
Automatic Hierarchical Parallelization of
Linear Recurrences

 Sepideh Maleki
Department of Computer Science

Texas State University1
San Marcos, TX 78666, USA

s_m390@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, TX 78666, USA

burtscher@txstate.edu

Abstract
Linear recurrences encompass many fundamental computations
including prefix sums and digital filters. Later result values de-
pend on earlier result values in recurrences, making it a challenge
to compute them in parallel. We present a new work- and space-
efficient algorithm to compute linear recurrences that is amenable
to automatic parallelization and suitable for hierarchical mas-
sively-parallel architectures such as GPUs. We implemented our
approach in a domain-specific code generator that emits opti-
mized CUDA code. Our evaluation shows that, for standard prefix
sums and single-stage IIR filters, the generated code reaches the
throughput of memory copy for large inputs, which cannot be sur-
passed. On higher-order prefix sums, it performs nearly as well as
the fastest handwritten code from the literature. On tuple-based
prefix sums and digital filters, our automatically parallelized code
outperforms the fastest prior implementations.

CCS Concepts • Computing methodologies → Concurrent
algorithms; Massively parallel algorithms

Keywords Linear recurrences; prefix sums; recursive filters; au-
tomatic parallelization; code optimization

ACM Reference format:
Sepideh Maleki and Martin Burtscher. 2018. Automatic Hierarchical Par-
allelization of Linear Recurrences. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’18), March 24–28, Williamsburg,
VA, USA. ACM, New York, NY. 11 pages.
DOI: https://doi.org/10.1145/3173162.3173168

1 Introduction
Many important algorithms are instances of linear recurrences.
Prominent examples include prefix sums and digital filters. Prefix
sums are a key primitive that can be used to parallelize computa-
tions such as sorting, stream compaction, polynomial evaluation,

histograms, and lexical analysis [3]. Infinite Impulse Response
(IIR) filters, also known as recursive filters, are fundamental algo-
rithms in digital signal processing. They are, for example, used for
DC removal, noise suppression, wave shaping, and smoothing of
discrete-time signals in telecommunication and audio applications
[22]. Moreover, linear recurrences are important in economics,
data compression, biology, pseudo random-number generation,
mathematics, complexity analysis, and finance.

A recurrence transforms a sequence of input values x0, …, xn-1
into an output sequence y0, …, yn-1 of the same length. This paper
focuses on order-k homogeneous linear recurrences with constant
coefficients of the form

 yi = a0xi+a-1xi-1+…+a-pxi-p + b-1yi-1+b-2yi-2+…+b-kyi-k, (1)

where xj = 0, yj = 0, ∀j < 0. Equation (1) is called the recursion
equation. We refer to the aj constants as the non-recursion (feed-
forward) and the bj constants as the recursion (feedback) coeffi-
cients. To simplify the notation and improve the readability, we
express recurrences in the following signature format, where the
aj and bj coefficients are separated by a colon.

 (a0, a-1, …, a-p: b-1, b-2, …, b-k)

If all the aj are zero, the output sequence is all zeros and inde-
pendent of the input values. Hence, we only consider cases where
a-p ≠ 0 for some p ≥ 0. If all the bj are zero, the recurrence becomes
a map operation that can be computed in an embarrassingly par-
allel fashion. Thus, we are only interested in cases where b-k ≠ 0
for some k ≥ 1. The largest k for which b-k ≠ 0 determines the order
of the recurrence. We use k and the term “order” interchangeably.

Table 1. Signatures of a Few Linear Recurrences
Signature Computation
(1: 1) prefix sum
(1: 0, 1) 2-tuple prefix sum
(1: 0, 0, 1) 3-tuple prefix sum
(1: 2, -1) 2nd-order prefix sum
(1: 3, -3, 1) 3rd-order prefix sum
(0.2: 0.8) a 1-stage low-pass filter
(0.04: 1.6, -0.64) a 2-stage low-pass filter
(0.008: 2.4, -1.92, 0.512) a 3-stage low-pass filter
(0.9, -0.9: 0.8) a 1-stage high-pass filter
(0.81, -1.62, 0.81: 1.6, -0.64) a 2-stage high-pass filter
(0.73, -2.19, 2.19, -0.73: 2.4, -1.9, 0.5) a 3-stage high-pass filter

Table 1 lists a few linear recurrences expressed using our sig-
nature notation. The coefficients of some of the digital filters are
truncated for improved readability. The signature (1: 1) represents
the standard prefix-sum computation. Tuple-based prefix sums,

1 Now at the University of Texas at Austin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org.

ASPLOS '18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery
ACM ISBN 978-1-4503-4911-6/18/03…$15.00
https://doi.org/10.1145/3173162.3173168

i.e., prefix sums over tuples rather than scalar values, have b-s set
to one and the remaining bj coefficients to zero, where s is the
tuple size. In higher-order prefix sums, i.e., prefix sums of prefix
sums, the signature follows the binomial coefficients except bj is
negative for all even j. These signature coefficients can be ob-
tained using the z-transform [16]. The formulas for calculating the
filter coefficients listed in Table 1 are given by Smith [22].

Recursion equation (1) can always trivially be separated into
the following two recurrences.

 ti = a0xi + a-1xi-1 + … + a-pxi-p (2)

 yi = ti + b-1yi-1 + b-2yi-2 + … + b-kyi-k (3)

The signature of the map operation (2) producing the interme-
diate sequence ti is (a0, a-1, …, a-p: 0), and the signature of the re-
currence (3) producing the final sequence yi, assuming ti as input,
is (1: b-1, b-2, …, b-k). The map operation is a non-recursive Finite
Impulse Response (FIR) filter. This two-stage formulation is im-
portant because it allows to compute the overall recurrence by
first computing the intermediate sequence ti in an embarrassingly
parallel manner, which eliminates the aj coefficients and makes
the remaining recurrence (3) easier to handle [15]. The rest of this
paper focuses on how to automatically parallelize these remaining
recurrences, particularly for hierarchical architectures with mul-
tiple levels of hardware parallelism. For example, GPUs expose a
fine granularity (warps) with very fast communication, a medium
granularity (thread blocks) with relatively fast communication,
and a coarse granularity (grid) with slow communication. By “re-
currence”, we henceforth mean recurrences of type (3).

This paper makes the following main contributions.
 It presents a new algorithm for computing linear homoge-

neous 1D recurrences with constant coefficients that is not
similar to any prior recurrence algorithm.

 It describes a hierarchical approach to automatically paral-
lelize such recurrences based on n-nacci numbers.

 It introduces domain-specific optimizations that result in
the generated code outperforming the fastest alternatives
from the literature in many cases.

The paper makes the following additional contributions.
 It proposes a domain-specific language (our signatures) for

compactly expressing recurrences of type (1).
 It presents a simple proof-of-concept compiler called PLR

that translates these signatures into CUDA code.
PLR is freely available to the research and education commu-

nity at http://cs.txstate.edu/~burtscher/research/PLR/.
The rest of this paper is organized as follows. Section 2 ex-

plains our algorithm and the hierarchical parallelization approach.
Section 3 describes the domain-specific code generator and the
optimizations it performs. Section 4 reviews related work. Section
5 presents the evaluation methodology. Section 6 analyzes and
discusses the measurement results. Section 7 concludes with a
summary and future work.

