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Abstract

Since we were babies, we intuitively develop the ability
to correlate the input from different cognitive sensors such
as vision, audio, and text. However, in machine learning,
this cross-modal learning is a nontrivial task because differ-
ent modalities have no homogeneous properties. Previous
works discover that there should be bridges among differ-
ent modalities. From neurology and psychology perspec-
tive, humans have the capacity to link one modality with
another one, e.g., associating a picture of a bird with the
only hearing of its singing and vice versa. Is it possible for
machine learning algorithms to recover the scene given the
audio signal?

In this paper, we propose a novel Cascade Attention-
Guided Residue GAN (CAR-GAN), aiming at reconstruct-
ing the scenes given the corresponding audio signals. Par-
ticularly, we present a residue module to mitigate the gap
between different modalities progressively. Moreover, a
cascade attention guided network with a novel classification
loss function is designed to tackle the cross-modal learning
task. Our model keeps the consistency in high-level seman-
tic label domain and is able to balance two different modal-
ities. The experimental results demonstrate that our model
achieves the state-of-the-art cross-modal audio-visual gen-
eration on the challenging Sub-URMP dataset [18]. Code
will be available at hitps.://github.com/tuffr5/CAR-GAN.

1. Introduction

Cross-modal learning involves multiple modalities, aims
at learning knowledge from one modality to facilitate the
tasks (e.g., retrieval and generation) from another correlated
modality. Cross-modal learning gains long-lasting interest
in multimedia. Recently, with the increasing popularity of
Generative Adversarial Networks (GANSs) [8], cross-modal
research is not only limited to retrieval [25, 27] but also
makes the cross-modal generation possible, such as text-to-
image [23, 35], image-to-image [ 14, 43], story visualization

and generation [19, 26]. Recently, radio signals [42] have
also been successfully applied to human pose prediction.
The radio signals which are a form of waves that are robust
to occlusions so that it can predict human poses behind the
wall. Another special wave is an audio signal, which has
also been explored to reconstruct the scene [1, 9, 29,21, 22].

Generating image from audio using GANs was first de-
scribed by Chen et al. [ 1] where they introduce a conditional
GANSs (cGANSs) [20] model to tackle the problem. Later,
Hao et al. presented the Cross-Modal Cycle GAN (CMC-
GAN) [9] to solve the cross-modal visual-audio mutual gen-
eration problem. Although this paper conducts an interest-
ing exploration, we still observe unsatisfactory artifacts and
missing contents in the generated images, which are due to
several reasons. First, even if previous works [, 9] showed
there were truly some connections between audio and vi-
sual modalities, there is still a huge gap between different
modalities, e.g., the sound of the wind blowing trees and the
image of shaking leaves. Thus, without prior knowledge
about this scenario, it is hard to associate them together.
Second, a random latent vector was employed to assist the
learning process. They tried to represent the properties of
the input audios accompanied by some manually defined
random latent vectors. However, we argue that these latent
vectors cannot represent the information of the audios ac-
curately since they are random Gaussian noises, i.e., they
are not directly withdrawn from the audios. Consequently,
we avoid employing random latent vectors in our designed
model.

Based on the above observations, in this paper, we
propose a novel Cascade Attention-Guided Residue GAN
(CAR-GAN) to handle the audio-to-image translation task.
The proposed CAR-GAN contains two generation stages
and the overall framework of CAR-GAN is depicted in
Fig. 1, in the first stage, the Log-amplitude of Mel-Spectrum
(LMS) [7] image A (a representation of the raw audio) con-
catenated with L, (one-hot class label code for the audio)
is fed into the first self-attention guided generator (G) and
G outputs a coarse result I’. Different from previous works
[1, 9], we deprecate the latent vector in our model. Note that
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Figure 1. Overview of CAR-GAN framework. Generator GG; takes the audio LMS (A) and its class label (L,) as input to generate coarse
image I’. Generator G takes I’ and the output of our specific-designed residue module (L.) as inputs to synthesize fine-grained image
I". Note that to detect the most distinguished part in different modality spaces, we introduce self-attention mechanism to both generators.
Two generators of different stages are jointly optimized in an end-to-end fashion that aims at enjoying the mutually improved benefits from
different modalities, i.e., audio and image. @ denotes channel-wise concatenation.

to efficiently model relationships between widely separated
spatial regions, we introduce self-attention to both genera-
tor and discriminator.

