

Improving Context-Based Load Value Prediction

by

Martin Burtscher

Dipl.-Ing., Eidgenössische Technische Hochschule, 1996

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Computer Science

2000

© 2000 Martin Burtscher

This thesis entitled:
Improving Context-Based Load Value Prediction

written by Martin Burtscher
has been approved for the Department of Computer Science

Benjamin G. Zorn

Michael Franz

Dirk Grunwald

William M. Waite

James H. Martin

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

 iv

Burtscher, Martin (Ph.D., Computer Science)
Improving Context-Based Load Value Prediction
Thesis directed by Associate Professor Benjamin G. Zorn

Abstract

Microprocessors are becoming faster at such a rapid pace that other

components like random access memory cannot keep up. As a result, the

latency of load instructions grows constantly and already often impedes proc-

essor performance.

Fortunately, load instructions frequently fetch predictable sequences of

values. Load value predictors exploit this behavior to predict the results of

load instructions. Because the predicted values are available before the

memory can deliver the true load values, the CPU is able to speculatively

continue processing without having to wait for memory accesses to complete,

which improves the execution speed.

The contributions of this dissertation to the area of load value prediction

include a novel technique to decrease the number of mispredictions, a predic-

tor design that increases the hardware utilization and thus the number of cor-

rectly predicted load values, a detailed analysis of hybrid predictor combina-

tions to determine components that complement each other well, and several

approaches to substantially reduce the size of hybrid load value predictors

without affecting their performance.

One result of this research is a very small yet high-performing load value

predictor. Cycle-accurate simulations of a four-way superscalar microproces-

sor running SPECint95 show that this predictor outperforms other predictors

from the literature by twenty or more percent over a wide range of sizes.

With about fifteen kilobytes of state, the smallest examined configuration, it

surpasses the speedups delivered by other, five-times larger predictors both

with a re-fetch and a re-execute misprediction recovery mechanism.

Dedication

To my family.

 vi

Acknowledgements

Many wonderful people have helped me succeed in academics and life.

First and foremost, I would like to thank my mother, whose never-ending en-

couragement, patience, and help doubtlessly brought me to where I am to-

day, and my father, who motivated and supported my interest in computers

and sciences a great deal.

Many teachers have made lasting positive impressions on me and have

provided invaluable guidance. Most importantly, it has been a great experi-

ence and pleasure to work with my advisor Professor Benjamin Zorn, whose

help, support, and insights I am extremely grateful for. He always knew how

and when to guide me while still allowing me immense freedom and flexibility

with my work, which I appreciate very much. But also Professors Michael

Franz, Dirk Grunwald, Amer Diwan, William Waite, and James Martin, as well

as my fellow students and many other great people have shaped my career

and success to no small amount.

I would like to especially thank my fiancée Anna Szczyrba for her encour-

agement and support of my work and for bearing with me all this time.

This work was funded in part by the Hewlett Packard University Grants

Program (including Gift No. 31041.1) and the Colorado Advanced Software

Institute. I would like to thank Tom Christian for his support of this project

and Dirk Grunwald and Abhijit Paithankar for providing and helping with the

cycle-accurate simulator. In addition to using Hewlett Packard desktop com-

puters, most of the simulations were performed on Alpha machines, which

were sponsored by a Digital Equipment Corporation (now Compaq) grant.

 vii

Contents

CHAPTER 1 .. 1

1 INTRODUCTION.. 1

1.1 PROBLEM... 1

1.2 LOAD VALUE LOCALITY.. 3

1.3 PREDICTION APPROACHES .. 4

1.4 CONFIDENCE ESTIMATION.. 5

1.5 CONTRIBUTIONS ... 6

1.6 SUMMARY .. 9

1.7 ORGANIZATION ... 9

CHAPTER 2 .. 10

2 BACKGROUND.. 10

2.1 CONVENTIONAL HIGH-PERFORMANCE PROCESSOR ARCHITECTURE.... 10

2.2 MISPREDICTION RECOVERY MECHANISMS... 14

2.3 SUMMARY .. 15

CHAPTER 3 .. 17

3 EVALUATION METHODS.. 17

3.1 BASELINE ARCHITECTURE ... 17

3.2 BENCHMARKS... 20

3.2.1 General Information... 20

3.2.2 Quantile Information .. 22

3.2.3 Segment Information ... 24

3.2.4 Segment Quantile Information ... 26

3.3 SPEEDUP ... 27

3.4 OTHER METRICS... 29

 viii

3.5 SUMMARY .. 32

CHAPTER 4 .. 33

4 CONTEXT-BASED VALUE PREDICTORS.. 33

4.1 CONTEXT-BASED VALUE PREDICTION... 33

4.2 GENERIC CONTEXT-BASED LOAD VALUE PREDICTOR 34

4.3 FIVE CONTEXT-BASED LOAD VALUE PREDICTORS 36

4.3.1 Last Value Predictor “LV”... 36

4.3.2 Register Predictor “Reg” .. 38

4.3.3 Stride 2-delta Predictor “St2d” ... 39

4.3.4 Last Four Value Predictor “L4V” .. 43

4.3.5 Finite Context Method Predictor “FCM” 44

4.4 PREDICTOR PERFORMANCE... 47

4.5 SUMMARY .. 48

CHAPTER 5 .. 49

5 CONFIDENCE ESTIMATORS ... 49

5.1 THE NEED FOR CONFIDENCE ESTIMATORS.. 49

5.2 THE BIMODAL CONFIDENCE ESTIMATOR ... 50

5.2.1 Behavior Study .. 53

5.3 THE SAG CONFIDENCE ESTIMATOR.. 56

5.4 PERFORMANCE COMPARISON .. 60

5.4.1 The L4V Selector ... 65

5.4.2 Other Performance Metrics.. 66

5.5 SUMMARY .. 70

CHAPTER 6 .. 72

6 PREDICTOR BANKING... 72

6.1 THE NEED FOR BANKING ... 72

6.2 BANK ARCHITECTURE.. 73

 ix

6.3 BANK PERFORMANCE.. 76

6.4 BANK USAGE.. 79

6.5 SUMMARY .. 79

CHAPTER 7 .. 81

7 IMPROVING PREDICTOR UTILIZATION.. 81

7.1 LINE UTILIZATION .. 81

7.2 TRADING OFF HEIGHT FOR WIDTH .. 83

7.3 SAG L4V PREDICTOR DESIGN AND PERFORMANCE........................... 84

7.4 SAG L4V PREDICTOR POTENTIAL .. 87

7.4.1 Comparison with Oracles... 88

7.5 SAG L4V SENSITIVITY ANALYSIS ... 91

7.5.1 SAg History Length.. 91

7.5.2 SAg Counter Parameters... 93

7.5.3 Optimizing Individual Programs ... 95

7.5.4 Using Distinct Last Values ... 100

7.6 SUMMARY .. 104

CHAPTER 8 .. 105

8 HYBRIDIZING LOAD VALUE PREDICTORS .. 105

8.1 THE BENEFIT OF HYBRIDIZATION .. 105

8.2 HYBRID PERFORMANCE... 106

8.3 SHARED AND UNIQUE PERFORMANCE CONTRIBUTIONS 114

8.3.1 Two-component Hybrids.. 114

8.3.2 Three-component Hybrids ... 118

8.4 SUMMARY .. 120

CHAPTER 9 .. 122

9 HYBRIDIZING WITH HARDWARE REUSE... 122

9.1 SHRINKING THE REG+ST2D+L4V HYBRID 122

 x

9.1.1 Shrinking the L4V Component... 123

9.1.2 Making the Stride Predictor Storage-less 125

9.2 COALESCING HYBRID PREDICTOR COMPONENTS............................. 127

9.3 THE COALESCED-HYBRID .. 127

9.4 COALESCED-HYBRID PERFORMANCE.. 129

9.4.1 Comparison with Other Predictors 129

9.4.2 Comparison with Oracles... 135

9.5 COALESCED-HYBRID SENSITIVITY ANALYSIS 137

9.5.1 Component Permutations .. 138

9.5.2 Tags and B-Tags ... 139

9.5.3 Predictor Width .. 140

9.6 SUMMARY .. 142

CHAPTER 10 .. 144

10 RELATED WORK .. 144

10.1 EARLY WORK ... 144

10.2 PREDICTORS .. 145

10.3 PROFILE-BASED APPROACHES ... 146

10.4 OTHER RELATED WORK .. 147

10.4.1 Dependence Prediction ... 151

10.4.2 Confidence Estimation... 151

10.4.3 Branch Prediction .. 152

CHAPTER 11 .. 153

11 SUMMARY AND CONCLUSIONS ... 153

APPENDIX .. 162

12 APPENDIX ... 162

 xi

Tables

TABLE 3.1: FUNCTIONAL UNIT AND MEMORY LATENCIES (IN CYCLES). 18

TABLE 3.2: INFORMATION ABOUT THE SPECINT95 BENCHMARK SUITE. 21

TABLE 3.3: SPECINT95 QUANTILE INFORMATION. ... 23

TABLE 3.4: INFORMATION ABOUT THE EIGHT SIMULATED PROGRAM SEGMENTS. 24

TABLE 3.5: QUANTILE INFORMATION ABOUT THE SIMULATED PROGRAM SEGMENTS...... 26

TABLE 4.1: LAST VALUE, STRIDE, AND STRIDE 2-DELTA LOAD VALUE LOCALITY............ 41

TABLE 5.1: BEHAVIOR STUDY OF A BIMODAL CONFIDENCE ESTIMATOR........................ 54

TABLE 5.2: HISTORY-PATTERN FREQUENCY AND LAST VALUE PREDICTABILITY. 57

TABLE 5.3: BIMODAL AND SAG CE BEHAVIOR ON THREE GCC TRACES. 61

TABLE 5.4: PREDICTOR CONFIGURATIONS YIELDING THE HIGHEST MEAN SPEEDUP. 63

TABLE 5.5: LATENCY AND CYCLES TO FIRST USAGE OF THE PREDICTED LOAD VALUES. 68

TABLE 5.6: VARIOUS METRICS SHOWING ANOMALY. .. 69

TABLE 7.1: BEST INDIVIDUAL AND AVERAGE PREDICTOR CONFIGURATIONS. 98

TABLE 7.2: THE L4V SPEEDUP OF GCC FOR DIFFERENT PENALTY VALUES. 99

TABLE 7.3: THE L4V SPEEDUP OF GCC FOR DIFFERENT THRESHOLD VALUES.............. 99

TABLE 8.1: THE CONFIDENCE ESTIMATOR PARAMETERS OF THE HYBRID PREDICTORS.108

TABLE 8.2: RE-FETCH SPEEDUP BENEFIT FROM ADDING COMPONENTS.113

TABLE 8.3: RE-EXECUTE SPEEDUP BENEFIT FROM ADDING COMPONENTS.113

TABLE 9.1: STATE REQUIREMENT OF THE SEVEN PREDICTORS’ THREE CONFIGURATIONS.

...131

TABLE 9.2: THE BASE-CONFIGURATIONS OF THE SEVEN PREDICTORS.......................132

TABLE 9.3: SPEEDUP OF THE SIX MAIN COMPONENT PERMUTATIONS.138

TABLE 12.1: BANKING INFORMATION. ..166

 xii

Figures

FIGURE 2.1: THE EXECUTION PIPELINE OF A HIGH-PERFORMANCE MICROPROCESSOR. 12

FIGURE 3.1: THE FOUR PREDICTION CLASSIFICATIONS. ... 30

FIGURE 4.1: THE COMPONENTS OF A CONTEXT-BASED LOAD VALUE PREDICTOR. 34

FIGURE 4.2: THE LAST VALUE PREDICTOR. ... 37

FIGURE 4.3: THE REGISTER PREDICTOR. .. 38

FIGURE 4.4: AVERAGE RUN-LENGTH OF SEQUENCES OF REPEATING LOAD VALUES...... 40

FIGURE 4.5: THE STRIDE 2-DELTA PREDICTOR. ... 42

FIGURE 4.6: THE LAST FOUR VALUE PREDICTOR. .. 43

FIGURE 4.7: THE FINITE CONTEXT METHOD PREDICTOR. .. 46

FIGURE 4.8: MEAN SPEEDUP OF FIVE CONTEXT-BASED PREDICTORS. 47

FIGURE 5.1: THE BIMODAL CONFIDENCE ESTIMATOR (SHADED). 52

FIGURE 5.2: THE SAG CONFIDENCE ESTIMATOR (SHADED). 59

FIGURE 5.3: RE-FETCH SPEEDUP COMPARISON BETWEEN BIMODAL AND SAG CES..... 64

FIGURE 5.4: RE-EXECUTE SPEEDUP COMPARISON OF BIMODAL AND SAG CES. 64

FIGURE 5.5: LOAD CLASSIFICATION OF BIMODAL AND SAG CONFIDENCE ESTIMATORS. 67

FIGURE 6.1: LINE CORRESPONDENCE OF SINGLE-BANK AND INTERLEAVED PREDICTOR.74

FIGURE 6.2: RE-FETCH SPEEDUP OF DIFFERENTLY BANKED SAG PREDICTORS. 76

FIGURE 7.1: ABSOLUTE QUANTILE NUMBERS FOR THE EIGHT SPECINT95 PROGRAMS. 82

FIGURE 7.2: RE-FETCH SPEEDUP OF THREE SIZES OF LAST N VALUE PREDICTORS....... 86

FIGURE 7.3: RE-EXECUTE SPEEDUP OF THREE SIZES OF LAST N VALUE PREDICTORS... 86

FIGURE 7.4: PERFORMANCE OF L4V PREDICTORS WITH DIFFERENT ORACLES. 89

FIGURE 7.5: MEAN SPEEDUP WITH DIFFERENT HISTORY LENGTHS. 92

FIGURE 7.6: BEST L4V PERFORMANCE FOR DIFFERENT SATURATING-COUNTER SIZES. 94

FIGURE 7.7: THE SPEEDUP OF THE SPECINT95 PROGRAMS USING RE-FETCH. 96

FIGURE 7.8: THE SPEEDUP OF THE SPECINT95 PROGRAMS WITH RE-EXECUTE. 96

FIGURE 7.9: THE AVERAGE LAST N VALUE AND LAST DISTINCT N VALUE PREDICTABILITY.

...101

FIGURE 7.10: SPEEDUP OF THE TAG SAG L4V AND THE TAG SAG LD4V.103

FIGURE 8.1: HYBRID PERFORMANCE USING RE-FETCH..107

FIGURE 8.2: HYBRID PERFORMANCE USING RE-EXECUTE..110

 xiii

FIGURE 8.3: RE-EXECUTE AND RE-FETCH VENN-DIAGRAMS FOR SAG HYBRIDS.115

FIGURE 8.4: RE-EXECUTE AND RE-FETCH VENN-DIAGRAMS FOR BIMODAL HYBRIDS. ...117

FIGURE 8.5: VENN-DIAGRAMS FOR SAG-BASED THREE-COMPONENT HYBRIDS.119

FIGURE 9.1: THE ARCHITECTURE OF THE COALESCED-HYBRID LOAD VALUE PREDICTOR.