2 Algorithm
The serial algorithm and code for computing a linear recurrence
of the form (1: b-1, b-2, …, b-k) are straightforward.

for (i = 0; i < n; i++) {

 y[i] = t[i];

 for (j = 1; j <= min(i, k); j++)

 y[i] += b[j] * y[i - j];

}

Here, the array elements b[j] hold the coefficients b-j and k de-
notes the order. This code performs O(nk) computations and

O(nk) memory accesses on sequences with n elements. Its space
complexity is O(n+k). We assume k to be much smaller than n,
which is generally the case in practice.

The reason why recurrences are difficult to parallelize is that
each value in the result sequence depends on earlier values from
the result sequence, i.e., there is a loop-carried dependency.
Hence, the prior values must have been computed before the cur-
rent value can be computed, making the above implementation
inherently sequential.

Since all linear recurrences can be expressed as prefix scans
[3], they can be computed in parallel in O(log n) steps. The total
work performed by a prefix-scan-based parallel implementation is
close to optimal, i.e., only somewhat worse than the serial algo-
rithm if k is much smaller than n.

Our algorithm is based on a different approach and comprises
two phases. The first phase iteratively merges pairs of adjacent
chunks by correcting the values in the second chunk of each pair
using the up to last k values from the first chunk of the pair. The
second phase processes the resulting chunks in a pipelined fash-
ion to compute the final solution.

2.1 Phase 1

Phase 1 computes recurrences of type (3) by first subdividing the
input sequence into chunks of size one. This yields the correct so-
lution within each chunk as the first output element is always
identical to the first input element and each chunk only has one
element. Then Phase 1 iteratively merges pairs of adjacent chunks
into chunks of twice the size. It does this with the help of pre-
computed correction factors by which the up to last k elements of
the first chunk in a pair have to be multiplied to form the correc-
tion terms that need to be added to the elements of the second
chunk. We illustrate this process for the arbitrary first-order re-
currence (1: d) on the following two contiguous chunks

 w0, w1, …, wm-1 | wm, wm+1, …, w2m-1,

where m is the chunk size and the vertical bar denotes the border
between the chunks. To correct the wm element, we have to add d
times the prior element wm-1 per the recurrence. Thus, the first
correction term is dwm-1. Similarly, to correct the wm+1 element,
we have to add d times the corrected prior element. However, in
the preceding iterations that brought the chunk size up to m, we
already added dwm, so now we only need to add d times the cor-
rection term of the prior element. Thus, the second correction
term is d2wm-1. Continuing in this manner, we find the third cor-
rection term to be d3wm-1, and so on. Importantly, they are all the
product of a correction factor and the carry value wm-1 from the
previous chunk. The carry depends on the input values, but the
correction factors do not and can be precomputed for a given re-
currence. In this example, the m correction factors are

 d, d2, d3, …, dm.

For reasons that will become clear soon, we extend this se-
quence of factors by one element on the left, giving

 1 | d, d2, d3, …, dm.

So, for any first-order recurrence, the correction factors can be
computed by starting with a 1 and applying the recurrence (0: d)
to it. Note that this is identical to the original recurrence except
the non-recursive term is zero.

Next, we show how to compute the correction factors for the
arbitrary second-order recurrence (1: d, e), from which we will
then derive the general solution. We start with the following two
chunks of m elements from prior iterations:

 w0, w1, …, wm-2, wm-1 | wm, wm+1, …, w2m-1.

To correct wm, we have to add d times the previous element
wm-1 and e times the second-to-previous element wm-2. Hence, the
first correction term is dwm-1+ewm-2. (Recall that all missing terms
are zero. For example, in the first iteration, where m = 1, there is
no term wm-2.) To correct wm+1, we have to add d times the cor-
rected previous element plus e times the second-to-prior element
wm-1. In the earlier iterations, we already added dwm, so we only
need to add d times the correction term of the previous element.
Thus, the second correction term is d(dwm-1+ewm-2)+ewm-1, that is,
(d2+e)wm-1+ dewm-2. At this point, we need to add d times the pre-
vious correction term plus e times the second-to-previous correc-
tion term for all remaining elements. Hence, all correction terms
consist of a first correction factor multiplied by wm-1 plus a second
correction factor multiplied by wm-2. The values wm-1 and wm-2 are
the two carries from the prior chunk. There are two carries be-
cause it is a second-order recurrence. The first few correction
terms come out to be

dwm-1+ewm-2, (d2+e)wm-1+dewm-2, (d3+2de)wm-1+
(d2e+e2)wm-2, (d4+3d2e+e2)wm-1+(d3e+2de2)wm-2, ….

Listing just the correction factors for wm-1, we obtain

 d, d2+e, d3+2de, d4+3d2e+e2, ….

Similarly, the correction factors for the carry wm-2 are

 e, de, d2e+e2, d3e+2de2, ….

As in the first-order example above, these correction-factor se-
quences can be computed by changing the non-recursive 1 into a
0 in the underlying recurrence, meaning they can be produced by
the recurrence (0: d, e). To correctly compute the first elements of
these two sequences, we need to extend both sequences by two
elements on the left. In particular, the extended sequences of cor-
rection factors turn out to be

 0, 1 | d, d2+e, d3+2de, d4+3d2e+e2, … and

 1, 0 | e, de, d2e+e2, d3e+2de2, ….

Note that there is a 1 in the location of the corresponding carry in
the prior chunk and a 0 in the other position.

With this in mind, we can now describe the general approach
for computing the correction factors of the arbitrary kth-order re-
currence (1: c-1, c-2, …, c-k). We begin with k elements that are all
zero except for a single element that is one. The location of this
element is determined by the position of the corresponding carry
in the previous chunk. Starting with these k elements, we apply
the recurrence (0: c-1, c-2, …, c-k) to generate the correction factors
for that carry. We repeat this procedure for the remaining carries.

The resulting sequences are known as n-nacci numbers [14].
For example, the correction factors of the recurrence (1: 1, 1) are
the Fibonacci numbers. Interestingly, there are two Fibonacci se-
quences, one that is started with “0, 1” and the other with “1, 0”.
They are not typically distinguished because both sequences are
identical except they are shifted by one position relative to the
other. The correction factors of the recurrence (1: 1, 1, 1) are the
Tribonacci numbers, of which there are three sequences that are
started with “0, 0, 1”, “0, 1, 0”, and “1, 0, 0”. Again, the first and the
last of these three sequences are shifted by one position relative
to each other, but the middle sequence is entirely different (cf.
OEIS sequence A001590 vs. A000073). The recurrence (1: 1, 2) re-
sults in the so called (1, 2)-Fibonacci sequence. In general, the cor-
rection factors of the recurrence (1: c-1, c-2, …, c-k) are the (c-1, c-2,
…, c-k)-nacci numbers, which are the Fibonacci numbers general-
ized to factors other than one, to more than two terms, and to real

numbers. It is the signature notation of the n-nacci numbers that
gave us the idea of using a similar notation for compactly express-
ing linear recurrences.

Since the correction factors can be precomputed, the amount
of work at runtime is k multiplications and k additions to correct
an element, which is O(k) work. In each iteration, half of the ele-
ments need to be corrected (the elements in the second chunk of
each pair). If there are n elements in the input, this is O(n) ele-
ments. Hence, the amount of work per iteration is O(nk). Note that
each element can be corrected independently and in parallel. As
the chunk size doubles in each iteration, we need O(log(n)) itera-
tions to reach a size of n. So the total work is O(nk log(n)).

