search space shows the performance of advect3d for different tile sizes for

two loops. We notice again that there is some variation (about 10%) in performance

within the tile size search space. More interestingly however, we notice that all of

the points within the tile size search space lies below the performance of the original

fusion configuration. This says that it is best to leave the loops untiled for this par-

ticular fusion configuration. However, there may be other fusion configurations for

which tiling may be desirable. Because we perform an orthogonal search, we never

explore the tiling search space for other, possibly sub-optimal fusion configurations.
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Figure 7.17 : Tile size search space for best fusion configuration for advect3d on
Opteron.

Thus, an orthogonal search on the transformation parameter search space leads to

less than desirable performance.

Now, consider the search space corresponding to different tolerance values for the

effective cache capacity in Fig. 7.18. This search space considers both transforma-

tions together. For this search space, our search strategy is not tied to a particular

fusion configuration when searching for different tile sizes. For each tolerance value

of effective cache capacity a different fuse-tile combination is generated. We observe

that this search space not only has a lot fewer points, but also leads to higher perfor-

mance. This is a direct consequence of linearizing the search space using the effective

cache capacity parameter.

The parameter search space of advect3d is a prime example when the orthogonal

nature of the search space leads to reduced performance. The situation where none of

the tile sizes results in improved performance for a chosen fusion configuration may

not arise for all applications. However, these experimental results demonstrate the
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Figure 7.18 : Search space for effective cache capacity for advect3d on Opteron.

potential hazards of using an orthogonal search without considering the interaction

between transformations.

Performance vs. Cost

As demonstrated above, by tuning for the effective cache capacity parameter, we are

able to explore the combined search space of fusion and tiling in a non-orthogonal

manner, which can lead to improved performance. However, by moving to the search

space of estimates of machine parameters, we are also moving into a much smaller

search space. Therefore, it is important to evaluate how much performance is lost

as a result of moving into the smaller search space. To do this, we perform a set of

experiments, comparing model-based with direct.

For these experiments, we replace our search strategy with a multi-dimensional

direct search that explores the search space of possible fusion configurations and tile

sizes. Since the tiling search space dimension changes for each fusion configuration,

direct search performs an orthogonal search. That is it first searches for the best fusion
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Figure 7.19 : Performance comparison between model-based and direct on Opteron.

configuration and once the best fusion configuration has been found it attempts to

find the best tile sizes for that particular fusion configuration. On the other hand,

model-based uses effective cache capacity to linearize the search space for fusion

and tiling. Thus, for all applications model-based explores a two-dimensional search

space.

Figs. 7.19 and 7.20 show performance results from four applications on the MIPS

and the Opteron using the two search strategies. The results show that model-based

is able to find values that are very close to the values found by direct. For advect3d

on the Opteron, model-based significantly outperforms direct. This, of course, is

due to the orthogonal nature of the search method, as discussed earlier. For all other

applications direct performs better. However, the performance gap is never more

than 5%.

On the other hand, in terms of tuning time we pay a high premium when we

apply direct search. Figs. 7.21 and 7.22 show that on average direct requires

about four times as many program evaluations as model-based. In the context of
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Figure 7.20 : Performance comparison between model-based and direct on MIPS.

0

10

20

30

40

50

60

advect3d erle liv18 mgrid

N
o
.
o
f
P
ro
g
ra
m

E
v
a
lu
a
ti
o
n
s

model-based direct

Figure 7.21 : Tuning time comparison between model-based and direct on Opteron.
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Figure 7.22 : Tuning time comparison between model-based and direct on MIPS.

empirical tuning, where the number of program evaluations is the principal bottleneck,

this savings in tuning time will be significant for any decent sized application. In

such cases, the savings in tuning cost may make the small sacrifice in performance

worthwhile.

Best Parameters

We conclude the comparison of model-based and direct with a look at the best

transformation parameters discovered by the two strategies. The best tile sizes found

by each strategy on the MIPS are presented in Table. 7.1. Interestingly, the best

tile sizes discovered by the two strategies are significantly different in some cases.

This discrepancy may be explained by several factors. The cost models used in

model-based compute conservative estimates of the architectural parameters. Thus,

the tile sizes picked by model-based are sometimes smaller than necessary. As we

can see, in most cases the tile sizes picked by direct is larger than model-based.