...128

FIGURE 9.2: RE-FETCH SPEEDUP OF SEVERAL PREDICTORS FOR THREE SIZES...........133

FIGURE 9.3: RE-EXECUTE SPEEDUP OF SEVERAL PREDICTORS FOR THREE SIZES.......133

FIGURE 9.4: PERFORMANCE OF DIFFERENT COALESCED-HYBRID ORACLES................136

FIGURE 9.5: THE COALESCED-HYBRID’S SPEEDUP WITH VARIOUS TAG SCHEMES........139

FIGURE 9.6: PERFORMANCE WITH DIFFERENT LAST N PARTIAL VALUE COMPONENTS. .141

FIGURE 12.1: RE-FETCH SPEEDUP OF DIFFERENTLY BANKED BIMODAL PREDICTORS...164

FIGURE 12.2: RE-EXECUTE SPEEDUP OF DIFFERENTLY BANKED BIMODAL PREDICTORS.

...165

FIGURE 12.3: RE-EXECUTE SPEEDUP OF DIFFERENTLY BANKED SAG PREDICTORS.....165

FIGURE 12.4: THE RE-FETCH SPEEDUP MAPS FOR THE FIVE BASIC SAG PREDICTORS.167

FIGURE 12.5: RE-EXECUTE SPEEDUP MAPS FOR THE FIVE BASIC SAG PREDICTORS. ..168

 1

Chapter 1
1 Introduction

Introduction

This chapter describes how the slow execution speed (the latency) of load

instructions can impact the performance of a processor and introduces load

value prediction, a promising approach to alleviate the load latency problem.

Furthermore, the contributions of this dissertation to the area of load value

prediction are presented.

1.1 Problem

Processor technology is advancing at a rapid pace. Over the past two

decades the CPU speed has roughly doubled every one and a half years (this

is informally known as Moore’s Law). To continue this trend and to satisfy the

incessantly growing need for more computing power, novel techniques are

needed to make microprocessors faster and faster. This dissertation ex-

plores and improves one such technique called load value prediction.

While the CPU performance has been accelerating at a high speed, the

advances in other areas (such as the reduction of the memory latency) have

not been as dramatic. As a consequence, memory accesses have in relative

terms become slower over the years and have reached a point where they

present one of the biggest processor performance bottlenecks. Load value

prediction reduces the effective memory latency and thus speeds up the

CPU.

Load instructions copy data from memory to a register inside the CPU.

The register that receives the data is called the target register and is specified

 2

in the load instruction. Registers can be accessed very rapidly, but a CPU

can only have relatively few of them (usually fewer than about sixty-four).

The memory, on the other hand, can hold over a million times more data than

the register file but accessing it takes on the order of a hundred times longer,

making such accesses very time consuming.

To reduce the access time of frequently used data, most computers in-

corporate levels of fast cache memory. The first cache level (L1) is normally

the smallest but also the fastest and temporarily stores the most recently

used data in case it is needed again. Consecutive levels are larger and

slower. The main memory is at the end of the (volatile) memory hierarchy

and has the longest access time. When a load instruction is executed, the

caches are successively queried until the desired data item is found. If the L1

cache contains that data, the load value will be available quickly. If the data

cannot be found in any cache, the data has to be retrieved from the main

memory. Hence, the time it takes to execute a load instruction depends on

the cache level that satisfies the load request and can vary from a few cycles

to over a hundred cycles. In comparison, reading a value from the CPU’s

register file never takes longer than one cycle.

Because the technological enhancements have improved CPUs more

than memory chips, the speed-gap between CPU and memory grows con-

stantly, making load instructions slower and slower relative to the CPU. If this

trend continues, and there is currently no indication that it will not, the load

latency will become even longer and more of a problem in the future.

Load instructions belong to the most frequently executed instructions.

Many programs, even highly optimized ones, execute more than one load for

every five executed instructions [LCB+98]. Hence, the latency of load instruc-

tions can, and frequently does, hamper system performance. Conversely,

reducing the (effective) load latency has the potential to substantially speed

up program execution.

Only branch instructions present a similarly substantial source of over-

 3

head in modern microprocessors. While extensive research has been per-

formed to alleviate the performance impact of branches (for example by using

sophisticated branch predictors [LCM97], branch target buffers [PeSm93],

and return address stacks [KaEm91]), relatively little has been done to ad-

dress the load latency problem.

As opposed to load instructions, latency is not an issue with store instruc-

tions because their (slow) memory access takes place “after” the execution of

the store, i.e., the CPU can proceed without having to wait for the store to

complete. Write buffers [Jou93] perform the actual store operation at some

later time and make sure that consistency is maintained.

Unfortunately, nothing similar can be done for load instructions because

the fetched values are often almost instantly needed by the immediately fol-

lowing instructions. These instructions cannot execute before the load they

depend on has completed. Even worse, all the indirectly dependent instruc-

tions are also delayed until the load has completed.

1.2 Load Value Locality

Fortunately, load instructions often fetch predictable sequences of values

[LWS96]. For instance, about half of all the load instructions in the

SPECint95 benchmark suite retrieve the same value that they did the previ-

ous time they were executed. Such behavior, which has been demonstrated

explicitly on a number of architectures, is referred to as value locality [Gab96,

LWS96]. The predictability of load values can be exploited by predicting the

result of a load instruction before the memory can provide the load value.

Several distinct types of load value locality have been identified so far and

predictors to exploit them have been proposed [BuZo99b, Gab96, LWS96,

SaSm97b, TuSe99, WaFr97]. The main goal of this dissertation is to develop

and evaluate new and better performing load value predictors.

If load values are predicted quickly and correctly, the CPU is able to con-

 4

tinue processing the dependent instructions without having to wait for the

memory access to finish. Of course it is only known whether a prediction was

correct once the true value has been retrieved from memory, which can take

many cycles. Speculative execution allows the CPU to continue execution

with a predicted value before the prediction outcome is known [John91]. If it

later turns out that the prediction was correct, the speculative status can sim-

ply be dropped. If the prediction was incorrect, everything that the CPU did

using the incorrect value has to be purged and redone with the correct value.

Because branch predictors require a similar mechanism to recover from

mispredictions, most modern CPUs already contain the necessary hardware

to perform this kind of speculation [Gab96]. However, recovering from mis-

predictions takes time and slows down the processor. Load value prediction

therefore only makes sense if the predictions are often correct. Improving the

accuracy of load value predictions is another goal of this thesis.

Empirically, papers have shown that the results of most instructions are

predictable [Gab96, LiSh96, SaSm97a]. While predicting the result of every

instruction potentially enables wide issue CPUs to exceed the existing in-

struction level parallelism (ILP) [GaMe98, LiSh96], predicting only load values

requires substantially less and simpler hardware while still yielding most of

the performance potential found in value prediction [ReCa98], and can even

be advantageous in single-issue CPUs.

1.3 Prediction Approaches

There are three basic ways to find predictable load instructions and to de-

termine their load values. The first possibility is static prediction. This ap-

proach makes all decisions prior to program execution. Hence, the only in-

formation available is the binary, predefined heuristics, and possibly the

source code. Profile-based approaches represent another possibility. They

measure and record the behavior of programs for several sample inputs. Fi-

 5

nally, dynamic approaches continuously measure the behavior of programs

while they are executing.

The static approach is rather limited due to the large number of runtime

constants whose values are not known at compile time [CFE97]. Profiling of-

ten suffers from insufficient coverage, i.e., not all parts of a program are exe-

cuted during the profile run, which means that no information for those parts

is gathered. Furthermore, both static and profile-based approaches need

support in the instruction set architecture (ISA) to communicate information to

the hardware. Such support is generally not available in existing CPU fami-

lies. The dynamic approach does not suffer from these problems, but it re-

quires a predictor to be present in hardware. Furthermore, the dynamic ap-

proach does not know a priori which load instructions are predictable, mean-

ing that space has to be provided in the predictor for both predictable and

unpredictable loads. Hence, it may be advantageous to combine a static or

profile-based approach with a dynamic predictor to filter out the unpredictable

loads so that the predictor only has to be designed large enough to handle

the predictable loads [GaMe97].

Another important advantage of the dynamic approach is that it can adapt

to changes in the program behavior during the course of the execution. The

information provided by static approaches or by profiles is normally fixed and

cannot be changed at runtime.

Due to the limitations of the static and the profile-based approaches, I will

restrict my investigation to dynamic, hardware-based load value predictors

that are completely transparent (i.e., do not require changes to the ISA) and

can therefore be added to existing as well as future microprocessors. No

profiling or compiler support is needed for my predictors.

1.4 Confidence Estimation

Thirty to fifty percent of the executed load instructions cannot be correctly

 6

predicted with the currently known prediction techniques. Trying to predict

these loads will inevitably result in mispredictions. Because recovering from

mispredictions takes time, a high misprediction-rate can incur a recovery cost

that eradicates any benefit that was gained from the correct predictions.

Hence, it is possible for a load value predictor to slow down the processor in-

stead of speeding it up.

To keep the number of mispredictions at a minimum, almost all load value

predictors incorporate some form of confidence estimator that tries to identify

predictions that are likely to be incorrect so that they can be inhibited. Inhibit-

ing such predictions reduces the number of mispredictions (and the associ-

ated recovery cost) and thus improves the predictor’s performance.

This dissertation presents a new confidence estimator that makes fewer

mispredictions than the conventional confidence estimator and therefore re-

sults in more effective load value predictors.

1.5 Contributions

The goal of this dissertation is to develop and evaluate methods for con-

text-based load value prediction, that is, to enhance various aspects of trans-

parent, hardware-based load value predictors. My contributions towards this

goal include the following:

• Fewer mispredictions

 The development of an improved confidence estimator that decreases

the number of mispredictions and consequently increases the perform-

ance of load value predictors

• Better hardware utilization

 The design of a load value predictor that allocates more hardware to the

frequently executed loads, which improves the predictor utilization and

results in more load instructions being correctly predicted

 7

• Hybrid analysis

 The analysis of a large number of hybrid predictor combinations to de-

termine components that complement each other well and thus yield

high-performing hybrid load value predictors

• Size reduction techniques

 Several approaches to substantially reduce the size of hybrid load value

predictors by sharing large amounts of state between their components,

which decreases the predictor size while maintaining the performance

One direct result of this research is a high-performing load value predictor

that includes all of the above mentioned enhancements. It is a hybrid of well-

complementing components that is very small due to the large degree of

state sharing. With about fifteen kilobytes of state, it outperforms five-times

larger predictors from the literature. Among predictors of similar size, my

predictor outperforms others by twenty or more percent over a large range of

predictor sizes. The individual contributions are discussed in a little more de-

tail in the following paragraphs.

Analyzing the performance of an existing confidence estimator revealed a

weakness that prevents it from correctly handling sequences of alternating

predictability, which represent an important subset of the predictable load

value sequences. To alleviate this problem, I developed a more complex

confidence estimator that is somewhat larger but yields on average ten per-

cent more performance in connection with most load value predictors. More-

over, there is evidence that the new confidence estimator embodies a better

selector for hybrid load value predictors, improving the performance even fur-

ther over the conventional confidence estimator.

An investigation of the utilization of the hardware in a basic load value

predictor revealed that most parts of the predictor are hardly ever or never

used while a small part is used extremely frequently. To improve the utiliza-

tion, I studied possible rearrangements of the predictor’s hardware. I found

 8

an arrangement that allocates more hardware to the frequently executed load

instructions and that is therefore able to correctly predict a larger number of

loads, which improves the average predictor performance by about ten per-

cent.

Then I noticed that many of the values this improved predictor retains dif-

fer only by a small amount. This allowed me to devise a predictor in which

the values are stored in a compressed format. Compressing the values re-

duces the predictor size by about one half while essentially maintaining the

predictor’s performance.

Next I discovered that components of hybrid predictors frequently store

the same information. Hence, the redundant information can be eliminated,

which can reduce the size of hybrids by more than a factor of two without

compromising the predictor’s performance.

A detailed component analysis of a large number of predictor combina-

tions revealed some unexpected results. For example, powerful individual

components frequently do not complement each other well in a hybrid con-

figuration. Conversely, some components that perform rather poorly when

used in isolation can form strong coalitions with other components. The re-

sults of this analysis allowed me to design a hybrid out of components that

are small yet complement each other well. Many other hybrid predictors were

found to contain components that predict highly overlapping sets of load in-

structions and therefore do not ideally complement one another. Further-

more, some hybrids actually yield a lower performance than their individual

components due to negative interference.

Finally, this dissertation presents performance numbers for a large num-

ber of load value predictors that are all evaluated in the same environment

(i.e., the same simulator, the same benchmark programs, etc.), making it

possible to truly compare the predictors. Furthermore, various performance

metrics are introduced and studied, and a simple predictor banking scheme is

evaluated.

 9

1.6 Summary

One of the largest performance bottlenecks in current microprocessors is

the growing load latency. Load value prediction has the potential to substan-

tially reduce the load latency.

The main contribution of this dissertation is the development and evalua-

tion of a high-performing yet relatively small load value predictor that signifi-

cantly outperforms other predictors from the literature.

1.7 Organization

The remainder of this dissertation is organized as follows. Chapter 2 ex-

plains the impact of the load latency on modern superscalar CPUs as well as

the operation of two misprediction recovery mechanisms. Chapter 3 de-

scribes the configuration of the simulator that is used to measure the

speedup numbers and discusses the benchmarks and their load value local-

ity. Chapter 4 introduces the architecture of five basic load value predictors.

Chapter 5 investigates two confidence estimation schemes. Chapter 6 ana-

lyzes the performance of predictor banking. Chapter 7 takes a closer look at

the utilization of the predictor hardware and proposes an improved design.

Chapter 8 evaluates a large number of predictor combinations to build well

performing hybrids. Chapter 9 improves the results from Chapter 8 by investi-

gating ways to shrink the size of predictors through hardware reuse. Chapter

10 presents related work. Chapter 11 summarizes my work and takes a look

into the future.

 10

Chapter 2
2 Background

Background

This chapter provides background on several features of high-

performance microprocessors, including parallel instruction execution (super-

scalar execution), the dynamic re-sequencing of the execution order of inde-

pendent instructions (out-of-order execution), and their interaction with load

value predictors.

Two misprediction recovery mechanisms are presented. The first one,

which is the one that is also used for recovering from branch mispredictions,

is already implemented in current processors but does not yield the best per-

formance in combination with load value predictors. This is why a better, not

yet implemented alternative is also discussed.

2.1 Conventional High-Performance Processor Architecture

Most of today’s high-performance microprocessors are superscalar and

have built-in hardware support for speculative and out-of-order execution

[Edm+95, Half95, Yeag96, You94]. Since it is my goal to improve the per-

formance of a high-end microprocessor, all the performance numbers pre-

sented in this dissertation are based on such a CPU. The specifications of

the actual processor that is used for these measurements are described in

Section 3.1.

A superscalar CPU is capable of executing more than one instruction at a

time. Out-of-order execution refers to the ability to dynamically adjust the or-

der in which instructions are executed to increase the utilization of the avail-

 11

able hardware and thus to improve the performance. Speculative execution

is execution that can be undone if necessary. Having this ability makes it

possible to process instructions whose execution and/or input values are

based on a guess (such as a predicted branch outcome or a predicted load

value) because it may later be necessary to undo the execution of such

instructions if the guess turns out to be incorrect.

Only the execution-core of a processor usually handles instructions out-of-

order. Instruction fetch, decode, rename, and retirement is performed in-

order [SmSo95] because dependencies are either not known in these pipe-

line stages or need to be handled in-order to facilitate correct execution. In-

structions are retired in-order to support precise exceptions, to be able to re-

play instructions, and to enforce sequential semantics.