Phase 1 requires O(log(n)) more work than the serial algo-
rithm. The scan-based approach by Blelloch [3] for parallelizing
recurrences, which we call “Scan” in this paper, also takes O(log
n) parallel steps but requires a factor of O(Tkk/k) more work than
the serial algorithm, where Tkk is the time to perform a k by k
matrix multiplication. Assuming Strassen’s algorithm, Tkk ≈ k2.8
and, thus, O(Tkk/k) ≈ O(k1.8). Hence, Phase 1 is more efficient than
Scan when O(log(n)) < O(k1.8). This is the case for sufficiently
small n or sufficiently large k.

As neither approach is work efficient, we switch to Phase 2
beyond a constant chunk size of m. Since m is constant, we per-
form O(nk log(m)) = O(nk) work using Phase 1 to build chunks of
fixed size m, which is work efficient.

The iterative doubling of the chunk size make this phase suit-
able for architectures with different levels of parallelism as will be
explained in Section 3. In particular, we chose m to exploit the
hardware parallelism within warps and thread blocks. Phase 2
takes advantage of the remaining hardware parallelism.

2.2 Phase 2

There are two main reasons for using a second phase. First, the
Phase 2 algorithm is work efficient. Second, the larger the chunk
size is, the more correction factors need to be loaded, which incurs
overhead. To avoid this overhead, Phase 2 processes fixed-size
chunks and operates in a pipelined manner, i.e., the processing of
the chunks is partially overlapped.

This pipelined approach is also used by other GPU codes such
as in CUB’s and SAM’s prefix-sum implementations [11, 13]. Once
Phase 1 is complete, the last k values of each chunk are written
out to make these local carries available to later chunks. Phase 2
reads in the carries from the previous chunk, corrects the values
of the current chunk, and emits the now globally correct k carries.

Our implementation uses Merrill and Garland’s variable look-
back strategy to minimize the waiting for carries [13]. In particu-
lar, it does not wait for the global carry values from the prior
chunk. Instead, it takes the global carries from the most recent
chunk for which they are available as well as the local carries from
all chunks that follow, which become available sooner. Based on
these values, it computes the global carries for the current chunk
using precomputed correction factors akin to Phase 1. CUB and
SAM only directly support recurrences whose correction factors
are all 1, so they do not need to explicitly precompute them.

Disregarding any waiting for carries, Phase 2 performs O(mk)
work per chunk to correct the values and O(k) work to handle the
carries. Moreover, it reads m input values, writes m output values,
reads O(k) carries, and writes O(k) carries. Since there are n/m
chunks, Phases 1 and 2 perform a total of O(nk) work, i.e., they are
work efficient. The two phases together read and write O(n+nk/m)
words in main memory, which is O(nk) as m is a constant. More
precisely, every input value is read once, every output value is
written once, and each chunk writes 2k carries plus two flags to

indicate when the carries are ready. Our algorithm’s space com-
plexity is O(n+k) since it requires storage for n input values, n out-
put values, c flags, and 2ck carries, where c is the constant maxi-
mum pipeline depth. We use c = 32 in our implementation so that
the carries can be handled by the 32 threads of a single warp. This
space complexity is the same as that of the serial algorithm, mean-
ing our algorithm is space efficient. In contrast, the Scan algo-
rithm is not space efficient. It encodes each value in the sequence
by a k by k matrix and a k-element vector, meaning it requires
O(nk2) memory.

2.3 Putting It All Together

The following example illustrates how our algorithm works on
the second-order recurrence (1: 2, -1), i.e., the second-order prefix
sum, with m = 8 and n = 20. Assume the input is:

Based on the serial code from the beginning of Section 2, we can
compute the expected output for later verification:

Before our algorithm can start, k lists of m correction factors
need to be precomputed (offline) based on the recurrence (0: 2, -1)
and the starting values described in Section 2.1. For example the
first list below is started with “0, 1”. Each entry in the list is gen-
erated by multiplying the prior element by 2, the second to prior
element by -1, and adding the two products. This yields the fol-
lowing two lists of eight bold-printed correction factors.

At this point, Phase 1 commences by breaking up the input into
chunks of one element each before merging pairs of adjacent
chunks into successively larger chunks.

The first iteration corrects every second value (aka chunk) by
adding 2 times the value of the previous chunk. The “2” is the first
correction factor from the first list above. Since there is only one
element per chunk, no further work is needed. This yields the fol-
lowing sequence, in which the shaded values are the values that
have been corrected.

In the second iteration, Phase 1 merges every second pair
(shaded below) with the preceding pair. The first value is cor-
rected by adding 2 times the last value of the previous pair and -1
times the second-to-last value (the first factors from the two lists
above). The second value is corrected by adding 3 times the last
value of the previous pair and -2 times the second-to-last value
(the second factors from the two lists).

In the third iteration, every second chunk of four values
(shaded below) is merged with the preceding chunk using the first
four correction factors from the two lists, i.e., again the ith value
in the chunk is corrected with the ith factor in each list. This yields
chunks of size m = 8, at which point Phase 1 terminates with the
following partial result.

Note that each iteration not only doubles the chunk size but
also the correct and final values at the beginning of the sequence.
In other words, after iteration s, the first 2s elements are correct.

Phase 2 corrects later chunks of size m based on the last two
carry values from the previous chunk. It does this in the same
manner as Phase 1, except it does not iteratively double the chunk
size, which is why it never needs more than m correction factors.
Instead, it sequentially proceeds through the chunks. For example,
the last element of the second chunk is 40 plus 9 (the last correc-
tion factor in list 1) times 8 (the last element of the prior chunk)
plus -8 (the last correction factor in list 2) times 12 (the second-to-
last element of the prior chunk), which is 40 + 9 ∙ 8 – 8 ∙ 12 = 16.
Once the (carry) elements of a chunk have been corrected, the cor-
rection of the next chunk can begin. This yields the final result.

To speed up Phase 2, we pipeline its operation. This is possible
because the local carries, which are the last k values of each chunk
after Phase 1, are produced earlier than the global carries, which
are the last k values of each chunk after Phase 2. Any missing
global carries can be precomputed based on the global carries from
several chunks ago and the intervening chunks’ local carries. For
instance, we can precompute the global carries of the third chunk
in the above example, which are 24 and 16, based on the global
carries from the first chunk (12 and 8) and the local carries from
the second chunk (44 and 40) even before the global carries of the
second chunk become available. In particular, the global carries of
the third chunk are the local carries of the second chunk corrected
using the global carries of the first chunk and the correction fac-
tors from the two lists above. In our example, 24 = 44 + 8 ∙ 8 + -7
∙ 12 and 16 = 40 + 9 ∙ 8 + -8 ∙ 12, where the bold-printed values are
the correction factors and the remaining values are the various
carries. This calculation requires O(ck2) operations, where c is the
distance in chunks to the most recent chunk for which global car-
ries are available, i.e., the degree of pipelining. Since the full pro-
cessing of a chunk takes O(mk) operations, this carry correction
is faster as long as O(ck2) is smaller than O(mk). In other words,
the product ck must be sufficiently smaller than m, which is the
case in all examples studied in this paper, where k < 4, c ≤ 32, and
m ≥ 1024. In particular, c is typically much smaller than 32 as our
code automatically looks for the most recent available global car-
ries, thus dynamically minimizing c. As a consequence, the carry
precomputation can be performed while Phase 2 is working on the
second chunk but in a fraction of the time, thus enabling Phase 2
to start processing the third chunk before the second chunk is
done, which results in a pipelined operation of Phase 2.

