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ABSTRACT

In the Quadratic Assignment Problem (QAP), n units (usu-
ally departments , machines, or electronic components) must
be assigned to n locations given the distance between the lo-
cations and the flow between the units. The goal is to find
the assignment that minimizes the sum of the products of
distance traveled and flow between units. The QAP is a
combinatorial problem difficult to solve to optimality even
for problems where n is relatively small (e.g., n = 30). In
this paper, we develop a parallel tabu search algorithm to
solve the QAP and leverage the compute capabilities of cur-
rent GPUs. The algorithm is implemented on the Stampede
cluster hosted by the Texas Advanced Computing Center
(TACC) at the University of Texas at Austin. We enhance
our implementation by exploiting dynamic parallelism made
available in the Nvidia Kepler high performance computing
architecture. On a series of experiments on the well-known
QAPLIB data sets, our algorithm produces solutions that
are as good as the best known ones posted in QAPLIB.
The worst case percentage of accuracy we obtained was
0.83%. Given the applicability of QAP, the algorithm we
propose has very good potential to accelerate scholarly re-
search in Engineering, particularly in the fields of Opera-
tions Research and design of electronic devices. To the best
of our knowledge, this work is the first to successfully paral-
lelize the tabu search metaheuristic to solve the QAP with
the recency-based feature, implemented serially in [11]. Our
work is also the first to exploit GPU dynamic parallelism in
a tabu search metaheuristic to solve the QAP.
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D.1.3 [Programming Techniques|: Concurrent Program-
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1. INTRODUCTION

The Quadratic Assignment Problem (QAP) is an NP-hard
combinatorial optimization problem [24, 31, 39]. The prob-
lem is to assign n units to n locations to minimize the total
cost measured as the sum of the products of flows between
units and distances between locations [35]. Flow and dis-
tance matrices are known. QAP has many applications [6,
13] and the most common one is the design of facility layouts
in manufacturing systems. In such application, the QAP
finds an optimal allocation of n facilities (departments, ma-
chines, or workstations) to sites to minimize the total layout
costs [11]. Other applications of QAP include the place-
ment of modules on board positions so that the total wire
length to connect them is minimized (i.e. computer back-
board wiring [33]), campus planning [15], hospital layout
[16], ergonomic design [1] (i.e., keyboard and control panel
design [30]), scheduling problems [17], placement of elec-
tronic components [26], and memory layout optimization in
signal processors [38]. The problem of assigning docks in
a cross-docking facility is modeled also as a special case of
the QAP [12]. In this problem, the objective is to assign
the incoming trailers to the inbound door positions and the
outgoing trailers to the outbound door positions to mini-
mize material handling cost. This cost is incurred by the
fork lifts or similar material handling systems when they
move the product between the inbound and the outbound
positions.

The QAP has attracted many researchers not only because
of its practical and theoretical importance but also due to
its complexity [4]. In general, instances with n > 30 are
difficult to solve by exact methods in reasonable time [1,
24, 6]. This fact has motivated the use of the problem as
a benchmark to test solution methodologies. Metaheuristic
approaches have been applied most often than heuristics [2].
QAPLIB serves as the most prominent source for problem
instances and known solutions [8]. An increased interest in
parallel computing to solve the QAP was evidenced in the
1990’s [24]. This trend began with the development of CPU
parallel implementations such as the ones in [9], [19] and
[34]. In the last few years, there has been a shift to finding
solutions using GPUs [5, 14, 25, 37, 39].

GPU’s are powerful accelerators, require less energy than
other computing devices, and are widely available and rela-



tively cheap. These GPU characteristics and the fact that
GPU computing has been identified as a very promising di-
rection in the field of Operations Research, motivated the
authors of this paper to solve the QAP using the GPU. We
chose to parallelize the tabu search metaheuristic because, it
has been reported as the most efficient approximate method
for solving the QAP[32, 11, 35, 34]. Even if several variants
of tabu search can be implemented, the tabu search method
have provided equal or better solutions when compared to
other approximate methods.

