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Abstract 
Linear recurrences encompass many fundamental computations 
including prefix sums and digital filters. Later result values de-
pend on earlier result values in recurrences, making it a challenge 
to compute them in parallel. We present a new work- and space-
efficient algorithm to compute linear recurrences that is amenable 
to automatic parallelization and suitable for hierarchical mas-
sively-parallel architectures such as GPUs. We implemented our 
approach in a domain-specific code generator that emits opti-
mized CUDA code. Our evaluation shows that, for standard prefix 
sums and single-stage IIR filters, the generated code reaches the 
throughput of memory copy for large inputs, which cannot be sur-
passed. On higher-order prefix sums, it performs nearly as well as 
the fastest handwritten code from the literature. On tuple-based 
prefix sums and digital filters, our automatically parallelized code 
outperforms the fastest prior implementations. 
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1 Introduction 
Many important algorithms are instances of linear recurrences. 
Prominent examples include prefix sums and digital filters. Prefix 
sums are a key primitive that can be used to parallelize computa-
tions such as sorting, stream compaction, polynomial evaluation, 

histograms, and lexical analysis [3]. Infinite Impulse Response 
(IIR) filters, also known as recursive filters, are fundamental algo-
rithms in digital signal processing. They are, for example, used for 
DC removal, noise suppression, wave shaping, and smoothing of 
discrete-time signals in telecommunication and audio applications 
[22]. Moreover, linear recurrences are important in economics, 
data compression, biology, pseudo random-number generation, 
mathematics, complexity analysis, and finance. 

A recurrence transforms a sequence of input values x0, …, xn-1 
into an output sequence y0, …, yn-1 of the same length. This paper 
focuses on order-k homogeneous linear recurrences with constant 
coefficients of the form 

 yi = a0xi+a-1xi-1+…+a-pxi-p + b-1yi-1+b-2yi-2+…+b-kyi-k, (1) 

where xj = 0, yj = 0, ∀j < 0. Equation (1) is called the recursion 
equation. We refer to the aj constants as the non-recursion (feed-
forward) and the bj constants as the recursion (feedback) coeffi-
cients. To simplify the notation and improve the readability, we 
express recurrences in the following signature format, where the 
aj and bj coefficients are separated by a colon. 

 (a0, a-1, …, a-p: b-1, b-2, …, b-k) 

If all the aj are zero, the output sequence is all zeros and inde-
pendent of the input values. Hence, we only consider cases where 
a-p ≠ 0 for some p ≥ 0. If all the bj are zero, the recurrence becomes 
a map operation that can be computed in an embarrassingly par-
allel fashion. Thus, we are only interested in cases where b-k ≠ 0 
for some k ≥ 1. The largest k for which b-k ≠ 0 determines the order 
of the recurrence. We use k and the term “order” interchangeably. 

Table 1. Signatures of a Few Linear Recurrences 
Signature Computation 
(1: 1) prefix sum 
(1: 0, 1) 2-tuple prefix sum 
(1: 0, 0, 1) 3-tuple prefix sum 
(1: 2, -1) 2nd-order prefix sum 
(1: 3, -3, 1) 3rd-order prefix sum 
(0.2: 0.8) a 1-stage low-pass filter 
(0.04: 1.6, -0.64) a 2-stage low-pass filter 
(0.008: 2.4, -1.92, 0.512) a 3-stage low-pass filter 
(0.9, -0.9: 0.8) a 1-stage high-pass filter 
(0.81, -1.62, 0.81: 1.6, -0.64) a 2-stage high-pass filter 
(0.73, -2.19, 2.19, -0.73: 2.4, -1.9, 0.5) a 3-stage high-pass filter 

Table 1 lists a few linear recurrences expressed using our sig-
nature notation. The coefficients of some of the digital filters are 
truncated for improved readability. The signature (1: 1) represents 
the standard prefix-sum computation. Tuple-based prefix sums, 
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i.e., prefix sums over tuples rather than scalar values, have b-s set 
to one and the remaining bj coefficients to zero, where s is the 
tuple size. In higher-order prefix sums, i.e., prefix sums of prefix 
sums, the signature follows the binomial coefficients except bj is 
negative for all even j. These signature coefficients can be ob-
tained using the z-transform [16]. The formulas for calculating the 
filter coefficients listed in Table 1 are given by Smith [22]. 

Recursion equation (1) can always trivially be separated into 
the following two recurrences. 

 ti = a0xi + a-1xi-1 + … + a-pxi-p (2) 

 yi = ti + b-1yi-1 + b-2yi-2 + … + b-kyi-k (3) 

The signature of the map operation (2) producing the interme-
diate sequence ti is (a0, a-1, …, a-p: 0), and the signature of the re-
currence (3) producing the final sequence yi, assuming ti as input, 
is (1: b-1, b-2, …, b-k). The map operation is a non-recursive Finite 
Impulse Response (FIR) filter. This two-stage formulation is im-
portant because it allows to compute the overall recurrence by 
first computing the intermediate sequence ti in an embarrassingly 
parallel manner, which eliminates the aj coefficients and makes 
the remaining recurrence (3) easier to handle [15]. The rest of this 
paper focuses on how to automatically parallelize these remaining 
recurrences, particularly for hierarchical architectures with mul-
tiple levels of hardware parallelism. For example, GPUs expose a 
fine granularity (warps) with very fast communication, a medium 
granularity (thread blocks) with relatively fast communication, 
and a coarse granularity (grid) with slow communication. By “re-
currence”, we henceforth mean recurrences of type (3).  

This paper makes the following main contributions. 
 It presents a new algorithm for computing linear homoge-

neous 1D recurrences with constant coefficients that is not 
similar to any prior recurrence algorithm. 

 It describes a hierarchical approach to automatically paral-
lelize such recurrences based on n-nacci numbers. 

 It introduces domain-specific optimizations that result in 
the generated code outperforming the fastest alternatives 
from the literature in many cases. 

The paper makes the following additional contributions. 
 It proposes a domain-specific language (our signatures) for 

compactly expressing recurrences of type (1).  
 It presents a simple proof-of-concept compiler called PLR 

that translates these signatures into CUDA code. 
PLR is freely available to the research and education commu-

nity at http://cs.txstate.edu/~burtscher/research/PLR/. 
The rest of this paper is organized as follows. Section 2 ex-

plains our algorithm and the hierarchical parallelization approach. 
Section 3 describes the domain-specific code generator and the 
optimizations it performs. Section 4 reviews related work. Section 
5 presents the evaluation methodology. Section 6 analyzes and 
discusses the measurement results. Section 7 concludes with a 
summary and future work. 

2 Algorithm 
The serial algorithm and code for computing a linear recurrence 
of the form (1: b-1, b-2, …, b-k) are straightforward. 

for (i = 0; i < n; i++) { 

  y[i] = t[i]; 

  for (j = 1; j <= min(i, k); j++) 

    y[i] += b[j] * y[i - j]; 

} 

Here, the array elements b[j] hold the coefficients b-j and k de-
notes the order. This code performs O(nk) computations and 

O(nk) memory accesses on sequences with n elements. Its space 
complexity is O(n+k). We assume k to be much smaller than n, 
which is generally the case in practice. 