3 Implementation

To validate our algorithm and demonstrate the feasibility of our
automatic parallelization approach, we wrote a domain-specific
compiler, which we call PLR for Parallelized Linear Recurrences.
It reads in a recurrence of type (1) in signature format, i.e., two
lists of coefficients separated by a colon, which can be thought of
as a domain-specific language. It then translates this recurrence
into CUDA code. Upon execution, the code computes the recur-
rence on the given input sequence of values.

CUDA exposes three levels of hardware parallelism. The first
level is the warps, which are sets of 32 threads that execute in
lockstep. The threads within a warp can exchange data using shuf-
fle instructions without explicit synchronization. The second level
is the thread blocks, which hold up to 1024 threads. The threads
in a block can exchange data via a software-controlled cache
called “shared memory”. The third level is the device, which con-
tains a number of streaming multiprocessors (SMs). Thread blocks

3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22

3 2 6 4 9 6 12 8 15 10 18 12 21 14 24 16 27 18 30 20

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

1 0 -1 -2 -3 -4 -5 -6 -7 -8

 correction-factor list 1

 correction-factor list 2

3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20

3 2 6 4 7 6 14 12 11 10 22 20 15 14 30 28 19 18 38 36

3 2 6 4 9 6 12 8 11 10 22 20 33 30 44 40 19 18 38 36

3 2 6 4 9 6 12 8

15 10 18 12 21 14 24 16

27 18 30 20

are automatically assigned to the SMs until all blocks have exe-
cuted. Threads from different blocks can only exchange data via
global/main memory, which is backed by a shared L2 cache.

PLR supports sequences of any length up to 4 GB. It supports
integer and floating-point signatures, including all forms of prefix
sums and 1D digital filters. The code it generates requires at least
compute capability 3.0, i.e., it works on the several most recent
GPU generations from NVIDIA. Such GPUs typically have 65,536
registers per SM and support a maximum thread-block size of 1024
threads. Based on these hardware parameters, PLR sets the chunk
size m for each thread block to 1024x, where x is the number of
values each thread has to process. x is the smallest integer for
which x ∙ 1024 ∙ T > n, where n is the input size and T denotes the
number of thread blocks the GPU can simultaneously process.
Moreover, x ≤ 9 for floating-point signatures and x ≤ 11 for integer
signatures. PLR allocates 32 registers per thread for floating-point
signatures as well as for integer signatures that only contain ones
and zeros (such as those of normal and tuple-based prefix sums).
For more complex integer signatures, it allocates 64 registers per
thread. These crude heuristics can obviously be improved. For ex-
ample, most of the recurrences we tested yield higher perfor-
mance for other values of m and/or x. SAM uses an auto-tuner to
find the best value of x for different input sizes [11]. Optimizing
these parameters in PLR is left for future work.

The code-generation process starts by parsing the signature
and performing some simple checks. For instance, the last non-
recursive and the last recursive coefficients must not be zero.
Then PLR begins emitting the CUDA program, which consists of
the following code sections.

1) The first section includes k constant arrays of size m that
are initialized with the correction factors, where k is the order of
the recurrence and m is the chunk size at which Phase 1 termi-
nates. The correction factors are precomputed based on the n-
nacci sequences described above. They are needed in Phase 1,
which iteratively merges chunks until they contain m elements.
This procedure requires progressively longer lists of correction
factors. However, the longest list contains all needed shorter lists.
Moreover, it also contains the corrections factors for Phase 2.
Thus, only a single array holding m factors is emitted per carry.

2) The second code section is the beginning of the recurrence
kernel. Each thread block first atomically increments a counter to
determine for which chunk it is responsible. Then it reads the m
input values of that chunk.

3) The following code section performs the map operation (2)
to eliminate the non-recursive coefficients.

4) The next section contains the first few unrolled iterations of
Phase 1. They are implemented with shuffle instructions to bring
the chunk size to the warp size. The rest of Phase 1 is done within
a thread block but across warps, so shared memory is used to ex-
change data. This is an example of how our hierarchical approach
makes it possible to exploit the features available at different lev-
els of hardware parallelism. This code extensively uses the correc-
tion-factor arrays.

5) As soon as the local carries (the last k values of the chunk)
are ready, they are written to global memory. Then a memory
fence is executed before a flag is set to indicate that these carries
are available. Unless this is the first chunk of the input, the Phase
2 code starts at this point by reading the prior ready flags. It busy
waits until there is at least one global set of carries ready within a
distance of 32 and all following local carries are ready as well.

6) The next code section reads the k global carries and all later
local carries, if any. It then corrects those local carries using the
global carries and k correction factors (cf. Section 2.3). This yields
the carries needed to correct the m values of the current chunk to

produce the global result. The last k values are written to global
memory and the corresponding flag is set to indicate that the
global carries are ready.

7) Lastly, the m result values are written out.

8) Multiple kernels are generated in the above manner for var-
ious values of x. For testing, PLR also emits a main function that
calls the appropriate kernel, measures its performance, and veri-
fies the output by comparing it to the result of the serial code.

The entire code generation, which runs serially on one CPU
thread, takes only roughly 10 ms on our system (cf. Section 5). It
is very fast because the m correction factors are computed using
the n-nacci approach rather than by solving the equations we in-
itially used to derive them.

3.1 Optimizations

PLR performs several optimizations to boost the performance of
the emitted code. It uses shuffle instructions whenever possible to
quickly exchange data. If that does not work, it resorts to shared
memory to exchange data. It merely uses main memory for ex-
changing the local and global carries. PLR only emits correction
code for existing terms and suppresses the remaining terms. This
is useful in the first few iterations in higher-order recurrences.
However, the most important optimizations pertain to the correc-
tion factors and are explained next. As far as we know, these op-
timizations are new and have never before been described.

For each array of correction factors, PLR allocates a buffer in
shared memory to cache up to the first 1024 elements. Any cor-
rection code that needs one of these elements obtains it from the
shared memory. Only the remaining elements are read from main
memory. This optimization is particularly useful as the merging
in Phase 1 starts with small chunks that progressively get larger.
Thus, the first factors are accessed the most often, and all correc-
tions factors can be obtained from the shared memory until the
chunk size exceeds 1024.

PLR analyzes the correction factors and emits specialized code
when possible. If it finds that all elements are identical within a
correction-factor array, the array is suppressed and its accesses
are replaced by the appropriate constant. This is helpful for the
standard prefix sum. If all array elements are either zero or one,
the code generator emits code to conditionally add the correction
terms rather than multiplying them by the factors. This helps the
tuple-based prefix sums. If the correction factors repeat, only the
first “repetition” is emitted.

The most effective optimization applies to the floating-point
correction factors of the recursive filters, which typically ap-
proach zero quickly for stable filters. In theory, the impulse re-
sponse of IIR filters is infinitely long, but it is well known that it
tends to decay below the arithmetic precision after a few hundred
elements [22]. To speed up this effect, we flush denormal values
to zero. PLR then changes the code such that only the first few
warps of a thread block run Phase 1 since later warps whose cor-
rection factors are all zero do not need to execute.

Other optimizations are possible. For example, we could exe-
cute the code that leads to the production of the carry values first
so that they can be emitted even sooner. For low orders, we could
buffer more than 1024 elements of each correction-factor array in
the shared memory. Since the first and last correction-factor ar-
rays always contain the same values except shifted by one posi-
tion (for k > 1), one of these two arrays could be suppressed. These
and other optimizations are left for future work.

4 Related Work
Karp et al. [9] published the first work on parallelism in recur-
rence equations in 1967. Six years later, Stone [23] describes a re-
cursive doubling strategy to parallelize first-order recursive fil-
ters, which Kogge and Stone [10] extend to higher-order recursive
filters. Over a decade later, Sung and Mitra [24] as well as Blelloch
[2] present general techniques for exposing parallelism within 1D
recursive filters.