In this paper, we present a single instruction multiple
data tabu search algorithm for the QAP implemented on
the GPU. The computational framework used is the TACC
Stampede cluster at the University of Texas at Austin. TACC
is one of the XSEDE partner institutions. In the computa-
tional study in this paper, we investigate the performance
and accuracy of the proposed tabu search GPU implemen-
tation. The performance is assessed by comparing our im-
plementation to a parallel 2-opt algorithm recently imple-
mented by the authors of this paper [10] and to the tabu
search GPU implementation described in [39]. The accu-
racy is studied comparing the best results from our tabu
search implementation vs. the best known solutions posted
in QAPLIB.

The paper is organized as follows. Section 2 presents two
formulations for the quadratic assignment problem and a
brief description of a tabu search meta-heuristic for solving
the QAP in a serial environment. Section 3 provides an
overview of GPU computing. Section 4 provides a descrip-
tion of the tabu search implementation in GPU. Section 5
contains a literature review focused on work solving QAP
using GPU. Section 6 presents the computational experi-
ments and the numerical results. Section 7 summarizes the
conclusions and discusses future research.

2. QAP FORMULATIONS

2.1 Koopmans-Beckman QAP Formulation

Koopmans and Beckmann provide the following formula-
tion [22]: let F' and D be two given m X n matrices that
represent flows between units and distances between loca-
tions such that F' = [fri] and D = [d;;]. Consider the set of
positive integers 1,2, ...,n and let II,, be the set of all per-
mutations of 1,2, ...,n. The QAP can be defined as finding
a permutation 7* € II, such that the sum of the products
below is minimized.

Zﬂzzz.fﬂ'iﬂ'j'dij (1)

i=1 j=1

2.2  Quadratic 0-1 Formulation

Koopmans and Beckmann also stated a quadratic 0-1 in-
teger programming formulation [22]. In this formulation,
X = [®mp] represents an n X n matrix of decision variables.
The variable xx; takes the value of 1 if unit k£ is assigned
to location ¢ and 0 otherwise. The solution finds the val-
ues of all variables zy; and x;; that minimize the sum of
the products of flows and distances (Eq. 2) and satisfy the
constraints expressed in Egs. 3-5. Constraints in (3) assign
each unit k to a single location . Constraints in (4) assign
only one unit to each location. Constraints in (5) force the

decision variables to take binary values

min z = ZZ Z Z frudijerix; (2)

k=11=1 i=1 j=1

s.t
o = 1, k=1,2,..,n (3)
i=1
n
da = 1, i=1,2,...m (4)
k=1

{0, 1}

The information encoded in a permutation 7 in II,, has a
one-to-one correspondence to the information stored in the
n X n matrix X = [zg;]. If zx; equals to 1 then the i-th
element in 7 is k. Since the formulations in 2.1 and 2.2
are equivalent, we call Eq. (2) (or alternatively Eq. (1))
the objective function. Its value (or cost) permits to assess
and rank different problem solutions. In practice, the total
material handling cost computed as in equations (1) and (2)
is one of the most common ways to measure the efficiency
of a facility layout. Authors in [36], mention that over $300
billion will be spent annually in the US alone on facilities
that will require planning or replanning. By identifying fast
implementations that produce cost effective solutions this
expense can be reduced.

2.3 Serial Tabu Search for QAP

Following is a description of a basic serial tabu search (TS)
method to solve the QAP. It resembles the description for
the robust T'S method in [34]. The reader that is not familiar
with the TS method may consult [18]. TS is a metaheuristic
approach for solving combinatorial optimization problems.
Applications of TS include scheduling, transportation, net-
work design, layout and circuit design problems, telecom-
munications, probabilistic logic and expert systems, neural
network pattern recognition [11].

