Understanding Stencil Code Performance On MultiCore
Architectures -

Shah M. Faizur Rahman
Computer Science Dept.
University of Texas at San

Antonio,
srahman@cs.utsa.edu

ABSTRACT

Stencil computations are the foundation of many large appli-
cations in scientific computing. Previous research has shown
that several optimization mechanisms, including rectangular
blocking and time skewing combined with wavefront- and
pipeline-based parallelization, can be used to significantly
improve the performance of stencil kernels on multi-core
architectures. However, the overall performance impact of
these optimizations are difficult to predict due to the inter-
play of load imbalance, synchronization overhead, and cache
locality. This paper presents a detailed performance study
of these optimizations by applying them with a wide va-
riety of different configurations, using hardware counters to
monitor the efficiency of architectural components, and then
developing a set of formulas via regression analysis to model
their overall performance impact in terms of the affected
hardware counter numbers. We have applied our method-
ology to three stencil computation kernels, a 7-point jacobi,
a 27-point jacobi, and a 7-point Gauss-Seidel computation.
Our experimental results show that a precise formula can
be developed for each kernel to accurately model the overall
performance impact of varying optimizations and thereby ef-
fectively guide the performance analysis and tuning of these
kernels.

1. INTRODUCTION

Stencil computations are used to solve a large number of
important scientific computing problems such as Partial Dif-
ferential Equations and image manipulation, among others.
These kernels use an outmost time loop to make a large num-
ber of sweeps over a multi-dimensional grid so that the value
of each grid point is repeatedly modified based on values of
neighboring points. While it is safe to restrict parallelism
within each sweep of a large grid by updating different por-
tions of the grid using multiple threads, the lack of data reuse

*This research is funded by the National Science Foundation
under Grant No. 0833203 and No. 0747357 and by the
Department of Energy under Grant No. DE-SC001770

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’11, May 3-5, 2011, Ischia, Italy.

Copyright 2011 ACM 978-1-4503-0698-0/11/05 ...$10.00.

Qing Yi
Computer Science Dept.
University of Texas at San

. . Antonio
gingyi@cs.utsa.edu

Apan Qasem
Computer Science Dept.
Texas State University
San Marcos, TX
apan@txstate.edu

and the relatively small amount of computation within each
thread makes the performance of this parallelization scheme
less than desirable on modern multi-core architectures. To
reduce the computation to synchronization ratio, each thread
needs to operate on multiple sweeps of a data block by co-
ordinating with other threads. Time skewing[13] combined
with wavefront or pipelined parallelization can accomplish
this goal, but load balancing is a known issue which could
seriously degrade performance for these schemes[14].

This paper studies several strategies to effectively explore
both the single-sweep and time-skewed parallelism for sten-
cil computations on modern multi-core architectures. We
have parameterized each optimization scheme with an array
of different configurations and used hardware performance
counters to measure the impact of these configurations on
various architectural components. Based on a large collec-
tion of empirical data, we then apply regression analysis to
develop a set of formulas which precisely model the overall
performance impact of differently optimized code in terms
of their efficiency in utilizing various hardware components.
We have applied our methodology to three stencil kernels,
a T-point jacobi (jacobi7), a 27-point jacobi (jacobi27),
and a 7-point Gauss-Seidel (gauss) on the intel Nehalem
architecture. Our experimental results show that a precise
formula can be developed for each kernel to effectively guide
the performance analysis and tuning of these kernels.

Fig. 1 shows the correlation coefficients between the over-
all execution time and different hardware counter values
measured at runtime for the three stencil kernels when ap-
plying cache and parallelization optimizations with different
configurations. Most of these optimizations focus on effi-
ciently utilizing individual architectural components such as
L1/L2/L3 caches, TLB, and CPU clock cycles. However, the
eventual impact of the optimization is often hard to predict.
From Fig. 1, we see that the overall performance impact of
each hardware counter value varies significantly in spite of
the three stencil kernels demonstrating similar computation
and data access patterns. Further, some hardware events,
e.g., hardware prefetching for the L2 cache (L2-pref-triggered
and L2-pref-retired) could have a positive impact for some
kernels but a negative impact on others.

We aim to model the relationship between performance
improvements achieved by different optimizations and their
efficiency of utilizing various hardware components. The
model is not intended to predict absolute execution time
and thus is supplementary to existing work on performance
modeling of scientific applications based on knowledge from
static program analysis or profiling [10, 5]. In particular,

1 W 7-pt
Jacobi
c 0.8
o 0.6
S 0.4 m27-pt
¢ o2 e L L e
[.
5 0 - 1 " .

-0.2 & S S g SN > ST\ T\] g N J 7-pt
& & & & ob & & & Abz N)‘\\\ r—,@ o?’b c>7’z> &> & L Gauss-
QT » N X 2 .g@ e_,'@’ C zb & 14 N N ; & &

MR S $FOE S &S & & Seidel

o ‘ 2> Q N & o
N R ’L/Q@ Q@"« N ,,)/\5(\ o’@z Q‘-{\ ° O@’o Cz}'o & & & &
RN M \,/ O qgfo P P
Different Hardware Performance Counters

Figure 1: Correlation between overall execution time and different hardware counters

our approach can be used to systematically extract mean-
ingful insights from large collections of experimental data.
Such insights can then be used by developers to enable more
effective optimization tuning of their applications.

Our approach uses regression analysis to develop a set
of formulas for each of the three stencil kernels and show
that these formulas can accurately relate the performance
impact of optimizing different hardware components and
thereby can be used to guide more effective tuning of the
benchmarks. For example, our performance formula for op-
timizing the 7-point jacobi kernel on a single core is shown
in Fig. 10 and indicates that the speedup gained by any
optimization can be modeled as 1 — NormalizedTime =
0.75 — 0.1 x L1-miss — 0.18 * L2_miss — 0.28 x L3_miss +
0.0008+T' L B_miss+0.016xmis_branch+0.014xhw_prefetch.
This indicates that in order to achieve better single-threaded
performance, developers should foremost try to reduce the
L3 cache miss, followed by reducing 1.2 and L1 misses. Hard-
ware prefetches may help to some extent, but TLB misses
have a minimal impact, and mis-predicted branches actually
improve performance (which indicate the kernel is memory-
bound, where mis-predicted branches may help relieve pres-
sure on memory bandwidth). More details of the perfor-
mance analysis are discussed in Section 5.

The contributions of this paper include the following.

e We present a detailed performance study of different
optimization strategies for stencil computations on the
Intel Nehalem multi-core architecture and compare their
impact on different architectural components.