Another factor that explains some of the discrepancy is the multi-dimensional
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model-based direct

advect3d [4, 20] [6, 15]

erle [12, 28, 12, 12] [18, 62, 6, 109]

liv18 [12, 60] [20, 72]

mgrid [4, 12, 4, 120, 4, 24] [6, 13, 18, 112, 8, 32]

Table 7.1 : Best tiling parameters

nature of the search space. Each dimension in the search space can affect performance

in different ways. For example, the level-two cache miss rate is sensitive to the inner

tile size whereas the TLB miss rate is sensitive to the outer tile size. Thus, the

trade-off between L2 misses and TLB misses leads to two pairs of tile sizes that are

significantly different but produce good results.

7.7 Summary

In this chapter, we have presented a model-driven approach of empirically tuning

loop fusion and tiling parameters. The experimental results in Section 7.6 show

that our analytical model is able to estimate the trade-offs between fusion and tiling

with reasonable accuracy. By combining our static model with empirical search, we

are able to adapt the transformed programs to achieve good performance on different

platforms. Our approach of tuning for architectural parameters results in a significant

reduction in the size of the optimization search space, while incurring only a small

performance penalty in the resulting code.
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Chapter 8

Model-guided Tuning of Array Padding Factors

In this chapter, we present a strategy for incorporating array padding into an auto-

matic tuning framework. We describe a graph-coloring based approach for efficient

allocation of arrays and a cost model for making fusion, tiling and padding decisions

in an integrated fashion. We show how this cost model can be parameterized for

use with empirical search for fine tuning of transformation parameters to different

architectures. We also present a preliminary evaluation of our approach using hand

experiments on two architectures.

8.1 Introduction

Array padding belongs to the family of data-layout transformations that aims to

improve memory hierarchy performance by reorganizing the way data is laid out in the

program. It is a a well-known and effective technique for eliminating conflict misses

that occur in set-associative caches. The transformation involves inserting dummy

elements between variables to influence where in cache each variable is mapped. The

goal is to find a mapping for all variables that results in the least amount of overlap

in cache.

Although array padding can be a very effective technique for improving program

performance, the task of finding suitable padding factors is usually quite difficult. In

the general case, the problem of finding an optimal data layout has been shown to



137

be NP-hard [59]. Even more restricted instances of the problem, such as the optimal

layout of data with bounded arrays can be shown to be NP-hard∗. Because the prob-

lem of finding an optimal solution is generally intractable, researchers have developed

several heuristic algorithms for finding suitable padding factors (see Chapter 3).

However, finding a good heuristic for array padding has also proven to be non-trivial.

Several factors that make finding suitable padding factors difficult. First, padding

factors are highly sensitive to parameters of the underlying cache architecture. Small

changes to any of the cache parameters can completely nullify the effects of padding.

Second, similar to loop fusion and tiling, array padding has strong interaction with

several other program transformations. Therefore, finding the right padding factors

often involves considering the complex trade-offs with transformations that are ap-

plied both before and after array padding. Finally, determining effective padding

factors requires a global view of the program. A padding solution that is optimal for

one particular loop may have an adverse effect on another loop in the program. In

the section that follows we use a simple example to illustrate some of the difficulties

of padding arrays effectively.

8.2 An Example

Consider the code in Fig. 8.1. We have two two-dimensional loop nests, each of which

sweeps over several one-dimensional arrays a number of times. For this example,

assume that we have a two-way set associative cache with 16 blocks with 16 words

per block. We want to allocate all arrays in the code segment such that the number

of conflict misses is minimized.

∗We can show this by formulating the problem as an integer programming problem.
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  LA: do j = 1, 64
do i = 1, 64

            b(i) = a(i) + c(i) + d(i)
enddo

enddo

  LB: do j = 1, 64
do i = 1, 48

           e(i) = b(i) + b(i+1) + d(i) + d(i+1) + e(i+1)
enddo

enddo

Figure 8.1 : Example code before transformations.