A basic TS method to solve the QAP starts with a ran-
domly generated permutation of the integers 1,2, ...,n. This
permutation will be called the initial solution. It is also set
as the current solution. The initial solution and its cost are
stored in best solution so far array and best cost so far vari-
able. An iteration counter is set to one. *At any iteration
of the TS method, a local exchange procedure is applied to
the current solution to generate a list of candidate solutions
(i.e. neighborhood solutions) that represent moves from the
current solution. The objective function value or cost is
computed for all the candidate solutions. If the candidate
solutions list is large, the user might restrict the cost com-
putation to a subset of solutions. The TS method chooses
the candidate solution with the best cost. If the solution
selected is forbidden because it is in the tabu list and does
not satisfy the aspiration criteria, the TS method drops this
solution from consideration and proceeds to select the next
best cost solution. The meaning of a tabu list and an as-
piration criteria are explained more in detail in the next
paragraph. The final selected solution becomes the current
solution; it may be a non-improving move with respect to
the previous current solution. If the cost of the current so-
lution is less than the cost of the best solution so far, the
best solution so far and the best cost so far are updated to
match the current solution and its associated cost. The it-

Thi € k=1,2,..,n i=1,2,...,n(5)



eration counter is increased by one. From the new current
solution, TS finds a new list of neighborhood solutions. This
means, the steps described in this paragraph starting from
the sentence marked with an * are repeated.

The iterative procedure described in the previous para-
graph goes until some predetermined stopping criteria are
reached. Common stopping criteria are: (1) the number of
iterations performed equals the maximum number of pre-
determined iterations or (2) the number of iterations since
the last update of the best cost so far and best solution so
far is larger than a specified threshold. The tabu list stores
solutions that the T'S method does not want to select in the
next few iterations. The objective of the tabu list is to avoid
a cycling behavior. For instance, if the search is in a solu-
tion that corresponds to a local minimum, the best move in
the next iteration could be a deteriorating one. If the local
minimum solution is not stored in the tabu list, in a new
iteration the algorithm will return to this previous solution
and then cycling around the local optimum will occur. Since
the tabu list may forbid critical promising moves, TS enables
the user to apply a feature known as aspiration criteria. The
aspiration criteria are ways to override the tabu status of a
solution. A commonly used aspiration criterion is to allow
to select a tabu move if it leads to a solution whose cost is
better than the cost of the best solution so far.

In this paragraph, we provide details about a simple and
convenient local exchange procedure that can be applied to
the current solution to generate the list of candidate solu-
tions at any TS iteration. From the introduction we recall
that one of the most common applications of QAP is the
design of layouts in manufacturing systems. Without loss of
generality we will call the permutation 7 a current solution
layout. The permutation element stored at position i will
represent the unit or department k assigned to location 7. A
simple move from a current solution layout to another one
results from the interchange of the units or departments k
and [ stored in two arbitrarily selected permutation posi-
tions i and j. This move is simple and convenient since it
doesn’t change the location of any other unit or department
in the permutation and permits a fast evaluation of the cost
of the move. The systematic way to obtain the entire six
pair-wise interchange of departments for a current solution
or permutation of size four is illustrated in Fig. 1. Over
each arc in Fig. 1 is the new solution or permutation result-
ing from the pair-wise exchange or move. In general, for a
problem of size n there are n*(n—1)/2 pair-wise exchanges.

Burkard and Rendl [7] provide a formula to compute the
change (i.e. delta) in the objective function value after a
pair-wise exchange (i.e. a swap). The advantage of this
formula is that it can be evaluated in O(n) operations for all
the O(n?) pair-wise exchanges. In contrast, the computation
of cost using Eq. (1) requires O(n?) operations. Following
is the formula in [7] for the case in which both flows and
distances are asymmetric.

Ay = (dji — dig)(frym; — Jrjm;)
+ D ([l = di)(frimp — Frjme)
ken\{i,j}
+ (dkj - dki)(fﬂkﬂz‘ - fﬂkﬂj)) (6)

Current solution
or current

permutation

containing units or 7 4 1 2 3
department
numbers

Positioniinthe  —= 1 2 3 4

array is exchanged
with position j

Figure 1: Two-way exchange procedure to generate
moves and candidate solutions in the TS method

3. GPU COMPUTING

Microprocessors based on a single central processing unit
(CPU) drove rapid performance increase and cost reduc-
tions in computer applications. This drive slowed due to
the energy-consumption and the heat-dissipation that lim-
ited the clock frequency and the level of productive activi-
ties performed in each clock period within a single CPU [21].
Semiconductor industry then settled on two trajectories for
designing microprocessors, multi-core and many-core.