The coarse output I’ from the first generation network
is taken as input to the proposed residue module to obtain
the corresponding class label vector L}. Then we subtract
L’ from label L, to obtain the residue class label vector L.
L, reflects the difference between the generated image and
the audio label in the semantic domain. Next, the coarse
output I’ from the first stage, together with the residue class
label L, are input into the second stage network and gener-
ate more fine-grained final results. The intuition behind the
residue module is that the second generator G5 can flexibly
preserve the similarities between audio and image space and
only model the differences when it is necessary, which can
be regarded as a progressive generation strategy. Finally, to
optimize the proposed CAR-GAN in an end-to-end fashion,
the cascaded residue classification loss is further used to
generate more realistic images and preserve the consistency
between two stages. It is worth noting that, the classifier is
pre-trained with the real images from Sub-URMP dataset.
During the training of our CAR-GAN model, the classifier
parameters are fixed, and only the gradients of the synthe-
sized images will be back propagated to guide the generator
to synthesize images with correct semantic labels. In this
way, the label consistency between the synthesized images
and the audio labels could be preserved. Through extensive
experimental evaluations, we demonstrate that CAR-GAN
produces better results than the baselines such as S2IC [1]
and CMCGAN [9].

Overall, the contributions of this paper are summarized
as follows:

e A novel Cascade Attention-Guided Residue GAN frame-
work (CAR-GAN) for the cross-modal audio-to-image
translation task is proposed. It explores cascaded at-

tention guidance with a coarse-to-fine generation, aims
at producing a more detailed synthesis from the jointly
learned representation of both audio and image spaces.

e A novel residue module is presented, which is utilized
to smooth the gaps between different modalities at class
label space and is able to find correlations between differ-
ent modalities. We also propose a new cascaded residue
classification loss for more robust optimization. It not
only helps the model generate more realistic images but
also keeps the consistency between two stages’ genera-
tion processes.

e Qualitative and quantitative results demonstrate the effec-
tiveness of the proposed CAR-GAN on the cross-modal
audio-to-image translation task, and show state-of-the-art
performance on the challenging Sub-URMP dataset [ 8]
with remarkable improvements.

2. Related work

Generative adversarial Networks (GANs) is proposed
by Goodfellow et al. [8], complemented with adversarial
method. A vanilla GAN is composed of a generator and a
discriminator. The discriminator is trying to discriminate
whether an image is real or fake. Conversely, the genera-
tor is to learn to output images that can fake the discrim-
inator. Since the GANs appeared, plenty of works such
as[14, 26, 38] on computer vision are based on GANs. With
the success of GANSs, conditional GANs encode additional
information as a reference into the GAN framework which
will make sure the generator can run more straightforward
to the target. cGANSs have achieved remarkable results in
image-to-image translation [ 14, 43, 3], super-resolution im-
age generation [ 17, 39] and style transfer [ 13, 2].

Image-to-Image Translation adopt input-output data to
learn a translation mapping between input and output do-



mains. For instance, Isola ef al. propose Pix2Pix [14],
which is a general-purpose solution to image-to-image
translation problems. For further improving the quality of
the generated images, works such as [33, 40] try to em-
ploy the attention mechanism to force the generator to pay
more attention to the distinguished content between differ-
ent input and output domains. In this paper, we embed the
proposed attention mechanism into our cross-modal GAN
model, which allows the generator to effectively pay atten-
tion to the most distinguished representations between au-
dio and image modalities. Moreover, previous works such
as [31, 41] generate images using residual images which
is different from ours, we employ the residual class-label
to guide the generator for producing photo-realistic images.
In this way, the generator only needs to focus on the high-
level difference between the audio representation and image
representation.
Cross-Modal Learning represents any kind of learning that
involves information obtained from more than one modal-
ity. Earlier work such as [5, 36] show cross-modal percep-
tion phenomena from the perspective of neurological and
psychological filed. They try to figure out the mutual rela-
tion between auditory and visual information from a neurol-
ogist’s or psychologist’s view. Later, cross-modal multime-
dia retrieval starts booming since the advance of multimedia
technology. Works such as [27, 25] take advantage of cross-
modal learning to help retrieving. Afterwards, cross-modal
learning is popular together with generative models, e.g.,
Variational Autoencoders (VAEs) [32] and GANs [23, 12].
Audio-to-Image Translation. There are few works to ad-
dress audio-to-image translation. Existing methods [37, 1,
] on audio-to-image translation take the advantage of la-
tent Gaussian vector, where they design convolution neural
networks encoder to extract feature map out of input au-
dio. Later, the extracted feature maps are concatenated with
the latent vector. The combined feature map is feed into
the generator to produce corresponding images. The latent
vector plays an important role in this translation. However,
different from these existing methods, we propose replac-
ing the latent vector with the proposed residue class-label
since it contains more meaningful representations between
different modalities.