Register renaming removes false dependencies from the in-flight instruc-

tions by dynamically mapping the logical registers to a larger set of physical

registers, thus ensuring that instructions that have their input operands avail-

able are truly independent and can therefore be executed in any order or

even in parallel with all other ready instructions.

The renamed instructions are (at least conceptually) fed into the CPU’s

instruction window as long as there are slots available. An inserted instruc-

tion remains in this window in a waiting state until all of its source operands

are available. Once all the inputs are obtained, the instruction becomes

ready, i.e., eligible for execution. The CPU’s issue logic continuously scans

the instruction window for such instructions. If a ready instruction is found

and a functional unit capable of executing that type of instruction is available,

the issue logic assigns the instruction to the functional unit for execution. At

this point, the instruction is marked as executing. Once the functional unit

has completed the execution, the result is stored and forwarded to the waiting

instructions, making them ready if the current result was the last input oper-

and they were waiting for. Completed instructions are marked as done. Only

instructions marked as done can be retired (or committed) from the instruc-

 12

tion window.

Superscalar processors are able to locate and issue multiple ready in-

structions per cycle (with a fixed upper limit), as long as there are enough

functional units (FUs) and ready instructions available. In addition, they are

able to forward multiple results per cycle to waiting instructions.

Most of the FUs in high-performance CPUs are either pipelined (i.e., they

can start executing a new instruction every cycle) or they only have a one-

cycle latency. The most frequently used FUs are often duplicated for faster

execution. Figure 2.1 shows the described pipeline stages, the instruction

window, the issue logic, and several functional units. The instruction window

contains some sample instructions in different stages of execution (i.e., wait-

ing, ready, executing, and done). Actual CPU implementations may vary

from this diagram (for example, most processors contain more slots in the in-

struction window than are depicted).

FU FU FU FU FU
#1 #2 #3 #4 #5

fetch

decode

renam
e

retire/com
m

it

Instruction Window

Issue Logic

ready

w
ait

bne r2 !=
 end

add r1 :=
 r1+

r3

add r2 :=
 r2+

1

load r3 :=
 [r2]

bne r2 !=
 end

add r1 :=
 r1+

r3

load r3 :=
 [r2]

done

bne r2 !=
 end

add r1 :=
 r1+

r3

add r2 :=
 r2+

1

done

ready

w
ait

w
ait

load r3 :=
 [r2]

w
ait

exec

w
ait

done

exec

add r2 :=
 r2+

1

Figure 2.1: The execution pipeline of a high-performance microprocessor.

To improve their performance, some processors predict the outcome of

conditional branch instructions so that they can continue fetching instructions

and feeding them into the instruction window without having to wait for the

 13

branches to resolve. All the instructions that follow a predicted branch are

executed speculatively until the branch outcome is known. If it turns out that

the branch was predicted incorrectly, the speculatively executed instructions

have to be purged. Doing so is possible because all the instructions that fol-

low the branch must stay in the instruction window at least until the branch

has been resolved (because instructions are retired in-order). Whenever a

prediction is made, a copy of the internal processor state is made, called a

check-point, which is restored after a misprediction to reestablish the correct

architectural state [John91]. This allows the CPU to continue with the pro-

gram execution as though it had never made a misprediction. Of course, per-

forming such recovery actions takes time (usually on the order of a few cy-

cles), which slows down the CPU. Correct speculations, on the other hand,

save cycles because some instructions are able to execute that would not

have been able to if they had had to wait for the branch to resolve.

Since the speculation support necessary for value prediction is essentially

identical to the one used with branch prediction [Gab96], no novel hardware

is required to recover from load value mispredictions.

Modern processors are able to hide some of the occurring load latencies

by executing independent instructions out-of-order. However, it is unlikely

that a CPU will find enough instructions to keep itself busy for eighty cycles,

which corresponds to the load-to-use memory access latency on a DEC Al-

pha 21264 [KMW98]. Allowing the CPU to already execute the load-

dependent instructions while the memory access is still in progress potentially

frees a large number of instructions in the instruction window for execution,

whose advanced execution can substantially boost the performance. In fact,

even during the execution of short-latency loads the issue logic may not be

able to keep all the functional units busy because of a quickly vanishing se-

lection of available ready instructions. Hence, it may be advantageous to

predict short-latency loads as well.

Since all the load value predictors discussed in this dissertation require

 14

only the load instruction’s address (PC) for making a load value prediction,

the prediction can be started as soon as a load instruction has been de-

coded. The memory access, on the other hand, cannot be initiated before

the effective address has been computed, which can take several cycles. As

a consequence, it is even beneficial to predict loads that hit in the L1-cache

because the predicted value is available before the cache can satisfy the load

request.

2.2 Misprediction Recovery Mechanisms

Two misprediction recovery mechanisms have been proposed for load

value prediction. The simpler but less powerful re-fetch mechanism is the

one already used for recovering from branch mispredictions [Gab96]. When

a misprediction is detected in this scheme, all the instructions that follow a

mispredicted instruction are purged from the instruction window and the

processor state is reset to what it would have been had no instruction beyond

the mispredicted one executed. The CPU then continues processing instruc-

tions by fetching the next instruction, that is, the instruction that immediately

follows the instruction that was mispredicted. Because the purged instruc-

tions are re-fetched, I call this misprediction recovery mechanism re-fetch.

Re-fetch recovery incurs a cycle-penalty because it takes time to purge

instructions from the instruction window and to restore the CPU’s state. Even

worse, in this scheme instructions are sometimes purged whose results are

correct. For example, if instruction X is independent of an earlier load instruc-

tion L, then X may execute in an out-of-order processor before the load is

completed. Because instruction X is independent of L, its result is also inde-

pendent on the load value. Purging X is therefore not necessary, even in the

presence of a mispredicted value for L.

In fact, mispredicting L does not even invalidate the instructions that do

depend on L (up to the first conditional branch instruction whose branch tar-

 15

get depends on L). In the worst case, these instructions are executed with an

incorrect input value. Because all the affected instructions remain in the in-

struction window, it suffices to re-execute them with the correct input value

[LiSh96]. Consequently, the state of the directly and indirectly dependent in-

structions “only” needs to be reset to ready or waiting after a misprediction so

that the issue logic will select them again for execution. This second (or sub-

sequent) execution will produce the correct result because the input operands

are now correct. I refer to this misprediction recovery mechanism as re-

execute recovery.

While the re-execute mechanism avoids the unnecessary purging of inde-

pendent instructions and the overhead of re-fetching already fetched instruc-

tions, it still incurs a cycle-penalty for identifying the dependent instructions

and changing their state. However, the penalty is considerably smaller than

the one incurred by the re-fetch recovery mechanism. Note that, as opposed

to re-fetch hardware, re-execute hardware does not yet exist and incorporat-

ing it requires changes to the CPU core, which may or may not be cost-

effective.

2.3 Summary

Superscalar execution, out-of-order execution, register renaming, and

branch prediction are but a few of the techniques used to improve the

performance of microprocessors. Some of these features are able to hide

the access latency of load instructions to a certain degree. Nevertheless, a

substantial and growing load latency problem remains. Load value predictors

present a promising new approach to alleviate this problem.

Because predictions are sometimes wrong, misprediction recovery

mechanisms are needed. The mechanism that is used for recovering from

branch mispredictions can readily be applied to load value prediction. Unfor-

tunately, it is rather conservative and hampers performance, which is why an

 16

alternative recovery mechanism has also been proposed, which results in

better performance.

 17

Chapter 3
3 Evaluation Methods

Evaluation Methods

This chapter describes the configuration of the baseline CPU that is used

for the cycle-accurate simulations, gives information about the benchmark

programs that are used for the performance evaluations, and presents the

metrics used to measure the effectiveness of load value predictors.

3.1 Baseline Architecture

All measurements in this dissertation are based on the DEC Alpha AXP

architecture [DEC92]. The various load value predictor designs are evalu-

ated using the ATOM binary instrumentation tool-kit [EuSr94, SrEu94] and

the AINT simulator [Pai96] with a cycle-accurate superscalar back-end.

ATOM is used to instrument the benchmark suite (see next section) for

fast and thorough parameter-space evaluations because of its speed and

ease of simulating the proposed predictors in software. Promising configura-

tions are then fed to the pipeline-level simulator for more detailed measure-

ments.

The simulator is configured to emulate a high-performance microproces-

sor similar to the DEC Alpha 21264 [KMW98]. It accurately models the proc-

essor’s internal timing behavior, resource constraints, and speculative execu-

tion as well as the memory hierarchy and its latencies. Only bus-contention is

not modeled. Such detailed simulations are necessary to obtain realistic per-

formance results. Unfortunately, they are about two orders of magnitude

slower than ATOM simulations.

 18

The simulated CPU is four-way superscalar, issues instructions out-of-

order from a 128-entry instruction window, has a 32-entry load/store buffer,

four integer and two floating point units, a 64kB two-way set associative L1

instruction-cache, a 64kB two-way set associative L1 data-cache, a 4MB uni-

fied direct-mapped L2 cache, a 4096-entry branch target buffer (BTB), and a

2048-line hybrid gshare-bimodal branch predictor. The three caches have a

block size of 32 bytes. The modeled latencies are shown in Table 3.1. The

six functional units are fully pipelined and each unit can execute all opera-

tions in its class. Operating system calls are executed but not simulated,

which should not be a problem since the benchmark programs used for this

thesis hardly perform any operating system calls [SPEC95]. Loads can only

execute when all prior store addresses are known. Up to four load instruc-

tions are able to issue per cycle. This CPU represents the baseline proces-

sor (CPUBase). All reported speedups are relative to CPUBase, which does not

contain a load value predictor.

Operation Latency
 integer multiply 8-14
 conditional move 2
 other int and logical 1
 floating point multiply 4
 floating point divide 16
 other floating point 4
 L1 load-to-use 1
 L2 load-to-use 12
 memory load-to-use 80

Table 3.1: Functional unit and memory latencies (in cycles).

In the CPUs that include a load value predictor (CPULVP), predictions take

place during the rename-stage in the instruction pipeline and have a one-

cycle latency. If a predictor cannot be accessed in one cycle, it has to be

pipelined. Fortunately, multi-cycle access latencies can be hidden as long as

there are enough stages between the decode and the execute stage in the

 19

processor’s instruction pipeline (usually two or more stages in current high-

performance microprocessors).

To support up to four predictions/updates per cycle, all the load value pre-

dictors used in this study are split into four banks that can operate in parallel

(see Chapter 6). Since the modeled CPU fetches naturally aligned four-

tuples of instructions, it is not possible to fetch or issue two load instructions

during the same cycle that go to the same predictor bank.

All the predictors are updated when the true load value becomes available

(i.e., when the verification memory access completes), predictions do not

speculatively update the predictor’s state, out-of-date predictions are made

as long as there are pending updates (for the same predictor line), and out-

of-order and wrong-path updates of the predictor are accurately modeled in

the simulator. All predictor updates are final and cannot be undone. Investi-

gating the benefit of speculative updates is left for future work.

Not modeling bus-contention, assuming fully pipelined functional units,

and allowing up to four load instructions to be issued per cycle reduce the

average instruction latency somewhat in comparison to real CPUs. Further-

more, ignoring bus-contention also reduces the memory latency. A lower in-

struction latency implies more executed load instructions per time-unit, which

increases the pressure on the load value predictor. Hence, the performance

of a load value predictor would likely, if anything, be higher in a real CPU than

the measurements in this thesis indicate due to the reduced chance of mak-

ing an out-of-date prediction and the fewer dropped updates due to a busy

predictor. The slightly longer-than-modeled memory latency in real systems

has the same effect, i.e., it decreases the pressure on the predictor while at

the same time making correct load value predictions more beneficial because

of the even longer load-latency that is hidden.

Similar effects of the simulator-limitations on other parts of the CPU

should cancel each other out because the baseline CPU suffers/benefits as

much from them as the CPUs do that include a load value predictor.

 20

3.2 Benchmarks

This section discusses the benchmark suite used throughout this disserta-

tion to evaluate the performance of load value predictors.

3.2.1 General Information

All the measurements in this thesis are based on the eight integer pro-

grams of the SPEC95 benchmark suite [SPEC95]. These programs are well

understood, non-synthetic, and compute-intensive, which is ideal for proces-

sor performance evaluations. Despite the lack of desktop application code,

the suite is nevertheless representative thereof, as Lee et al. found [LCB+98].

The SPECint95 programs are written in C and perform the following tasks:

compress : compresses and decompresses a file in memory

gcc : C compiler that builds SPARC code

go : artificial intelligence, plays the game of “GO”

ijpeg : graphic compression and decompression

li : Lisp interpreter

m88ksim : Motorola 88000 chip simulator, runs a test program

perl : manipulates strings (anagrams) and prime numbers in Perl

vortex : an object oriented database program

The suite includes two sets of inputs for every program and allows two

levels of optimization. To acquire as many load value samples as possible,

the larger reference inputs are used. However, due to a restriction in the

simulation infrastructure, only the first of the multiple input-files from the ref-

erence set is used with gcc.

To avoid possible side-effects that may be attributed to poor code quality,

the peak-versions of the programs are utilized, which were compiled with

 21

DEC GEM-CC on a DEC Alpha 21164 using the highest optimization level

“-migrate -O5 -ifo”. The optimizations include common sub-expression elimi-

nation, split lifetime analysis, code scheduling, no-op insertion, code motion

and replication, loop unrolling, software pipelining, local and global inlining,

inter-file optimizations, and many more. In addition, the binaries are statically

linked, which allows the linker to perform further optimizations to reduce the

number of run-time constants that are loaded during execution. These op-

timizations are similar to the optimizations that OM [SrWa93] performs.

The few floating point load instructions contained in the binaries are also

taken into account and loads to the zero-registers (R31 and F31) as well as

load immediate instructions (LDA and LDAH) are ignored since they do not

access the memory and therefore do not need to be predicted.

Table 3.2 summarizes relevant information about the SPECint95 pro-

grams. It shows the number of total instructions and load instructions exe-

cuted as well as the static number of instructions and load instructions con-

tained in the binaries. The numbers in parentheses indicate the percentage

of all instructions that are loads. The static counts are in thousands (k) and

the dynamic counts in millions (M). The five rightmost columns of the table

reflect several kinds of load value predictability (see also Chapter 4).

Information about the SPECint95 Benchmark Suite
dynamic static predictability (%)

program insts loads %lds insts loads %lds reg lv st2d l4v fcm
compress 60,156 M 10,537 M (17.5) 22 k 4 k (17.9) 9.0 40.4 65.8 41.3 35.9
gcc 334 M 80 M (23.9) 337 k 73 k (21.6) 19.9 48.5 49.8 65.6 52.0
go 35,971 M 8,764 M (24.4) 81 k 16 k (20.1) 9.2 45.9 47.2 64.0 44.7
ijpeg 41,579 M 7,141 M (17.2) 70 k 14 k (19.8) 9.4 47.5 47.7 54.1 45.4
li 66,613 M 17,792 M (26.7) 37 k 7 k (18.2) 14.3 43.4 50.4 63.8 60.8
m88ksim 82,810 M 14,849 M (17.9) 51 k 9 k (17.4) 29.9 76.1 80.0 83.4 79.6
perl 19,934 M 6,207 M (31.1) 105 k 21 k (20.3) 19.8 50.7 51.4 80.6 70.8
vortex 95,791 M 22,471 M (23.5) 161 k 32 k (20.0) 17.8 65.7 66.0 78.6 66.2
total 403,188 M 87,842 M 864 k 176 k
average 50,399 M 10,980 M (21.8) 108 k 22 k (20.4) 16.2 52.3 57.3 66.4 56.9

Table 3.2: Information about the SPECint95 benchmark suite.