The reason why recurrences are difficult to parallelize is that 
each value in the result sequence depends on earlier values from 
the result sequence, i.e., there is a loop-carried dependency. 
Hence, the prior values must have been computed before the cur-
rent value can be computed, making the above implementation 
inherently sequential. 

Since all linear recurrences can be expressed as prefix scans 
[3], they can be computed in parallel in O(log n) steps. The total 
work performed by a prefix-scan-based parallel implementation is 
close to optimal, i.e., only somewhat worse than the serial algo-
rithm if k is much smaller than n. 

Our algorithm is based on a different approach and comprises 
two phases. The first phase iteratively merges pairs of adjacent 
chunks by correcting the values in the second chunk of each pair 
using the up to last k values from the first chunk of the pair. The 
second phase processes the resulting chunks in a pipelined fash-
ion to compute the final solution. 

2.1 Phase 1 

Phase 1 computes recurrences of type (3) by first subdividing the 
input sequence into chunks of size one. This yields the correct so-
lution within each chunk as the first output element is always 
identical to the first input element and each chunk only has one 
element. Then Phase 1 iteratively merges pairs of adjacent chunks 
into chunks of twice the size. It does this with the help of pre-
computed correction factors by which the up to last k elements of 
the first chunk in a pair have to be multiplied to form the correc-
tion terms that need to be added to the elements of the second 
chunk. We illustrate this process for the arbitrary first-order re-
currence (1: d) on the following two contiguous chunks 

 w0, w1, …, wm-1 | wm, wm+1, …, w2m-1, 

where m is the chunk size and the vertical bar denotes the border 
between the chunks. To correct the wm element, we have to add d 
times the prior element wm-1 per the recurrence. Thus, the first 
correction term is dwm-1. Similarly, to correct the wm+1 element, 
we have to add d times the corrected prior element. However, in 
the preceding iterations that brought the chunk size up to m, we 
already added dwm, so now we only need to add d times the cor-
rection term of the prior element. Thus, the second correction 
term is d2wm-1. Continuing in this manner, we find the third cor-
rection term to be d3wm-1, and so on. Importantly, they are all the 
product of a correction factor and the carry value wm-1 from the 
previous chunk. The carry depends on the input values, but the 
correction factors do not and can be precomputed for a given re-
currence. In this example, the m correction factors are 

 d, d2, d3, …, dm. 

For reasons that will become clear soon, we extend this se-
quence of factors by one element on the left, giving 

 1 | d, d2, d3, …, dm. 

So, for any first-order recurrence, the correction factors can be 
computed by starting with a 1 and applying the recurrence (0: d) 
to it. Note that this is identical to the original recurrence except 
the non-recursive term is zero. 

Next, we show how to compute the correction factors for the 
arbitrary second-order recurrence (1: d, e), from which we will 
then derive the general solution. We start with the following two 
chunks of m elements from prior iterations: 



 

 w0, w1, …, wm-2, wm-1 | wm, wm+1, …, w2m-1. 

To correct wm, we have to add d times the previous element 
wm-1 and e times the second-to-previous element wm-2. Hence, the 
first correction term is dwm-1+ewm-2. (Recall that all missing terms 
are zero. For example, in the first iteration, where m = 1, there is 
no term wm-2.) To correct wm+1, we have to add d times the cor-
rected previous element plus e times the second-to-prior element 
wm-1. In the earlier iterations, we already added dwm, so we only 
need to add d times the correction term of the previous element. 
Thus, the second correction term is d(dwm-1+ewm-2)+ewm-1, that is, 
(d2+e)wm-1+ dewm-2. At this point, we need to add d times the pre-
vious correction term plus e times the second-to-previous correc-
tion term for all remaining elements. Hence, all correction terms 
consist of a first correction factor multiplied by wm-1 plus a second 
correction factor multiplied by wm-2. The values wm-1 and wm-2 are 
the two carries from the prior chunk. There are two carries be-
cause it is a second-order recurrence. The first few correction 
terms come out to be 

dwm-1+ewm-2, (d2+e)wm-1+dewm-2, (d3+2de)wm-1+ 
(d2e+e2)wm-2, (d4+3d2e+e2)wm-1+(d3e+2de2)wm-2, …. 

Listing just the correction factors for wm-1, we obtain 

 d, d2+e, d3+2de, d4+3d2e+e2, …. 

Similarly, the correction factors for the carry wm-2 are 

 e, de, d2e+e2, d3e+2de2, …. 

As in the first-order example above, these correction-factor se-
quences can be computed by changing the non-recursive 1 into a 
0 in the underlying recurrence, meaning they can be produced by 
the recurrence (0: d, e). To correctly compute the first elements of 
these two sequences, we need to extend both sequences by two 
elements on the left. In particular, the extended sequences of cor-
rection factors turn out to be 

 0, 1 | d, d2+e, d3+2de, d4+3d2e+e2, … and 

 1, 0 | e, de, d2e+e2, d3e+2de2, …. 

Note that there is a 1 in the location of the corresponding carry in 
the prior chunk and a 0 in the other position. 

With this in mind, we can now describe the general approach 
for computing the correction factors of the arbitrary kth-order re-
currence (1: c-1, c-2, …, c-k). We begin with k elements that are all 
zero except for a single element that is one. The location of this 
element is determined by the position of the corresponding carry 
in the previous chunk. Starting with these k elements, we apply 
the recurrence (0: c-1, c-2, …, c-k) to generate the correction factors 
for that carry. We repeat this procedure for the remaining carries. 

The resulting sequences are known as n-nacci numbers [14]. 
For example, the correction factors of the recurrence (1: 1, 1) are 
the Fibonacci numbers. Interestingly, there are two Fibonacci se-
quences, one that is started with “0, 1” and the other with “1, 0”. 
They are not typically distinguished because both sequences are 
identical except they are shifted by one position relative to the 
other. The correction factors of the recurrence (1: 1, 1, 1) are the 
Tribonacci numbers, of which there are three sequences that are 
started with “0, 0, 1”, “0, 1, 0”, and “1, 0, 0”. Again, the first and the 
last of these three sequences are shifted by one position relative 
to each other, but the middle sequence is entirely different (cf. 
OEIS sequence A001590 vs. A000073). The recurrence (1: 1, 2) re-
sults in the so called (1, 2)-Fibonacci sequence. In general, the cor-
rection factors of the recurrence (1: c-1, c-2, …, c-k) are the (c-1, c-2, 
…, c-k)-nacci numbers, which are the Fibonacci numbers general-
ized to factors other than one, to more than two terms, and to real 

numbers. It is the signature notation of the n-nacci numbers that 
gave us the idea of using a similar notation for compactly express-
ing linear recurrences. 