3. Cascade attention guided residue learning
GAN

In this section, we start with the model formulation, and
then introduce the proposed objectives. Finally, we present
the implementation details including network architecture
and training procedure. The overall framework of the pro-
posed CAR-GAN is illustrated in Fig. 1.

In stage one, we present a cascade attention guided gen-
eration sub-network, which utilizes both the audio signal A
and its class label L, as inputs to generate an image. The

generated image I’ is further fed into the proposed residue
module to obtain the corresponding image class label L.
Next, we calculate the residual cross-modal label L, be-
tween the audio label L, and the image label L. L, reflects
the distance between the generated images and the real im-
ages in the semantic domain.

In stage two, the coarse synthesis I’ and the residual
cross-modal label L, are combined together as the input.
In this way, the semantic difference between the generated
images and audio signals, L, can be employed to guide the
generator to further refine the generated image I’. As a re-
sult, the cross-modality semantic distance could be further
reduced after the refinement.

3.1. Stage I: Cascade attention guided generation

Class-Label Guided Generation with Self-Attention.
Translating audio into image is an extremely challenging
task since it is difficult to tell any relationship between au-
dio and image modalities directly. To handle this challenge,
previous works such as S2IC [1] and CMCGAN [9] tried to
employ a random Gaussian noise vector as input to guide
the generator to produce a synthetic image. We argue that
the Gaussian noise vector will introduce some errors mis-
guiding the generator. Different from them, we input a
more accurate audio class-label into the generator similar
to [3, 34]. Specifically, as shown in Fig. 1, we concate-
nate input LMS A from audio space with audio class-label
L, and input them into the first generator G; and synthe-
size its corresponding coarse image I’ as I' = G1(A4, L,).
In this way, the audio class-label L, provides stronger su-
pervision to guide cross-modal translation in the deep net-
work. Moreover, to force the generators paying more at-
tention to the most distinguished content between differ-
ent modalities, we further introduce self-attention mecha-
nism into the generators. Zhang et al. [40] proposed the
Self-Attention Generative Adversarial Network (SAGAN)
for image generation tasks. Differently, in this paper, we
propose a self-attention image-to-image translation network
which allows long-range dependency modeling for cross-
modal image translation task with drastic domain change.
Once the generators know which part they should pay at-
tention to, the next goal is to generate images with more
fine-grained details. Therefore, we cascade two generators
and train them simultaneously.

Coarse-to-Fine Cascade Generation. Due to the com-
plexity of the cross-modal audio-to-image translation task,
we observe that the first stage generator GG; only outputs a
coarse synthesis with blurred artifacts, missing content and
high pixel-level dis-similarity. This thus inspires us to ex-
plore a cascade generation strategy to boost the synthesis
performance from the coarse predictions. The Coarse-to-
fine strategy has been used in different computer vision ap-
plications achieving promising performances, such as se-
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Figure 2. Residue Module: I’ denotes the output of the first gener-
ator G'1. The output of the classifier C is L;, which is the predicted
label of I’. L, is the label of the audio, L, denotes the difference
between two different modalities, i.e., audio label L, and image
label L. (5 denotes channel-wise subtraction.

mantic segmentation [15] and object detection [24, 4]. In
this paper, we adapt the coarse-to-fine strategy to handle a
more challenging audio-to-image translation task. We ob-
serve significant improvement using the proposed cascade
coarse-to-fine strategy, which is illustrated in the experi-
mental section.

3.2. Stage I1: Cross-modal residue label guided gen-
eration

The overview of proposed residue cross-modal label
guided generation module is shown in Fig. 2. This mod-
ule consists of a pre-trained classifier to preserve the cross-
modal label cycle consistency and a cross-modal residue la-
bel guided generation sub-network.