In the past, GPUs were special-purpose hardwired appli-
cation accelerators, suitable only for conventional graphics
applications. Modern GPUs are fully programmable, au-
tonomous parallel floating point processors which may si-
multaneously execute the same program instruction on dif-
ferent data. Nvidia, the leading manufacturer of GPUs, re-
leased CUDA, a parallel computing platform and program-
ming model that provides a C programming language in-
terface to program the GPU hardware. CUDA enables dra-
matic increases in computing performance by harnessing the
power of the GPUs.

One appealing characteristic of the GPU is that it effi-
ciently launches many threads and executes them in parallel
to enable computational throughput across large amounts of
data. Each thread runs the same program named a kernel.
Threads are grouped into thread blocks and all threads in
a thread block may cooperate to solve a sub problem. A
block has a dimensionality of one, two or three. A grid is
a set of blocks which are completely independent. A grid
has dimensionality of one or two. A warp is a group of
threads within a block that are launched together and exe-
cute together. Warp size is typically 32 threads on current
generations of GPUs. Shared memory can be accessed by
all threads within a block but not across blocks. Luong et
al. describe several factors that affect the performance of
GPU-based QAP applications [25]. These include efficient
distribution of data processing between CPU and GPU, the
level of required communication and synchronization among
threads, the optimization of data transfer between the dif-
ferent parts of the memory hierarchy, and the capacity con-
straints of these memories.

One attractive feature of the Nvidia K20 GPU card is that



it supports a technology called dynamic parallelism [29] that
permits the GPU to operate in a more autonomous way. The
user may launch a grid of parent threads that run the same
program or kernel and these threads may launch a new grid
of child threads without returning to the host. The grid
dimensions and thread block sizes are set at the time of the
call. This effectively eliminates superfluous back and forth
communication between the GPU and CPU through nested
kernel computations. The invocation of the child threads is
properly nested and implicitly synchronized, meaning that
the parent threads are not complete until all child threads
created have completed.

In his technical report [20] presents a figure similar to
the one in Figure 2. It illustrates the GPU operation with-
out dynamic parallelism (left side) and with dynamic par-
allelism (right side). As the figure shows dynamic paral-
lelism permits the development of algorithms that can do
dynamic run time decisions. Besides, dynamic parallelism
frees the CPU for more time to do other tasks. It also favors
more CPU power conservation. The Nvidia K20 is equipped
with the Grid Management Unit (GMU) that manages the
dynamic execution by generating, suspending and resum-
ing kernels, as well as tracking dependencies from multi-
ple sources. A layer of system software running on the
GPU interacts with the GMU, enabling the CUDA Run-
time application-programming interface (API) to be used
from within a kernel program.

Figure 2: Flow between the host CPU and the GPU
without and with dynamic parallelism

4. GPU IMPLEMENTATION OF TABU
SEARCH

This section describes the Tabu Search (TS) algorithm
parallelized in this work. The parallelized TS includes the
recency-based memory feature proposed in [11] and the dy-
namic tabu list size strategy cited in [11], [34], and [35].
Both the recency-based memory and the dynamic tabu list
size feature are explained below. Authors in [11] claimed
that these TS features plus intensification strategies and a
long term memory structure to further implement diversifi-
cation strategies lead the TS algorithm to converge to very
good solutions at a reasonable speed regardless of the chosen
initial solution.

The recency-based feature in [11] keeps track of the tabu

status of a move. The feature is implemented by creating
a two-dimensional square array named Tabuarr with all its
cells containing zeros as initial values. For ¢ < j, (i.e. up-
per triangle of the two-dimensional array Tabuarr), the i-th
row and j-th column identifies the layout move that results
if department stored in the permutation 7 at location ¢ is
interchanged with the department or unit stored at location
j. Every time units or departments in positions ¢ and j of a
current solution layout are exchanged, the cell T'abuarr (i, j)
(for i<j) stores an integer value equal to current_iter + ¢
where current_iter is the current iteration number and ¢ is
the number of iterations in which the move will be kept tabu.
Therefore, t corresponds to the tabu list size. The value for ¢
may be fixed or randomly generated to implement a dynamic
tabu list size. In this way, if taburarr[i][j] < current_iter,
the move defined as exchanging the units or departments ¢
and j is not tabu, otherwise the move is in the tabu list.