Since the correction factors can be precomputed, the amount 
of work at runtime is k multiplications and k additions to correct 
an element, which is O(k) work. In each iteration, half of the ele-
ments need to be corrected (the elements in the second chunk of 
each pair). If there are n elements in the input, this is O(n) ele-
ments. Hence, the amount of work per iteration is O(nk). Note that 
each element can be corrected independently and in parallel. As 
the chunk size doubles in each iteration, we need O(log(n)) itera-
tions to reach a size of n. So the total work is O(nk log(n)). 

Phase 1 requires O(log(n)) more work than the serial algo-
rithm. The scan-based approach by Blelloch [3] for parallelizing 
recurrences, which we call “Scan” in this paper, also takes O(log 
n) parallel steps but requires a factor of O(Tkk/k) more work than 
the serial algorithm, where Tkk is the time to perform a k by k 
matrix multiplication. Assuming Strassen’s algorithm, Tkk ≈ k2.8 
and, thus, O(Tkk/k) ≈ O(k1.8). Hence, Phase 1 is more efficient than 
Scan when O(log(n)) < O(k1.8). This is the case for sufficiently 
small n or sufficiently large k. 

As neither approach is work efficient, we switch to Phase 2 
beyond a constant chunk size of m. Since m is constant, we per-
form O(nk log(m)) = O(nk) work using Phase 1 to build chunks of 
fixed size m, which is work efficient. 

The iterative doubling of the chunk size make this phase suit-
able for architectures with different levels of parallelism as will be 
explained in Section 3. In particular, we chose m to exploit the 
hardware parallelism within warps and thread blocks. Phase 2 
takes advantage of the remaining hardware parallelism. 

2.2 Phase 2 

There are two main reasons for using a second phase. First, the 
Phase 2 algorithm is work efficient. Second, the larger the chunk 
size is, the more correction factors need to be loaded, which incurs 
overhead. To avoid this overhead, Phase 2 processes fixed-size 
chunks and operates in a pipelined manner, i.e., the processing of 
the chunks is partially overlapped. 

This pipelined approach is also used by other GPU codes such 
as in CUB’s and SAM’s prefix-sum implementations [11, 13]. Once 
Phase 1 is complete, the last k values of each chunk are written 
out to make these local carries available to later chunks. Phase 2 
reads in the carries from the previous chunk, corrects the values 
of the current chunk, and emits the now globally correct k carries. 

Our implementation uses Merrill and Garland’s variable look-
back strategy to minimize the waiting for carries [13]. In particu-
lar, it does not wait for the global carry values from the prior 
chunk. Instead, it takes the global carries from the most recent 
chunk for which they are available as well as the local carries from 
all chunks that follow, which become available sooner. Based on 
these values, it computes the global carries for the current chunk 
using precomputed correction factors akin to Phase 1. CUB and 
SAM only directly support recurrences whose correction factors 
are all 1, so they do not need to explicitly precompute them. 

Disregarding any waiting for carries, Phase 2 performs O(mk) 
work per chunk to correct the values and O(k) work to handle the 
carries. Moreover, it reads m input values, writes m output values, 
reads O(k) carries, and writes O(k) carries. Since there are n/m 
chunks, Phases 1 and 2 perform a total of O(nk) work, i.e., they are 
work efficient. The two phases together read and write O(n+nk/m) 
words in main memory, which is O(nk) as m is a constant. More 
precisely, every input value is read once, every output value is 
written once, and each chunk writes 2k carries plus two flags to 



 

indicate when the carries are ready. Our algorithm’s space com-
plexity is O(n+k) since it requires storage for n input values, n out-
put values, c flags, and 2ck carries, where c is the constant maxi-
mum pipeline depth. We use c = 32 in our implementation so that 
the carries can be handled by the 32 threads of a single warp. This 
space complexity is the same as that of the serial algorithm, mean-
ing our algorithm is space efficient. In contrast, the Scan algo-
rithm is not space efficient. It encodes each value in the sequence 
by a k by k matrix and a k-element vector, meaning it requires 
O(nk2) memory. 

2.3 Putting It All Together 

The following example illustrates how our algorithm works on 
the second-order recurrence (1: 2, -1), i.e., the second-order prefix 
sum, with m = 8 and n = 20. Assume the input is: 

 

Based on the serial code from the beginning of Section 2, we can 
compute the expected output for later verification: 

 

Before our algorithm can start, k lists of m correction factors 
need to be precomputed (offline) based on the recurrence (0: 2, -1) 
and the starting values described in Section 2.1. For example the 
first list below is started with “0, 1”. Each entry in the list is gen-
erated by multiplying the prior element by 2, the second to prior 
element by -1, and adding the two products. This yields the fol-
lowing two lists of eight bold-printed correction factors. 

 

At this point, Phase 1 commences by breaking up the input into 
chunks of one element each before merging pairs of adjacent 
chunks into successively larger chunks. 

The first iteration corrects every second value (aka chunk) by 
adding 2 times the value of the previous chunk. The “2” is the first 
correction factor from the first list above. Since there is only one 
element per chunk, no further work is needed. This yields the fol-
lowing sequence, in which the shaded values are the values that 
have been corrected. 

 

In the second iteration, Phase 1 merges every second pair 
(shaded below) with the preceding pair. The first value is cor-
rected by adding 2 times the last value of the previous pair and -1 
times the second-to-last value (the first factors from the two lists 
above). The second value is corrected by adding 3 times the last 
value of the previous pair and -2 times the second-to-last value 
(the second factors from the two lists). 

 

In the third iteration, every second chunk of four values 
(shaded below) is merged with the preceding chunk using the first 
four correction factors from the two lists, i.e., again the ith value 
in the chunk is corrected with the ith factor in each list. This yields 
chunks of size m = 8, at which point Phase 1 terminates with the 
following partial result. 

 

Note that each iteration not only doubles the chunk size but 
also the correct and final values at the beginning of the sequence. 
In other words, after iteration s, the first 2s elements are correct. 

Phase 2 corrects later chunks of size m based on the last two 
carry values from the previous chunk. It does this in the same 
manner as Phase 1, except it does not iteratively double the chunk 
size, which is why it never needs more than m correction factors. 
Instead, it sequentially proceeds through the chunks. For example, 
the last element of the second chunk is 40 plus 9 (the last correc-
tion factor in list 1) times 8 (the last element of the prior chunk) 
plus -8 (the last correction factor in list 2) times 12 (the second-to-
last element of the prior chunk), which is 40 + 9 ∙ 8 – 8 ∙ 12 = 16. 
Once the (carry) elements of a chunk have been corrected, the cor-
rection of the next chunk can begin. This yields the final result. 