 22

Register predictability “reg” indicates how often the target register of a

load instruction already contains the value that the load is about to fetch.

Last value predictability “lv” shows how often a load fetches a value that is

identical to the previous value fetched by the same load instruction. Stride

predictability “st2d” reflects how often a value is loaded that is identical to the

last value plus the difference between the last and the second to last value

fetched by the same load instruction. Last four value predictability “l4v” indi-

cates how often a value is loaded that is identical to any one of the last four

values fetched by the same load. Finally, finite context method predictability

“fcm” shows how often a value is loaded that is identical to the value that fol-

lowed the last time the same last four value sequence was encountered

(modulo some hash function). Section 4.3 describes load value predictors

that are based on the five presented kinds of predictability. Note that, unlike

reg, lv, st2d, and l4v, the fcm predictability results are implementation spe-

cific, i.e., they depend on the hash function.

Table 3.2 shows that all eight binaries contain several thousand load in-

structions (gcc contains the most by a large margin). Except for gcc, which

only compiles the first of its reference input-files, all programs execute sev-

eral billion load instructions. Despite the high optimization level, the percent-

age of load instructions is quite high. About every fifth static instruction in the

binaries as well as every fifth executed instruction is a load.

The predictability of the load instructions in these programs is also quite

high. At least one half of the executed load instructions are theoretically pre-

dictable using any method other than “reg”.

3.2.2 Quantile Information

To better estimate how large a load value predictor needs to be, it is im-

portant to know how many of the individual load instructions are actually exe-

cuted and how frequently. Table 3.3 shows the number of load instructions

 23

that contribute the given quantiles (percentages) of all the executed loads in

the eight programs. The quantiles are given both in absolute terms as well as

in percent of the total number of load sites. For example, the first line in

Table 3.3 indicates that of the nearly four thousand load instructions con-

tained in compress, only 690 are ever executed (i.e., are executed at least

once), which is 17.4% of all the load sites. Furthermore, the 81, 58, and 17

most frequently executed load sites contribute 99, 90, and 50 percent of the

dynamically executed loads, respectively.

load sites
compress 3,961 690 (17.4) 81 (2.0) 58 (1.5) 17 (0.4)
gcc 72,941 34,345 (47.1) 14,135 (19.4) 5,380 (7.4) 870 (1.2)
go 16,239 12,334 (76.0) 4,221 (26.0) 1,708 (10.5) 204 (1.3)
ijpeg 13,886 3,456 (24.9) 423 (3.0) 187 (1.3) 42 (0.3)
li 6,694 1,932 (28.9) 312 (4.7) 138 (2.1) 42 (0.6)
m88ksim 8,800 2,677 (30.4) 456 (5.2) 216 (2.5) 52 (0.6)
perl 21,342 3,586 (16.8) 227 (1.1) 169 (0.8) 44 (0.2)
vortex 32,194 16,651 (51.7) 3,305 (10.3) 585 (1.8) 57 (0.2)
average 22,007 9,459 (36.6) 2,895 (9.0) 1,055 (3.5) 166 (0.6)

Quantile Information about the SPECint95 Benchmark Suite
Q50Q90Q99Q100

Table 3.3: SPECint95 quantile information.

The data in Table 3.3 show that a surprisingly small number of load sites

contribute most of the executed load instructions. On average, 3.5% of the

load sites contribute ninety percent and only 0.6% of the load sites contribute

half of all the executed loads. Less than 37% of the load sites are visited at

all during execution.

These quantile numbers are promising because they imply that load value

predictors do not have to be large enough to store information about all the

load sites in a binary. Rather, a predictor capable of only holding nine per-

cent of the load sites can, on average, already handle 99 percent of the dy-

namically executed loads. Of course, actual predictors need to be designed

somewhat larger to handle 99 percent of the executed load instructions due

to aliasing and uneven predictor utilization.

 24

3.2.3 Segment Information

For ATOM simulations, the SPECint95 programs are run to completion,

resulting in approximately 87.8 billion executed load instructions. However,

on the cycle-accurate simulator each benchmark program is only executed

for about 300 million instructions (to keep the simulation time reasonable) af-

ter having skipped over the initialization code in “fast-simulation” mode. This

fast-forwarding is important when only a fraction of a program’s execution can

be simulated because the initialization part of a program is not usually repre-

sentative of the general program behavior [ReCa98]. No instructions are

skipped with gcc and it is executed for 334 million instructions on the simula-

tor since this amounts to the complete compilation of the first reference input-

file. Note that simulating 300 million instructions is an improvement over the

100 million instructions often used for simulations in the current literature

[e.g., RFKS98, WaFr97]. Each simulated segment contains over 49 million

executed load instructions, which should be sufficient to render any warm-up

effects in the load value predictors negligible. Table 3.4 gives information

about the simulated segments of each of the eight SPECint95 programs.

Information about the Simulated Segments of the SPECint95 Benchmark Suite
skipped base

instrs instrs loads %lds IPC L1 L2 reg lv st2d l4v fcm
compress 5.6 G 300.0 M 53.5 M (17.8) 1.338 11.72 6.17 13.0 40.7 64.0 41.5 34.6
gcc 0.0 G 334.1 M 79.7 M (23.9) 1.510 2.39 6.44 19.9 48.5 49.8 65.6 51.9
go 7.0 G 300.0 M 72.1 M (24.0) 1.414 1.62 15.72 9.4 46.3 48.1 64.5 44.8
ijpeg 2.0 G 300.0 M 49.5 M (16.5) 1.498 2.31 65.20 9.8 47.5 48.1 55.1 42.8
li 5.0 G 300.0 M 86.4 M (28.8) 1.911 4.13 0.67 11.7 35.4 41.2 52.4 62.2
m88ksim 2.0 G 300.0 M 62.1 M (20.7) 1.258 0.13 11.21 49.3 82.3 85.0 88.2 84.3
perl 1.0 G 300.0 M 93.5 M (31.2) 1.567 0.00 46.87 20.0 50.7 51.4 80.6 70.6
vortex 7.0 G 300.0 M 71.0 M (23.7) 2.922 2.16 11.99 16.4 65.7 66.3 79.9 69.4
average 304.3 M 71.0 M (23.3) 1.677 3.06 20.53 18.7 52.1 56.7 66.0 57.6

simulated predictability (%)load miss-rate

Table 3.4: Information about the eight simulated program segments.

The table shows the number of instructions (in billions) that are skipped

before starting the pipeline-level simulations, the number of simulated instruc-

tions and load instructions (in millions), the percentage of the simulated

instructions that are loads, the instructions per cycle (IPC) on the baseline

 25

structions that are loads, the instructions per cycle (IPC) on the baseline

processor (CPUBase), the L1 data-cache and the L2 cache load miss-rates,

and the load value predictability similar to Table 3.2. Note that the number of

instructions and loads as well as the predictability shown in Table 3.4 are

measured in the CPU’s commit stage, meaning that only correct path infor-

mation is included in the table.

As with the complete executions, the percentage of load instructions exe-

cuted by the programs is also uniformly high in the simulated segments.

About every fifth instruction is a load. With an average IPC of 1.7, this results

in one executed load instruction every 2.6 cycles. Given that each executed

load accesses the predictor twice, once to request a prediction and once to

update the predictor, this amounts to one predictor access every 1.3 cycles

on average. When accounting for wrong-path loads and loads that are re-

executed, the number turns out to be close to one access per cycle. Since

prediction and update requests are not evenly distributed over time, some-

times more than one access per cycle is needed. This is why all the predic-

tors used in this study are banked to support multiple accesses per cycle

(Chapter 6).

Note that with the exception of compress, the benchmark programs do not

have very high L1 data-cache load miss-rates, making it hard for a load value

predictor to be effective. Some of the L2 load miss-rates are, on the other

hand, quite large. However, since the corresponding number of cache ac-

cesses is very small (not shown), the large L2 miss-rates do not have a sig-

nificant impact on the performance.

The fast-forward points were carefully hand-selected such that the simu-

lated segments would be as representative of the whole program as possible.

The segment length is 300 million instructions since this appears to be

enough to exhibit “average” program behavior. Longer segments do not yield

significantly better results. A comparison of Table 3.2 and Table 3.4 shows

that both the percentage of executed instructions that are loads and in par-

 26

ticular the predictability found in the eight segments closely match the respec-

tive numbers measured over the entire program executions. Only with li and

m88ksim was the search for a representative segment not very successful.

Fortunately, li’s segment exhibits too low a predictability and m88ksim’s too

high a predictability, making the average over the eight programs very close

to the average over the complete executions.

3.2.4 Segment Quantile Information

Table 3.5 repeats the quantile study shown in Table 3.3, but only takes in-

structions from the simulated segments into account.

load sites
compress 3,961 62 (1.6) 35 (0.9) 28 (0.7) 9 (0.2)
gcc 72,941 34,345 (47.1) 14,135 (19.4) 5,380 (7.4) 870 (1.2)
go 16,239 9,619 (59.2) 3,868 (23.8) 1,719 (10.6) 263 (1.6)
ijpeg 13,886 2,757 (19.9) 379 (2.7) 184 (1.3) 53 (0.4)
li 6,694 419 (6.3) 237 (3.5) 120 (1.8) 43 (0.6)
m88ksim 8,800 747 (8.5) 537 (6.1) 199 (2.3) 25 (0.3)
perl 21,342 1,437 (6.7) 225 (1.1) 167 (0.8) 44 (0.2)
vortex 32,194 1,973 (6.1) 958 (3.0) 355 (1.1) 55 (0.2)
average 22,007 6,420 (19.4) 2,547 (7.6) 1,019 (3.2) 170 (0.6)

Q100 Q99 Q90 Q50
Quantile Information about the Simulated SPECint95 Segments

Table 3.5: Quantile information about the simulated program segments.

Executing only part of a program usually produces lower quantile num-

bers, in particular for the high quantiles. This phenomenon is quite apparent

in Table 3.5. The Q100 and the Q99 numbers are significantly lower than

their counterparts in Table 3.3, whereas the Q90 and the Q50 numbers are

quite similar. The good match of the Q90 numbers indicates that the se-

lected segments will likely exercise the load value predictors sufficiently to

obtain representative results. The low Q99 and Q100 quantiles mean that

the selected segments contain proportionately too few infrequently executed

 27

loads. As a result, below average predictor aliasing has to be expected.

Note, however, that techniques exist to keep low-frequency load instructions

from influencing the predictor (see Section 9.5.2).

3.3 Speedup

Throughout this dissertation, the term speedup denotes how much faster

a processor becomes when a load value predictor is added to it.

To obtain the speedup delivered by a load value predictor for a given pro-

gram, the program is executed on both CPUBase (the baseline processor with-

out a load value predictor) and CPULVP (the same CPU but with a load value

predictor). By definition, the speedup then evaluates to the runtime on CPUB-

ase divided by the runtime on CPULVP. To be independent of the CPU’s clock

speed the runtime is usually measured in cycles rather than seconds.

LVP

Base

LVP

Base

cycles

cycles

runtime

runtime
speedup ==

Since a speedup of one indicates no improvement in performance, the

speedup over baseline is often easier to understand. It is defined as the

regular speedup minus one, making the speedup over baseline positive if the

load value predictor improves the execution speed and negative if it slows the

execution down. Note that the regular speedup is always positive.

100%speedupbaselineoverspeedup −=

To better estimate the expected performance improvement that a load

value predictor will deliver, the speedup over more than one program is nor-

mally measured. This is done because a suite of programs is assumed to

exhibit a more “average” program-behavior than an individual program.

Once the individual speedups have been obtained, they need to be com-

 28

bined into a single speedup. Several approaches to combining (averaging)

speedups can be found in the literature, the most prominent of which are the

harmonic mean, the geometric mean, and the arithmetic mean. The har-

monic mean always yields the lowest and therefore the most conservative re-

sult. Since the arithmetic mean always produces the highest result, the geo-

metric mean is sometimes used as a compromise.

Intuitively, the combined speedup should be equal to the speedup over

the single program P that does nothing but run the benchmark programs one

after the other (in any order). However, to avoid over-representing longer

running programs, P must execute all the programs for the same amount of

time. This corresponds to weighing (i.e., normalizing) the individual bench-

mark programs with the inverse of their runtimes.

The runtimes can be normalized for CPUBase or for CPULVP. If the nor-

malization is done for CPUBase, the combined speedup evaluates to the har-

monic mean of the individual speedups. If, on the other hand, the normaliza-

tion is done for CPULVP, the combined speedup turns out to be the arithmetic

mean of the individual speedups. The proof can be found in Appendix A.

For example, let us assume a benchmark suite consisting of two pro-

grams A and B that require ca and cb cycles, respectively, to execute on

CPUBase. Let us further assume a load value predictor L that speeds up pro-

gram A by a factor of ten and program B by a factor of one (i.e., B’s runtime

remains the same). The runtimes on CPULVP are consequently 0.1*ca and cb.

When normalizing for CPUBase, the combined speedup should be equal to

the speedup of the program P that executes program A cb times and program

B ca times. Doing so takes ca*cb+cb*ca = 2*ca*cb cycles on the baseline CPU

(both programs are executed for ca*cb cycles). When predictor L is added,

the total runtime becomes 0.1*ca*cb+cb*ca = 1.1*ca*cb cycles. The combined

speedup is therefore 2.0/1.1 ≈ 1.818, which is equal to the harmonic mean of

the two individual speedups.

When normalizing for CPULVP, program P needs to execute program A cb

 29

times and program B 0.1*ca times. This takes 0.1*ca*cb+cb*0.1*ca = 0.2*ca*cb

cycles on CPULVP (both programs are executed for 0.1*ca*cb cycles) and

ca*cb+cb*0.1*ca = 1.1*ca*cb cycles on the baseline processor. The speedup

now evaluates to 1.1/0.2 = 5.5, which is the arithmetic mean of the individual

speedups. For reference, the geometric mean of the two speedups is about

3.162.

As the example illustrates, normalizing for CPULVP weighs program B,

which cannot be sped up by the load value predictor, ten times less heavily

than normalizing for CPUBase does (the weights are shown in bold face). In

general, the more a program can be sped up the relatively more weight it is

given when using the arithmetic mean to compute the combined speedup.

Thus, the arithmetic mean speedup assumes the “average” program to con-

tain proportionately more code that benefits from a load value predictor than

code that does not. I do not believe this to be a valid assumption, which is

why all the averaged speedups presented in this dissertation are harmonic

mean speedups.

3.4 Other Metrics

The main metric used in this thesis is the speedup that a load value pre-

dictor delivers (previous section). Unfortunately, determining the speedup

requires the use of a cycle-accurate simulator, which can be prohibitively

slow. Moreover, the speedup is dependent on the architectural features of

the underlying CPU and the characteristics of the memory subsystem. Non-

implementation specific metrics, on the other hand, are independent of any

particular processor architecture and are often quite easy to obtain.