StreamIt is an architecture-independent language and com-
piler for high-performance streaming applications and the first
framework to automate the implementation of recursive filters
and the optimization of the code [25]. However, it does not ad-
dress the computation and parallelization of linear recurrences in
general, and it does not support GPUs.

Some of the earliest GPU implementations of recurrences are
presented by Hensley et al. [7], Sengupta et al. [20], and Dotsenko
et al. [6]. Sengupta et al. [19, 21] are the first to publish a work-
efficient GPU implementation of scan operations, which can be
used to implement prefix sums and recursive filters [3]. Merry
[12] studied several recent GPU implementations of prefix sums.
Of the investigated codes, he found the CUB library to provide the
best performance [13].

CUB implements a work-efficient, single-pass method with 2n
data movement, meaning that it reads each input value once and
writes each output value once. It performs very well across differ-
ent GPU types in part because it comprises multiple algorithms.
For example, it employs different kernel specializations, grain
sizes, local scans, and strategies for rearranging data between
threads for each GPU architecture. PLR adopts CUB’s variable
look-back strategy for propagating the carries to hide the commu-
nication latency and pipeline the Phase 2 computation.

For higher-order and tuple-based prefix sums, SAM provides
the fastest GPU implementation [11]. It is also a work-efficient,
single-pass approach with 2n data movement. It runs an auto-
tuner upon installation that determines the optimal number of el-
ements to assign to each thread for different problem sizes and
different types of prefix sums.

We compare PLR to CUB and SAM in the result section. Since
PLR’s code is automatically generated, it can be optimized for each
given recurrence. This is difficult to do in the handwritten CUB
and SAM implementations, which use a single code base to handle
multiple types of recurrences.

The best-performing GPU implementations of linear recursive
filters are probably by Nehab et al. [15] and Chaurasia et al. [4].
However, those codes are not communication efficient as they
read the input values multiple times. Moreover, their work focuses
on 2D image processing rather than 1D signal processing (which
is our focus). Nevertheless, we compare to both of these codes in
the result section.

Nehab et al. present an algorithmic framework to facilitate the
overlapping of the causal, anticausal, row, and column filter pro-
cessing. This reduces the memory bandwidth as the output of one
filter is directly piped into the next filter. Moreover, they exploit
the fact that a higher-order filter can be decomposed into an
equivalent set of several lower-order filters. They found that ap-
plying multiple lower-order filters sometimes results in faster pro-
cessing than using the single, corresponding higher-order filter.

Chaurasia et al.’s work also targets 2D image processing. They
are the first to provide a code generator for automatically synthe-
sizing GPU recurrence code. In this sense, their work is the most
closely related to ours. Their domain-specific code generator,
which is based on Halide, supports a set of program transfor-
mations that can be composed to implement many different filters

on CPUs and GPUs. It then performs locality optimizations on the
composed filters to minimize memory accesses through interleav-
ing and tiling. Moreover, their code generator supports several
heuristics to schedule the tiled code. The programmer specifies
the recursive filters and selects the heuristics in form of a short
program written in a domain-specific language.

PLR’s input is simpler, just a signature, and does not require
the user to specify or experiment with tile sizes and heuristics.
However, PLR does not support the automatic combination of fil-
ters, which has to be done offline using, for example, the z-trans-
form. PLR parallelizes every stage of the computation whereas
Chaurasia et al.’s code serially combines the local carries to pro-
duce the global carries.

Except for StreamIt and Chaurasia et al.’s work, the implemen-
tations described in the above work are all handwritten, which is
a difficult, error-prone, and time consuming process, and none of
these papers propose an automatic parallelization approach,
which is one of the key contributions of our work. Moreover, our
algorithm is based on merging and correction factors, making it
not similar to any of the previously proposed algorithms.

5 Experimental Methodology

We compare the performance of the code emitted by our PLR code
generator to the fastest published codes. On the integer side, these
are CUB 1.5.1 [5] and SAM 1.1 [18] for various types of prefix
sums. On the floating-point side, these are “Alg3” by Nehab et al.
[1] and “Rec” by Chaurasia et al. [17] for recursive filters. Since
Alg3 and Rec are designed for 2D image processing, we ran them
with square 2D inputs (of a similar total size as our 1D inputs)
where the width and height are multiples of 32 to match the warp
size. To make the comparison as fair as possible, we disabled the
vertical filtering in these codes. Note, however, that Alg3 still fil-
ters in both the positive and the negative horizontal direction. We
were only able to limit the filtering to one horizontal direction for
Rec to make it similar to PLR, which also only filters in one direc-
tion. Finally, we compare to the scan-based approach (Scan) de-
scribed by Blelloch [3], which, like PLR, only requires the signa-
ture to specify the desired parallel recurrence computation. He de-
rived a general way to express recurrences in form of k by k ma-
trices and k-element vectors as well as appropriate associative op-
erators that are based on matrix multiplication and vector addi-
tion, which allows the computation of arbitrary recurrences in
parallel using a standard prefix scan. A prefix scan is similar to a
prefix sum except the operator is not addition. For CUB, SAM,
Alg3, and Rec, we used publicly available code. For Scan, we im-
plemented the operator ourselves but used CUB to run the actual
scan. We compiled all codes with nvcc 7.5 using the
“-O3 -arch=sm_52” flags. We measured the GPU memory usage
with the NVIDIA Management Library (NVML). To obtain the
cache miss results, we used the nvprof profiler.

We present results for a GeForce GTX Titan X GPU, which is
based on the Maxwell architecture. It has 3072 processing ele-
ments in 24 multiprocessors that can hold the contexts of up to
49,152 threads. Each multiprocessor has 96 kB of shared memory,
up to 48 kB of which are accessible from a single thread block. The
24 multiprocessors share a 2 MB L2 cache as well as 12 GB of
global memory with a peak bandwidth of 336 GB/s. We use the
default clock frequencies of 1.1 GHz for the processing elements
and 3.5 GHz for the GDDR5 memory. The GPU is plugged into a
16x PCIe 3.0 slot in a system with dual 10-core Xeon E5-2687W v3
CPUs running at 3.1 GHz. Its memory size is 128 GB, the operating
system is Fedora 22, and the CUDA driver is 361.42.

When measuring the performance, we only consider the com-
putation time, excluding the time it takes to transfer the input se-
quence to the GPU or the result to the CPU. In other words, we
assume the data to already be on the GPU from a prior processing
step and the result of the recurrence to be needed on the GPU for
a later processing step. After each run, we validate the result by
comparing it to the serial CPU result. We check the integer results
for exact matches. Since floating-point addition and multiplica-
tion are not truly associative, the parallel codes produce slightly
different results than the serial code for floating-point recur-
rences. In this case, we make sure the discrepancy is within 10-3.

We evaluate the six codes on the recurrences listed in Table 1
using 32-bit integer and floating-point values. In all cases, we var-
ied the input size from 214 to 230 words in powers of two. None of
the tested codes support sizes above 4 GB, that is, inputs with
more than 230 words. Since the codes’ control-flow and memory-
access behavior are independent of the values in the input se-
quence, any input of the same length and data type will result in
the same performance for a given recurrence. Note that PLR sup-
ports input sizes that are not powers of two and that powers of
two do not result in the highest performance since m is generally
not a power of two. We repeated each experiment six times, meas-
ured the average runtime of the last five runs, and computed the
throughput from it (in words processed per second).