 

To speed up Phase 2, we pipeline its operation. This is possible 
because the local carries, which are the last k values of each chunk 
after Phase 1, are produced earlier than the global carries, which 
are the last k values of each chunk after Phase 2. Any missing 
global carries can be precomputed based on the global carries from 
several chunks ago and the intervening chunks’ local carries. For 
instance, we can precompute the global carries of the third chunk 
in the above example, which are 24 and 16, based on the global 
carries from the first chunk (12 and 8) and the local carries from 
the second chunk (44 and 40) even before the global carries of the 
second chunk become available. In particular, the global carries of 
the third chunk are the local carries of the second chunk corrected 
using the global carries of the first chunk and the correction fac-
tors from the two lists above. In our example, 24 = 44 + 8 ∙ 8 + -7 
∙ 12 and 16 = 40 + 9 ∙ 8 + -8 ∙ 12, where the bold-printed values are 
the correction factors and the remaining values are the various 
carries. This calculation requires O(ck2) operations, where c is the 
distance in chunks to the most recent chunk for which global car-
ries are available, i.e., the degree of pipelining. Since the full pro-
cessing of a chunk takes O(mk) operations, this carry correction 
is faster as long as O(ck2) is smaller than O(mk). In other words, 
the product ck must be sufficiently smaller than m, which is the 
case in all examples studied in this paper, where k < 4, c ≤ 32, and 
m ≥ 1024. In particular, c is typically much smaller than 32 as our 
code automatically looks for the most recent available global car-
ries, thus dynamically minimizing c. As a consequence, the carry 
precomputation can be performed while Phase 2 is working on the 
second chunk but in a fraction of the time, thus enabling Phase 2 
to start processing the third chunk before the second chunk is 
done, which results in a pipelined operation of Phase 2. 

3 Implementation 

To validate our algorithm and demonstrate the feasibility of our 
automatic parallelization approach, we wrote a domain-specific 
compiler, which we call PLR for Parallelized Linear Recurrences. 
It reads in a recurrence of type (1) in signature format, i.e., two 
lists of coefficients separated by a colon, which can be thought of 
as a domain-specific language. It then translates this recurrence 
into CUDA code. Upon execution, the code computes the recur-
rence on the given input sequence of values. 

CUDA exposes three levels of hardware parallelism. The first 
level is the warps, which are sets of 32 threads that execute in 
lockstep. The threads within a warp can exchange data using shuf-
fle instructions without explicit synchronization. The second level 
is the thread blocks, which hold up to 1024 threads. The threads 
in a block can exchange data via a software-controlled cache 
called “shared memory”. The third level is the device, which con-
tains a number of streaming multiprocessors (SMs). Thread blocks 

3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22

3 2 6 4 9 6 12 8 15 10 18 12 21 14 24 16 27 18 30 20

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

1 0 -1 -2 -3 -4 -5 -6 -7 -8

 correction-factor list 1

 correction-factor list 2

3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20

3 2 6 4 7 6 14 12 11 10 22 20 15 14 30 28 19 18 38 36

3 2 6 4 9 6 12 8 11 10 22 20 33 30 44 40 19 18 38 36

3 2 6 4 9 6 12 8

15 10 18 12 21 14 24 16

27 18 30 20



 

are automatically assigned to the SMs until all blocks have exe-
cuted. Threads from different blocks can only exchange data via 
global/main memory, which is backed by a shared L2 cache. 

PLR supports sequences of any length up to 4 GB. It supports 
integer and floating-point signatures, including all forms of prefix 
sums and 1D digital filters. The code it generates requires at least 
compute capability 3.0, i.e., it works on the several most recent 
GPU generations from NVIDIA. Such GPUs typically have 65,536 
registers per SM and support a maximum thread-block size of 1024 
threads. Based on these hardware parameters, PLR sets the chunk 
size m for each thread block to 1024x, where x is the number of 
values each thread has to process. x is the smallest integer for 
which x ∙ 1024 ∙ T > n, where n is the input size and T denotes the 
number of thread blocks the GPU can simultaneously process. 
Moreover, x ≤ 9 for floating-point signatures and x ≤ 11 for integer 
signatures. PLR allocates 32 registers per thread for floating-point 
signatures as well as for integer signatures that only contain ones 
and zeros (such as those of normal and tuple-based prefix sums). 
For more complex integer signatures, it allocates 64 registers per 
thread. These crude heuristics can obviously be improved. For ex-
ample, most of the recurrences we tested yield higher perfor-
mance for other values of m and/or x. SAM uses an auto-tuner to 
find the best value of x for different input sizes [11]. Optimizing 
these parameters in PLR is left for future work. 

The code-generation process starts by parsing the signature 
and performing some simple checks. For instance, the last non-
recursive and the last recursive coefficients must not be zero. 
Then PLR begins emitting the CUDA program, which consists of 
the following code sections. 

1) The first section includes k constant arrays of size m that 
are initialized with the correction factors, where k is the order of 
the recurrence and m is the chunk size at which Phase 1 termi-
nates. The correction factors are precomputed based on the n-
nacci sequences described above. They are needed in Phase 1, 
which iteratively merges chunks until they contain m elements. 
This procedure requires progressively longer lists of correction 
factors. However, the longest list contains all needed shorter lists. 
Moreover, it also contains the corrections factors for Phase 2. 
Thus, only a single array holding m factors is emitted per carry. 

2) The second code section is the beginning of the recurrence 
kernel. Each thread block first atomically increments a counter to 
determine for which chunk it is responsible. Then it reads the m 
input values of that chunk. 

3) The following code section performs the map operation (2) 
to eliminate the non-recursive coefficients. 

4) The next section contains the first few unrolled iterations of 
Phase 1. They are implemented with shuffle instructions to bring 
the chunk size to the warp size. The rest of Phase 1 is done within 
a thread block but across warps, so shared memory is used to ex-
change data. This is an example of how our hierarchical approach 
makes it possible to exploit the features available at different lev-
els of hardware parallelism. This code extensively uses the correc-
tion-factor arrays. 

5) As soon as the local carries (the last k values of the chunk) 
are ready, they are written to global memory. Then a memory 
fence is executed before a flag is set to indicate that these carries 
are available. Unless this is the first chunk of the input, the Phase 
2 code starts at this point by reading the prior ready flags. It busy 
waits until there is at least one global set of carries ready within a 
distance of 32 and all following local carries are ready as well. 

6) The next code section reads the k global carries and all later 
local carries, if any. It then corrects those local carries using the 
global carries and k correction factors (cf. Section 2.3). This yields 
the carries needed to correct the m values of the current chunk to 

produce the global result. The last k values are written to global 
memory and the corresponding flag is set to indicate that the 
global carries are ready. 

7) Lastly, the m result values are written out. 

8) Multiple kernels are generated in the above manner for var-
ious values of x. For testing, PLR also emits a main function that 
calls the appropriate kernel, measures its performance, and veri-
fies the output by comparing it to the result of the serial code. 

The entire code generation, which runs serially on one CPU 
thread, takes only roughly 10 ms on our system (cf. Section 5). It 
is very fast because the m correction factors are computed using 
the n-nacci approach rather than by solving the equations we in-
itially used to derive them. 