8.2.1 Global Array Padding

Fig. 8.2 shows the number of contiguous memory blocks touched by each array in the

inner loop of each loop nest. In loop nest LA, we access four memory blocks from

each of the arrays a(), b(), c() and d(). On the other hand, in loop nest LB,

because of the inner-loop carried reuse, we access five blocks each, from arrays b(),

d() and e(). We note, that the total number of blocks accessed in each loop nest is

less than the capacity of our example cache. Therefore, there is a perfect allocation

for all arrays for each loop separately. However, if we were to start with the first

loop nest and allocate all of the arrays to minimize the conflicts in the first loop and

then focus on the second loop nest then we would end up with the allocation shown

in Fig. 8.2. As we can see, this does not lead to a perfect allocation. We have two

overlapped blocks in cache which will cause severe conflict misses when the code is

executed. The reason this happens is because two of the arrays, b() and d() are

shared among the two loop nests. When we allocate arrays in loop nest LA, we fix

the locations for these two arrays. Then, when we try to find the best allocation
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Figure 8.2 : Cache conflicts arising when padding arrays in local scope.

for LB, the only array we have control over is e(). No matter where we place e(),

we cannot avoid this conflict. It can be easily shown, that we encounter the same

problem if we started with LB rather than LA. This example emphasizes the need

for having a global view when allocating or padding arrays in a program.

Fig. 8.3 shows a simple approach to a global allocation strategy. In this example,

arrays that are accessed in multiple loops are allocated before arrays that are accessed

in only one loop nest. Thus, instead of trying to find optimal allocation for each loop
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Figure 8.3 : Fewer cache conflicts when padding arrays in global scope.

nest this strategy aims to allocate arrays such that the overall performance of the

program is improved. Although this global allocation strategy does not eliminate all

conflicts, it reduces the number of overlapped blocks in cache.

8.2.2 Padding-Tiling Interaction

The code in Fig. 8.1 has constant loop bounds. Hence, computing the number of

memory blocks touched in each loop nest is trivial. However, most real applications

are likely to have symbolic loop bounds whose value may depend on the input data
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   LA: do ii = 1, M, T
         do j = 1, N
           do i = ii, MIN(ii+T-1, M)
              b(i) = a(i) + d(i) + c(i)

enddo
         enddo
       enddo

   LB: do ii = 1, M, T
do j = 1, N

do i = ii, MIN(ii+T-1, M)
               e(i) = d(i) + d(i+1) + b(i) + b(i+1) + e(i+1)

enddo
         enddo
       enddo

(a) code after tiling

  LAB: do ii = 1, M, T
        do j = 1, N
          do i = ii, MIN(ii+T-1, M)

��b(i) = a(i) + d(i) + c(i)
     ��e(i) = d(i) + d(i+1) + b(i) + b(i+1) + e(i+1)

          enddo
        enddo
      enddo

(b) code after fusion

Figure 8.4 : Example code with fusion and tiling.
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Figure 8.5 : Optimal allocation with reduced tile sizes.

set. In such cases, determining the number of memory blocks accessed becomes much

more difficult. As a result, finding the best data layout for a program also becomes

more difficult. However, the interaction with tiling works favorably in this situation.

We can use tiling to limit the number of blocks touched in the inner loop and therefore,

can apply a more accurate and efficient allocation strategy. Fig. 8.4(a) shows the code

from Fig. 8.1 using symbolic loop bounds and each of the loop nests tiled with a factor

of T . If we choose T = 64 then we can allocate all arrays as we had done previously

with constant loop bounds.
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Although tiling enables us to determine the number of blocks accessed in each

loop nest it does not necessarily imply a better data layout. For that, we need to

find a suitable tile size as well. The allocation in Fig. 8.3 results in one overlapped

block in cache. We can eliminate this overlap if we touched fewer blocks in either of

the loop nests. This is achieved by choosing a tile size, T < 64 for LA or T < 48

for LB. However, as mentioned in Chapter 7, choosing a smaller tile size results in

lost reuse for the inner loop. Hence, we want to choose a smaller tile size only if

losing inner-loop reuse is less of a sacrifice than accepting an overlapped block in

cache. For the code in Fig. 8.4, the global allocation causes one overlapped block in

cache, which results in (M/T × 2)×N = 2NM/T misses. On the other hand, if we

reduce the tile size for LB, which has two inner-loop carried reuse, the code will incur

2(NM/bT −NM/b(T − b)) additional misses, where is b is the block is size in words.