6 Results and Analysis

Our PLR approach supports arbitrary integer and floating-point
recurrences. However, we can only show results for a few exam-
ples. We selected the recurrences listed in Table 1, which we be-
lieve to be representative of important real-world computations.
In the following, we first study the performance on integer recur-
rences using various prefix sums as examples. Then we separately
study floating-point recurrences on several digital filters.

6.1 Integer Recurrences

The results in this section are based on 32-bit integer sequences
and signatures with integer coefficients. We compare the gener-
ated PLR code to CUB and SAM, the two best-performing codes
from the literature for prefix sums [11], as well as the general Scan
approach. For reference, the memory-copy throughput is also
given, which represents an upper bound on the achievable
throughput since it just copies the input sequence to the output
without any computation.

6.1.1 Standard Prefix Sum

The standard prefix sum is perhaps the most frequently used re-
currence in parallel computing. Figure 1 shows the throughput in
billions of 32-bit integers processed per second on the Titan X
GPU for different sequence lengths.

The performance of CUB, SAM, and PLR is quite similar. PLR
is a little slower than the other two codes in the mid-range. SAM
is somewhat faster in the low range due to its use of auto-tuning.
On long sequences, PLR’s throughput is on par with the other two
codes and, in some cases, even a little higher than that of SAM.
All three codes reach the throughput of memory copy, which
means their performance cannot be exceeded by any other code
that reads each input value and writes each output value. In this
sense, PLR delivers optimal performance for large sequences on
prefix sums. The three codes transfer up to 264 GB/s, which is
beyond the theoretical memory bandwidth of most CPU systems,
implying that the serial code running on a CPU has to be slower.

Figure 1. Prefix-sum throughput

The Scan code delivers about half the throughput of the other
three approaches because it accesses twice as much memory (a
1x1 matrix and a 1-element vector per sequence element), which
is also why it only supports problem sizes up to 229. Prefix sums
of 32-bit floating-point values yield the same performance for all
four codes (not shown).

6.1.2 Tuple-based Prefix Sums

Figures 2 and 3 show the 2- and 3-tuple prefix-sum throughput in
billions of 32-bit integers processed per second for different se-
quence lengths.

Figure 2. Two-tuple prefix-sum throughput

Figure 3. Three-tuple prefix-sum throughput

For tuple-based prefix sums, there is a clear difference in per-
formance between the codes. On small inputs, SAM is again the
fastest due to the auto-tuning. In the mid-range, PLR outperforms

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 in

ts
 p

er
 s

ec
o

n
d

]

sequence length [ints]

memcpy CUB SAM Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 in

ts
 p

er
 s

ec
o

n
d

]

sequence length [ints]

memcpy CUB SAM Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 in

ts
 p

er
 s

ec
o

n
d

]

sequence length [ints]

memcpy CUB SAM Scan PLR

CUB and starts to outperform SAM. For long sequences, PLR sub-
stantially outperforms the other two codes. On 2-tuples, it is 30%
and on 3-tuples 17% faster. The reason for this performance dif-
ference is that the three codes implement different approaches. In
case of 2-tuples, SAM computes two independent interleaved sca-
lar prefix sums, CUB computes a prefix sum on 2-element vectors,
and PLR computes a single scalar second-order recurrence.

The performance advantage of PLR is higher on tuple sizes that
are powers of two because they allow for additional code optimi-
zations. In fact, PLR’s 4-tuple throughput (not shown) is slightly
higher than its 3-tuple throughput. In contrast, CUB’s and SAM’s
throughputs consistently decrease with larger tuple sizes as they
use the same code base for different tuple sizes. The Scan through-
put is quite low because it requires six and twelve times more
memory accesses (a 2x2 matrix with a 2-element vector and a 3x3
matrix with a 3-element vector), respectively, and suffers from
correspondingly higher register pressure.

In summary, PLR performs as well as CUB on tuple-based pre-
fix sums on all tested inputs and yields superior performance over
CUB and SAM for medium and long sequences. Tuning the m and
x parameters might boost PLR’s performance on short inputs.

6.1.3 Higher-order prefix sums

Figures 4 and 5 show the 2nd- and 3rd-order prefix-sum through-
put, respectively, in billions of 32-bit integers processed per sec-
ond for different sequence lengths.

Figure 4. Second-order prefix-sum throughput

Figure 5. Third-order prefix-sum throughput

On higher-order prefix sums, ignoring Scan, CUB yields the
lowest throughput, PLR is in the middle, and SAM the highest,
except at the smallest tested problem sizes, where PLR performs
on par with SAM. PLR’s performance is relatively low because it

cannot optimize the resulting correction factors (cf. Section 6.3).
On second-order prefix sums, PLR barely outperforms CUB, on
third-order prefix sums it significantly outperforms it, and on
fourth-order prefix sums (not shown) it outperforms it even more.
At the same time, SAM’s performance advantage over PLR de-
creases with increasing order. For order 2, it is 50% faster, for order
3 about 38%, and for order 4 about 33%. Hence, PLR’s performance
increases relative to both CUB and SAM with higher orders. This
is again due to the different approaches used to compute the re-
currences. PLR computes a single scalar recurrence whereas CUB
and SAM iteratively compute prefix sums of prefix sums. CUB re-
peats the entire code whereas SAM only repeats the computation
but not the reading in and writing out of the values, which is why
it outperforms CUB.

For a given order, the performance of Scan on the higher-order
prefix sums is identical to that on the tuple-based prefix sums as
only the matrix and vector values change but not the number of
memory accesses or the operations executed.

In summary, PLR outperforms CUB on higher-order prefix
sums but underperforms SAM, at least for small k. Since the
shared memory is not fully utilized, buffering more than just the
first 1024 correction factors of each array might boost PLR’s per-
formance on these and similar recurrences.

6.2 Floating-Point Recurrences

The results in this section are based on 32-bit floating-point se-
quences and signatures with floating-point coefficients. As men-
tioned above, prefix sums of 32-bit floating-point values yield the
same performance on all tested codes as the integer prefix sums.
Hence, we do not show prefix-sum results for floating-point data.
Instead, we compare PLR to Alg3 by Nehab et al. [15] and to Rec
by Chaurasia et al. [4], the two best-performing codes from the
literature for floating-point recurrences, as well as to Scan by Blel-
loch [3]. Again, the memory-copy throughput is included as an
upper bound on the achievable throughput. Note that, unlike Rec
and PLR, Alg3 filters in both the positive and negative direction.

6.2.1 Low-pass Recursive Filters
Figures 6, 7, and 8 show the 1-stage, 2-stage, and 3-stage low-pass
filter throughputs, respectively, in billions of 32-bit floats pro-
cessed per second for different sequence lengths. Alg3 only sup-
ports inputs up to 2 GB and Rec up to 1 GB. Since Scan requires
O(k2) memory per item, its maximum supported problem size de-
creases quickly with increasing order.

On the evaluated low-pass filters and on all input sizes, PLR is
again much faster than Scan. It is also faster than Alg3, but Alg3
performs two filter operations whereas PLR only performs one.
We were unable to turn off the extra filter operation in Alg3 to
make the comparison fairer. (When filtering 2D images, Alg3 and
Rec perform similarly.) For inputs up to a million elements, Rec
performs on par or is faster than PLR. This may be because Rec
executes many small filter operations on a square input whereas
PLR executes a single long filter operation on a linear input, which
likely incurs a higher carry-propagation delay. Nevertheless, PLR
is the fastest of the tested codes on the larger inputs.