Cross-Modal Label Cycle Consistency. The coarse out-
put I’ of stage I is fed into the classifier C' to generate an
image classification label L. To further reduce the space
of possible mismatch between audio and image modalities,
we hypothesize that the learned mapping functions should
be cycle-consistent in cross-modal translation. For the au-
dio class label L, the translation cycle should be able to
bring it quite close to the image label L., i.e., G1(A, L,) —
I' - C(I') - L} = L,. We name this as cross-modal
label cycle consistency since L/ is a label representation of
the coarse output I’ in the image modality and L, is a label
representation of the audio A in the audio modality. Note
that the proposed cross-modal cycle consistency is different
from the cycle consistency in CycleGAN [43] which adapts
the cycle-consistency between the input image and the re-
construction image in the image space, in this paper, we
employ making two different modalities cycle consistent in
the class-label space.

Cross-Modal Residue Label Guided Generation. Previ-
ous works have shown that residual images can be effec-
tively learned and used for image generation task. For in-
stance, Shen and Liu [31] used the learned residual image
as the difference between images before and after the face
attribute manipulation. Zhao et al. [4 1] trained networks to
learn residual motion between the current and future frames
for the image-to-video generation task, which avoids learn-
ing motion-irrelevant details. Instead of manipulating the
whole image, both approaches proposed to learn the resid-

ual images. In this way, the manipulation can be operated
efficiently with modest pixel modification. However, in the
paper, we propose the residue label rather than residue im-
age for cross-modal image translation task. Specifically, we
first obtain the residue label L, between the image label L/,
and the audio label L, by calculating L, = L, — L}. Then
we intend to generate the missing information L, in the sec-
ond generator stage, which can be expressed as,

I" = Ga(I', L) = G2(G1(A, L,), Ly). )

In this way, the generation process can be operated effi-
ciently with modest pixel modification, i.e., the generator
G2 can flexibly preserve the similarities between the audio
and image representations, and only model the differences
between them.

3.3. Label consistency: Backpropagating via the
classifier

A vanilla cGAN conducts backpropagation mainly deter-
mined by the discriminator. The discriminator judges from
the image-level information, but not the label-level seman-
tic information. We argue that different but corresponding
modalities can match with the same semantic label. There-
fore, apart from performing backpropagation from the dis-
criminator, we also backpropagate from the label classifier
to make sure the generated images belong to the same label
domain with input audios. During the training, the corre-
sponding label, i.e., the instrument type of the input audio
signals, is fed to the classifier. When we update the model
during backpropagation, the parameters of the pre-trained
classifier are fixed. Only the gradients of input images are
passed back such that the images can be revised accordingly
to match its semantic label. In this way, the label consis-
tency can be guaranteed. The classifier is re-trained using a
pre-trained model using ImageNet [6]. The backpropagat-
ing path is described in Fig. 3. During the backpropagation
of the classifier, we design a joint loss L¢ for our two-stage
generations. L¢ is composed of two parts: the classification
loss of stage I and stage II,

Lo =L 1" =2p L) 4+ M LT, )

where L is the cross-entropy loss function. A; and Ay~
are coefficients to control the relative importance of the two
objectives.

3.4. Universal optimization objective

Adversarial Loss. Our adversarial loss is composed of two
parts since we adapt two stages generation. During the stage
I, the adversarial loss of discriminator D for differentiating
generated audio-image pairs [A, I'] from real audio-image
pairs [A, I] is formulated as following:

L‘,CGAN(A,I/) = EA,[ [logD(A7 I)] +

3
Ea,r [108(1 - D(A,I'))] ) ®
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Figure 3. The backpropagation path of the proposed CAR-GAN.
The solid line denotes the path for the forward process, the red
dashed line denotes the backpropagation path. We use the same
pretrained classifier C' twice in our model, so does the discrim-
inator D but without pretrained. I denotes the final generated
cross-modal image. (), ©) denote channel-wise concatenation and
subtraction, respectively.

where [ is the ground truth image. During the stage II, the
adversarial loss of discriminator D for differentiating gener-
ated audio-image pairs [A, I"'] from real audio-image pairs
[A, I]is formulated as following:

CCGAN(A, ]") = EA’] [lOgD(A,I)} —+

4
EA,I” [log(l — D(A,IN))} . ( )

The above two adversarial losses both target to reduce the
disagreements with ground truth images and generate more
realistic synthesized images. Therefore, our adversarial loss
is the total sum of the two stages:

Leaan = ey Leaan (A1) + Aay Leaan (A T7)  (5)

Universal Loss. Besides the adversarial loss L.qgan, wWe
also introduce the classification loss L and L1 loss func-
tion for better optimizing our CAR-GAN. Our final loss
function is a combination of the three losses.

min _ max L = AcLc + AcganLecan + ALy, (6)

{G1,G2,¢} {D}

where L1 = ELl(I, I/)+£L1(I, I”). Aes /\(:GAN and Ar1
denote the trade-off parameters to control the significance

of its corresponding loss function, respectively. Our model
is trying to balance the min-max problem while training.