Most load value predictors include some form of confidence estimator to

help determine how likely a predicted value is to be correct (Chapter 5). If the

likelihood for a correct prediction is below a preset threshold, no prediction is

attempted. This can significantly reduce the number of mispredictions and

 30

consequently the overhead incurred by the misprediction recovery mecha-

nism.

A load value predictor with a confidence estimator can produce four out-

comes for every executed load instruction, as is depicted in Figure 3.1. The

number of times each of these four classes is encountered during the execu-

tion of a program is referred to as P+, P-, N+, and N-.

predicted value is

correct incorrect

correct P+ P-

incorrect N- N+

value is
estimated

to be

Figure 3.1: The four prediction classifications.

Measuring these four numbers is straightforward. To make the result in-

dependent of the total number of executed load instructions, the numbers

need to be normalized.

Normalization: (P+) + (P-) + (N+) + (N-) = 1

After the normalization, P+ represents the percentage of all executed load

instructions that were correctly predicted. P- indicates the percentage of all

loads that were mispredicted. N+ shows what percentage of the dynamically

executed load instructions the predictor did not attempt to predict and, if it

had, the predicted value would indeed not have been correct. Finally, N- is

the percentage of all loads the predictor decided not to predict (because of a

low confidence) even though the prediction would have been correct.

Unfortunately, the four numbers by themselves do not represent adequate

metrics for comparing predictors. For example, it is unclear if predictor A is

superior to predictor B if predictor A has both a higher P+ and a higher P-

 31

than predictor B, i.e., predictor A makes both more correct and more incorrect

predictions than predictor B.

Fortunately, meaningful metrics for confidence estimation exist that can

be derived from these four numbers. These metrics have recently been

adapted to and used in the domain of branch prediction and multi-path

execution [JRS96, GKMP98]. I adopted the metrics for load value prediction

[BuZo99a] with a change in nomenclature. The terms in parentheses repre-

sent the standard terminology for diagnostic tests. They are all higher-is-

better metrics.

•• Potential :)()(−++= NPPOT

 The POT represents the percentage of predictable values (predictability).

•• Accuracy (Predictive Value of a Positive Test):
)()(−++

+=
PP

P
ACC

 The ACC represents the probability that an attempted prediction is correct.

•• Coverage (Sensitivity):
OT

OV
P

P

NP

P
C

+=
−++

+=
)()(

 The COV represents the fraction of predictable values identified as such.

Note that ACC, COV, and POT fully determine P+, P-, N+, and N- given that

they are normalized.

The potential describes the quality of the value predictor and is independ-

ent of the confidence estimator as long as predictor updates are not con-

trolled by the confidence estimator (which is the case throughout this disser-

tation).

Together, the accuracy and the coverage describe the quality of the confi-

dence estimator. A high accuracy represents a high ratio of correct predic-

tions (which save cycles) over incorrect predictions (which cost cycles) but

 32

usually also means few overall prediction attempts (i.e., the higher the accu-

racy, the more conservative the predictor). A high coverage, on the other

hand, represents a good exploitation of the existing potential, which normally

translates into many prediction attempts.

The accuracy and the coverage are antagonistic, meaning that tuning a

predictor to increase either one almost always decreases the other. Improv-

ing both ACC and COV at the same requires fundamental changes to the pre-

dictor’s design such as replacing the confidence estimator with a more ad-

vanced one (see Chapter 5).

3.5 Summary

The baseline CPU used for the cycle-accurate simulations is configured to

closely mimic a DEC Alpha 21264, which is one of the fastest currently avail-

able microprocessors. This choice was made to illustrate that even a high-

performance CPU can greatly benefit from a load value predictor.

The performance of the various load value predictors discussed in this

dissertation is evaluated using the eight integer programs of the SPEC95

benchmark suite. Highly optimized binaries are used to show that load value

prediction is beneficial beyond what current optimizing compilers can achieve.

A detailed comparison of information about the benchmark suite as a whole

and about the program-segments used for the simulations shows that the se-

lected segments are very representative of the complete program executions.

To get as close as possible to measuring the real effectiveness of a load

value predictor, speedup results from a cycle-accurate simulator are used

almost exclusively as a performance metric in this thesis. Moreover, the

speedups over the individual benchmark programs are combined using the

harmonic mean so as not to overestimate the performance of the studied

load value predictors.

 33

Chapter 4
4 Context-Based Value Predictors

Context-Based Value Predictors

This chapter introduces the basic architecture common to all context-

based load value predictors discussed in this thesis. Furthermore, the archi-

tecture of an implementable predictor for each kind of load value predictability

mentioned in Section 3.2 (i.e., last value, stride 2-delta, register file, finite

context method, and last four value predictability) is presented. The chapter

concludes with a performance study of these five predictors.

4.1 Context-Based Value Prediction

Without context, it is almost impossible to predict a load value since a 32-

bit word can hold over four billion distinct values and a 64-bit word over 1019

values. Even if a highly uneven distribution with only twenty likely load values

is assumed, the best we can hope for is still only a five percent prediction

accuracy, which is probably too low to be useful.

Fortunately, load values tend to cluster, repeat, occur in iterating se-

quences, exhibit discernable patterns, and correlate with one another, all of

which is referred to as load value locality. This locality is the reason why it is

not only feasibly but actually quite effective to make predictions based on re-

cently seen load values, i.e., based on context. I use the terms load value

locality and load value predictability interchangeably in this dissertation. Both

terms refer to the percentage of load values that can be correctly predicted

with a given prediction method.

Based on the numbers shown in Table 3.2, the five measured kinds of

 34

load value locality vary from nine to about 83 percent, depending on the pro-

gram and the type of locality. These percentages are much higher than the

five percent from the example of twenty equally distributed values. Of

course, it remains to be determined how much of this potential can actually

be exploited by a predictor.

The remainder of this chapter describes the design of five load value pre-

dictors that are able to exploit a substantial amount of the existing load value

locality.

4.2 Generic Context-Based Load Value Predictor

Figure 4.1 shows the general structure common to all context-based load

value predictors that are discussed in this dissertation. A context-based pre-

dictor is essentially a direct mapped cache of 2n lines. Each line retains in-

formation about previous executions of one load instruction (modulo the pre-

dictor size).

Generic Load Value Predictor

address of load update info.

instruction

n-bit
(PC>>2)%2n

. 2n lines
index .

function

64-bit value

predicted value

n
to

 2
n d

ec
od

er

Figure 4.1: The components of a context-based load value predictor.

 35

When a load instruction has to be predicted, the predicted value is com-

puted using the stored information of that load instruction, hence the term

context-based. The function that computes the prediction can be as simple

as the identity function (last value predictor) and as complex as accessing a

lookup table (finite context method predictor). Naturally, accessing the pre-

dictor must be faster than accessing the conventional memory since a predic-

tion becomes obsolete as soon as the true load value is available.

Whenever the memory subsystem satisfies a load request, the

corresponding predictor line is updated with the true load value and possibly

other information. Note that all load instructions, whether they are predictable

or not, access the memory and therefore update the predictor.

All the predictors used in this study are direct mapped, that is, the n least

significant bits of a load instruction’s PC (that are not always zero) are used

as an index into the predictor to select one of the 2n predictor lines. Note that

the PC of the load instruction is used and not the effective address.

index(PCload) = (PCload >> 2) % 2n

This is probably the simplest and fastest meaningful hash-function. The

“>> 2” eliminates the two least significant bits that are always zero because

instructions need to be word aligned in the Alpha processor on which all my

measurements are based. Adding a more complex hash-function may result

in less aliasing but will most likely increase the length of the critical path.

Since direct-mapping results in only little aliasing even with moderate predic-

tor sizes (see Section 5.4), this simple but effective hash-function is fre-

quently used [Gab96, GaMe98, LiSh96, LWS96, SaSm97b, WaFr97]. An

investigation of more sophisticated hash-functions (e.g., set associativity) is

left for future work.

Note that in cache terminology, direct-mapping implies the presence of

tag bits. However, unlike caches load value predictors do not have to be cor-

 36

rect all the time, meaning that tags are not mandatory. Because of the small

amount of observed aliasing (see Section 5.4), only partial tags or no tags are

often used in predictors to reduce their size. Load instructions that do alias

simply have to share a line in the load value predictor, i.e., they overwrite

each other’s information in the predictor.

4.3 Five Context-Based Load Value Predictors

Based on the generic load value predictor from Figure 4.1, predictors can

be built and tailored to exploit different kinds of load value locality by choos-

ing what information to store in them and by performing various kinds of

computations with this information. The following subsections show possible

implementations of five basic load value predictors to exploit last value, stride

2-delta, register, finite context method, and last four value locality.

4.3.1 Last Value Predictor “LV”

The last value predictor [Gab96, LWS96] (abbreviated as LV) always pre-

dicts that a load instruction will load the same value that it did the previous

time it was executed. Hence, the only information that needs to be stored in

the predictor is the most recently loaded value. Predictions retrieve this value

and updates overwrite the stored value with the new load value to make it

available for the next prediction.

The last value predictor’s operation can formally be described with the fol-

lowing pseudo-code, where the numeral subscripts indicate the size in num-

ber of bits, “load” refers to the load instruction being predicted or updated,

and “value” is either the predicted value or the update value. The first line,

which describes the predictor, lists the fields that make up a predictor line in-

side the curly brackets as well as the number of predictor lines. In this in-

 37

stance, each predictor line contains a single field called “last_value” that is

64-bits wide and there are 2n such lines.

 predictor: {last_value64} • 2n

 prediction: value = last_value[index(PCload)];

 update: last_value[index(PCload)] = value;

predictable sequences:

- repeating values, e.g., 3, 3, 3, 3, ...

Figure 4.2 illustrates the structure of this predictor. The number 64 in the

first predictor line denotes the width of this field, i.e., every line contains a 64-

bit wide field to store the last value.

Last Value Predictor

address of load new load value

instruction
64

n-bit
(PC>>2)%2n

. 2n lines
index .

64-bit value

predicted value

n
to

 2
n d

ec
od

er

Figure 4.2: The last value predictor.

 38

4.3.2 Register Predictor “Reg”

The register predictor [TuSe99] (abbreviated as Reg) is even easier to

implement. Since it always predicts that the target register of the load

instruction (the register that is about to receive the loaded value) already con-

tains the correct load value even before the load is executed, no information

has to be stored in the predictor. In Chapter 5 we will see that this predictor

still needs to store some information to work well. Figure 4.3 illustrates the

structure of the register predictor.

Note that none of the benchmark programs used were compiled with this

(or any other) kind of load value predictor in mind. Consequently, the pre-

dictability for this predictor is not very high. However, the register predictabil-

ity can be improved upon by modifying the register allocator [TuSe99].

Register File Predictor

no updates

64

register
target register . file (CPU)

.

64-bit value

predicted value

de
co

de
r

Figure 4.3: The register predictor.

 predictor: { } (CPU’s register file is used as source of values)

 prediction: value = register[target(load)];

 update: no operation

 39

predictable sequences:

- depends on register allocator

4.3.3 Stride 2-delta Predictor “St2d”

The stride predictor [Gab96] (abbreviated as St) truly computes the pre-

dicted value and is therefore able to predict never before seen values.

In its conventional form, this predictor stores the last value along with the

difference (called the stride) between the last and the second to last loaded

value. The stride is added to the last value when a prediction is made to form

the predicted value. Once the true load value is available, the predictor’s

stride field is updated to reflect the difference between the last value (which is

stored in the predictor) and the true load value. Then the last value stored in

the predictor is replaced with the new load value. Since about 98% of all the

observed strides fall within the range of –128 to 127 [RFKS98], eight bits per

predictor line are sufficient to capture almost all strides.

A last value predictor can only predict sequences of constant values.

Such sequences can, however, also be predicted with a stride predictor. The

stride is simply zero in this case. Hence, the stride predictor might be re-

garded as a superset of the last value predictor. There exists, however, a

subtle difference between the two predictors. A closer look at the following

sequence of load values illustrates this difference.

. . . A A A B B B C C C . . .

If we assume that both a stride and a last value predictor have been pre-

dicting Xs before reaching the first A of the above sequence (where X≠A,

A≠B, and B≠C), we find that the last value predictor predicts six out of the

nine values correctly (66.7%), whereas the stride predictor only gets three

 40

values right (33.3%). Evidently, the last value predictor is superior to the

stride predictor for sequences of repeating values and particularly for short

sequences of repeating values. The reason is that the last value predictor

makes one mistake per transition in the sequence and the stride predictor

makes two.

This is indeed a problem in practice because programs fetch a surpris-

ingly large number of short sequences of repeating values. For instance,

Figure 4.4 shows the percentage of dynamically executed load instructions

that fetch sequences of repeating values of the given lengths. The numbers

are averages over the eight SPECint95 programs.

Distribution of Sequences of Repeating Values in SPECint95

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >16
Sequence Length

P
er

ce
nt

ag
e

of
 E

xe
cu

te
d

Lo
ad

s

Figure 4.4: Average run-length of sequences of repeating load values.

As the figure illustrates, a considerable percentage of loads fetch se-

quences of between two and eight repeating values. In fact, the number of

short sequences comprising only two, three, or four repeating values is so

 41

large in comparison to sequences that exhibit true stride behavior (i.e., have

a non-zero stride) that the stride value locality is smaller than the last value

locality for six out of the eight SPECint95 programs, as Table 4.1 shows (the

corresponding six stride load value localities are shown in bold print). Only li

and compress exhibit more stride than last value locality.

compress gcc go ijpeg li m88ksim perl vortex average

last value locality (%) 40.4 48.5 45.9 47.5 43.4 76.1 50.7 65.7 52.3
normal stride locality (%) 61.3 41.3 38.3 37.6 44.1 76.1 42.8 60.3 50.2
stride 2-delta locality (%) 65.8 49.8 47.2 47.7 50.4 80.0 51.4 66.0 57.3

Table 4.1: Last value, stride, and stride 2-delta load value locality.

To remedy this shortcoming, the more sophisticated stride 2-delta predic-

tor has been proposed [SaSm97a] (abbreviated as St2d). The 2-delta refers

to the fact that this predictor retains two strides instead of only one. The first

stride is identical to the one found in the conventional stride predictor. The

second stride is only updated if the current update-stride is the same as the

stride already stored in the first stride field. In other words, the second stride

is only updated if the same stride has been seen at least twice in a row. Only

the second stride is used for computing the predicted value.

This scheme effectively eliminates the problem of making two consecutive

mispredictions upon a sequence change from one sequence of constant val-

ues to another because the working stride (the second stride) remains zero

during this transition. As the last line of Table 4.1 shows, the stride 2-delta

load value locality is higher than the last value locality for all eight SPECint95

programs. Of course the second stride field also only needs to be eight bits

wide, as is outlined in Figure 4.5. In the pseudo code below, the function

LSB0..7(x) extracts the eight least significant bits of x. Unless otherwise noted,

all stride predictor results in this dissertation refer to the more sophisticated

stride 2-delta predictor.

 42

 predictor: {last_value64, stride18, stride28} • 2n

 prediction: value = last_value[index(PCload)] + stride2[index(PCload)];

 update: temp = LSB0..7(value – last_value[index(PCload)]);

 if (temp == stride1[index(PCload)]) stride2[index(PCload)] = temp;

 stride1[index(PCload)] = temp;

 last_value[index(PCload)] = value;

predictable sequences:

- repeating values, e.g., -2, -2, -2, -2, ...