We show that for each stencil kernel, a set of formu-
las can be used to model the overall performance of
differently optimized code based on the impact of op-
timizations on individual architectural components.

We show how to apply regression analysis to a large
collection of empirical data to derive the formulas and
verify the precision of the approach. The methodol-
ogy can potentially be automated without requiring
detailed knowledge of the underlying hardware.

The generality of our methodology and its applicability to
other computational kernels are yet to be verified. But our
experimental results have demonstrated great potential of
this approach and have shown that they can be used to
effectively guide the optimization of different stencil kernels.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 provides background on
different types of stencil codes and discusses the optimiza-
tion strategies we have implemented. Sections 4, 5, and 6

present our experimental methodology and results. Finally,
section 7 presents conclusions and future work.

2. RELATED WORK

Because of its importance in scientific computing, stencil
codes have received considerable attention from the research
community. Earlier work on stencils have focused on ex-
ploiting data locality [21, 19, 23], while more recent efforts
have considered both locality and parallelism issues in con-
cert [13, 14, 6]. Multi-core systems provide ample opportu-
nities for parallelizing stencil applications but the presence
of shared caches makes the issues of parallelism and data
locality intricately related. For this reason, in recent years,
there has been a fair amount of work that targets both data
locality and parallelism in stencil computations [12, 3, 6].
These approaches span both manual and automatic code op-
timizations and also incorporate auto-tuning. Kamil et al.
describe a set of optimizations for improving stencil perfor-
mance on both cache-based systems and architectures with
explicitly controlled memory. Their approach yields integer
factor speedups over naive implementations mainly because
of better utilization of memory bandwidth [13]. Datta et
al. [7, 8] and later Kamil et al. [12] extend this work to incor-
porate more code optimizations (including unroll-and-jam
and multi-level blocking for both locality and parallelism)
and more architectures (including GPUs). Kamil et al. also
propose several models for predicting stencil performance
and use auto-tuning to select optimal blocking factors. Kr-
ishnamoorthy et al. discuss wavefront parallelism for time-
skewed stencil codes. They propose two new techniques,
overlapped tiling and split tiling, both of which can signifi-
cantly reduce synchronization costs in the pipeline compu-
tation without affecting data locality [14]. Bondhugula et
al. extend this work to provide an automated framework
based on the polyhedral model that performs both effective
parallelization and locality optimization of stencil codes [3].
Liu and Li propose an asynchronous algorithm for reducing
synchronization costs and improving locality in stencil com-
putations [15]. Christen et al. present a strategy for improv-
ing locality and exploiting parallelism in a stencil code ap-
pearing in a Bio-heat equation. They specifically target the
Cell BE and Nvidia GPUs and thus their strategy exploits
some features specific to these architectures [6]. Treibig et
al. described a framework for parallelizing iterative stencil
computation on multicore architectures. They apply wave-
front parallelization combined with temporal blocking to Ja-
cobi and Gauss-Seidel computations and achieve significant
speedup on five different multicore architectures [27].

(a) 7-Point Stencil (b) 27-Point Stencil
Figure 2: Stencil Structure

Although many of the approaches mentioned above were
successful in achieving high performance for stencil kernels,
the focus has been on code optimizations and their interac-
tions. We present a methodology which uses hardware per-
formance counters to relate the efficiency of different archi-
tectural events. HW performance counters have been used in
performance studies and application tuning since they were
first exposed in the Pentium 4 architecture [11]. Tikir and
Hollingsworth combine runtime instrumentation and hard-
ware counters on UltraSparc II to improve memory perfor-
mance for several numerical kernels [26]. Eranian describes
how performance counters can be combined on the Core 2
Duo architecture to measure different aspects of memory
performance including bandwidth utilization, access latency
and remote memory traffic [9]. Marin and Mellor-Crummey
present performance studies of several scientific applications
where HW performance counters are used to detect oppor-
tunities for data locality optimizations [16]. Adhianto et al.
provide a framework for analyzing performance of large scale
parallel applications using HW counters [1]. This frame-
work has been used to identify and measure bottlenecks in
parallel application, including parallel idleness and parallel
overhead [25]. Performance counters have also been used
for thread scheduling [22], prefetching [24], power estima-
tion [20] and detecting changes in program behavior [17].

Our strategy is distinct from previous approaches in that
it does not focus on a specific performance bottleneck but
rather on capturing the interplay of various architectural
events. In this regard, our work is similar to the work by
Cavazos et al. [4] where they use a wide range of HW perfor-
mance counters and machine learning algorithms to deter-
mine correlations between architectural events and compiler
optimizations. Our work is supplementary to this approach
as we model correlations between the overall performance
and the relative efficiency of different architectural events.

Previous research has applied regression analysis to esti-
mate the power consumption of applications based on run-
time hardware counters [20, 18]. We have adopted a similar
methodology for a different purpose and use regression anal-
ysis to guide performance tuning of the benchmarks.

3. OPTIMIZING STENCIL CODES

A stencil computation typically sweeps over a multi di-
mensional grid and modifies each point in the grid based
on its neighboring values. In most applications they are in-
voked repeatedly over the data domain and are referred to
as time-step stencils or iterative stencils. Since application
context is extremely important for evaluating performance,
in this study we only consider iterative stencil computations.

Most stencils exhibit a high degree of temporal locality
because each update operation accesses neighboring values
on the grid. Typically, in a three-dimensional stencil there is

151 1 | Il __l

I il A

_ _ e

Ll .
Read Grid Write Grid Read/ Write Grid

(a) Jacobi (b) Gauss-Seidel

Figure 3: Variations in Stencil Update Operation

data reuse along all three dimensions. Since each time step
sweeps over the same data grid, stencils also exhibit data
locality in the time dimension. Exploiting locality in the
time dimension is critical for stencil performance because
the size of the data grid in real applications exceeds the
capacity of L1 and L2 caches on current architectures [7].
The amount of data reuse present in the spatial domain
depends on the number of neighboring values involved in
each update. For example, in Jacobi Relazation, the up-
date of a data point depends on the current position and its
neighbors on the left, right, front, back, above and below;
thus this constitutes a 7-point stencil. The structure of this
stencil is shown in Fig. 2(a). In this 7-point stencil 4 of the
7 data values are reused in each iteration. The structure of
a 27-point stencil is shown in Fig. 2(b). In this stencil 8 of
the 27 values are reused in every iteration. 7-point stencils
are one of the most commonly occurring stencils in scientific
code. However, higher order stencils are not uncommon. For
instance, 9-point stencils appear in Finite Difference Meth-
ods and 27-point stencils appear in multi-grid solvers and
advection code. Higher order stencils pose interesting per-
formance challenges since there is more reuse of data but
parallelism is harder to exploit because of multiple loop car-
ried dependencies. For this study, in addition to two 7-point
stencil codes we also evaluate a 27-point stencil.
Bandwidth and storage requirements of stencils can be
influenced by their separation of the read and write data. In
some stencils such as Jacobi Relazxation, the read and write
domains are separate, where data are read from one grid
and written to a different one. After each iteration the grids
are swapped and the process is repeated, as illustrated by
Fig. 3(a). On the other hand, in stencils such as the Gauss-
Seidel Computation, data are read and written to the same
grid in each iteration, as illustrated by Fig. 3(b). Although
stencils like Gauss-Seidel require less bandwidth, they create
additional concerns for parallelization because writes to the
shared data structure need to be synchronized. Our study
includes both Jacobi and Gauss-Seidel type stencils.