3.5. Implementation details

Network Architecture. Inspired by the work of Isola er
al. [14], we employ U-Net [28] as the backbone of our gen-
erators GG1 and G5. U-Net is a Convolution Neural Network
(CNN) architecture with skip connections between a down-
sampling encoder and an up-sampling decoder, and it re-
tains complex textual information of the input. We share the
same network architecture in both generators. The convolu-
tions of down-sampling layers and up-sampling layers are

4x4 kernel with stride 2 and padding 1. The filters in atten-
tion convolution layers are 1x1 with stride 1. For the dis-
criminator D, we adapt PatchGAN as in [14, 43]. The ker-
nel size of the attention convolution layers is also 1 x 1. Both
the generators and discriminator have attention layers be-
fore the last two convolution layers. The other convolution
layers in the discriminator have a kernel size of 4 x4 kernel
with stride 2 and padding 1. Batch normalization is used in
our model. As for the classifier, we employ ResNet50 [10]
architecture which is pre-trained in the ImageNet. Then we
add a fully connected layer at the end of the network and
conducted transfer learning in Sub-URMP dataset for high
classification accuracy. The classifier is fixed while training
our model.

Training Details. First, we employ preprocessing for ev-
ery audio, where the audio are converted from waveform
pattern to LMS pattern, which is a frequency warping pat-
tern that allows for better representation of audio clips. Our
proposed CAR-GAN is trained and optimized in an end-to-
end style. C' is pre-trained and fixed while training. We first
train G1, G2 with D fixed, and update parameters of G; and
G by the sum of gradients from C"’s and D’s backpropa-
gation, and then we train D with G; and G» fixed, but the
backpropagation of C' has no influence on the optimization
of D, i.e., the optimization is only determined by G; and
G2. We apply Adam algorithm [16] for optimizing both
the generators (G1, G'2) and discriminator (D) jointly. The
betas of the Adam algorithm set to 0.9 and 0.999, respec-
tively. Weights are initialized from a Gaussian distribution
with standard deviation 0.2 and mean 0.

4. Experiments
4.1. Experimental settings

Datasets. Following [!], we adapt the widely used Sub-
URMP (University of Rochester Musical Performance)
dataset [18] to evaluate the proposed model. This dataset
consists of 17,555 pairs of audios and images, and has 13
kinds of instruments played by different people. It maps an
image to a half second long audio, and the image is the first
frame of the half second long audio.

Parameter Settings. We resize images to 256 x 256 resolu-
tion as inputs. We implement with Pytorch and the experi-
ments are running at 4 Nvidia GeForce GTX 1080 Ti GPUs
with batchsize 64. We set the learning rate to 0.0008, and
stop our training at the epoch of 200. Both A;s and A~ in
Eq. (2) are set to 0.5. We set Ag,, Ag, in Eq. (5), and A,
Aecgan in Eq. (6) all equal to 1, and Ap; equal to 100 in
Eq. (6).

Evaluation Metrics. To compare with previous work
[1, 9], we employ the classification accuracy as the met-
ric, the only metric used in the previous two papers. The
way we measure our model is that we first train a model
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classif. loss)
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with 99.56% classification accuracy using ResNet50 trained
on Sub-URMP dataset, and then we test the pre-trained
ResNet50 on our generated results. The intuition behind
this is that if the generated images are realistic, the classi-
fier trained on the real images will also achieve decent ac-
curacy on the generated images during the testing stage. In
addition to classification accuracy, we also employ Fréchet
Inception Distance (FID) [1 1] and Inception Score (IS) [30]
metrics to further evaluate the fidelity of the generated im-
ages. Due to the lack of pretrained model and released code
of previous work, we are not able to get FID and IS of their
works.