On the single-stage filter, PLR reaches the throughput of
memory copy for large problem sizes, i.e., optimal performance.
As we go to higher orders, the throughput of all four codes de-
creases. PLR’s throughput decreases faster than that of Rec and
Alg3. For 1 GB inputs, it is 1.90, 1.88, and 1.58 times faster than
Rec on the 1-stage, 2-stage, and 3-stage filters, respectively. We
surmise this is because a high-order recurrence can be slower to
compute than multiple (simpler) low-order recurrences that, to-
gether, compute the same result [15]. Since recursive digital filters

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 in

ts
 p

er
 s

ec
o

n
d

]

sequence length [ints]

memcpy CUB SAM Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 in

ts
 p

er
 s

ec
o

n
d

]

sequence length [ints]

memcpy CUB SAM Scan PLR

above about order ten tend to be unstable [22], low-order filters
dominate in practice, where PLR provides the highest throughput.

Figure 6. 1-stage low-pass filter throughput

Figure 7. 2-stage low-pass filter throughput

Figure 8. 3-stage low-pass filter throughput

6.2.2 High-pass Recursive Filters

Neither Alg3 nor Rec currently support recursive filters with more
than one non-recursive coefficient, which is why they cannot im-
plement the high-pass filters from Table 1. Hence, Figure 9 only
shows the PLR 1-stage, 2-stage, and 3-stage high-pass filter
throughput in billions of 32-bit floats processed per second for dif-
ferent sequence lengths. We included Scan’s 1-stage recursive
high-pass filter throughput but not that for more stages since it is
already the slowest. Note that our Scan implementation uses the
same code as PLR for computing the map operation (2), that is, for
processing the non-recursive FIR coefficients.

As expected, the throughputs decrease with increasing order.
Moreover, they are lower than the corresponding low-pass filter
throughputs because there are additional non-recursion coeffi-
cients to handle (cf. Table 1). Since the recursion coefficients are
the same, the drop in performance must be due to the additional
non-recursion coefficients. Interestingly, this decrease is quite
consistent and around 17% for medium to large problem sizes, ir-
respective of the order. This shows that the map operation (2) to
handle the non-recursion coefficients is quite fast compared to the
code that handles the recursion coefficients.

Figure 9. High-pass filter throughput

6.3 Performance Optimizations

Figure 10 combines the PLR throughputs on the largest input of
the eleven studied recurrences in a single chart. The left half
shows the results for integers and the right half for floats. For each
recurrence, the figure includes the throughput when turning off
the optimizations pertaining to the correction factors, i.e., when
they are always loaded from global memory and no special code
is emitted for factors that are constants, only zero or one, repeat,
or decay to zero after a certain point.

Figure 10. PLR throughput with and without optimizations

The optimizations help in all cases. On the higher-order prefix
sums, they improve performance by only 3%, whereas on the two-
stage low-pass filter, they more than double the throughput. For
the prefix sum and the tuple-based prefix sums, the performance
difference is primarily due to treating correction factors of zero
and one specially. On the digital filters, the difference is mostly
due to suppressing zero factors at the end of the array and buffer-
ing factors in shared memory. Except for the buffering, none of
these optimizations apply to the higher-order prefix sums, which
is probably why PLR is outperformed on this type of recurrence

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 f

lo
at

s
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 f

lo
at

s
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 f

lo
at

s
p

er
 s

ec
o

n
d

]

sequence length [floats]

memcpy Alg3 Rec Scan PLR

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 f

lo
at

s
p

er
 s

ec
o

n
d

]
sequence length [floats]

memcpy Scan1 PLR1 PLR2 PLR3

0

5

10

15

20

25

30

35

40

th
ro

u
gh

p
u

t
[b

ill
io

n
 w

o
rd

s
p

er
 s

ec
o

n
d

]

optimizations on optimizations off

by pre-existing code. In the remaining cases, the optimization are
important as they boost the performance substantially.

6.4 GPU Memory Usage

Table 2 lists the total memory usage on the GPU when processing
the largest input that all six recurrence codes support, i.e.,
67,108,864 words. The usage only depends on the order of the re-
currence but not the coefficients or the data type (int or float),
which is why the table only shows three results for each code. The
memory consumption on the CPU is not included. For reference,
the memory usage of the trivial memory-copy code is also listed.
It contains no user-written kernel code but only CUDA library
calls to allocate and free the input and output buffers, calls to copy
the input data to the GPU and the output data back to the CPU,
and the timed GPU-to-GPU memory-copy call.

Table 2. Total GPU Memory Usage in Megabytes
PLR CUB SAM Scan Alg3 Rec memcpy

order 1 623.5 623.5 622.5 1,135.5 895.8 638.5
621.5 order 2 623.5 623.5 622.5 3,188.8 911.8 654.5

order 3 624.5 623.5 622.5 6,278.9 927.8 670.5

In addition to the 512 MB of combined storage for the input
and output arrays, even the memory-copy code allocates an extra
109.5 MB. Interestingly, SAM requires only one more megabyte,
CUB two more megabytes, and PLR between two and three more
megabytes, i.e., less than half a percent. This additional memory
holds the code and the auxiliary arrays for the carries and flags.
Rec requires between 17 MB and 49 MB more memory and Alg3
between 274 MB and 306 MB. It appears that both of these codes
allocate significant extra memory whose amount increases for
higher orders. Scan needs by far the most memory because it en-
codes each value using a k by k matrix and a k-element vector.
Just to store the input and output, it requires 1024 MB for first-
order, 3072 MB for second-order, and 6144 MB for third-order re-
currences. In summary, PLR (like CUB and SAM) is nearly as
memory efficient as the memory-copy code.

6.5 L2 Cache Misses

Table 3 lists the L2-cache read misses incurred on the GPU multi-
plied by the block size of 32 bytes when processing the 67,108,864-
word input. We combined the miss counts from both slices of the
L2 cache, which contributed nearly equal counts. Again, the meas-
urements are largely unaffected by the coefficients and the data
type, so we only show results for three different orders for each
code. The cache misses on the CPU are not included. We cannot
show cache misses for the memory-copy code because it does not
incur any, i.e., it does not appear to use the L2 cache.

Table 3. L2 Cache Read Misses Converted into Megabytes
 PLR CUB SAM Scan Alg3 Rec
order 1 256.1 256.5 256.2 512.3 550.6 528.3
order 2 256.2 256.1 256.6 1,537.1 591.3 545.3
order 3 256.4 256.2 256.8 3,074.1 632.0 562.5

Reading the input array results in a transfer of 256 MB of data
due to cold misses. As the table shows, PLR, CUB, and SAM only
incur a tiny amount of additional L2-cache read misses (less than
one megabyte or 0.3%). In other words, these codes either have
good locality or do not read much additional data. In either case,
they are not memory bound aside from reading the input once.

Scan accesses many more memory locations because of its ineffi-
cient data representation. When accounting for the two, six, and
twelve times higher cold misses, we find that it only accesses an
additional 0.3 to 2.1 megabytes. Finally, the results in Table 3 make
it evident that Alg3 and Rec are not communication efficient as
they read the input data twice. For the given problem size, which
greatly exceeds the capacity of the 2 MB L2 cache, the second ac-
cess to the input again has to fetch the data from main memory.
This explains why PLR outperforms these codes and why it starts
outperforming Rec at a size of one million entries, which is the
smallest problem size that exceeds the L2 capacity. Moreover, both
Alg3 and Rec incur cache misses beyond reading the input twice,
which is consistent with the additional memory they allocate as
mentioned in the previous subsection. In summary, PLR (as well
as CUB, SAM, and even Scan) are communication efficient in that
they essentially only incur cold read misses in the L2 for accessing
the input data.