3.1 Exploring Locality and Parallelization

Existing research on optimizing stencil kernels have fo-
cussed on exploiting both data locality and parallelism. Data
reuse in stencils can be exploited at the register-level by ap-
plying unroll-and-jam [2]. Sweeps across the data domain
can also be tiled to reduce the working set size and improve
cache locality. Because of the carried dependencies, however,
locality in the time dimension can only be exploited through
a combination of loop skewing and blocking (referred to as
time skewing [28]). In terms of extracting parallelism, sim-
ple data parallelization can be applied to the spatial loops
(e.g., Jacobi Relaxation) in some cases. In other situations
pipeline parallelization can be achieved through a combina-
tion of skewing and using additional temporary storage [7].

To understand the performance of stencil kernels we ex-
plore several optimization strategies to improve both data

Senenene|eTetens

—» X
*Grid points that belong to the same block are grouped together.

Computation blocks that have the same color are evaluated

simultaneously by different threads.

Figure 5: Single-sweep parallelization

locality and parallelism. We apply multi-level loop blocking
and time skewing to each kernel to exploit data reuse. These
blocked and time-skewed variants are then parallelized using
three different schemes, single-sweep blocking, pipeline, and
wavefront parallelization. We discuss each variant below.
Single-sweep blocking: Fig. 4(b) illustrates the result
of applying conventional loop blocking to improve cache
reuse of the 7-point Jacobi stencil code show in Fig. 4(a).
In this scheme, a single sweep of the grid is partitioned into
rectangular blocks. In particular, within a single iteration
of the time-step loop ¢, the k, j, and ¢ loops are blocked so
that grid points that are close together in space are grouped
to be modified together. This allows each grid point to re-
main in cache when used to compute new values for their
neighboring points in the same iteration of the time loop.
Time skewing: Fig. 4(c) illustrates the result of applying
time skewing to improve cache reuse of the 7-point Jacobi
stencil code. In this scheme, multiple sweeps of the grid
are collectively partitioned into skewed triangular and par-
allelepiped blocks. The key difference between this strategy
and the single-sweep blocked variant is that different itera-
tions of the ¢ loop are included as part of each computation
block. Because of the reordering constraints between up-
dates of neighboring grid points across different iterations of
the ¢ loop, each computation block must shift its collection
of grid points backward by a constant number of positions
(i.e., the skew factor) at each iteration of the ¢ loop. This
is accomplished by dynamically setting the lower and up-
per bounds of the innermost k, j, i loops. In theory, the
time-skewed variant is likely to deliver better performance
because of improved data reuse in the time dimension. How-
ever, the improved performance will depend on the selection
of appropriate skewing factors. For this reason, skewing fac-
tors are included as a tunable parameter in our study.
Single-sweep parallelization: Fig. 5 illustrates the par-
allelization scheme we adopt for the blocked code in Fig. 4(b),
where the partitioned blocks within a single sweep of the grid
are assigned to different threads to be evaluated simultane-
ously. In this variant, we parallelize the kk loop in Fig. 4(b),
so that multiple threads are used to evaluate its iterations,
and all threads synchronize before entering the next itera-
tion of the surrounding ¢ loop. Note that this parallelization
scheme is applicable to the 7- and 27-point Jacobi iterations
but not applicable to the gauss-seidel kernel, which uses a
single grid instead of using the two grids A0 and Anext
shown in Fig. 4(a). As a result, the blocked loops cannot be
safely parallelized due to dependence constraints.
Pipeline parallelization: Fig. 6 illustrates the pipeline
parallelization strategy for stencil kernels. Here time-skewed
blocks are assigned to designated threads and evaluated in

*Grid points that belong to the same block are grouped together.
Computation blocks that have the same color are evaluated

simultaneously by different threads.

t=3

t=2
1A\ |

>

> X
*Grid points that belong to the same block are grouped together.

Computation blocks that have the same color are evaluated

simultaneously by different threads.

Figure 7: Wavefront parallelization

a pipelined fashion. We parallelize the outermost kk loop
in Fig. 4(c) by explicitly spawning new threads to evaluate
designated regions of its iterations in parallel. To ensure cor-
rectness of evaluation, before evaluating each computation
block, each thread explicitly synchronizes with others and
waits until all pre-requisite computation blocks have been
finished. Similarly, after evaluating each block, each thread
synchronizes with its neighboring threads to enable evalua-
tion of the dependent blocks. As a consequence of this syn-
chronization scheme, each computation block is evaluated as
soon as it is ready and neighboring computation blocks are
evaluated by different threads in a pipelined fashion.
Wavefront parallelization: In this strategy, instead of
pipelining the evaluation of time-skewed blocks via explicit
synchronization, the time-skewed blocks are scheduled col-
lectively in a wavefront fashion. In particular, instead of
parallelizing the kk loop in Fig. 4(c) and then inserting syn-
chronizations outside of the ¢ loop, the loops inside t are
adjusted so that at each iteration of the t loop, the computa-
tion block being evaluated is independent of the other blocks
evaluated by different iterations of t. The new t loop can
then be safely parallelized. Fig. 7 illustrates the independent
computation blocks enumerated by different iterations of the
t loop. Note that the scheduling of these parallel blocks are
identical to that of the pipeline parallelization scheme. The
difference is that the parallel blocks are no longer bound to
any designated threads. Therefore data reuse across differ-
ent time steps are no longer guaranteed within each thread.