Hence, we want to reduce the tile size only if

2NM/T > 2(NM/bT −NM/b(T − b))

Simplifying the above we get,

T > b + 1

. Thus, as long as our tile size is larger than one cache block it is always profitable to

reduce the tile size rather than accommodate an overlapped block in cache. Of course,

this constraint will change depending on the reuse patterns of different loop nests.

Fig. 8.5 shows the allocation of arrays that avoids all conflicts using the reduced tile

size.
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Figure 8.6 : Conflicts in cache when padding arrays in fused loop nest.

8.2.3 Padding-Fusion Interaction

There is considerable interaction between array padding and loop fusion as well.

However, this interaction is generally negative. Consider the code in Fig. 8.4(b),

where we have fused the two loop nests that we had previously tiled. In fusing the

two loops we have increased the potential for cross-interference between arrays in the

fused nest. Fig. 8.6 shows the the number of blocks touched by each array in the

fused nest. The best possible allocation for the fused nest is also shown in this figure.

As we can see, after fusion we are not able to avoid conflicts in cache no matter what

padding factors we choose for the different arrays. Thus, for this particular example

it is best to leave the loops unfused so that we can minimize the number of conflict

misses.
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8.3 Background

8.3.1 Program Model

We make the same assumptions about the program model as we did in earlier chapters.

A program is a collection of statements each enclosed by one or more loops. Loops are

perfectly nested and loop bounds are affine expressions of loop induction variables.

All array references are uniformly generated [25]. We assume that the first declared

array is aligned at a page boundary.

8.3.2 Notation and Terminology

The following notation is used to describe the cost model:

CS = cache size in number of cache blocks

CA = cache associativity

S = CS/CA = number of sets (associativity groups)

CFP (l) = cache footprint of loop l in terms of cache blocks

We use the following terminology in describing the cost model in the next section:

Block: A block refers to either a cache block or a contiguous block of mem-

ory within the allocation of an array that maps to a single cache block. The

distinction will be clear from context.

Array section: An array section is simply the number of blocks in an array

that is touched in the iteration space of a loop nest. In the context of the cost

model, we are chiefly concerned about the number of blocks touched within

some tiled portion of the iteration space. The notion of array sections origi-

nates from bounded regular sections defined by Havlak and Kennedy [31]
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Interference: An interference between two arrays refers to the number of cache

blocks where the two arrays can overlap. Note, when we refer to interference it

implies a probable interference. That is, there exists an allocation for which the

two array sections will overlap. It does not imply overlap for all allocations.

Local Interference Graph: A local interference graph, G = (V, E) is an undi-

rected weighted graph, where a vertex, v ∈ V represents an array accessed in

loop nest l. A weighted edge, e ∈ E between v1 and v2 represents the cost of

interference between v1 and v2 in loop nest l.

Global Interference Graph: A global interference graph, G = (V, E) is an

undirected weighted graph, where a vertex, v ∈ V represents an array accessed

in program P . A weighted edge, e ∈ E between v1 and v2 represents the cost

of interference between v1 and v2 in program P .

8.4 Cost Model

We approach the problem of finding an optimal data layout with tiling and fusion

by formulating it as a graph-coloring problem. The idea is to first tile (and fuse)

the loops so as to fix the size of the array sections accessed in each tile and then

attempt to find a global layout that eliminates cache interference within each tile.

We do this by building a weighted interference graph, similar to the graph used in

register allocation [16]. In the interference graph, vertices correspond to arrays in

the program and an edge between two vertices represents a potential cache conflict

between the two corresponding arrays. We then use a heuristic to color the graph so
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that no two neighboring vertices have the same color. A color in this case corresponds

to an associativity group in the target cache. Of course, the graph-coloring problem

is NP-complete and so an optimal solution cannot be guaranteed in polynomial time.

When we encounter the situation when there are no colors left for a particular vertex,

we may decide to distribute (unfuse, if the loop has been fused previously) one of

the loops where the array is referenced or re-tile the loop with a smaller tile size. If

neither option appears profitable we accept the overlap in cache and move on to the

next vertex.

The algorithm proceeds in four major steps: fusing loops and selecting tile sizes,

building the interference graph, coloring the graph and deriving padding factors from

the colored graph. We describe these four steps in the following sections.

8.4.1 Fusing Loops and Selecting Tile Sizes

We use the algorithm presented in Chapter 7 to fuse and tile loops within the program.