3.1 Optimizations 

PLR performs several optimizations to boost the performance of 
the emitted code. It uses shuffle instructions whenever possible to 
quickly exchange data. If that does not work, it resorts to shared 
memory to exchange data. It merely uses main memory for ex-
changing the local and global carries. PLR only emits correction 
code for existing terms and suppresses the remaining terms. This 
is useful in the first few iterations in higher-order recurrences. 
However, the most important optimizations pertain to the correc-
tion factors and are explained next. As far as we know, these op-
timizations are new and have never before been described. 

For each array of correction factors, PLR allocates a buffer in 
shared memory to cache up to the first 1024 elements. Any cor-
rection code that needs one of these elements obtains it from the 
shared memory. Only the remaining elements are read from main 
memory. This optimization is particularly useful as the merging 
in Phase 1 starts with small chunks that progressively get larger. 
Thus, the first factors are accessed the most often, and all correc-
tions factors can be obtained from the shared memory until the 
chunk size exceeds 1024. 

PLR analyzes the correction factors and emits specialized code 
when possible. If it finds that all elements are identical within a 
correction-factor array, the array is suppressed and its accesses 
are replaced by the appropriate constant. This is helpful for the 
standard prefix sum. If all array elements are either zero or one, 
the code generator emits code to conditionally add the correction 
terms rather than multiplying them by the factors. This helps the 
tuple-based prefix sums. If the correction factors repeat, only the 
first “repetition” is emitted. 

The most effective optimization applies to the floating-point 
correction factors of the recursive filters, which typically ap-
proach zero quickly for stable filters. In theory, the impulse re-
sponse of IIR filters is infinitely long, but it is well known that it 
tends to decay below the arithmetic precision after a few hundred 
elements [22]. To speed up this effect, we flush denormal values 
to zero. PLR then changes the code such that only the first few 
warps of a thread block run Phase 1 since later warps whose cor-
rection factors are all zero do not need to execute. 

Other optimizations are possible. For example, we could exe-
cute the code that leads to the production of the carry values first 
so that they can be emitted even sooner. For low orders, we could 
buffer more than 1024 elements of each correction-factor array in 
the shared memory. Since the first and last correction-factor ar-
rays always contain the same values except shifted by one posi-
tion (for k > 1), one of these two arrays could be suppressed. These 
and other optimizations are left for future work. 



 

4 Related Work 
Karp et al. [9] published the first work on parallelism in recur-
rence equations in 1967. Six years later, Stone [23] describes a re-
cursive doubling strategy to parallelize first-order recursive fil-
ters, which Kogge and Stone [10] extend to higher-order recursive 
filters. Over a decade later, Sung and Mitra [24] as well as Blelloch 
[2] present general techniques for exposing parallelism within 1D 
recursive filters. 

StreamIt is an architecture-independent language and com-
piler for high-performance streaming applications and the first 
framework to automate the implementation of recursive filters 
and the optimization of the code [25]. However, it does not ad-
dress the computation and parallelization of linear recurrences in 
general, and it does not support GPUs. 

Some of the earliest GPU implementations of recurrences are 
presented by Hensley et al. [7], Sengupta et al. [20], and Dotsenko 
et al. [6]. Sengupta et al. [19, 21] are the first to publish a work-
efficient GPU implementation of scan operations, which can be 
used to implement prefix sums and recursive filters [3]. Merry 
[12] studied several recent GPU implementations of prefix sums. 
Of the investigated codes, he found the CUB library to provide the 
best performance [13]. 

CUB implements a work-efficient, single-pass method with 2n 
data movement, meaning that it reads each input value once and 
writes each output value once. It performs very well across differ-
ent GPU types in part because it comprises multiple algorithms. 
For example, it employs different kernel specializations, grain 
sizes, local scans, and strategies for rearranging data between 
threads for each GPU architecture. PLR adopts CUB’s variable 
look-back strategy for propagating the carries to hide the commu-
nication latency and pipeline the Phase 2 computation. 

For higher-order and tuple-based prefix sums, SAM provides 
the fastest GPU implementation [11]. It is also a work-efficient, 
single-pass approach with 2n data movement. It runs an auto-
tuner upon installation that determines the optimal number of el-
ements to assign to each thread for different problem sizes and 
different types of prefix sums. 

We compare PLR to CUB and SAM in the result section. Since 
PLR’s code is automatically generated, it can be optimized for each 
given recurrence. This is difficult to do in the handwritten CUB 
and SAM implementations, which use a single code base to handle 
multiple types of recurrences. 

The best-performing GPU implementations of linear recursive 
filters are probably by Nehab et al. [15] and Chaurasia et al. [4]. 
However, those codes are not communication efficient as they 
read the input values multiple times. Moreover, their work focuses 
on 2D image processing rather than 1D signal processing (which 
is our focus). Nevertheless, we compare to both of these codes in 
the result section. 

Nehab et al. present an algorithmic framework to facilitate the 
overlapping of the causal, anticausal, row, and column filter pro-
cessing. This reduces the memory bandwidth as the output of one 
filter is directly piped into the next filter. Moreover, they exploit 
the fact that a higher-order filter can be decomposed into an 
equivalent set of several lower-order filters. They found that ap-
plying multiple lower-order filters sometimes results in faster pro-
cessing than using the single, corresponding higher-order filter. 

Chaurasia et al.’s work also targets 2D image processing. They 
are the first to provide a code generator for automatically synthe-
sizing GPU recurrence code. In this sense, their work is the most 
closely related to ours. Their domain-specific code generator, 
which is based on Halide, supports a set of program transfor-
mations that can be composed to implement many different filters 

on CPUs and GPUs. It then performs locality optimizations on the 
composed filters to minimize memory accesses through interleav-
ing and tiling. Moreover, their code generator supports several 
heuristics to schedule the tiled code. The programmer specifies 
the recursive filters and selects the heuristics in form of a short 
program written in a domain-specific language. 

PLR’s input is simpler, just a signature, and does not require 
the user to specify or experiment with tile sizes and heuristics. 
However, PLR does not support the automatic combination of fil-
ters, which has to be done offline using, for example, the z-trans-
form. PLR parallelizes every stage of the computation whereas 
Chaurasia et al.’s code serially combines the local carries to pro-
duce the global carries. 

Except for StreamIt and Chaurasia et al.’s work, the implemen-
tations described in the above work are all handwritten, which is 
a difficult, error-prone, and time consuming process, and none of 
these papers propose an automatic parallelization approach, 
which is one of the key contributions of our work. Moreover, our 
algorithm is based on merging and correction factors, making it 
not similar to any of the previously proposed algorithms. 