3.2 Implementation Of Optimizations

We have implemented the optimization strategies described
above using POET, a general-purpose program transforma-
tion language [29] which supports flexible parameterization
of compiler optimizations so that their configurations can be
empirically tuned. We have manually written POET scripts
for three stencil kernels, 7-point Jacobi, 27-point Jacobi, and
7-point Gauss-Seidel iterations. Each script applies the nec-
essary optimizing transformations with parameterized con-
figurations such as varying tile sizes for the spatial and time
dimensions. All optimizations we apply can be integrated
within a full-blown optimizing compiler and fully automated

for (t = 0; t < timesteps;t++){

for (t = 0; t < timesteps; t++) { for (kk=1; kk < nz-1; kk+=tz) {

for (k = 1; k < nz - 1; k++) { for (kk = 1; kk < nz-1; kk+=tz) { for (jj = 1; jj <mny - 1; jj+=ty) {

for (j =1; j <ny - 1; j++) { for (jj = 1; jj < ny-1; jj+=ty) { for (ii = 1; ii < nx - 1; ii+=tx) {

for (i =1; i < nx - 1; i++) { for (ii = 1; ii < nx-1; ii+=tx) { for (t = 0; t < timesteps; t++) {

Anext[i,j,k] = for (k=1; k<Min(nz-1,kk+tz) ;k++){ ...set up min_z,max_z,min_y,max_y,min_x,max_x...
AO[i,j,k+1] + AO[i,j,k-1] + for (j=1; j<Min(ny-1,jj+ty);j++){ for (k=min_z; k<max_z; k++) {
AO[i,j+1,k] + AO[i,j-1,k] + for (i=1; i<Min(nx-1,ii+tx);i++){ for (j=min_y; j<max_y; j++) {

A0[i+1,5,k] + AO[i-1,j,k] -
alpha * AO[i,j,k];

Anext[i,j,k] =

} AO[i,j+1,k] + AO[i,j-1,k] +
} AO[i+1,j,k] + AO[i-1,j,k] -
} alpha * AO[i,j,kl;
tmp = AO }r}
A0 = Anext }r}
Anext = tmp . swap AO and Anext ...

} }

(a) Original code

AO[i,j,k+1] + AO[4,j,k-1] +

(b) After loop blocking

for (i=min_x; i<max_x; i++) {

Anext[i,j,k] =
AO[i,j,k+1] + AO[i,j,k-1] +
AO[i,j+1,k] + AO[i,j-1,k] +
A0[i+1,j,k] + AO[i-1,j,k] -
alpha * AO[i,j,k];

}r}

... swap AO and Anext ...

F}r}}

(c) After time skewing

Figure 4: Result of applying locality optimizations to the 7-point Jacobi code

for scientific codes that demonstrate a similar behavior as
the stencil computations [14].

4. EXPERIMENTAL DESIGN

The goal of our paper is to present a detailed performance
study of the optimizations discussed in Section 3.1. We
first collect a large set of empirical data by applying these
optimizations with different configurations, e.g., using dif-
ferent parallelization and memory blocking factors, shown
in Table 1. Based on these empirical data, we then de-
velop a set of formulas for each benchmark to model the
overall performance improvement by different optimizations
in terms of their impacting factors on various architectural
components (e.g., L1/L2/L3 misses). We then verify the
accuracy of these formulas using additional samples beyond
those used in building the formulas. Note that these for-
mulas are intended to be used not standalone but combined
with application-specific knowledge of optimizations, e.g., by
developers or iterative compilers, to reduce tuning time of
existing optimizations or to guide additional optimizations.

Table 1 lists the main optimization strategies we applied
to the three stencil kernels and their configuration parame-
ters. Section 5 presents experimental results of applying the
blocked and timeskewed optimizations, and results of the
parallelization schemes are presented in Section 6.

4.1 Performance Measurements

We measured the performance of differently optimized
code on an Intel Nehalem 8-core machine. The machine has
2 sockets, each with 4 Intel Xeon 5507 2.27 GHz cores which
share a 4MB last level cache (L3 cache), a local 3 channel
Integrated Memory Controller, and two Intel QuickPath In-
terconnect. Each core has a 32 KB private Data cache (L1
cache), a 32KB Instruction cache, and a 256 KB Unified
Mid-level L2 Cache. The L3 Cache is inclusive (i.e.. all the
data on the L1 and L2 cache are also present in L3). Cache
line requests from the remote socket are handled by the Un-
core’s Global Queue (GQ). Each socket has 4MB memory
shared by all the local cores.

We compiled all the benchmarks using the Intel icc com-
piler version 11.1, using -O2 optimization flags. We used
PAPI to monitor a large number of hardware performance
counters at the thread level granularity. We kill all unnec-
essary processes and make sure no resource intensive back-
ground processes are running on the system before execut-

ing our experiments. We ran each experiment five times and
took the minimum of the recorded execution time .

4.2 Regression Analysis

We use regression analysis on the empirically collected
data to establish relations between execution time and hard-
ware performance counters. While raw execution time can
be related directly to hardware counter numbers, their run-
time contributions overlap significantly due to internal hard-
ware concurrency, and their relations cannot be accurately
modeled using linear equations. To reason about optimiza-
tion effectiveness, instead of using raw runtime statistics,
we normalize both the overall execution time and all the
hardware counter values over those of a baseline execution.
The goal is to correlate the relative performance improve-
ment of differently optimized code with their impact on in-
dividual architectural components such as L1/L2/L3/TLB
misses, load imbalance, and synchronization overhead. The
derived formulas give indications of possible performance
bottlenecks. Therefore they can be combined with other
knowledge to enable more effective performance tuning, e.g.,
by pruning optimizations that are not likely to make a dif-
ference. To properly construct these formulas, we follow the
following three steps.

Selection of hardware events to monitor.

Fig. 1 shows a subset of the hardware counters that we
have monitored on the 8-core Intel Nehalem machine dur-
ing multiple runs of each optimized code. We then correlate
the hardware counter values with the corresponding overall
execution time (minimum across multiple runs) using Spear-
man’s rank correlation algorithm. Finally, hardware coun-
ters that have a relatively high correlation and are directly
impacted by our optimizations are selected. The hardware
counters (e.g., L1/L2/L3/TLB misses) which can be used to
meaningfully guide compiler optimizations are given higher
priority than other opaque hardware counters (e.g., UOPS
issued stalls). Cumulative hardware counters (e.g., total cy-
cle count and resource stall cycles) that overlap with other
higher priority counters are not selected in spite of their
high correlation with the overall performance, so that the
higher-priority counters are not overshadowed by the cumu-
lative counters. Multiple hardware counter values may be
combined to model special architectural events that are not
directly monitored by existing hardware counters. For exam-
ple, total cycles and thread unhalted cycles can be combined

Notation Optimizations applied Parameters | Parameter range
naive Original code. No optimization none none

blocked Blocking within a single time step | tile size 4-512, 4-512]
timeskewed Blocking via time skewing skew factor 4-512, 4-512, 4-512]
blocked_par Blocking+single-sweep parallel. tile size 4-512, 4-512]
pipelined_par Timeskewing+pipeline parallel. skew factor 4-512, 4-512, 4-512]
wavefront_par | Timeskewing+wavefront parallel. skew factor 4-512, 4-512, 4-512]

Table 1: Different optimization strategies

Normalized Time
N

Optimization Configurations

—=baselinel =——baseline2 baseline3

Figure 8: Performance of 7-point Jacobi normalized
using different baseline executions

to return the idle cycle count of each thread when modeling
parallelization speedup, shown in Figure 13.