- constant strides, e.g., -4, -2, 0, 2, 4, ...

Stride 2-Delta Predictor

address of load new load value st1

instruction if equal

64 8 8

n-bit
(PC>>2)%2n

. . . 2n lines
index . . .

64-bit value

predicted value

n
to

 2
n d

ec
od

er

adder

Figure 4.5: The stride 2-delta predictor.

 43

4.3.4 Last Four Value Predictor “L4V”

The last four value predictor [BuZo99b, LiSh96] (abbreviated as L4V) is

similar to the last value predictor except every predictor line retains the four

most recently loaded values instead of only the most recent value. Chapter 7

discusses last n value predictors in more detail and shows that storing the

last four values results in good performance.

Deciding which one of the four values to use for a prediction is the job of

the selector, which is described in Section 5.4.1. The last four value predictor

can be thought of as four independent last value predictors operating in par-

allel and a meta-predictor that chooses which predictor to believe. Figure 4.6

illustrates this. The last four value predictor therefore represents a hybrid

predictor. Hybrid predictors are the topic of Chapter 8.

Last Four Value Predictor

address of load new load value

instruction
64 64 64 64

n-bit
(PC>>2)%2n

. . . . 2n lines
index

selector

64-bit value

predicted value

n
to

 2
n d

ec
od

er

4:1 multiplexer

Figure 4.6: The last four value predictor.

The difference between the last four value and a conventional hybrid pre-

dictor, and the reason why the last four value predictor is included here, is

that a normal hybrid consists of different predictors that are updated with the

same information whereas the last four value predictor comprises four identi-

 44

cal predictors that are updated with different information. Section 5.4.1

examines the last four value predictor in more detail and explains the select

function used below.

 predictor: {last_value164, last_value264, last_value364, last_value464} • 2n

 prediction: value = select(last_value1[index(PCload)],

last_value2[index(PCload)], last_value3[index(PCload)],

last_value4[index(PCload)]);

 update: last_value4[index(PCload)] = last_value3[index(PCload)];

 last_value3[index(PCload)] = last_value2[index(PCload)];

 last_value2[index(PCload)] = last_value1[index(PCload)];

 last_value1[index(PCload)] = value;

predictable sequences:

- repeating values, e.g., 2, 2, 2, 2, ...

- alternating values, e.g., -1, 0, -1, 0, -1, ...

- short repeating cycles, e.g., 1, 2, 3, 1, 2, 3, 1, ...

4.3.5 Finite Context Method Predictor “FCM”

The most complex and sophisticated non-hybrid predictor is the finite con-

text method predictor [SaSm97a, SaSm97b] (abbreviated as FCM). It is simi-

lar to the last four value predictor in so far as that it retains the last four

loaded values in every predictor line. However, since these values are only

used to compute an index into the predictor’s second level (a lookup table),

they are not stored in their full length but rather in a more compact, preproc-

essed form. The second level, a 2048-entry direct mapped, tag-less cache,

stores the values that follow every seen sequences of four last values

(modulo the table size). Since the second level is shared, load instructions

 45

can communicate information to other loads in this predictor. Hence, after

fetching a sequence of arbitrary load values, which warms up the finite con-

text method predictor, the same sequence can be predicted correctly even if

it is fetched again by a different load instruction.

For this study, the size of the second level of the FCM predictor is fixed at

2048 entries and the index into the second level is computed as follows.

hash(val) = val63..56 ⊕ val55..48 ⊕ val47..40 ⊕ val39..32 ⊕ val31..24 ⊕ val23..16 ⊕ val15..8 ⊕ val7..0;

index2(val1, val2, val3, val4) = hash(val1) ⊕ hash(val2)*2 ⊕ hash(val3)*4 ⊕ hash(val4)*8;

line = index2(last_value1, last_value2, last_value3, last_value4);

The “⊕” in the above formulas represents the logical exclusive-or function.

The presented index2 function is similar to the functions used by other people

for the finite context method predictor [ReCa98, RFKS98, SaSm97b]. It util-

izes all 64 bits of the load values for computing the index. Furthermore, the

values are shifted relative to one another so that sequences of constant val-

ues do not cancel each other out (i.e., always yield an index of zero) when

they are exclusive-or’ed.

Another benefit of the above function is that part of it (the first line) can be

evaluated before the information is inserted into the first level of the predictor.

Doing so significantly reduces the size of the predictor. Since hash(val) al-

ways yields an eight-bit result, each line in the first level of the predictor only

needs to store four eight-bit values instead of the four 64-bit values, as is il-

lustrated in Figure 4.7.

 46

 level1: {hash18, hash28, hash38, hash48} • 2n

 level2: {FCMvalue64} • 2048

 predictor: level1 + level2

 prediction: line = hash1[index(PCload)] ⊕ hash2[index(PCload)]*2 ⊕

hash3[index(PCload)]*4 ⊕ hash4[index(PCload)]*8;

 value = FCMvalue[line];

 update: line = hash1[index(PCload)] ⊕ hash2[index(PCload)]*2 ⊕

hash3[index(PCload)]*4 ⊕ hash4[index(PCload)]*8;

 FCMvalue[line] = value;

 hash4[index(PCload)] = hash3[index(PCload)];

 hash3[index(PCload)] = hash2[index(PCload)];

 hash2[index(PCload)] = hash1[index(PCload)];

 hash1[index(PCload)] = hash(value);

predictable sequences:

- reoccurring values, e.g., 3, 7, 4, 9, 2, ..., 3, 7, 4, 9, 2, ...

- addresses loaded during the traversal of dynamic data structures

address of load h(v1) new load value

instruction
8 8 8 8 64

n-bit
(PC>>2)%2n

. . . . 2n lines . 2048 lines
index

11-bit index
second level

64-bit value

predicted value

n
to

 2
n d

ec
od

er

v1 ^ v2*2 ^ v3*4 ^ v4*8

n
to

 2
n d

ec
od

er

first level

Finite Context Method Predictor

Figure 4.7: The finite context method predictor.

 47

4.4 Predictor Performance

Figure 4.8 shows the harmonic-mean speedup over SPECint95 delivered

by the five predictors from the previous sections. For these measurements,

the predictors are 2048 lines tall and include an eight-bit partial tag in each

line. In the FCM predictor, both levels comprise 2048 lines. No prediction is

attempted in case of a tag miss. Furthermore, each predictor is divided into

four independent banks (see Chapter 6).

Two speedup numbers are given for each predictor, one showing the

speedup over the baseline processor when a re-fetch misprediction recovery

mechanism is used and the other when a re-execute recovery mechanism is

used (see Chapter 5). Since the presented predictors vary greatly in size, the

presented results should not be used for inter-predictor comparisons.

Mean Speedup without Confidence Estimator

-39.8

-59.8

-38.3 -37.5
-39.8

2.5

-19.4

3.5 3.5
0.1

-60

-50

-40

-30

-20

-10

0

10

Tag LV Tag Reg Tag St2d Tag L4V Tag FCM

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch

re-execute

Figure 4.8: Mean speedup of five context-based predictors.

 48

Clearly, the performance of the five predictors is rather poor. In fact, all

the predictors slow the processor down with a re-fetch misprediction recovery

mechanism. With re-execute, which incurs smaller penalties than re-fetch,

the register value predictor slows down the SPECint95 programs on average

while the remaining four predictors yield a small positive speedup.

The reason for the poor performance is the large number of mispredic-

tions. The average load value locality shown in Table 3.2 is roughly fifty per-

cent, meaning that a large fraction of loads cannot be correctly predicted with

these prediction techniques. Trying to predict these loads will inevitably result

in mispredictions.

Because incorrect predictions necessitate a recovery process and thus in-

cur a cycle penalty, a high misprediction-rate may result in more added cycles

than are saved by the correct predictions. With re-fetch, the misprediction

penalties do indeed more than offset the benefit of the correct predictions,

which is why the overall performance decreases.

The next chapter introduces confidence estimators, which are able to re-

duce the number of mispredictions and thus improve the performance of all

five predictors. In fact, with confidence estimators, all five predictors yield

positive speedups even with re-fetch recovery.

4.5 Summary

This chapter introduces the concept of context-based load value predic-

tion as well as the architecture of such predictors. The functionality is ex-

plained and a possible implementation is given for a last value, a register, a

stride 2-delta, a last four value, and a finite context method predictor.

A performance evaluation of these five predictors shows that all of them

make too many costly mispredictions to be effective. In the next chapter a

technique is discussed that can eliminate most mispredictions, which boosts

the performance of these five predictors, making them profitable to employ.

 49

Chapter 5
5 Confidence Estimators

Confidence Estimators

This chapter introduces and evaluates two commonly used dynamic con-

fidence estimators. First, the bimodal confidence estimator is described,

which is based on saturating counters. Then the prediction outcome history-

based SAg confidence estimator I developed is derived. It is more complex

but performs better than the bimodal confidence estimator on certain kinds of

load value sequences, as sample traces illustrate. The performance of both

confidence estimators in connection with the five load value predictors from

the previous chapter is evaluated. Finally, the expressiveness of non-

speedup metrics is studied.

5.1 The Need for Confidence Estimators

As the speedup results from Section 4.4 illustrate, context-based load

value predictors are quite ineffective in spite of the relatively high load value

predictability (see Table 3.2). As mentioned, the problem is the high cost of

recovering from the many mispredicted loads, which can more than eradicate

the performance advantage derived from the correctly predicted loads.

Fortunately, making no prediction does not incur a cycle penalty, meaning

that it is better not to make a prediction than to make an incorrect prediction.

Consequently, identifying predictions that are likely to be incorrect and inhibit-

ing them can reduce the number of penalty cycles and thus improve the pre-

dictor performance.

This is why almost all load value predictors include some form of confi-

 50

dence estimator (CE) to estimate how likely a prediction is to be correct

[CRT99, LWS96, ReCa98, RFKS98, SaSm97b, TuSe99, WaFr97]. Predic-

tions are only allowed if the estimated confidence is high (i.e., above a preset

threshold). The two main approaches for dynamic confidence estimation in

the domain of value prediction, saturating counters and prediction outcome

histories, are described in the subsequent sections. The latter was devel-

oped by me to overcome a deficiency of the former confidence estimator, as

discussed in Section 5.2.1.

5.2 The Bimodal Confidence Estimator

One way of estimating the likelihood of a correct load value prediction is to

count how often the load was correctly predicted in the (recent) past. The in-

tuition behind this approach is that the past behavior tends to be indicative of

what will happen in the near future. For example, if a load was predicted

successfully most of the time in the recent past, there is a good chance that

its next prediction will be successful, too. Therefore, counting the number of

times a predictor was able to predict a load instruction correctly yields a

measure of confidence where a higher count implies a higher probability that

the next prediction will be correct.

Note that it is vital to count both the correct prediction and the times the

predictor could have made a correct prediction but was not allowed to do so

due to a low confidence at the time. If only the attempted predictions that

turned out to be correct are counted, then the confidence cannot recover

once it has reached a point that inhibits further predictions.

A commonly used hardware device for counting events is the saturating

up/down counter. A saturating counter can count up and down within two

boundaries, say zero and fifteen. Once the counter has reached fifteen,

counting up will not change its value. Likewise, counting down from zero

leaves the counter at zero. Such a counter is said to have a bottom of zero

 51

and a top of sixteen. Note that while the bottom value is the lowest reachable

value, the top value cannot actually be reached. The highest reachable value

is top-1. This definition of top and bottom simplifies many aspects of dealing

with saturating counters. Note also that the counter increment and decre-

ment (the latter is often referred to as penalty) can be an integer greater than

one. In particular, penalties above one are frequently useful in connection

with load value predictors.

The bimodal confidence estimator is based on saturating up/down count-

ers that record how many predictable values were encountered in the recent

past. I adopted the name “bimodal” from the structurally identical bimodal

branch predictor [McF93].

The higher the counter value in a bimodal CE, the higher the confidence

that the next prediction will also be correct since predictable load instructions

are assumed not to suddenly become unpredictable and vice-versa. A preset

threshold value determines when the confidence estimator allows predictions

to take place and when it does not. For instance, a threshold of ten allows

predictions as long as the value of the saturating counter does not fall below

ten. If it does, further predictions are inhibited until the counter value rises to

ten or higher again.

A saturating counter-based confidence estimator can be described with

five parameters: the top value, the bottom value, the increment, the decre-

ment or penalty, and the prediction threshold. Only powers of two are used

as the top value in this dissertation. This is not mandatory but it limits the

large search space somewhat. By definition, the counter value is always

lower than the top value. The bottom value, the lower bound for the counter

value, is always zero throughout this thesis. This is not a restriction because

the top, threshold, and bottom values can always be shifted to make the bot-

tom value zero without loss of generality. The increment is always one since

not even a single preliminary experiment of mine has shown larger incre-

ments to be useful. The current literature also only uses increments of one

 52

[ReCa98, RFKS98, WaFr97]. Finally, the threshold and penalty values are

determined individually for each predictor and misprediction recovery mecha-

nism, as is the top value. Since the smallest number of bits required to store

any value in the range [0..top) is log2(top), the top value determines the

width of the counters. Frequently used top values in this dissertation are

eight and sixteen, making the counters three to four bits wide.

Figure 5.1 illustrates the structure of the bimodal confidence estimator

when added to a generic load value predictor. The shaded components

make up the confidence estimator. “c” indicates a saturating up/down

counter.

Generic Predictor with Bimodal Confidence Estimator

address of load +/- update info.

instruction
c

n-bit c
(PC>>2)%2n

. . 2n lines
index . .

c
c

threshold >= function

1 bit 64-bit value

predicted value

n
to

 2
n d

ec
od

er

yes/no predict

Figure 5.1: The bimodal confidence estimator (shaded).

Note that each line of the predictor contains its own saturating counter,

meaning that the confidence of each line is measured separately. As long as

only one load instruction is mapped to each line in the predictor, each load’s

confidence is measured individually. If multiple loads alias in the same pre-

dictor line, the resulting counter value is a combination of the confidences of

the loads that share the line.

 53

Except for the saturating counters, the confidence estimator only consists

of a comparator that checks whether the selected counter value is at or

above the preset threshold. This can be done in parallel with the prediction

of the load value. The predicted value is only used if the confidence is high

enough.

When the value predictor is updated, it first makes another prediction

whose result is compared with the true load value. If the two values are iden-

tical, the saturating counter in the selected predictor line is incremented by

one, otherwise it is decremented by the preset penalty.

A bimodal confidence estimator’s operation can be described with the fol-

lowing pseudo-code. “x” is usually three or four (actually, x = log2(top)).

 conf_estim: {counter_valuex} • 2n

 prediction: predict = (counter_value[index(PCload)] >= threshold);

 update: counter_value[index(PCload)] = (predicted_value == true_value) ?

min(top-1, counter_value[index(PCload)]+1) :

max(0, counter_value[index(PCload)]-1);

predictable sequences:

- sequences that do not frequently change from being predictable to being

unpredictable and vice-versa

5.2.1 Behavior Study

Predictors with a bimodal CE yield good performance (see Section 5.4).

Nevertheless, due to the counter-hysteresis, the bimodal CE performs poorly

on certain kinds of load value sequences. In particular, it cannot adapt to

quickly alternating patterns of predictable and unpredictable loads.