As suggested in [18], the cells in T'abuarr[i|[j] (for i>j)
(i.e. lower triangle of the two-dimensional array Tabuarr)
may store the number of times units or departments i and
j have been exchanged. Thus, if at iteration one units or
departments in positions 2 and 3 are interchanged, the cell
Tabuarr[3][2] becomes 1, and if at iteration six units or de-
partments in positions 2 and 3 are interchanged again, the
cell Tabuarr([3][2] becomes 2. This frequency of use infor-
mation is a long term memory structure helpful to diversify
the search. However, in the parallelized TS algorithm imple-
mented in this work we diversify the search only through the
implementation of a dynamic tabu list size. We don’t utilize
the information stored in the lower triangle of Tabuarr.

In his seminal paper, Taillard [34] mentions that the choice
of the size of the tabu list is critical to diversify the search.
Cycling may occur if the tabu list size is too small. On the
contrary, if the size of the list is too large, promising moves
may be forbidden deviating the exploration to solutions of
lower quality and increasing the number of iterations to find
a good or optimal solution. To overcome this problem, we
opted to implement a variable tabu list size as proposed in
[34]. Since the minimum and maximum list size will be prob-
lem dependent we experimented with the recommendations
in [34] and[11]. We finally set the list size between 0.1n and
0.33n, where n is the problem size (i.e. number of units or
departments and also the number of locations). At every it-
eration, when a move is set as tabu, a random number in the
interval [0.1n,0.33n] is generated to determine ¢, the number
of iterations for which the move will be tabu.

In this paragraph, we summarize the parallel TS algo-
rithm we implemented in the GPU. It is depicted also in the
flowchart in Fig 3. Using specific seed values, a set of N ini-
tial random permutations or layout solutions of size n is gen-
erated in the CPU and stored in a matrix of size N xn. Each
permutation is assigned to a GPU thread. At each thread
an iteration counter variable named current_iter is set to 0
and a two-dimensional array Tabuarr of size nxn is created.
The cost of the initial random permutation is computed us-
ing Eq. (1) described in Section 2.1. The initial permutation
is copied into an array named best-solution-so-far and the
associated permutation cost is copied to a variable named
best-cost-so-far. The permutation or solution is also stored
in the current solution array and the current_iter counter
is increased by one. Next, each thread should perform pair-
wise interchanges to the current solution to generate a set of
S neighborhood solutions with S = n x (n — 1)/2. Instead



of asking the threads to generate all these neighbor solu-
tions, we take advantage of CUDA dynamic parallelism. A
number of 25/n (i.e. n — 1) child threads (CT) are created
to ask them to efficiently generate subsets of the neighbor
solutions and compute their costs. The subsets are of size
n/2 and the costs are computed using Eq. (6) from Sec-
tion 2.3. Since the flow and distance matrices are needed to
compute the costs of every solution in the neighborhood set,
these matrices are maintained in global memory to be ac-
cessible by all threads. Using the cost information returned
by the child threads, each parent thread identifies the (4,7)
best cost pair-wise interchange (with ¢ < j) and proceeds to
determine if such a move is not tabu. If this is the case, the
cell Tabuarrfilfj] (i < j) is updated to current_iter 4+t to set
the movement as tabu and the cell Tabuarr[j/fi] is updated
to increase the frequency of the selected movement by one.
If the movement is tabu, its associated cost is compared to
best-cost-so-far to determine if using this aspiration criteria
the tabu status can be overridden. If the tabu status can
be overridden, the permutation associated with the selected
move becomes the current solution; otherwise the TS algo-
rithm identifies the next best pair-wise interchange. The
step of identifying a pair-wise exchange that can be selected
is done for as many times as necessary. If there are no more
pair-wise exchanges to select, the T'S procedure should stop
prematurely. However, with an appropriate choice of the
tabu list size it can be avoided.