While modern architectures typically provide a large num-
ber of different hardware counters for performance monitor-
ing, selecting a reasonable subset of relevant events, e.g.,
L1/L2/L3 cache misses, is not difficult given a computa-
tional kernel and the set of possible optimizations being in-
vestigated. The events do not have to chosen exactly right
to derive meaningful formulas from empirical data.

Estimation of correlation coefficients.

To reason about optimization effectiveness, we normalize
both the overall execution time and the hardware counter
values over those of a baseline execution. For each ker-
nel, when modeling sequential performance, we use runtime
statistics of the naive version (see Tab. 1) as the baseline;
for parallel performance models, we use that of a randomly
chosen parallelized code as the baseline.

To demonstrate that different selections of the baseline
does not affect the accuracy of the resulting performance
models, Fig. 8 shows the normalized execution time of differ-
ently optimized 7-point jacobi kernel against different base-
lines. Note while the degree of performance variation may
change when using different baselines, the relative variation
patterns remain the same. Similarly, while the absolute cor-
relations between the overall performance and the individual
hardware counters may vary when using different baselines,
their relative variation pattern remain constant.

We use multivariate Ordinary Least Square (OLS) regres-
sion to determine the linear coefficient for each normalized
hardware counter value. Two performance formulas are de-
rived for each kernel: one for modeling the sequential perfor-
mance of the blocked and timeskewed optimizations, and the
other for modeling the parallel performance of the block_par,
pipeline_par, and wavefront_par optimizations. The result-
ing performance formulas are shown in Figures 10 and 13.
Putting things together.

To verify the accuracy of our performance models, we use
2/3 of the empirical data to derive the performance formu-
las and then use the formulas to predict the actual execu-
tion time of the other 1/3 of execution samples. Figures 11
and 14 present the verification results. From these figures,

we see that our performance formulas are highly accurate
and can be used to precisely model the overall performance
impact of different optimizations.

S. SEQUENTIAL PERFORMANCE

We experimented with two main optimizations for sequen-
tial stencil kernels: single-sweep blocking and time-skewing.
The choice of blocking and skewing factors is critical to the
effectiveness of these optimizations. Therefore, for each ker-
nel, we generate a large collection of alternate variants with
different tile sizes and skew factors.

5.1 Comparing Optimizations

Fig. 9 presents best tuned performance results for both the
blocked and timeskewed optimizations through an exhaus-
tive search of the parameter space. The numbers reported
in these figures are normalized to those of the unoptimized
naive implementation of each kernel.

In terms of overall speedup, time-skewing has a slight ad-
vantage over single-sweep blocked code. For all three kernels
the best performing variant is the one that applies time-
skewing. This is not surprising, since the timeskewed ver-
sions exploit locality across the time dimension as well as
the spatial dimension. This is indicated by the significant
reduction in L3 misses for timeskewed codes for both ja-
cobi7 and jacobi27. For gauss the reduction happens for
L2 misses, as seen in Fig. 9(c). In addition to the reduced
cache misses, the timeskewed variants also exhibit better
TLB locality. Interestingly, however, the reductions in cache
and TLB misses do not always translate into a proportional
gain in performance. For example, for jacobi27, there is
almost an 80% reduction in L3 cache miss rates for the
timeskewed code over the blocked code. There is also a
huge reduction in the number of TLB misses. However, the
performance gain is minimal. Part of this anomaly is ex-
plained by the increased L2 misses for the timeskewed code
and part of it is explained by the computational intensity
of jacobi27. These issues are hard to predict through pure
analytical models or empirical tuning based solely on raw ex-
ecution time. This makes a case for using HW counter based
models to discover the actual impact of optimizing different
hardware components. Such information can then be com-
bined with application-specific knowledge of optimizations
to better understand their performance.

5.2 Performance Models

Fig. 10 shows the sequential performance models we de-
rived using the methodology described in Section 4. The
performance counters we include in these models are L1 data
cache misses , L2 cache misses , L3 cache misses, TLB Misses
and number of L2 hardware prefetches issued. Also, since
both time skewing and blocking directly impact the branch
predictor, we consider mis-predicted branches as one of the
key architectural events. The R? values for the regression

Normalized Value

M naive ™ blocked

timeskewed

Normalized Value

12

1
0.8
0.6
0.4
0.2

0

¥ naive ™ blocked

timeskewed

Normalized Value
=
n

&
é\'-? ©

¥ naive ™ blocked timeskewed

(a) T-point Jacboi

(b) 27-point Jacobi

(c) 7-point Gauss Seidel

Figure 9: Performance of different sequential optimizations with best tuned configurations

Time

I+ 41

0.25 4+ 0.10 *x L1 Misses
0.18 « L2 Misses

0.28 x L3 Misses

0.0008 * TLB Misses
0.016 * Misp. Branches
0.014 « HW Prefetches

(a) 7-point Jacboi

Time

I+

0.22 4+ 0.57 % L1 M1isses
0.01 « L2 Misses

0.03 * L3 Misses

0.002 « TLB Misses
0.003 * Misp. Branches
0.154 * HW Prefetches

(b) 27-point Jacobi

0.91 — 0.09 = L1 Misses
0.0005 = L2 Misses

0.05 % L3 Misses

0.007 « TLB Misses
0.001 * Misp. Branches
0.13« HW Prefetches

(c) 7-point Gauss Seidel

Time

I +++1

+

*Both the execution time and hardware counters are normalized against a base line execution of the naive code