As was already shown in the discussion about the stride and the stride

 54

2-delta predictor (Section 4.3.3), programs fetch a surprisingly large number

of short sequences of repeating load values (Figure 4.4). Such sequences

pose a problem for a bimodal CE. To illustrate this, let us assume a last

value predictor with a bimodal confidence estimator that predicts the following

infinite sequence of three repeating values (where A≠B, B≠C, etc.).

. . . A A A B B B C C C . . .

For a two-bit saturating counter (i.e., a counter with a top of four), we find

that depending on the penalty and the counter value at the beginning of the

sequence, one of three possible patterns of indefinitely repeating counter-

values emerges quickly. The three patterns are “2, 3, 3”, “0, 1, 2”, and “1, 2,

3” and are shown in the middle of Table 5.1 in bold print. The left side of the

table indicates which initial counter values and penalties result in which pat-

tern. The right side of the table shows the number of prediction attempts, in-

hibited predictions, correct predictions, and incorrect predictions the bimodal

CE makes (per three load instructions) depending on the threshold value.

thresh- no correct wrong

initial pen- yes no yes yes no yes case hold predic- predic- predic- predic-
value alty B C C C D D value tions tions tions tions

C1 1 3 0 2 1
0, 1, 2, 3 1 … 3 2 3 3 2 … C2 2 3 0 2 1

C3 3 2 1 1 1
C4 1 2 1 1 1

0, 1, 2 2 … 2 0 1 2 0 … C5 2 1 2 0 1
0, 1, 2, 3 3 C6 3 0 3 0 0

C7 1 3 0 2 1
3 2 … 3 1 2 3 1 … C8 2 2 1 1 1

C9 3 1 2 0 1

{
{
{

last value predictable

Table 5.1: Behavior study of a bimodal confidence estimator.

Note that a last value predictor without a CE would make three prediction

attempts and get two of the three load values right and one wrong. Hence,

the bimodal CE does not help in the cases C1, C2, and C7. In the cases C3,

C4, and C8 the CE inhibits one of the correct predictions and none of the in-

 55

correct predictions, making the resulting performance worse than it would be

without a CE. The cases C5 and C9 are even worse since the CE inhibits all

the correct predictions and only allows the incorrect prediction to take place.

Finally, case C6 allows no predictions at all, meaning that the load value pre-

dictor is not used.

Clearly, in all nine cases the bimodal CE either does not help or makes

things worse. Since short sequences of repeating load values make up a

considerable part of the observed load value sequences (Figure 4.4), this un-

fortunate behavior of the bimodal confidence estimator is a problem.

Note that a one-bit counter would result in the same prediction behavior

as case C4 and three-bit and wider counters always end up in one of the four

described outcomes, as the following thought experiment illustrates.

The two cases where the confidence estimator allows no predictions or

forces all values to be predicted are uninteresting. In all the remaining two

cases (with one or two predictions per three values), some of the values are

predicted and some are not. If the third of the three repeating values is pre-

dicted (i.e., the counter has reached the threshold), then any bimodal predic-

tor will also predict the following value, which happens to be the unpredict-

able one, because the third value is predictable and will therefore increment

the counter, meaning that the next time the counter is queried it will again be

above the threshold and cause a prediction. Likewise, if the first of the three

repeating values is not predicted (i.e., the counter value is below the thresh-

old), then any bimodal predictor will also not attempt to predict the next value,

which in our example is predictable, because the first value is unpredictable

and will consequently decrement the counter, meaning that the next time the

counter is queried it will still be below the threshold and therefore inhibit a

prediction. In other words, it is impossible for a bimodal confidence estimator

to predict the last predictable value and not predict the following unpredict-

able value and it is also impossible not to predict an unpredictable value while

at the same time predicting the following predictable value. As a conse-

 56

quence, only the following four scenarios for the three repeating values are

possible: none of them are predicted, only one value is predicted, which has

to be the unpredictable one, two values are predicted, of which one has to be

the unpredictable value, or all three values are predicted. Consequently, any

bimodal CE is, independent of its threshold and top value, incapable of pre-

dicting the predictable values without also predicting the unpredictable value

in the above sample sequence. Hence, the observed deficiency is intrinsic to

the bimodal CE and cannot be overcome by adjusting parameters.

5.3 The SAg Confidence Estimator

Based on the observations made in the previous section, designing a con-

fidence estimator that does not suffer from the described deficiency may be

worthwhile. Ideally, a CE should predict the two predictable values and inhibit

every third prediction in the example of three repeating load values from the

previous section. To recognize the iterating pattern of two predictions fol-

lowed by one non-prediction, some sort of a history mechanism is probably

necessary.

Since confidence estimators are similar to branch predictors, I turned to

the branch prediction literature to find an alternative approach that is history-

based. One successful idea in branch prediction is keeping a small history

recording in which direction each branch recently went [LeSm84]. This idea

was later refined to retaining the most recent prediction outcome (success or

failure) [SCAP97] rather than the branch direction, which makes the approach

useful as a confidence estimator.

In such a CE, the outcome of a prediction is stored in a bit-pattern (called

a history) where the nth bit represents the outcome of the nth last prediction.

Usually a one is used to encode a successful prediction and a zero to encode

a misprediction.

Whenever the memory returns a load value, the true load value is com-

 57

pared with its predicted value (even if the prediction was not used) and the

outcome of this comparison is shifted into the history, whereby all the bits in

the history are shifted by one position and the oldest bit is lost.

If such histories are to be used as a measure of confidence, it is essential

to know which ones are (frequently) followed by a correct prediction and

which ones are not. The branch prediction literature describes algorithms to

accomplish this. For instance, Sechrest et al. [SLM95] suggest profiling a set

of programs to record the behavior.

Table 5.2 shows the average SPECint95 last value predictability following

each of the sixteen possible four-bit prediction outcome history. For example,

the second row of the table states that a failure, failure, failure, success his-

tory (denoted as 0001) is followed by a successful last value prediction 26.9%

of the time. In this history, success denotes the outcome of the most recent

prediction. Of all the encountered histories, 2.7% were 0001.

SPECint95 Last Value Predictability
history predictability (%) occurrence (%)
0000 6.9 32.2
0001 26.9 2.7
0010 19.1 2.9
0011 49.9 1.6
0100 34.3 2.9
0101 33.6 1.9
0110 44.9 1.3
0111 59.4 2.2
1000 24.2 2.7
1001 46.3 1.8
1010 66.8 1.9
1011 66.1 1.9
1100 53.1 1.6
1101 57.2 1.9
1110 52.3 2.2
1111 96.6 38.3

Table 5.2: History-pattern frequency and last value predictability.

Note that it is not necessary to make a prediction following every history

with a greater than fifty percent probability of resulting in a correct prediction.

 58

Rather, the predictable/not-predictable threshold can be set anywhere. The

optimal setting strongly depends on the characteristics of the CPU the predic-

tion is going to be made on [BuZo99a].

If only a small cost is associated with making a misprediction (as is the

case with a re-execute recovery mechanism), it is most likely wiser to predict

a larger number of load values, albeit also a somewhat larger number of in-

correct ones. If, on the other hand, the misprediction penalty is high and

should therefore be avoided (as is the case with re-fetch recovery), it makes

more sense not to predict quite as many loads but to be very confident that

the ones that are predicted will be correct.

If we want to be highly confident that a prediction is correct, say at least

ninety percent confident, the history-based CE would only allow predictions

for histories whose predictability is greater than ninety percent, i.e., only for

history 1111 based on the data in Table 5.2. Such a four-bit history-based

confidence estimator can yield a 96.6% prediction accuracy and predicts

38.3% of all loads of the SPECint95 benchmark suite. Longer histories result

in even higher accuracies and better coverage [BuZo98a].

Initially, I built a confidence estimator in which the history patterns that

should be followed by a prediction have to be preprogrammed using tables

similar to Table 5.2 [BuZo98a]. While this confidence estimator (called an

SSg CE after the structurally identical SSg branch predictor [YePa93]) al-

ready outperforms its bimodal counterpart [BuZo99a], profile-runs are unfor-

tunately necessary to program the history patterns. Furthermore, the SSg CE

is completely static and cannot adapt to changing program behavior.

To remedy these shortcomings, the CE’s design needed to be changed so

that the table can be maintained in hardware and updated on-the-fly. In other

words, the CE has to record how many correct predictions recently followed

each of the possible history patterns. Saturating counters are, of course, ap-

propriate for this task.

By letting saturating counters record the number of correct predictions that

 59

followed each history pattern in the recent past, the counter values dynami-

cally assign a confidence to each history and thus continuously adjust which

patterns should be followed by a prediction and which ones should not. Pre-

dictions are only allowed if the counter value associated with the current pre-

diction outcome history is above a preset threshold.

The architecture of the resulting SAg confidence estimator, which is

named after the structurally identical SAg branch predictor [YePa93] (the

naming conventions are explained in Appendix D), is shown in Figure 5.2.

Generic Predictor with SAg Confidence Estimator

0/1 update info.

n-bit h

h

index . . 2n lines
+/- . .

h
c h
c
. function

c m-bit hist 64-bit value

thres >= predicted value

address of load

(PC>>2)%2n

yes/no

n
to

 2
n d

ec
od

er

m
 to

 2
m

 d
ec

instruction

Figure 5.2: The SAg confidence estimator (shaded).

The SAg CE was developed by me [BuZo98b], and independently by Cal-

der et al. [CRT99]. The following pseudo-code describes its operation. m

denotes the number of history bits in each predictor line and x represents the

number of bits in each saturating counter. The prediction outcome histories

are marked with ‘h’ and the saturating counters with ‘c’.

 CE_level1: {historym} • 2n

 CE_level2: {counter_valuex} • 2m

 60

 conf_estim: CE_level1 + CE_level2

 prediction: predict = (counter_value[history[index(PCload)]] >= threshold);

 update: counter_value[history[index(PCload)]] = (predicted_value ==

true_value) ?

min(top-1, counter_value[history[index(PCload)]]+1) :

max(0, counter_value[history[index(PCload)]]-1);

 history[index(PCload)] = LSB0..m-1(history[index(PCload)] << 1) |

(predicted_value == true_value);

predictable sequences:

- sequences that exhibit (short) repeating behavior

5.4 Performance Comparison

The SAg CE requires more hardware than the bimodal CE and is most

likely slower because of its two-level design. This raises the question

whether the extra complexity is worthwhile.

The SAg CE has been developed to avoid the poor behavior of the bi-

modal CE on short sequences that alternate between being predictable and

being unpredictable. Revisiting the sample sequence from Section 5.2.1

shows that a two-bit history is already sufficient to obtain perfect confidence

estimation because the saturating counters associated with the histories 01

and 10 are constantly incremented, meaning that a prediction will be allowed

following these histories, the saturating counter associated with history 11 is

incessantly decremented and thus inhibits predictions after two consecutive

correct predictions, and history 00 never occurs. Hence, the SAg CE is able

to learn the predictability pattern and can identify the two predictable values

and the unpredictable value as such, thus reaping the maximum benefit by

predicting all the predictable values and allowing no mispredictions that could

 61

incur cycle-penalties.

To better visualize the behavior and the performance of the two kinds of

CEs with a last value predictor, Table 5.3 shows excerpts of real traces from

three load instructions found in gcc (one of the SPECint95 programs) along

with the behavior of four bimodal CEs and one SAg CE. The first trace (on

the left) exhibits almost no last value predictability, the middle trace exhibits

almost full last value locality, and the last trace has medium predictability.

Low Last Value Predictability High Last Value Predictability Medium Last Value Predictability

L CE1 CE1 CE3 CE4 SAg CE L CE1 CE1 CE3 CE4 SAg CE L CE1 CE1 CE3 CE4 SAg CE
load value V C P C P C P C P history C P load value V C P C P C P C P history C P load value V C P C P C P C P history C P

1074930240 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 _oo_oo_o 3
0 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 oo_oo_oo 0

1074930256 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
1074930248 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 3 + 3 + 1 1 _oo_oo_o 4
1074930376 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 2 - 2 oo_oo_oo 0
1074930368 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 o_oo_oo_ 15 +
1074930240 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 _oo_oo_o 5

22 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 oo_oo_oo 0
0 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
0 * 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 1 1 _oo_oo_o 6
0 * 1 1 1 1 _______o 2 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 oo_oo_o_ 15 +
2 2 - 2 2 - 2 ______oo 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 o_oo_o_o 0
0 1 1 0 0 _____oo_ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 _oo_o_oo 0
2 0 0 0 0 ____oo__ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 oo_o_oo_ 15 +

1074908984 0 0 0 0 ___oo___ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 1 1 o_o_oo_o 0
1074908976 0 0 0 0 __oo____ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 _o_oo_o_ 11 +
1074909000 0 0 0 0 _oo_____ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 1 1 o_oo_o_o 1

0 0 0 0 0 oo______ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1361864236 2 - 2 0 0 _oo_o_o_ 0
1074908984 0 0 0 0 o_______ 0 144 3 - 3 - 3 - 7 - oooooooo 15 - 1361128529 1 1 0 0 oo_o_o__ 0
1074908976 0 0 0 0 ________ 1 144 * 2 + 2 1 5 + ooooooo_ 15 + 1361128529 * 0 0 0 0 o_o_o___ 15 +
1074909000 0 0 0 0 ________ 0 144 * 3 + 3 + 2 + 6 + oooooo_o 15 + 1714188861 1 1 1 1 _o_o___o 0

10 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + ooooo_oo 15 + 1714188861 * 0 0 0 0 o_o___o_ 15 +
1074911312 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooo_ooo 15 + 1714188861 * 1 1 1 1 _o___o_o 12 +

0 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + ooo_oooo 15 + 556550514 2 - 2 2 - 2 o___o_oo 0
1074911312 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oo_ooooo 15 + 556550514 * 1 1 0 0 ___o_oo_ 15 +

6 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + o_oooooo 15 + 556550514 * 2 + 2 1 1 __o_oo_o 11 +
1074911568 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + _ooooooo 15 + 1714188861 3 - 3 - 2 - 2 _o_oo_oo 0

0 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 11 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
1074911568 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 12 + 556550514 3 - 3 - 1 1 _oo_oo_o 2

6 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 13 + 556550514 * 2 + 2 0 0 oo_oo_o_ 15 +

correct 0 0 0 0 0 correct 29 28 28 29 29 correct 13 4 0 0 13
missed 2 2 2 2 2 missed 0 1 1 0 0 missed 4 13 17 19 4

incorrect 1 0 1 0 0 incorrect 1 1 1 1 1 incorrect 11 9 6 0 0

Table 5.3: Bimodal and SAg CE behavior on three gcc traces.

The first column in each trace shows the actual load value, the second

column (LV) indicates with a star which of the values are last value predict-

able, the next four columns, CE1 through CE4, show the values of the satu-

rating counters of four bimodal CEs as well as the prediction outcome (plus =

correct prediction, minus = misprediction, space = no prediction), and the final

column (SAg CE) shows the history (for better readability, underscores are

used to mark correct predictions), the value of the saturating counter corre-

sponding to the given history, and the prediction outcome of a SAg CE. At

 62

the bottom of each trace the number of correct predictions, missed opportuni-

ties for making a correct prediction, and the number of incorrect predictions

are summarized for each individual CE.