7 Summary and Conclusion
Recurrences convert a sequence of input values into a sequence of
output values. They are non-trivial to parallelize because later
output values are data dependent on earlier output values. This
paper presents a new algorithm for computing linear recurrences
that is work- and space-efficient as well as general. The algorithm
is based on iteratively merging partial solutions using n-nacci
numbers. Moreover, the paper describes a hierarchical paralleliza-
tion approach that is a good fit for architectures like GPUs with
multiple levels of hardware parallelism. It also introduces several
domain-specific optimizations that result in some of the fastest
recurrence computations on a GPU.

We implemented our algorithm, parallelization approach, and
code optimizations in a proof-of-concept compiler called PLR that
translates the signature notation of a recurrence into CUDA code.
It supports both integer and floating-point recurrences. The per-
formance of the emitted code is optimal for large inputs on low
orders in the sense that it reaches the throughput of memory copy,
which cannot be exceeded. On higher-order tuple-based prefix
sums and 1D recursive digital filters, our automatically generated
code outperforms the fastest codes from the literature, many of
which are handwritten and support fewer recurrence types.

Whereas we evaluate our approach on a GPU, the presented
algorithm, parallelization technique, and even most of the code
optimizations are not GPU specific but apply equally to CPUs,
DSPs, FPGAs, and other parallel computing devices. Moreover,
whereas we demonstrate our approach in the context of a
standalone tool, it could equally be part of a full-fledged (C/C++)
compiler that is invoked either via an intrinsic or to augment an
existing loop-nest transformation engine that automatically par-
allelizes code (such as Graphite in gcc).

There are several avenues for future work, especially regard-
ing PLR’s code optimizer. For instance, we could add better heu-
ristics to boost the performance on small inputs. To improve the
performance on higher-order prefix sums, we could compute and
emit the carries sooner, support inputs that consist of multiple
signatures, and buffer more correction factors in the shared
memory. We could also support operators other than addition,
multiple dimensions, and non-GPU systems.

In summary, our approach makes it possible to automatically
parallelize arbitrary-order homogeneous linear recurrences with
constant coefficients and delivers heretofore unreached GPU per-
formance for many important instances, especially compared to
Scan, the only parallel implementation we tested that supports all
the recurrences that PLR does. Since recursive filters are widely

used in telecommunication and prefix sums are widely used in
parallel programming, being able to automatically parallelize and
optimize them, including variations for which no efficient parallel
code exists to date, may prove useful in practice. Looking forward,
we believe our hierarchical approach is well suited for future sys-
tems that will likely be even more parallel.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback,
which greatly helped improve our paper. We thank Diego Nehab
and André Maximo for their help with the Alg3 code as well as
Gaurav Chaurasia for his help with the Rec code. We thank Sahar
Azimi for her help with writing and running the Scan code. This
work was supported in part by the National Science Foundation
under award #1406304 and by equipment donations from Nvidia.

References
[1] Alg3: https://github.com/andmax/gpufilter/, accessed 8/8/2017.
[2] G.E. Blelloch. “Scans as Primitive Parallel Operations.” IEEE Transactions on

Computers, 38(11):1526-1538. 1989.
[3] G.E. Blelloch. “Prefix Sums and Their Applications.” In John H. Reif (Ed.), Syn-

thesis of Parallel Algorithms, Morgan Kaufmann, 1990.
[4] G. Chaurasia, J. Ragan-Kelley, S. Paris, G. Drettakis, and F. Durand. “Compiling

High Performance Recursive Filters.” In Proceedings of the 7th Conference on
High-Performance Graphics, pp. 85-94. 2015.

[5] CUB: https://nvlabs.github.io/cub/, accessed 8/8/2017.
[6] Y. Dotsenko, N.K. Govindaraju, P.P. Sloan, C. Boyd, and J. Manferdelli. “Fast

Scan Algorithms on Graphics Processors.” In Proceedings of the 22nd Annual
International Conference on Supercomputing, pp. 205-213. 2008.

[7] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. “Fast
Summed-Area Table Generation and its Applications.” Computer Graphics Fo-
rum, 24(3):547-555. 2005.

[8] W.D. Hillis and G.L. Steele. “Data Parallel Algorithms.” Communications of the
ACM, 29(12): 1170-1183. 1986.

[9] R.M. Karp, R.E. Miller, and S. Winograd. “The Organization of Computations
for Uniform Recurrence equations.” Journal of the ACM, 14:3, pp. 563-590. 1967.

[10] P.M. Kogge and H.S. Stone. “A Parallel Algorithm for the Efficient Solution of
a General Class of Recurrence Equations.” IEEE Transactions on Computers,
22(8):786-793. 1973.

[11] S. Maleki, A. Yang, and M. Burtscher. “Higher-Order and Tuple-Based Mas-
sively-Parallel Prefix Sums.” In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 539-552. 2016.

[12] B. Merry. “A Performance Comparison of Sort and Scan Libraries for GPUs.”
World Scientific Publishing Company. 2014.

[13] D. Merrill and M. Garland. “Single-Pass Parallel Prefix Scan with Decoupled
Look-back.” NVIDIA Technical Report NVR-2016-002. 2016.

[14] n-nacci numbers: https://en.wikipedia.org/wiki/Generalizations_of_Fibo-
nacci_numbers, accessed 8/8/2017.

[15] D. Nehab, A. Maximo, R.S. Lima, and H. Hoppe. “GPU-Efficient Recursive Fil-
tering and Summed-Area Tables.” In Proceedings of the SIGGRAPH Asia Con-
ference, pp. 176:1-176:12. 2011.

[16] A.V. Oppenheim and R.W. Schafer. “Discrete-Time Signal Processing.” 3rd Edi-
tion. Prentice Hall. 2009.

[17] Rec: https://github.com/mit-gfx/recfilter, accessed 8/8/2017.
[18] SAM: http://cs.txstate.edu/~burtscher/research/SAM/, accessed 8/8/2017.
[19] S. Sengupta, A.E. Lefohn, and J.D. Owens. “A Work-Efficient Step-Efficient

Prefix Sum Algorithm.” In Proceedings of the Workshop on Edge Computing
Using New Commodity Architectures, pp. 26-27. 2006.

[20] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. “Scan Primitives for GPU
Computing.” In Proceedings of Graphics Hardware, pp. 97-106. 2007.

[21] S. Sengupta, M. Harris, and M. Garland. “Efficient Parallel Scan Algorithms for
GPUs.” NVIDIA. 2008 - gpucomputing.net.

[22] S.W. Smith. “Digital Signal Processing: A Practical Guide for Engineers and
Scientists.” Newnes, 2002. ISBN 0-7506-7444-X.

[23] H.S. Stone. “An Efficient Parallel Algorithm for the Solution of a Tridiagonal
Linear System of Equations.” Journal of the ACM, 20(1):27-38. 1973.

[24] W. Sung and S. Mitra. “Efficient Multi-Processor Implementation of Recursive
Digital Filters. In Proceedings of the IEEE Conference on Acoustics, Speech and
Signal Processing, 11:257-260. 1986.

[25] W. Thies, M. Karczmarek, and S.P. Amarasinghe. “StreamIt: A Language for
Streaming Applications.” In Proceedings of the 11th International Conference on
Compiler Construction, pp. 179-196. 2002.