We however, do not perform any search based tuning at this point. There are two

reasons for performing fusion and tiling in this initial phase. First, fusing the loops

gives us a fixed loop structure for building the initial interference graph. Second,

tiling the loops allows us to fix the size of the array sections within each loop nest.

Since the algorithm for fusion and tiling has been described elsewhere, we do not

reproduce the entire algorithm here. We only reiterate the two basic principles used

in making fusion and tiling decisions.

For each two-level loop nest l, we pick tile sizes T1 and T2 such that

CFP (l(T1, T2)) < CS (8.1)
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For any pair of fusible loops li and lj , we fuse the two loops only if

CFP (lij) < CS (8.2)

We note that if (1) and (2) hold then theoretically, we can allocate arrays for any

particular loop to eliminate all conflict misses. That is, there is a trivial solution for

each loop separately.

8.4.2 Building the Interference Graph

The interference graph, G = (V, E) is an undirected weighted graph where a vertex,

v ∈ V corresponds to an array accessed in the program and a weighted edge, e ∈ E

represents the cost of interference between two vertices. The cost of an interference

is estimated in terms of the number of blocks in cache where the two arrays overlap

and the cache miss penalty of each overlap.

The algorithm for building the interference graph proceeds in two steps. We first

build an interference graph for each loop separately. Then, on a second pass, we

merge all local interference graphs to construct an interference graph for the whole

program. The two major steps to building the interference graph is outlined below.

Local Interference Graph

To construct a local interference graph for a tiled loop nest l(T1, T2), we first add a

vertex v for for each array accessed in the loop nest. Then, for each vertex v in the

graph we determine the array section that is accessed during one execution of tile

(T1, T2). Computing array sections for a tiled loop nest is relatively simple. They can

be directly derived from the tile sizes and the set of array references in the loop. The

algorithm for computing array sections in a tiled loop nest is outlined in Fig. 8.7. Let
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procedure ComputeArraySection(REFS(a), T1, T2)

/* REFS(a) is the set of references for array a() in a tiled loop nest l */
/* T1, T2 are the inner and outer tile sizes respectively */
/* i, j refer to the index variable for inner and outer loop respectively */
/* sectiona holds array section for array a() at termination */

sectiona ← 0

/* compute section for inner-loop references */
if if ref of the form a(i) or a(i - p) or a(i + p) ∈ REFS(a) then

sectiona ← T1 × T2

end if

innerGrouplow ← refs ∈ REFS(a) of the form a(i - p)
sectiona ← sectiona + FindMaxAdditive(innerGrouplow) ∗ T2

innerGrouphigh ← refs ∈ REFS(a) of the form a(i + p)
sectiona ← sectiona + FindMaxAdditive(innerGrouphigh)

/* compute section for outer-loop references */
if ref of the form a(j) or a(j - p) or a(j + p) ∈ REFS(a) then

sectiona ← sectiona + T2

end if

outerGrouplow ← refs ∈ REFS(a) of the form a(j - p)
sectiona ← sectiona + FindMaxAdditive(outerGrouplow)
outerGrouphigh ← refs ∈ REFS(a)oftheforma(j + p)
sectiona ← sectiona + FindMaxAdditive(innerGrouphigh)

Figure 8.7 : Algorithm for computing array section.

REF (v) be the set of references for the array corresponding to vertex v. We then

compute the array section for v using the following:

v.section = ComputeArraySection(REF (v), T1, T2)

Next we need to compute the number of times each block is referenced in the loop.

This is done using reuse analysis described in Chapter 6.
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v.reuse = ComputeReuse(ReuseType(REF (v)), T1, T2)

Since all arrays within a tile can interfere with each other, the local interference

graphs are all fully connected. Hence, we add an edge between each pair of nodes in

the graph. For an edge, e(v1, v2), we assign a weight W using the following formula

e(v1, v2).W = MIN(v1.section, v2.section)× (v1.reuse + v2.reuse)

In the worst case, the smaller array section completely overlaps with the larger

array section. Therefore, the maximum number of blocks where the two arrays can

overlap is the number of blocks accessed by the array with the smaller section. The

cost of an overlap is estimated by the number of times we incur a miss in cache.

The number of cache misses is determined by the number of times each overlapped

block is accessed in the code. The reuse field gives us this information. Hence, when

computing the edge weight we sum these two fields to get an estimate of the total

cost of interference.