At every iteration it is possible that best-cost-so-far and
best-solution-so-far need to be updated. This is done by
comparing the cost of the selected permutation or current
solution to the the value stored in best-cost-so-far. If the cost
of a current solution is lower than best-cost-so-far then the
current solution (i.e current permutation) is stored in best-
solution-so-far and its cost is stored in best-cost-so-far. Now
the algorithm proceeds to validate the stopping criterion. It
compares the value of current_iter to the value of Maz_iter,
a variable that stores the predetermined maximum number
of iterations to perform the TS algorithm in each thread. If
the stopping criterion is not reached, the algorithm proceeds
to start a new TS iteration. The total number of iterations
the TS algorithm is repeated is set as a function of the prob-
lem size n. After the total number of iterations is reached,
each thread returns its best-solution-so-far and best-cost-so-
far values. The process of comparing the results returned
by the threads and finding the single permutation with the
minimum cost is done on the CPU. Once the solution and
its cost is identified and output to a file the T'S algorithm
terminates.

S. PREVIOUS WORK ON SOLVING QAP
USING TABU SEARCH AND GPU

Zhu et al. proposed a single-instruction multiple data
(SIMD) tabu search (TS) for the QAP using the GPU [39]
on a personal computer. The parallelization consisted of
running 6144 simultaneous independent tabu searches (6144
threads, 32 blocks, 192 threads per block) on 128 processors.
Texture memory (a fast read-only memory) was used to
store the distance and flow matrices. To assure each thread
searches a different but promising area the authors imple-
mented diversification and intensification operations every
m iterations. The authors demonstrated the implemented
algorithm was effective. They used instances of different

sizes (30 < n < 90) from QAPLIB and the worst perfor-
mance gap is 0.85% (by comparing the solution they re-
ported and the latest best known solution for the instance
named tai80a). The authors also stated that the cache size
(8k) of the texture memory affected the experimental perfor-
mance. Since their TS implementation only had short-term
memory, as a future research they proposed to develop long-
term memory.

Czapinski proposed an effective parallel multistart TS (PMTS)

for the QAP on the CUDA platform [14]. The technique con-
sisted of diversifying an initial solution, running multiple
tabu searches on each diversified solution, and re-starting
the search with the best solutions after a certain number
of iterations. The set of tabu searches to run in different
threads results from systematic swaps of an initial solution.
It permits the author to conclude that each thread can save
just two rows or two columns of the flow and distance matrix
for symmetric matrices. It avoids keeping the whole matri-
ces in shared memory. In the non-symmetric case, two rows
and two columns of the matrices are needed. To get a full-
benefit of coalescing transposed copies of the matrices are
stored. The proposed search also benefits from communica-
tion between parallel tabu search instances which is achieved
by passing the best obtained solutions to the CPU, exam-
ining them and choosing new configurations in the CPU,
and re-starting the parallel TS in the GPU. From initial ex-
periments the author agreed with [39] that 192 threads per
block was the best choice. Instances of size 50-70 ran faster
in GPU when compared to a six-core MPI implementation.

Other work related to solving a 3D extension of QAP with
tabu search using GPU is the one in [25]. At the best of our
knowledge, our work is the first one on successfully paral-
lelizing the TS metaheuristic with the recency-based feature
implemented serially in [11]. Our work is also the first one
on exploiting GPU dynamic parallelism in a TS implemen-
tation to solve the QAP.