Figure 10: Performance Models for Sequential Stencil Kernels

models for jacobi7 and jacobi27 are 93% and 94%, respec-
tively. For gauss it is slightly lower, at 88%. Thus, each
model provides a good fit to the data. To further verify the
accuracy of the constructed performance models, we gener-
ated 200 additional blocked and timeskewed code variants
(about 33% of the original sample size used in the model).
Fig. 11 shows the results of applying our models to these
variants, where each model provides a good fit for the per-
formance curve for all three kernels. Except for a few points
where the performance is really poor, the model is able to
determine performance with almost perfect accuracy.
Analyzing the coefficients of the performance counters,
we observe that for jacobi7, L3 cache misses have the most
significant impact, which is supported by the performance
results shown in Fig. 9(a). The tuned timeskewed version of
jacobi7 provides a 23% reduction in execution time over the
baseline version, where close to an 83% reduction in L3 miss
count is observed. The blocked version of jacobi7 performs
slightly worse than the timeskewed version. But again, the
most significant gains come from reduced L3 misses. Accord-
ing to the model, L1 and L2 misses also play an important
role but their impact is not as significant as L3 misses.
The performance model for jacobi27 is in Fig. 10(b) and
indicates that the impact of L1 cache misses is most signif-
icant. Here jacobi27 accesses 27 different points and per-
forms 30 floating operations during each update operation.
Thus, this kernel is more computationally intensive than ja-
cobi7. For this reason L2 and L3 cache misses have less per-
formance impact than L1 misses, and as shown in Fig. 9(b),
reduction in L2 and L3 misses does not lead to a correspond-
ing decrease in execution time. This situation is captured by
the small coefficients for the L2 and L3 cache miss param-
eters in our model. None of the block sizes or skew factors
that we tried for jacobi27 was able to reduce the L1 cache
misses (although some variants increased them). As a result
even the best tuned version of jacobi27 shows very little
performance improvement. For gauss, the most significant
parameter is the number of issued HW prefetch instructions.
Surprisingly, this event has a negative impact on perfor-
mance (i.e., the more HW prefetching instruction issued,

N
” H—m
N

jacobi27

Best Normalized
Execution Time

jacobi7 gauss

¥ full ®pruned_L3 pruned_L1 ™ pruned_PREF

Figure 12: Performance of Pruned Search Spaces

the worse the performance). We observe in Fig. 9(c) the
best performing versions of both the blocked and timeskewed
codes have the least number of HW prefetches issued. For
this code, we also see a large increase in the L3 cache misses.
However, the performance loss due to the increase in L3
misses is offset by the reduction of number of HW prefetches
issued. The much larger coefficient of the HW prefetching
parameter in our model explains this phenomenon.

5.3 Implications for Optimization Guidance

In addition to characterizing performance of stencil codes,
we aim to use the constructed performance models to guide
optimization and tuning. To this end, we conduct a set of
search-based experiments where we use our model to reduce
the size of the search space. The search space for these ex-
periments consists of 800 points of blocked and timeskewed
code variants for each kernel. To prune the search space, we
take the most significant performance parameters from each
model (L3 for jacobi7, L1 for jacobi27 and HW Prefetch
for gauss). We then sort the entire search space using each
parameter and take the top k values as our search space.
We apply random search on this pruned search space for i
iterations and compare the performance to the performance
of a random search of 7 iterations on the entire search space.

Fig. 12 shows the results of these experiments, where
k = 50 and ¢ = 10. In the figure, pruned_L3 refers to the
pruned search space generated using the best L3 cache miss
values, whereas pruned_L1 and pruned_PREF refer to the
pruned search spaces for L1 misses and HW prefetch, re-
spectively. In each case the performance obtained through
exploring the pruned search space is comparable to that

Normalized Time
Normalized Time

Different Configurations

=—=Norm. Actual Time ——Norm. Modeled Time ==Norm. Actual Time

(a) T-point Jacboi

Different Configurations
=Norm. Modeled Time

(b) 27-point Jacobi

Normalized Time

1

0
Different Configurations
=—==Norm. Actual Time ——Norm. Modeled Time

(c) 7-point Gauss Seidel

Figure 11: Verification of sequential model by comparing normalized actual and modeled execution time

obtained from a random search of the entire space. For
gauss, searching the pruned space of L3 and L1 misses ac-
tually leads to better performance than searching over the
entire space. The pruned space for HW prefetching leads
to slightly worse performance for jacobi7 and jacobi27.
However, this difference is small. Although our choice of k
and 4 values for this experiment is somewhat arbitrary, the
results do suggest that many of the best values within the
search space are concentrated in areas where the values of
the most significant performance parameters are best. Thus,
the constructed models can be effectively utilized in picking
out representative search spaces when tuning stencil kernels.

6. PARALLELIZATION PERFORMANCE

We experimented with three parallelization optimizations,
blocked_par, pipelined_par, and wavefront_par, shown in ta-
ble 1. Since blocked_par is illegal for gauss, we do not in-
vestigate this strategy for this kernel. Since Nehalem has 8
cores, we parallelized all kernels using eight threads.

6.1 Performance Models

Fig. 13 shows the formulas we attained via regression anal-
ysis of the empirical data collected when applying the three
parallelization schemes with different configurations in Ta-
ble 1. In addition to the set of hardware counters selected to
model sequential performance in Figure 10, two extra hard-
ware events are selected: off-core requests, which model the
amount of communication across different processing cores;
and thread idle cycles, a derived hardware event which moni-
tors the load imbalance of parallelization, i.e., the number of
clock cycles that each thread spent sitting idle while waiting
for its task to get ready. Thread idle cycles are computed
by subtracting the total clock cycles with the unhalted cy-
cles for each thread, both monitored via hardware counters.
All the runtime statistics are normalized to a baseline of a
randomly selected parallelized code for each kernel.

The accuracy of the formulas is verified in Fig. 14, where
we used the derived models to predict the execution time
of around 200 additional randomly generated parallelization
variants. The predicted execution time has matched almost
precisely the actual time for all cases. The R? values for the
regression models are around 98%, which are quite high.

Based on the performance formulas, for all three kernels,
the number of L3 cache misses and off-core requests are crit-
ical factors determining the overall performance of the par-
allelized code. The impact of L1 cache misses ranges from
significant in jacobi27 to minor in jacobi7, indicating the
computation is becoming less memory-bound. On the other
hand, L2 cache misses have surprisingly played a negative
role in the overall performance, where the formulas seem to
indicate that the more L2 misses incurred, the better the

performance. We suspect the possible reason for this is that
the extra L2 misses can serve as informed prefetches for the
other threads, which share a significant amount of data due
to the nature of our stencil parallelization strategies. The
hardware prefetches, however, have been consistently de-
grading performance as data are not fetched continuously
in the parallelized codes. Note that although the impact-
ing factor of thread idle cycles is low (ranging from 0.013
to 0.12), it is a critical reason explaining the poor perfor-
mance of some parallelized code where serious load imbal-
ance has essentially sequentialized all the threads. Some of
these cases can be observed in Figure 15.