Global Interference Graph

Once we have computed all of the local interference graphs we make a second pass

through the loop nests and merge the graphs two at a time, in program order. When

merging two local interference graphs we only need to consider vertices that corre-

spond to arrays that are referenced in both loops. Vertices that do not appear in both

graphs are not affected by the merge operation. When merging a pair of vertices that

correspond to the same array in the code, we need to update both the section and

the reuse fields. Since the section and reuse information for each loop is needed

for optimally allocating arrays at a later phase, we need to store this information for
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both the loops. Hence, for the global interference graph we maintain a list associated

with each vertex to store this information. Assume we are merging vertices va and vb

in graphs Gi and Gj then we have

vnew.section[i] = va.section

vnew.section[j] = vb.section

Similarly,

vnew.reuse[i] = va.reuse

vnew.reuse[j] = vb.reuse

When merging two local interference graphs, edges need not be updated unless

there are multiple arrays shared between the two graphs. If there are two (or more)

arrays shared between two loops then in addition to merging the two pairs of vertices,

we also need to merge the two edges. The reuse component of the edge weight can

be computed by simply adding the reuse components of the two edges. The section

component is computed by taking the max-min of the two pairs of array sections.

Thus, at the end of this phase we have an interference graph for the full program.

8.4.3 Coloring the Interference Graph

We adopt Chow and Hennessy’s priority-based coloring scheme in coloring the inter-

ference graph [13]. We sort the vertices in descending order by weight and put the

sorted vertices into a working list. We then iteratively pick the highest ranked vertex

v and try to color it. If we are able to find a color for v, we remove it from the working

list. If v is not color-able we either try to distribute the loop where v is referenced or

attempt to re-tile the corresponding loop nest. If neither option is feasible, we assign

a color to v that minimizes the number of overlaps in cache for v.
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procedure ColorVertex(G, v)

Slots[S] /* array to store counters */
CA /* cache associativity */

/* identify slots occupied by ≥ CA arrays */
for each u ∈ neighbors(v) do

if u allocated then

for i = u.start to u.start + W (u, v) do

Slots[i]++
end for

end if

end for

/* mark each slot occupied by ≥ CA as unavailable */
/* mark k preceding slots as unavailable */
for each sequence of slots P occupied by ≥ CA arrays do

for i = P.start to P.end do

Slots[i]← unavailable
end for

for i = P.start−MAX(W, uk, v) to P.start do

Slots[i]← unavailble
end for

end for

/* find first available slot and color the vertex */
for i = 0..S − 1 do

if Slots[i] = available then

v.start← i
break

end if

end for

if no slots available then

Distribute(v) or Tile(l) or Try again allowing n overlap
end if

Figure 8.8 : Algorithm for coloring a vertex.
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Initially, number of colors available is the number of associativity groups in the

target cache. (i.e. all integers between 0 and S − 1). When we color a particular

vertex v, we remove from the available list all colors that fall in the span of v. Of

course, we need to maintain a counter for associativity for each set. A particular color

is made unavailable only if the counter goes beyond the associativity of the cache.

Figure 8.8 shows a high-level sketch of the algorithm for coloring a particular vertex.

8.4.4 Computing Padding Factors

Once we have colored the global interference graph, each array in the program will

be assigned a starting location in cache that is deemed as most profitable according

to our cost model. The final step in our algorithm involves deriving a padding factor

from the starting location of each array. We derive padding factors from relative

offsets of two consecutively declared variables. Let, Loci be the starting location

in cache for the ith array in the program. We compute the padding factors for all

variables using the following formula:

Pad0 = 0

Padi = Loci − Loci−1

where 1 ≤ i ≤ A and A is the number of arrays in the program.

Once all padding factors have been computed, we derive the new base addresses

for each variable using the following formula:

Basei = Addri +

i=0
∑

i≤A

Padi

where Addri is the original memory address of the ith array.
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8.5 Search Strategy

Our search strategy for tuning padding factors follows the method described in Chap-

ter 7. Finding good padding factors is intricately related with determining a suitable

value for the effective cache size parameter. Padding factors are not directly cor-

related with the capacity of the cache, as is the cache with loop fusion and tiling.