6. EXPERIMENTAL RESULTS
6.1 GPU Platforms and Benchmark Data Sets

The computational experiments were executed on the Stam-
pede cluster on the TACC system. Stampede is a 10 PFLOPS
Dell Linux Cluster based on 6,400+ Dell Zeus PowerEdge
server nodes, each outfitted with 2 Intel Xeon 8-Core 64-bit
E5 processors (2.7 GHz) and an Intel Xeon Phi Co-processor
(1.1.GHz). Each node runs Centos 6.3 (2.6 32x86_64 Linux
kernel). The nodes are managed with batch services through
SLURM 2.4. Stampede has 128 compute nodes outfitted
with a single Nvidia K20 GPU on each node with 5GB
of on-board GDDR5 memory. Each K20 GPU has 2496
CUDA cores distributed over 13 streaming multiprocessors
(SM’s). Each SM can hold a maximum of 2048 thread con-
texts, which amounts to 26624 (13*2048) threads that can
simultaneously be active on the GPU. The clock speed for
each core is 0.706 GHz, L1 cache size is 64 KB/SM and L2
cache size is 768 KB (shared).

The CUDA code was compiled with nvcec using CUDA
version 5.5. The sbatch script was used to submit jobs to
the cluster and to specify the node configuration. For our
experiments, we ran four jobs simultaneously by assigning
each job to a different Stampede node. This significantly
expedited our evaluation process.

The instances used to test our TS algorithm come from
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Figure 3: Parallel TS algorithm executed at each GPU thread

QAPLIB, a library of published test problems for the QAP
described in [8]. We selected 2 instances from [23], 6 from
[34] and 6 from [35]. The Lipa instances come from prob-
lem generators described in [23]. These generators pro-
vide asymmetric instances (i.e. non-symmetric flow and/or
distance matrices) with known optimal solutions. The in-
stances named Taizza have random flows and distances gen-
erated from uniform distributions [34]. The problems la-
beled as Taizzb are introduced in [35] and they are asymmet-
ric and randomly but not uniformly generated. We ran the
TS algorithm in each problem instance eight times and com-
puted the average values as well as the standard deviation,
minimum, maximum, and coefficient of variation (standard
deviation/average). All coefficients of variation are low.

6.2 Performance and Accuracy

Table 1 compares the accuracy and performance of our
GPU accelerated tabu search algorithm to the following al-
gorithms:

1. 2-opt (Chaparala et al.): a GPU implementation of
the 2-opt algorithm to solve approximately the QAP
we developed one year ago and described in [10]

2. Tabu (Zhu et al.): a GPU implementation of Tabu
search to solve the QAP performed by Zhu et al. [39].

The accuracy gap, measured as the percent difference be-
tween the best known cost and the cost discovered by each
algorithm, is reported for the 14 different instances or data
sets selected from QAPLIB. The best known cost for a par-
ticular instance is the one reported at QAPLIB (http://

anjos.mgi.polymtl.ca/qaplib/inst.html). The work in
[8] also reports solutions and costs for the data sets studied.
However, the QAPLIB website updates the best known so-
lutions every time a new one is discovered. The instances
starting with an * have known optimal solutions. For the
other instances, the best known solution and cost comes
from the Robust Tabu Search in [34], the Reactive Tabu
Search in [3] or the Iterative Tabu Search in [27, 28].

The performance in terms of total execution time of the
GPU kernel is also reported for each instance and algorithm.
Times for 2-opt (Chaparala et al.) are reported in seconds
while times for the TS implementations are reported in min-
utes. For all implementations, the number of initial random
solutions generated for each instance was N = 6144. Based
on the results from experiments we performed in [10], the
total number of threads, blocks and threads per block were
set to 6144, 24, and 256, respectively for 2-opt(Chaparala
et al.) and our TS method. The total number of threads,
blocks and threads per block used by Zhu et al. was 6144,
32 and 196, respectively.

We observe that Tabu (Zhu et al.) and our TS imple-
mentation have the same accuracy for 8 of the 15 instances
studied. Our TS implementation has better accuracy in 5
instances and Tabu (Zhu et al.) has the best accuracy in 1
instance. The maximum percentage difference between our
solution and the best known is 0.83% for the instance named
tai80a. Table 1 also shows that the execution times for our
TS algorithm are comparable to the ones in Tabu (Zhu et
al.), but not consistently smaller. The running times for our
algorithm ranged from 1.79 to 362.89 minutes. The running



Table 1: Computational results for problems from the QAPLIB
Tabu Search (Zhu et al.)

2-Opt (Chaparala et al.)