6.2 Comparing Parallelization Strategies

Figure 15 compares the best performance achieved by dif-
ferent parallelization strategies after an exhaustive search
of the configuration space. For all kernels, the best perfor-
mance achieved by the first parallelization scheme is used as
a baseline to normalize the performance of other strategies.

For jacobi7, the pipeline_par strategy achieves the best
overall performance. This strategy parallelizes multiple sweeps
of timeskewed blocks in a pipelined fashion, treating each
CPU core as a pipeline stage by permanently binding a

thread to it. It is able to significantly outperform the blocked_par

version by dramatically reducing both L3 cache misses and
off-core requests, the two most significant hardware counters
that impact the overall performance. In contrast, although
wavefront_par follows a very similar parallelization strategy
as pipeline_par, it restarts a new wave of different threads to
evaluate each new set of time-skewed blocks simultaneously.
As different cores may process a time-skewed block at dif-
ferent wave iterations, poor data locality is resulted. This
is reflected in the dramatic increase of L3/TLB misses and
off-core requests, and as a result wavefront_par performed
significantly worse than both blocked_par and pipeline_par.
For Jacobi27, the relative performance of different par-
allelization schemes is similar to that of jacobi7, except
that pipeline_par achieves similar performance as that of
blocked_par in spite of significantly reducing both L3 misses
and off-core requests. Here because pipeline_par has in-
creased thread idle cycles by a factor of 50 (in contrast
to a factor of 13 for jacobi7), the serious load imbalance
has reduced the parallelization efficiency. For the same rea-
son the performance of wavefront_par is much worse. For
7-point Gauss-Seidel, pipeline_par has dramatically outper-
formed the wavefront_par strategy due to similar reasons.

6.3 Guiding Optimization Tuning

From studying the performance models in Fig. 13, the
most important factors in achieving high parallelization ef-
ficiency is improving L3 cache locality, reducing off-core re-
quests, and keeping load imbalances under control. Fig. 16

0.077 4 0.001 * L1 Misses Time
0.14 « L2 Misses

Time =

0.054 + 0.39 x L1 Misses Time =
0.15 % L2 Misses

0.157 4+ 0.13 x L1 Misses
0.57 %« L2 Misses

+ 0.44 x L3 M1isses + 0.25 x L3 Misses —+ 0.19 x L3 Misses

— 0.002 * TLB Misses + 0.008 * TLB Misses — 0.001 * TLB Misses

+ 0.021 x Misp. Branches + 0.013 x Misp. Branches — 0.03 % Misp. Branches
+ 0.05 « HW Prefetches + 0.15« HW Prefetches —+ 0.09 « HW Prefetches
+ 0.5 * Off-core Requests + 0.25 % Off-core Requests + 0.89 % Off-core Requests
+ 0.013 * Idle Cycles + 0.016 * Idle Cycles + 0.12 % Idle Cycles

(a) 7-point Jacboi (b) 27-point Jacobi (c) 7-point Gauss Seidel

*Idle Cycles = Total Cycles - Unhalted Cycles

All runtime statistics are normalized to a baseline execution of a randomly selected parallelized code for each kernel

Figure 13: Parallel Performance Models

Normalzied Time
o kN W s 0o N o®
Normalized Time

Different Configurations

—Normal. Actual Time ——Normal. Modeled Time —Normal. Actual Time

(a) 7-point Jacboi

Different Configurations

—Normal. Modeled Time

(b) 27-point Jacobi

Normalized Time
w

0
Different Configurations

—Normal. Actual Time ——Normal. Modeled Time

(c) 7-point Gauss Seidel

Figure 14: Verification of parallel model by comparing normalized actual and modeled execution time

shows how we might use such knowledge to guide the opti-
mization tuning of these stencil kernels. In particular, for
each kernel, we compare four hypothetical search strategies
to explore the optimization configuration space, where each
strategy always tries to improve the efficiency of a single ar-
chitectural component. For example, the L3-misses based
strategy takes random samples from an underlying exhaus-
tive search and selects only those points where the number of
L3 cache misses are reduced; that is, the search strategy will
not attempt any optimization configuration that incur more
L3 cache misses than those incurred by the best configura-
tions found so far. Other hypothetical search strategies are
derived similarly and focus on optimizing L1 misses, off-core
requests, and thread idle cycles respectively.

From Fig. 16, for all three kernels, tuning for L3 cache
misses and off-core requests yield the best result and require
the fewest tuning samples to find a reasonably good opti-
mization configuration. Tuning for off-core requests incurs
more performance variations but could find better optimiza-
tions in the end. Tuning for L1 cache misses yield unpre-
dictable results. Tuning for thread idle cycles can converge
quickly but may miss out better optimizations.

The results in Fig. 16 have confirmed the effectiveness of
applying optimizations to target the most significant archi-
tectural components. However, different hardware events
may become the most significant when applying different
optimizations and tuning different benchmarks. Regression
analysis is therefore necessary to build offline models to
guide optimization tuning of different benchmarks.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a performance study of both memory
system and parallelization optimizations for stencil compu-
tations on modern multi-core architectures. Based on an
extensive collection of empirical data, we develop a set of
formulas via regression analysis to model the overall perfor-
mance of differently optimized code in terms of their impact
on various hardware performance counters. We apply our
methodology to three stencil computation kernels, 7-point

jacobi, 27-point jacobi, and 7-point Gauss-Seidel iterations.
Our experimental results show that precise formulas can
be developed for each kernel to model the overall perfor-
mance impact of varying optimizations and thereby effec-
tively guide the optimization and tuning of these kernels.

Both the selection of hardware events and the coefficients
of the formulas are determined by the performance charac-
teristics (e.g., memory vs compute bound) of an application.
Therefore distinct computational kernels typically have dif-
ferent performance formulas. As optimizations are applied,
the performance bottleneck may change and so may the per-
formance formulas. It is our future work to model the transi-
tions of application behavior more comprehensively via more
advanced regression analysis methodologies.

q'l] L%Eggg‘lggg§e, M. Fagan, M. Krentel, G. Marin,

J. Mellor-Crummey, and N. R. Tallent. HPCtoolkit: tools for
performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, To
Appear, 2009.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral parallelizer
and locality optimizer. In PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation, pages 101-113, New York, NY, USA,
2008. ACM.

[4] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
and O. Temam. Rapidly selecting good compiler optimizations
using performance counters. In CGO ’07: Proceedings of the
International Symposium on Code Generation and
Optimization, pages 185-197, Washington, DC, USA, 2007.
IEEE Computer Society.