However, finding good padding factors is dependent on choosing the right tile sizes

for different loops. Choosing the right tile sizes in turn depends on finding a good

estimate for the effective cache capacity. Hence, tuning for the best effective cache

capacity is likely to lead to better padding values.

This approach of searching for the best effective cache capacity creates a search

space that is independent of the number of arrays in the program. In most cases, this

leads to a much smaller search space. For example, the approach used by Vera et

al. [73] searches for a range of padding factors for each array in the program. Hence,

the size of their search space is A×R, where A is the number of arrays in the program

and R is the number of different values considered for each padding factor. On the

other hand, in our approach the size of the search space is bounded by the range of

tolerance values used in the search for the best effective cache capacity. Hence, if we

increase our tolerance by t% in a range of 1 to R, then the size of the search space is

R/t. Hence, even for a 1% increment we end up with a smaller search space as long

as there is more than one array in the program.

8.6 Preliminary Evaluation

We have a partial implementation of the array padding algorithm in our automatic

tuning framework. We use this implementation to present a preliminary evaluation of
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Figure 8.9 : Comparison of L1 cache miss rates for different padding strategies on
Pentium4.
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Figure 8.10 : Comparison of L1 cache miss rates for different padding strategies on
Opteron.
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our strategy. We use a simple synthetic benchmark, arraysweep to test our strategy.

arraysweep sweeps over ten arrays in two separately tiled loop nests. Hence, this

program provides ample opportunities for cache conflicts to arise. The tile sizes

are preselected so that the cache footprint of each tile is less than the capacity of

the target cache. Thus, the program allows us to determine the effectiveness of the

padding strategy in reducing conflict misses in isolation. We use Pentium 4 and

Opteron as our testing platforms.

We compare our global padding strategy (globalpad) with a regular padding strat-

egy regularpad. In regularpad, padding factors are chosen for arrays by considering

one loop nest at a time. Strategies similar to regularpad have been previously used

by Rivera and Tseng [65] in eliminating severe thrashing of arrays. As a point of

reference, we also look at the extreme case when all arrays start-off at the same cache

location and no padding is used (worstcase). Fig. 8.9 shows preliminary experi-

mental results on Pentium 4. We measured the L1 miss rate for arraysweep for all

three scenarios for varying array sizes. The results show that the L1 miss rates for

globalpad is about 5% less than that of regularpad. This difference in miss rates

does not change as we vary the size of the arrays. Also, as expected the miss rates

for worstcase is very high, almost 16 times that of globalpad.

Fig. 8.10 shows experimental results on Opteron. Although the Opteron has a

much bigger L1 cache than the Pentium4, it only has an associativity of two. Hence,

we observe similar results on this platform. In the worstcase scenario, the application

suffers almost a 40% miss rate and again globalpad does better than regularpad.

Although in this case the difference in miss rates is not as much.
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8.7 Summary

The preliminary experimental results presented in this chapter is not sufficient to eval-

uate our padding strategy. The results merely serve as proof of concept. Performing

a more thorough evaluation of the method would require a complete implementation

of our strategy. This is part of our future plans. Nevertheless, the strategy described

in this chapter shows that the approach of applying integrated program transforma-

tions with empirical search can be extended to include other key memory hierarchy

optimizations.
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Chapter 9

Conclusions

We began this dissertation by emphasizing the importance of automatic tuning in

achieving high-performance on scientific applications in the ever-changing micro-

architectural landscape. We also pointed out the serious difficulties we face in try-

ing to automatically tune applications to different architectures. Over the course of

several chapters in this dissertation, we have presented a number of strategies that

address these difficult problems. The goal of this work has been to lay the foundations

for an automatic tuning framework that will present itself as a viable alternative to

scientists who require portable high-performance for their applications.

This chapter first summarizes the main contributions of this dissertation and then

discusses some future extensions to this work.

9.1 Contributions

A Tool for Automatic Tuning

Chapter 4 describes our framework for automatic tuning. Although this tool was pri-

marily developed to support our research, it addresses several important issues that

can help advance research in automatic tuning. Chief among them is the integration

of loop-level performance metrics with loop-level control over transformations. Spec-

ifying optimization parameters through source code directives is a novel idea in the

area of automatic tuning. This fine-grain approach of tuning applications can result
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in significant reduction in tuning time. This approach will be particularly useful for

tuning applications in a distributed system where different code regions can be tuned

in parallel.