C (w/o
residue module)

Figure 4. Ablation study: synthesized images by different models of the proposed CAR-GAN. LMS represents the LMS of the input audios.

D (w/o
2nd stage)

E (full model) Ground Truth

4.2. Experimental results

Settings of Ablation Study. We perform ablation study on
the proposed CAR-GAN. We break down our model and
assemble it into five different models. The following five
models share a similar backbone, but a particular part is
abandoned. Model A avoids using attention guided gen-
eration. Model B drops out the L. loss. Residue module
is taken out from model C. Model D is running without
stage II (no second generator). And the last model E is
our fully proposed model. Fig. 4 shows the corresponding
cross-modal generated images of different models. Table 1
depicts how models perform based on the metrics we em-
ployed.

Influence of Attention Mechanism. Compared with our



Baseline A B C D E GT
FID 279.3022 | 332.1574 | 380.1104 | 307.3725 | 240.7771 -
IS 3.2221 3.4337 2.0699 3.7215 4.2023 4.7552

Table 1. Results of the proposed CAR-GAN for FID and IS metrics.

CMCGAN

Ground Truth

LMS

Ground Truth

[

Figure 5. Generated images of different stages of our model.

Method . li\ccuracy .
Training | Testing
S2IC 0.8737 | 0.7556
CMCGAN 09105 | 0.7661
Ours 0.9954 | 0.9033

Table 2. The classification accuracy of different methods.

proposed full model E, model A which avoids attention
mechanism performs slightly worse. The results of model
A shows the overall contour of images, but some details are
left out. That is, attention mechanism does enhance the rep-
resentation ability of our model.

Influence of Classification Loss. If we add our proposed
classification loss into the model, we make an improvement
by 27.51% in FID and 22.39% in IS since the classification
loss L. awards the generators strong guidance towards the

trombone

double_bass

Figure 6. Synthesized images of different methods on the Sub-
URMP dataset.

ground-truth. This tells generators from an overall classifi-
cation view. Therefore, the generators know the appropriate
direction to go from the label domain.

Influence of Residue Module. With our residue module,
we achieve an amazing improvement on FID by 36.66%
and on IS by 103.01%. Our residue module supplements
the missing information during the generation of Stage I,
making that the generated images belong to the same do-
main and keep balance in the label domain between inputs
and outputs.

Influence of Two-Stage Generation. Our two stages of
generators lead to the improvement of 21.67% in FID and
13.01% in IS. The single generator has weak representation
ability for a complicated cross-modal generation. Thus, the
union of two or more generators can progressively improve
representation ability and performance. To visualize the in-
fluence of two-stage generation, we display synthesized im-
ages by different stages in Fig. 5. The generated images
by the second stage have more fine-grained details and are
more realistic, i.e., it certifies that two-stage generation is



beneficial for the whole generation procedure.
State-of-the-art Comparisons. We show the quantitative
and qualitative results with comparison methods in Table 2
and Fig. 6, respectively. We make an improvement in train-
ing accuracy by 13.93%, 9.32% compared to S2IC [1] and
CMCGAN [9], respectively. As for the testing, we achieve
an increase of 19.55% and 17.91% compared with S2IC and
CMCGAN. Furthermore, we produce more realistic and de-
tailed images compared with the previous methods as illus-
trated in Fig. 6.

Failure Cases and Analysis. During our experiments, we
find there are some synthesized images which are randomly
combined by learned features. When we start furtherly
looking into these cases, we finally find out that the corre-
sponding inputs of these failure cases are more like noises
that are randomly distributed, and the GT images show peo-
ple mostly hold the instrument still and wait, that is, there is
no sound making by instruments, the audios mainly consist
of background and other noises.

5. Conclusion

In this paper, we design a novel Cascade Attention
Guided Residue Learning GAN (CAR-GAN) to solve the
challenging cross-modal audio-to-image translation task.
Particularly, it employs cascaded attention guidance and a
coarse-to-fine generation strategy. A novel residue learning
model is also proposed to tackle the cross-modal class-label
dis-match problem between audio and image modality. By
introducing the residue module, generators learn to produce
residue feature between two stages, which pushes the out-
put closer to its corresponding real image in a high-level
semantic space. Finally, the proposed joint classification
loss facilitates the model generation and keeps consistency
in the label domain. Experimental results show the state-of-
the-art performance on the cross-modal translation task.
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