5 Experimental Methodology 

We compare the performance of the code emitted by our PLR code 
generator to the fastest published codes. On the integer side, these 
are CUB 1.5.1 [5] and SAM 1.1 [18] for various types of prefix 
sums. On the floating-point side, these are “Alg3” by Nehab et al. 
[1] and “Rec” by Chaurasia et al. [17] for recursive filters. Since 
Alg3 and Rec are designed for 2D image processing, we ran them 
with square 2D inputs (of a similar total size as our 1D inputs) 
where the width and height are multiples of 32 to match the warp 
size. To make the comparison as fair as possible, we disabled the 
vertical filtering in these codes. Note, however, that Alg3 still fil-
ters in both the positive and the negative horizontal direction. We 
were only able to limit the filtering to one horizontal direction for 
Rec to make it similar to PLR, which also only filters in one direc-
tion. Finally, we compare to the scan-based approach (Scan) de-
scribed by Blelloch [3], which, like PLR, only requires the signa-
ture to specify the desired parallel recurrence computation. He de-
rived a general way to express recurrences in form of k by k ma-
trices and k-element vectors as well as appropriate associative op-
erators that are based on matrix multiplication and vector addi-
tion, which allows the computation of arbitrary recurrences in 
parallel using a standard prefix scan. A prefix scan is similar to a 
prefix sum except the operator is not addition. For CUB, SAM, 
Alg3, and Rec, we used publicly available code. For Scan, we im-
plemented the operator ourselves but used CUB to run the actual 
scan. We compiled all codes with nvcc 7.5 using the 
“-O3 -arch=sm_52” flags. We measured the GPU memory usage 
with the NVIDIA Management Library (NVML). To obtain the 
cache miss results, we used the nvprof profiler. 

We present results for a GeForce GTX Titan X GPU, which is 
based on the Maxwell architecture. It has 3072 processing ele-
ments in 24 multiprocessors that can hold the contexts of up to 
49,152 threads. Each multiprocessor has 96 kB of shared memory, 
up to 48 kB of which are accessible from a single thread block. The 
24 multiprocessors share a 2 MB L2 cache as well as 12 GB of 
global memory with a peak bandwidth of 336 GB/s. We use the 
default clock frequencies of 1.1 GHz for the processing elements 
and 3.5 GHz for the GDDR5 memory. The GPU is plugged into a 
16x PCIe 3.0 slot in a system with dual 10-core Xeon E5-2687W v3 
CPUs running at 3.1 GHz. Its memory size is 128 GB, the operating 
system is Fedora 22, and the CUDA driver is 361.42. 



 

When measuring the performance, we only consider the com-
putation time, excluding the time it takes to transfer the input se-
quence to the GPU or the result to the CPU. In other words, we 
assume the data to already be on the GPU from a prior processing 
step and the result of the recurrence to be needed on the GPU for 
a later processing step. After each run, we validate the result by 
comparing it to the serial CPU result. We check the integer results 
for exact matches. Since floating-point addition and multiplica-
tion are not truly associative, the parallel codes produce slightly 
different results than the serial code for floating-point recur-
rences. In this case, we make sure the discrepancy is within 10-3. 

We evaluate the six codes on the recurrences listed in Table 1 
using 32-bit integer and floating-point values. In all cases, we var-
ied the input size from 214 to 230 words in powers of two. None of 
the tested codes support sizes above 4 GB, that is, inputs with 
more than 230 words. Since the codes’ control-flow and memory-
access behavior are independent of the values in the input se-
quence, any input of the same length and data type will result in 
the same performance for a given recurrence. Note that PLR sup-
ports input sizes that are not powers of two and that powers of 
two do not result in the highest performance since m is generally 
not a power of two. We repeated each experiment six times, meas-
ured the average runtime of the last five runs, and computed the 
throughput from it (in words processed per second). 

6 Results and Analysis 

Our PLR approach supports arbitrary integer and floating-point 
recurrences. However, we can only show results for a few exam-
ples. We selected the recurrences listed in Table 1, which we be-
lieve to be representative of important real-world computations. 
In the following, we first study the performance on integer recur-
rences using various prefix sums as examples. Then we separately 
study floating-point recurrences on several digital filters. 

6.1 Integer Recurrences 

The results in this section are based on 32-bit integer sequences 
and signatures with integer coefficients. We compare the gener-
ated PLR code to CUB and SAM, the two best-performing codes 
from the literature for prefix sums [11], as well as the general Scan 
approach. For reference, the memory-copy throughput is also 
given, which represents an upper bound on the achievable 
throughput since it just copies the input sequence to the output 
without any computation. 

6.1.1 Standard Prefix Sum 

The standard prefix sum is perhaps the most frequently used re-
currence in parallel computing. Figure 1 shows the throughput in 
billions of 32-bit integers processed per second on the Titan X 
GPU for different sequence lengths. 

The performance of CUB, SAM, and PLR is quite similar. PLR 
is a little slower than the other two codes in the mid-range. SAM 
is somewhat faster in the low range due to its use of auto-tuning. 
On long sequences, PLR’s throughput is on par with the other two 
codes and, in some cases, even a little higher than that of SAM. 
All three codes reach the throughput of memory copy, which 
means their performance cannot be exceeded by any other code 
that reads each input value and writes each output value. In this 
sense, PLR delivers optimal performance for large sequences on 
prefix sums. The three codes transfer up to 264 GB/s, which is 
beyond the theoretical memory bandwidth of most CPU systems, 
implying that the serial code running on a CPU has to be slower. 

 
Figure 1. Prefix-sum throughput 

The Scan code delivers about half the throughput of the other 
three approaches because it accesses twice as much memory (a 
1x1 matrix and a 1-element vector per sequence element), which 
is also why it only supports problem sizes up to 229. Prefix sums 
of 32-bit floating-point values yield the same performance for all 
four codes (not shown). 

6.1.2 Tuple-based Prefix Sums 

Figures 2 and 3 show the 2- and 3-tuple prefix-sum throughput in 
billions of 32-bit integers processed per second for different se-
quence lengths. 

 
Figure 2. Two-tuple prefix-sum throughput 

 
Figure 3. Three-tuple prefix-sum throughput 

For tuple-based prefix sums, there is a clear difference in per-
formance between the codes. On small inputs, SAM is again the 
fastest due to the auto-tuning. In the mid-range, PLR outperforms 
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CUB and starts to outperform SAM. For long sequences, PLR sub-
stantially outperforms the other two codes. On 2-tuples, it is 30% 
and on 3-tuples 17% faster. The reason for this performance dif-
ference is that the three codes implement different approaches. In 
case of 2-tuples, SAM computes two independent interleaved sca-
lar prefix sums, CUB computes a prefix sum on 2-element vectors, 
and PLR computes a single scalar second-order recurrence. 

The performance advantage of PLR is higher on tuple sizes that 
are powers of two because they allow for additional code optimi-
zations. In fact, PLR’s 4-tuple throughput (not shown) is slightly 
higher than its 3-tuple throughput. In contrast, CUB’s and SAM’s 
throughputs consistently decrease with larger tuple sizes as they 
use the same code base for different tuple sizes. The Scan through-
put is quite low because it requires six and twelve times more 
memory accesses (a 2x2 matrix with a 2-element vector and a 3x3 
matrix with a 3-element vector), respectively, and suffers from 
correspondingly higher register pressure. 

In summary, PLR performs as well as CUB on tuple-based pre-
fix sums on all tested inputs and yields superior performance over 
CUB and SAM for medium and long sequences. Tuning the m and 
x parameters might boost PLR’s performance on short inputs. 