Insight into the Nature of the Search Space

The experimental study described in Chapter 5 provides insight into the character-

istics of the search space of certain transformation parameters. We used this insight

in developing our search space pruning strategy. The large volume of data generated

through exhaustive search of different search spaces can provide additional insight

about the nature of the search spaces. This knowledge can be useful in developing

new search strategies and search space reduction techniques.

Heuristic Models for Integrated Transformations

Chapters 6, 7 and 8, all describe new heuristic models for applying memory hi-

erarchy transformations. Although we developed the strategies with the intention

of using them in the context of automatic tuning, these models can be useful en-

hancements for any optimizing compiler. In particular, the integrated cost model for

fusion and tiling in Chapter 7 and the global array padding algorithm with fusion

and tiling in Chapter 8 are both novel approaches for performing integrated program

transformations.

Search Space Pruning

The main contribution of this work is the search space pruning strategy described in

Chapter 7. The use of architecture-dependent model parameters in empirical search

is a novel idea which has several benefits. This pruning strategy causes a significant
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reduction in the search space of transformation parameters. Using the notion of

effective cache capacity we are able to capture the effects of multiple transformations

with a single parameter, This allows us to linearize a multi-dimensional search space

into a single dimension. Moreover, our search allows us to correct for inaccuracies

within the models which leads to more accurate estimates of architectural parameters.

9.2 Future Work

Exploring More Transformations

The most immediate extension to this work is to incorporate more transformations

into the framework. Some of the transformations we plan to include in our framework

are: unroll-and-jam, loop interchange and software prefetching. Our goal is to have a

core set of memory hierarchy transformations that attack the problem from different

angles. For example, we currently have tiling and array padding in our framework that

mainly target capacity and conflict misses. Therefore, a useful choice for inclusion is

software prefetching that can hide latency for compulsory misses. Of course, adding

more transformations will pose new challenges. Adding new transformations will

require careful analysis of the interaction between the new transformation and each

of the transformations already in the framework. As the number of transformations

grows large, this task may prove to be rather daunting. In such situations, a favorable

trade-off may be to reduce some of the analysis in favor of longer search times.

Exploring More Architectural Parameters

Our current search strategy considers the register set and different levels of cache for

tuning. However, there are several other memory hierarchy parameters that can have
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a significant impact on performance. Chief among them is the translation look-aside

buffer (TLB). The TLB often turns out to be the principal bottleneck for applica-

tions processing large data sets. TLBs tend to have a small number of associativity

groups with high degrees of associativity. Hence, the TLB poses a somewhat different

challenge in improving memory hierarchy performance. One of our future plans is to

develop a model (similar to the model of the effective cache capacity) that estimates

the fraction of TLB that is available to a program during execution. We then plan

to use that model to tune applications for improved TLB performance.

The presence of load and store buffers in the underlying architecture can also have

a significant impact on the memory hierarchy performance of an application. For this

reason, in the future, we plan to incorporate number of outstanding loads and stores as

possible tuning parameters. Our experimental results revealed some interplay between

certain memory hierarchy transformations and software prefetching. Similarly, the

profitability of certain transformations may be affected by the hardware prefetch

mechanisms that exist on some architectures. As such, we plan to include hardware

prefetch distance as a parameter for empirical tuning in the future.

Tuning for Multi-Core Platforms

Chip multiprocessor systems (CMP) are playing an increasingly important role in

high-performance computing. Each new generation of CMPs is likely to double the

number of cores on a chip and also present a more complex memory hierarchy. Hence,

software tools will be critical in harnessing the full potential of large-scale chip multi-

processor systems. Keeping this scenario in mind, we want to expand our research

on automatic tuning to tuning for multi-core systems. In particular, we want to

explore tuning strategies for the shared cache architecture on multi-core platforms.
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The shared cache architecture of CMPs present an inherent trade-off between locality

and parallelism. Striking the right balance between locality and parallelism will be

critical to performance for many applications. We intend to develop an automatic

tuning strategy that attempts to find the optimal granularity of parallelism without

sacrificing locality on individual cores. Models we have developed in estimating pa-

rameters for non-shared caches can be extended for shared caches to guide the tuning

strategy.
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