Tabu Search (Novoa et al.)

Problem GAP Seconds GAP  Seconds Minutes GAP  Seconds Minutes
tai30a 1.10% 3.84 0.00% 18.60 0.31 0.00% 107.62 1.79
*tai30b  0.00% 3.78 0.00% 192.00 3.20 0.00% 107.56 1.79
tai40a 1.55% 11.83 0.07% 442.20 7.37 0.07% 906.75 15.11
tai40b 0.02% 11.68 0.00% 508.20 8.47 0.00% 906.60 15.11
tai50a 1.78% 29.40 0.58%  1210.80 20.18 0.39% 971.48 16.19
taib0b 0.15% 29.17 0.05% 574.20 9.57 0.05% 971.25 16.19
tai60a  2.50% 62.15 0.45%  1144.80 19.08 0.64%  3897.38 64.96
tai60b  0.23% 61.19 0.12%  2091.00 34.85 0.06% 3678.45 61.31
tai80a  2.48% 202.11 0.85% 11230.20 187.17 0.83% 10607.20 176.79
tai80b 0.52% 199.20 0.25% 10976.40 182.94 0.09% 14714.80 245.25
tail00a  2.35% 501.65 0.72% 23215.80 386.93 0.72% 21773.40 362.89
tail00b  0.89% 493.62 0.53% 33167.40 552.79  0.39% 16234.90 270.58
*lipa70a  0.77% 117.08 0.00% 1172.40 19.54 0.00%  7214.00 120.23
*lipa90a  0.64% 327.19 0.00%  7585.20 126.42  0.00% 20594.60 343.24

time for Tabu (Zhu et al.) ranged from 0.31 to 552.79 min-
utes. The running times for these TS methods are small
if compared to the ones of exact methods for solving the
QAP such as branch and bound. . We are also aware that
a straight forward comparison between the running times
for our TS algorithm and Tabu (Zhu et al.) is not entirely
meaningful since the algorithms were implemented in differ-
ent computer architectures with different GPU card.

7. CONCLUSIONS AND FUTURE WORK

This paper presented a very accurate GPU implementa-
tion of tabu search to solve the QAP. It exploits the CUDA
dynamic parallelism available in the Nvidia K20 GPU card,
by asking multiple child threads to generate the pairwise ex-
changes or moves from a current solution. The child threads
also evaluate the costs of these new generated solutions.
Experimental results show that the TS algorithm with the
dynamic parallelism was successfully implemented since it
provides excellent accuracy on the instances studied. We
solved the accuracy issue we had with the Taizza instances
when developing our accelerated 2-Opt algorithm described
in [10]. We will do further research on ways to improve
the TS computational times. We will look to speed-up the
procedure that sorts the solutions generated by the child
threads with respect to cost at each iteration. We will do
also more experimentation to find the optimum number of
child threads to launch.

Practical OR problems that may be impacted by the de-
velopment of this parallel algorithm are in the contexts of fa-
cility layout, cross-docking, warehousing, ergonomics, health
care optimization and scheduling. The OR community re-
searching on exact solutions to the QAP may benefit also
from the TS accelerated algorithm. A solution from a fast
heuristic or meta-heuristic permits to establish bounds at
the initial stages of exact solution approaches such as branch-
and-cut and branch-and-bound methods. On the other hand,
the accelerated TS algorithm can be hybridized with other
heuristics to coin new approximate solution methods. The
GPU accelerated TS implementation may be used by elec-
tronic industries working on the layout of electronic devices
in computer backboards or the location of memories in signal
Pprocessors.

We plan also on incorporating a long term frequency based

memory feature by using the information currently stored
in the lower diagonal of the two-dimensional array Tabuarr.
This feature can be used to diversify the search even more.
It could permit to find even more accurate solutions or solu-
tions that beat the best known ones for some instances. The
accessibility to the Stampede cluster reduced significantly
the time to complete the experimentation phase. The on-
line documentation from TACC and the suggestions from its
staff members were very helpful. These facts should moti-
vate more OR practitioners to use a computational cyberin-
frastructure similar to the Stampede cluster.
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