6.1.3 Higher-order prefix sums 

Figures 4 and 5 show the 2nd- and 3rd-order prefix-sum through-
put, respectively, in billions of 32-bit integers processed per sec-
ond for different sequence lengths. 

 
Figure 4. Second-order prefix-sum throughput 

 
Figure 5. Third-order prefix-sum throughput 

On higher-order prefix sums, ignoring Scan, CUB yields the 
lowest throughput, PLR is in the middle, and SAM the highest, 
except at the smallest tested problem sizes, where PLR performs 
on par with SAM. PLR’s performance is relatively low because it 

cannot optimize the resulting correction factors (cf. Section 6.3). 
On second-order prefix sums, PLR barely outperforms CUB, on 
third-order prefix sums it significantly outperforms it, and on 
fourth-order prefix sums (not shown) it outperforms it even more. 
At the same time, SAM’s performance advantage over PLR de-
creases with increasing order. For order 2, it is 50% faster, for order 
3 about 38%, and for order 4 about 33%. Hence, PLR’s performance 
increases relative to both CUB and SAM with higher orders. This 
is again due to the different approaches used to compute the re-
currences. PLR computes a single scalar recurrence whereas CUB 
and SAM iteratively compute prefix sums of prefix sums. CUB re-
peats the entire code whereas SAM only repeats the computation 
but not the reading in and writing out of the values, which is why 
it outperforms CUB. 

For a given order, the performance of Scan on the higher-order 
prefix sums is identical to that on the tuple-based prefix sums as 
only the matrix and vector values change but not the number of 
memory accesses or the operations executed. 

In summary, PLR outperforms CUB on higher-order prefix 
sums but underperforms SAM, at least for small k. Since the 
shared memory is not fully utilized, buffering more than just the 
first 1024 correction factors of each array might boost PLR’s per-
formance on these and similar recurrences. 

6.2 Floating-Point Recurrences 

The results in this section are based on 32-bit floating-point se-
quences and signatures with floating-point coefficients. As men-
tioned above, prefix sums of 32-bit floating-point values yield the 
same performance on all tested codes as the integer prefix sums. 
Hence, we do not show prefix-sum results for floating-point data. 
Instead, we compare PLR to Alg3 by Nehab et al. [15] and to Rec 
by Chaurasia et al. [4], the two best-performing codes from the 
literature for floating-point recurrences, as well as to Scan by Blel-
loch [3]. Again, the memory-copy throughput is included as an 
upper bound on the achievable throughput. Note that, unlike Rec 
and PLR, Alg3 filters in both the positive and negative direction. 

6.2.1 Low-pass Recursive Filters 
Figures 6, 7, and 8 show the 1-stage, 2-stage, and 3-stage low-pass 
filter throughputs, respectively, in billions of 32-bit floats pro-
cessed per second for different sequence lengths. Alg3 only sup-
ports inputs up to 2 GB and Rec up to 1 GB. Since Scan requires 
O(k2) memory per item, its maximum supported problem size de-
creases quickly with increasing order. 

On the evaluated low-pass filters and on all input sizes, PLR is 
again much faster than Scan. It is also faster than Alg3, but Alg3 
performs two filter operations whereas PLR only performs one. 
We were unable to turn off the extra filter operation in Alg3 to 
make the comparison fairer. (When filtering 2D images, Alg3 and 
Rec perform similarly.) For inputs up to a million elements, Rec 
performs on par or is faster than PLR. This may be because Rec 
executes many small filter operations on a square input whereas 
PLR executes a single long filter operation on a linear input, which 
likely incurs a higher carry-propagation delay. Nevertheless, PLR 
is the fastest of the tested codes on the larger inputs. 

On the single-stage filter, PLR reaches the throughput of 
memory copy for large problem sizes, i.e., optimal performance. 
As we go to higher orders, the throughput of all four codes de-
creases. PLR’s throughput decreases faster than that of Rec and 
Alg3. For 1 GB inputs, it is 1.90, 1.88, and 1.58 times faster than 
Rec on the 1-stage, 2-stage, and 3-stage filters, respectively. We 
surmise this is because a high-order recurrence can be slower to 
compute than multiple (simpler) low-order recurrences that, to-
gether, compute the same result [15]. Since recursive digital filters 
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above about order ten tend to be unstable [22], low-order filters 
dominate in practice, where PLR provides the highest throughput. 

 
Figure 6. 1-stage low-pass filter throughput 

 
Figure 7. 2-stage low-pass filter throughput 

 
Figure 8. 3-stage low-pass filter throughput 

6.2.2 High-pass Recursive Filters 

Neither Alg3 nor Rec currently support recursive filters with more 
than one non-recursive coefficient, which is why they cannot im-
plement the high-pass filters from Table 1. Hence, Figure 9 only 
shows the PLR 1-stage, 2-stage, and 3-stage high-pass filter 
throughput in billions of 32-bit floats processed per second for dif-
ferent sequence lengths. We included Scan’s 1-stage recursive 
high-pass filter throughput but not that for more stages since it is 
already the slowest. Note that our Scan implementation uses the 
same code as PLR for computing the map operation (2), that is, for 
processing the non-recursive FIR coefficients. 

As expected, the throughputs decrease with increasing order. 
Moreover, they are lower than the corresponding low-pass filter 
throughputs because there are additional non-recursion coeffi-
cients to handle (cf. Table 1). Since the recursion coefficients are 
the same, the drop in performance must be due to the additional 
non-recursion coefficients. Interestingly, this decrease is quite 
consistent and around 17% for medium to large problem sizes, ir-
respective of the order. This shows that the map operation (2) to 
handle the non-recursion coefficients is quite fast compared to the 
code that handles the recursion coefficients. 

 
Figure 9. High-pass filter throughput 

6.3 Performance Optimizations 

Figure 10 combines the PLR throughputs on the largest input of 
the eleven studied recurrences in a single chart. The left half 
shows the results for integers and the right half for floats. For each 
recurrence, the figure includes the throughput when turning off 
the optimizations pertaining to the correction factors, i.e., when 
they are always loaded from global memory and no special code 
is emitted for factors that are constants, only zero or one, repeat, 
or decay to zero after a certain point. 

 
Figure 10. PLR throughput with and without optimizations 

The optimizations help in all cases. On the higher-order prefix 
sums, they improve performance by only 3%, whereas on the two-
stage low-pass filter, they more than double the throughput. For 
the prefix sum and the tuple-based prefix sums, the performance 
difference is primarily due to treating correction factors of zero 
and one specially. On the digital filters, the difference is mostly 
due to suppressing zero factors at the end of the array and buffer-
ing factors in shared memory. Except for the buffering, none of 
these optimizations apply to the higher-order prefix sums, which 
is probably why PLR is outperformed on this type of recurrence 

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t 
[b

ill
io

n
 f

lo
at

s 
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t 
[b

ill
io

n
 f

lo
at

s 
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t 
[b

ill
io

n
 f

lo
at

s 
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t 
[b

ill
io

n
 f

lo
at

s 
p

er
 s

ec
o

n
d

]
sequence length [floats]

memcpy Scan1 PLR1 PLR2 PLR3

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t 
[b

ill
io

n
 w

o
rd

s 
p

er
 s

ec
o

n
d

]

optimizations on optimizations off



 

by pre-existing code. In the remaining cases, the optimization are 
important as they boost the performance substantially. 