[5] C. Chen, J. Chame, and M. Hall. Combining models and
guided empirical search to optimize for multiple levels of the
memory hierarchy. In International Symposium on Code
Generation and Optimization, March 2005.

[6] M. Christen, O. Schenk, E. Neufeld, P. Messmer, and
H. Burkhart. Parallel data-locality aware stencil computations
on modern micro-architectures. In IPDPS ’09: Proceedings of
the 2009 IEEE International Symposium on
Parallelé3Distributed Processing, pages 1-10, Washington, DC,
USA, 2009. IEEE Computer Society.

[7] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Optimization and performance modeling of stencil

M blocked_par M pipeline_par wavefront_par

o o > & 3 & o o 5] 3 3 > & o &
@ % & 2 & N2 & & & & & < o AR
\‘\\‘;, é\%‘a é\%‘a &;a T(\& &S N \‘;\,,,5 “;\ee & 'é\& & &«
(2
OO @ v 0P
& & W &€
¢ O ¢ O

M blocked_par M pipeline_par wavefront_par

=N W
ocurunvLwh

[=)

3 3 o o > & o e
& & & & & > &

& e &S &S
QT QS e I C
> ANCAE N

IR A AV AN, &
& ¢
€ o
M blocked_par M pipeline_par wavefront_par

(a) 7-point Jacobi

*Baseline parallelization speedup: 5.2

(b) 27-point Jacboi

*Baseline parallelization speedup: 7.4

(c) 7-point Gauss-Seidel

*Baseline parallelization speedup: 7.8

* All parallelized codes are evaluated using 8 threads, each thread occupying a different processing core.

All values are normalized against the best performance achieved by the first parallelization strategy for each kernel.

Figure 15: Parallel performance achieved by different optimizations with the best configurations

Normalized Time

1.4 16

A\ 14

~
0

Va\

~

12
1 'ﬁ%
L3

l‘j:% \ /

s\

0.6

Normalized Time

0.8

Normalized Time
[

0.4

0.4

o
o

0.2

0.2

0

~#—L1 Misses —-13 Misses —#—Offcore Req. —#-Idle Cycles

=®—L1 Misses =813 Misses —#—Offcore Requests —#—Idle Cycles

=®-L1 Misses —#—L3 Misses —#—Offcore Requests —#—Idle Cycles

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(a) 7-point Jacboi

(b) 27-point Jacobi

(c) 7-point Gauss Seidel

Figure 16: Using hardware counters to guide the search of best optimizations

computations on modern microprocessors. SITAM Review,
51(1):129-159, 2009.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,

L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing (SC08), 2008.

S. Eranian. What can performance counters do for memory
subsystem analysis? In MSPC ’08: Proceedings of the 2008
ACM SIGPLAN workshop on Memory systems performance
and correctness, pages 26-30, 2008.

B. Fraguela, Y. Voronenko, and M. Puschel. Automatic tuning
of discrete fourier transforms driven by analytical modeling. In
PACT’09: Parallel Architectures and Compilation
Techniques, Raleigh,NC, Sept. 2009.

Intel Pentium 4 Processor Optimization Reference Manual.
Intel Corporation, 2000.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An
auto-tuning framework for parallel multicore stencil
computations. In Proceedings of the 14th International
Symposium on Parallel and Distributed Processing. IEEE
Computer Society, 2010.

S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and

K. Yelick. Implicit and explicit optimizations for stencil
computations. In MSPC ’06: Proceedings of the 2006
workshop on Memory system performance and correctness,
pages 51-60, New York, NY, USA, 2006. ACM.

S. Krishnamoorthy, M. Baskaran, U. Bondhugula,

J. Ramanujam, A. Rountev, and P. Sadayappan. Effective
automatic parallelization of stencil computations. SIGPLAN
Not., 42(6):235-244, 2007.

L. Liu and Z. Li. Improving parallelism and locality with
asynchronous algorithms. In PPoPP ’10: Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 213—-222, New York, NY, USA,
2010. ACM.

G. Marin and J. Mellor-Crummey. Pinpointing and exploiting
opportunities for enhancing data reuse. In In Proceedings of
the 2008 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’08), 2008.

N. Peleg and B. Mendelson. Detecting change in program
behavior for adaptive optimization. In 16th International

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

Conference on Parallel Architecture and Compilation
Techniques (PACTO07), 2007.

S. F. Rahman, J. Guo, and Q. Yi. Automated empirical tuning
of scientific codes for performance and power consumption. In
HIPEAC:High-Performance and Embedded Architectures and
Compilers (to appear), Heraklion, Greece, Jan 2011.

G. Rivera and C.-W. Tseng. Tiling optimizations for 3D
scientific computations. In Supercomputing '00: Proceedings of
the 2000 ACM/IEEE conference on Supercomputing
(CDROM), page 32, Washington, DC, USA, 2000. IEEE
Computer Society.

K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Comput. Archit. News, 37(2):46-55, 2009.

Song, Yonghong, and Z. Li. New tiling techniques to improve
cache temporal locality. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design
and implementation, pages 215-228, New York, NY, USA,
1999. ACM.

F. Song, S. Moore, and J. Dongarra. Feedback-directed thread
scheduling with memory considerations. In HPDC ’07:
Proceedings of the 16th international symposium on High
performance distributed computing, 2007.

Y. Song, R. Xu, C. Wang, and Z. Li. Data locality
enhancement by memory reduction. In Proceedings of the 15th
ACM International Conference on Supercomputing, Sorrento,
Italy, June 2001.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In 13st
International Conference on High-Performance Computer
Architecture (HPCA-13), 2007.

N. R. Tallent and J. M. Mellor-Crummey. Effective
performance measurement and analysis of multithreaded
applications. In roceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, (PPOPP09), 2009.

M. M. Tikir and J. K. Hollingsworth. Using hardware counters
to automatically improve memory performance. In Proceedings
of the ACM/IEEE Conference on High Performance
Networking and Computing, SC, 2004.

J. Treibig, G. Wellein, and G. Hager. Efficient multicore-aware

(28]

(29]

parallelization strategies for iterative stencil computations.
Journal of Computational Science, In Press, 2011.

D. Wonnacott. Using time skewing to eliminate idle time due to
memory bandwidth and network limitations. In Proceedings of
the 14th International Symposium on Parallel and
Distributed Processing (IPDPS00), page 171, Washington,
DC, USA, 2000. IEEE Computer Society.

Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET:
Parameterized optimizations for empirical tuning. In Workshop
on Performance Optimization for High-Level Languages and
Libraries, Mar 2007.