6.4 GPU Memory Usage 

Table 2 lists the total memory usage on the GPU when processing 
the largest input that all six recurrence codes support, i.e., 
67,108,864 words. The usage only depends on the order of the re-
currence but not the coefficients or the data type (int or float), 
which is why the table only shows three results for each code. The 
memory consumption on the CPU is not included. For reference, 
the memory usage of the trivial memory-copy code is also listed. 
It contains no user-written kernel code but only CUDA library 
calls to allocate and free the input and output buffers, calls to copy 
the input data to the GPU and the output data back to the CPU, 
and the timed GPU-to-GPU memory-copy call. 

Table 2. Total GPU Memory Usage in Megabytes  
PLR CUB SAM Scan Alg3 Rec memcpy 

order 1 623.5 623.5 622.5 1,135.5 895.8 638.5 
621.5 order 2 623.5 623.5 622.5 3,188.8 911.8 654.5 

order 3 624.5 623.5 622.5 6,278.9 927.8 670.5 

In addition to the 512 MB of combined storage for the input 
and output arrays, even the memory-copy code allocates an extra 
109.5 MB. Interestingly, SAM requires only one more megabyte, 
CUB two more megabytes, and PLR between two and three more 
megabytes, i.e., less than half a percent. This additional memory 
holds the code and the auxiliary arrays for the carries and flags. 
Rec requires between 17 MB and 49 MB more memory and Alg3 
between 274 MB and 306 MB. It appears that both of these codes 
allocate significant extra memory whose amount increases for 
higher orders. Scan needs by far the most memory because it en-
codes each value using a k by k matrix and a k-element vector. 
Just to store the input and output, it requires 1024 MB for first-
order, 3072 MB for second-order, and 6144 MB for third-order re-
currences. In summary, PLR (like CUB and SAM) is nearly as 
memory efficient as the memory-copy code. 

6.5 L2 Cache Misses 

Table 3 lists the L2-cache read misses incurred on the GPU multi-
plied by the block size of 32 bytes when processing the 67,108,864-
word input. We combined the miss counts from both slices of the 
L2 cache, which contributed nearly equal counts. Again, the meas-
urements are largely unaffected by the coefficients and the data 
type, so we only show results for three different orders for each 
code. The cache misses on the CPU are not included. We cannot 
show cache misses for the memory-copy code because it does not 
incur any, i.e., it does not appear to use the L2 cache.  

Table 3. L2 Cache Read Misses Converted into Megabytes 
 PLR CUB SAM Scan Alg3 Rec 
order 1 256.1 256.5 256.2 512.3 550.6 528.3 
order 2 256.2 256.1 256.6 1,537.1 591.3 545.3 
order 3 256.4 256.2 256.8 3,074.1 632.0 562.5 

Reading the input array results in a transfer of 256 MB of data 
due to cold misses. As the table shows, PLR, CUB, and SAM only 
incur a tiny amount of additional L2-cache read misses (less than 
one megabyte or 0.3%). In other words, these codes either have 
good locality or do not read much additional data. In either case, 
they are not memory bound aside from reading the input once. 

Scan accesses many more memory locations because of its ineffi-
cient data representation. When accounting for the two, six, and 
twelve times higher cold misses, we find that it only accesses an 
additional 0.3 to 2.1 megabytes. Finally, the results in Table 3 make 
it evident that Alg3 and Rec are not communication efficient as 
they read the input data twice. For the given problem size, which 
greatly exceeds the capacity of the 2 MB L2 cache, the second ac-
cess to the input again has to fetch the data from main memory. 
This explains why PLR outperforms these codes and why it starts 
outperforming Rec at a size of one million entries, which is the 
smallest problem size that exceeds the L2 capacity. Moreover, both 
Alg3 and Rec incur cache misses beyond reading the input twice, 
which is consistent with the additional memory they allocate as 
mentioned in the previous subsection. In summary, PLR (as well 
as CUB, SAM, and even Scan) are communication efficient in that 
they essentially only incur cold read misses in the L2 for accessing 
the input data. 

7 Summary and Conclusion 
Recurrences convert a sequence of input values into a sequence of 
output values. They are non-trivial to parallelize because later 
output values are data dependent on earlier output values. This 
paper presents a new algorithm for computing linear recurrences 
that is work- and space-efficient as well as general. The algorithm 
is based on iteratively merging partial solutions using n-nacci 
numbers. Moreover, the paper describes a hierarchical paralleliza-
tion approach that is a good fit for architectures like GPUs with 
multiple levels of hardware parallelism. It also introduces several 
domain-specific optimizations that result in some of the fastest 
recurrence computations on a GPU. 

We implemented our algorithm, parallelization approach, and 
code optimizations in a proof-of-concept compiler called PLR that 
translates the signature notation of a recurrence into CUDA code. 
It supports both integer and floating-point recurrences. The per-
formance of the emitted code is optimal for large inputs on low 
orders in the sense that it reaches the throughput of memory copy, 
which cannot be exceeded. On higher-order tuple-based prefix 
sums and 1D recursive digital filters, our automatically generated 
code outperforms the fastest codes from the literature, many of 
which are handwritten and support fewer recurrence types. 

Whereas we evaluate our approach on a GPU, the presented 
algorithm, parallelization technique, and even most of the code 
optimizations are not GPU specific but apply equally to CPUs, 
DSPs, FPGAs, and other parallel computing devices. Moreover, 
whereas we demonstrate our approach in the context of a 
standalone tool, it could equally be part of a full-fledged (C/C++) 
compiler that is invoked either via an intrinsic or to augment an 
existing loop-nest transformation engine that automatically par-
allelizes code (such as Graphite in gcc).  

There are several avenues for future work, especially regard-
ing PLR’s code optimizer. For instance, we could add better heu-
ristics to boost the performance on small inputs. To improve the 
performance on higher-order prefix sums, we could compute and 
emit the carries sooner, support inputs that consist of multiple 
signatures, and buffer more correction factors in the shared 
memory. We could also support operators other than addition, 
multiple dimensions, and non-GPU systems. 

In summary, our approach makes it possible to automatically 
parallelize arbitrary-order homogeneous linear recurrences with 
constant coefficients and delivers heretofore unreached GPU per-
formance for many important instances, especially compared to 
Scan, the only parallel implementation we tested that supports all 
the recurrences that PLR does. Since recursive filters are widely 



 

used in telecommunication and prefix sums are widely used in 
parallel programming, being able to automatically parallelize and 
optimize them, including variations for which no efficient parallel 
code exists to date, may prove useful in practice. Looking forward, 
we believe our hierarchical approach is well suited for future sys-
tems that will likely be even more parallel. 
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