The five sample CEs are configured as follows. The bimodal CE1 has a

top of four, a threshold of two, and a penalty of one. CE2 has a top of four, a

threshold of three, and a penalty of one. CE3 has a top of four, a threshold

of two, and a penalty of two. Finally, CE4 has a top of eight, a threshold of

four, and a penalty of two. The SAg CE uses eight-bit histories, a top of six-

teen, a threshold of eight, and a penalty of four.

As Table 5.3 illustrates, both the SAg and the bimodal CE are well suited

for predicting highly predictable and highly unpredictable sequences of load

values. With mixed predictability, however, the SAg CE significantly outper-

forms the bimodal CEs. This is reassuring because, after all, the SAg CE has

been developed to perform better than the bimodal CE in exactly this case.

Note that with all three traces, none of the bimodal CEs result in more correct

predictions, fewer missed opportunities, or fewer incorrect predictions than

the SAg CE. While this is true for most traces, there are examples in which

the bimodal CE outperforms the SAg CE. A study of such traces revealed

that this behavior occurs when the histories of several loads alias detrimen-

tally in the second level of the SAg CE, which suggests that in certain cases it

may be beneficial to have a hybrid CE that consists of both a bimodal and a

SAg CE and chooses the better one for each load instruction. The analysis

of such a CE is left for future work.

To determine the genuine effectiveness of the SAg and the bimodal CE,

speedup measurements are necessary. To obtain these results, the five

value predictors from Section 4.3 were outfitted with both kinds of CEs.

Based on previous studies [BuZo98b], a history length of ten bits is used with

the SAg CEs and the top values for the saturating counters are sixteen for re-

fetch recovery and eight with re-execute. A global search was performed to

obtain the optimal threshold and penalty values for each predictor and CE

 63

pair. The result of this search is summarized in Table 5.4.

cntr top threshold penalty hist bits cntr top threshold penalty
FCM 16 13 11 10 16 15 11
L4V 16 15 13 10 16 15 8
LV 16 10 15 10 16 13 5
Reg 16 10 7 10 16 15 7
St2d 16 12 12 10 16 12 5
FCM 8 7 3 10 8 6 3
L4V 8 6 3 10 8 7 3
LV 8 5 1 10 8 5 2
Reg 8 2 2 10 8 4 1
St2d 8 5 1 10 8 5 1

SAg confidence estimatorbimodal confidence estim.

re
-e

xe
cu

te
re

-f
et

ch

Table 5.4: Predictor configurations yielding the highest mean speedup.

Note that the penalties yielding the highest performance with a re-execute

misprediction recovery mechanism are quite low in comparison with those for

re-fetch, even when accounting for the wider re-fetch counters. This is a di-

rect reflection of the lower misprediction cycle-penalty with re-execute.

The speedups delivered by the twenty combinations of predictors, CEs,

and recovery mechanisms are shown in Figure 5.3 and Figure 5.4. The for-

mer shows the re-fetch speedups and the latter the re-execute speedups.

Each predictor comprises a total of 2048 lines divided into four banks. Since

the predictor sizes vary greatly, the given results should only be used for in-

tra-predictor comparisons between the two kinds of CEs.

 64

Speedup with a Re-fetch Misprediction Recovery Mechanism

7.9

9.3
8.6

7.3

9.4

6.6

11.8

10.2

7.4

10.5

0

2

4

6

8

10

12

14

16

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Bimodal CE

SAg CE

Figure 5.3: Re-fetch speedup comparison between Bimodal and SAg CEs.

Speedup with a Re-execute Misprediction Recovery Mechanism

11.2
10.7 10.5

7.9

13.1

11.9

13.9

11.6

8.0

14.2

0

2

4

6

8

10

12

14

16

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Bimodal CE

SAg CE

Figure 5.4: Re-execute speedup comparison of Bimodal and SAg CEs.

 65

With a re-fetch misprediction recovery mechanism, four of the five predic-

tors perform better with a SAg CE than with a bimodal CE. The L4V, St2d

and, as expected, the LV predictors’ speedups are considerably higher with a

SAg CE. Surprisingly, the Reg predictor does not seem to benefit much from

the more complex CE at all.

The FCM predictor actually performs substantially worse with a SAg CE

than with a bimodal CE. This unexpected result is caused by the aforemen-

tioned detrimental aliasing in the second level of the SAg CE. As Figure 5.4

shows, aliasing is less of a problem (but still present) with the FCM predictor

when re-execute recovery is used.

With a re-execute misprediction recovery mechanism, all five predictors

perform better with a SAg CE than with a bimodal CE. However, again the

Reg predictor does not seem to benefit much from the SAg CE. It appears

that register predictable loads are either highly predictable or not predictable

at all and that there is not much alternating register predictability. Clearly, the

bimodal CE is the CE of choice for the Reg predictor.

While the re-execute speedups are higher than the re-fetch speedups, the

delivered speedup is considerable for all five predictors even with re-fetch re-

covery, in particular in comparison with the speedups achieved without CEs,

as shown in Figure 4.8. I conclude that confidence estimators make load

value predictors somewhat larger and more complex but definitely appear to

be worthwhile having. In fact, even the best predictor without a CE does not

come close to the speedup of the worst studied predictor with a CE.

5.4.1 The L4V Selector

Interestingly, the L4V predictor benefits the most from having a SAg CE

over having a bimodal CE with both misprediction recovery mechanisms. To

explain this fact, it is necessary to understand the implementation of the se-

lection mechanism in the L4V predictor.

 66

The L4V comprises four replicated LV predictors with their CEs. Each

component of the L4V operates independently, meaning that they each make

a value prediction and a confidence estimation in parallel. Whichever com-

ponent reports the highest confidence is chosen to make the actual load

value prediction if the confidence is also above the threshold. In case of a tie

the component with the youngest value is selected. The implementation of

the select function from Section 4.3.4 can now be given.

select(val1, val2, val3, val4) = val1 if val1conf = max(val1conf, val2conf, val3conf, val4conf),

val2 if val2conf = max(val1conf, val2conf, val3conf, val4conf),

val3 if val3conf = max(val1conf, val2conf, val3conf, val4conf),

val4 otherwise;

The confidence information is therefore not only used to determine

whether a value prediction should be allowed but also which component of

the L4V predictor to select. Hence, the fact that the L4V benefits more from

the SAg CE relative to the bimodal CE than the LV predictor implies that the

SAg CE represents a better selector than the bimodal CE.

5.4.2 Other Performance Metrics

Often, metrics other than the speedup are used to evaluate the effective-

ness of CEs and value predictors (see Section 3.4). For example, the per-

centage of correct predictions, incorrect predictions, and inhibited predictions

is of interest for load value predictors with CEs. Figure 5.5 shows this classi-

fication for the twenty predictor configurations under discussion.

 67

Load Classification of 2048-Line Predictors for Re-fetch (left half) and Re-
execute (right half)

0

10

20

30

40

50

60

70

80

90

100

B
im

 F
C

M

S
A

g
F

C
M

B
im

 L
4V

S
A

g
L4

V

B
im

 L
V

S
A

g
LV

B
im

 R
eg

S
A

g
R

eg

B
im

 S
t2

d

S
A

g
S

t2
d

B
im

 F
C

M

S
A

g
F

C
M

B
im

 L
4V

S
A

g
L4

V

B
im

 L
V

S
A

g
LV

B
im

 R
eg

S
A

g
R

eg

B
im

 S
t2

d

S
A

g
S

t2
d

Confidence Estimator & Value Predictor

E
xe

cu
te

d
Lo

ad
s

(%
) incorrect prediction

not predicted
correct prediction

Figure 5.5: Load classification of Bimodal and SAg confidence estimators.

 68

It is quite evident in Figure 5.5 that fewer overall predictions are attempted

with re-fetch than with re-execute. While this conservativism significantly re-

duces the number of incorrect predictions, it also lowers the number of cor-

rect predictions. However, this trade-off must be beneficial in the modeled

CPU since the configurations used yield the highest speedups.

Note that none of the predictors predict more than 45% of the dynamically

executed loads correctly. In particular, the Reg predictor only correctly pre-

dicts between eleven and fifteen percent of all the loads. In spite of this very

low prediction rate, the Reg predictor yields a respectable speedup. One can

speculate from this that the loads the Reg predictor is able to predict are

more important than the loads the remaining four predictors can predict. As it

turns out, this is indeed so. The loads predicted by Reg have a substantially

longer average latency than the ones predicted by the other four predictors,

as the shaded columns in Table 5.5 illustrate. For example, the loads pre-

dicted by the Reg predictor have an average latency of over twenty cycles

both with re-fetch and re-execute recovery whereas the St2d’s loads only

have a latency of 12.5 cycles for re-fetch and about fifteen for re-execute.

latency usage latency usage
Bim FCM 15.0 3.3 17.5 3.8
SAg FCM 14.6 3.8 16.6 4.0
Bim L4V 14.9 4.5 15.3 5.8
SAg L4V 14.6 4.9 16.8 5.7
Bim LV 15.3 4.7 16.6 5.2
SAg LV 15.2 5.0 17.2 5.7
Bim Reg 21.2 3.3 20.7 4.7
SAg Reg 20.4 3.9 20.2 4.9
Bim St2d 12.1 3.4 14.8 3.2
SAg St2d 12.7 3.0 15.4 3.2
average 15.6 4.0 17.1 4.6

re-executere-fetch

Table 5.5: Latency and cycles to first usage of the predicted load values.

Evidently, the number of correct predictions, the number of incorrect pre-

dictions, and the prediction rate (the sum of the two) do not adequately pre-

 69

dict the delivered performance of a CE. Rather, it appears that the latency of

the predicted loads also has to be taken into account.

Table 5.6 demonstrates two even more striking examples of metric-

anomalies. The first two lines show that while the bimodal FCM makes fewer

correct predictions, more incorrect predictions, fewer prediction attempts, and

has a lower prediction rate and a lower accuracy than the bimodal L4V with

re-execute, the FCM still outperforms the L4V speedup-wise. To ensure that

this result is not an artifact of the averaging of the speedups, the table shows

the harmonic, geometric, and arithmetic mean speedup as well as the aver-

age IPC (instructions per cycle) improvement of the eight SPECint95 pro-

grams. All four ways of averaging the measured speedups yield the same

result, i.e., the FCM performs better than the L4V. Again, the higher average

latency (Table 5.5) of the loads predicted by the FCM predictor appears to

offer at least one explanation. The second example in Table 5.6 illustrates

another possible reason.

% correct % no % wrong prediction accuracy
predictions predictions predictions rate (%) (%) harmonic geometric arithmetric IPC

Bim FCM 31.15 65.93 2.93 34.08 91.40 11.16 13.63 16.66 13.03
Bim L4V 35.37 62.73 1.90 37.27 94.90 10.66 12.34 14.50 11.58
SAg FCM 34.71 61.34 3.95 38.66 89.78 11.88 14.89 18.55 14.60
SAg LV 40.28 57.26 2.46 42.74 94.24 11.63 13.36 15.59 12.47

mean speedup over baseline (%)

Table 5.6: Various metrics showing anomaly.

The second set of two lines in Table 5.6 shows that according to all non-

speedup metrics the SAg FCM should perform worse than the SAg LV but

again all the shown re-execute speedup averages are in disagreement. This

time even the load latency is in favor of the LV, meaning that there has to be

at least one other as of yet unaccounted for influence on the CE perform-

ance.

The non-shaded columns of Table 5.5 offer a possible explanation. The

average time to the first usage of a predicted load value is much lower for the

 70

FCM (4.0 cycles) than it is for the LV (5.7 cycles), meaning that the FCM’s

predictions are needed sooner by the CPU and are therefore more important

than the LV’s. Again, it looks like the time to the first use of a predicted load

value needs to be accounted for to properly establish a CE’s performance.

Another issue with non-speedup metrics is the time (or physical location)

of the actual measurement. Optimizing predictors for speedup implies opti-

mizing the performance at instruction commit. The interaction between the

CPU and the predictor, however, take place at the time of prediction and then

again at the time of update, possibly long before the time of commit. This

discrepancy may be an issue because, for instance, the accuracy with which

wrong path instructions are predicted is most likely less important than the

accuracy of correct path instructions. Hence, a high overall accuracy meas-

ured at predict or update may not be representative of the predictor’s per-

formance since it makes no statement about the prediction accuracy of the

instructions that are actually retired. The ratio of total predicted loads over

committed value-predicted loads is just under 1.5, indicating that a substantial

number of predictions exist that probably have little impact on the overall per-

formance. To account for any effects this might have, out-of-order and

wrong-path updates of the predictor may have to be accurately modeled and

non-speedup events should be sampled in the commit stage of the CPU and

not at the time of prediction or update.

5.5 Summary

This chapter introduces confidence estimators, which are an essential part

in every load value predictor, as performance numbers illustrate.

First, the simple but effective bimodal confidence estimator is presented

and its operation is described. A behavior study revealed a deficiency of this

CE on sequences of load values that frequently change from being predict-

able to being unpredictable and vice-versa.

 71

To alleviate this problem, the more complex SAg CE is derived. Speedup

results show that it performs better in connection with most load value predic-

tors than the bimodal CE. Furthermore, there is strong evidence that the SAg

CE represents a better selector than the bimodal CE in hybrid predictors.

A study of the expressiveness of non-speedup-based metrics concludes

this chapter. Interestingly, all the simple metrics that are discussed appear to

be misleading in some cases, which is why speedup numbers are used al-

most exclusively in this dissertation for performance evaluation purposes.

 72

Chapter 6
6 Predictor Banking

Predictor Banking

This chapter discusses predictor banking, a technique used to enable

multiple predictor accesses (predictions and updates) per cycle. Several

measurements show that a banked predictor design is necessary but also

sufficient for good load value predictor performance.

6.1 The Need for Banking

As discussed in Section 3.2.3, about 23.3 percent of the committed in-

structions in the SPECint95 benchmark programs are loads. With an aver-

age IPC (instructions per cycle) of 1.677, this results in roughly one executed

load instruction every 2.5 cycles. Since each load accesses the predictor

twice, once to request a prediction and once to update the predictor, the pre-

dictor is accessed once every 1.25 cycles. When also accounting for wrong-

path loads and loads that are re-executed, the number of predictor accesses

increases to 0.962 per cycle on average. However, since prediction and up-

date requests are not evenly distributed over time, it frequently happens that

more than one access per cycle is needed.

Moreover, load value predictors improve the CPU throughput (perform-

ance), which in turn increases the pressure on the predictor because there is

less time between the execution of consecutive load instructions. The col-

umn “accesses per cycle“ in Table 12.1 in Appendix B shows the average

number of predictor accesses for various predictor configurations. As can be

seen, with some of the predictors even the average number of accesses ex-

 73

ceeds one per cycle, clearly demonstrating the need for multi-access support.

Limiting the predictor to one prediction or update per cycle severely hampers

the performance (see Section 6.3), which also shows the importance of an

architecture that supports more than one access per cycle.

6.2 Bank Architecture

One approach to enable multiple accesses per cycle is to break the pre-

dictor up into multiple predictor banks [GaMe98]. In such a predictor, each

bank comprises a small, identical load value predictor. There is no communi-

cation between the banks, making it possible to operate them independently

and in parallel. While each bank by itself is still only able to handle one pre-

diction or update per cycle, taken together the n banks support up to n ac-

cesses per cycle.

The number of banks needed depends on the maximum number of ac-

cesses that the predictor should be able to handle per cycle. Since the CPU I

use can issue up to four load instructions per cycle, a load value predictor

with four banks is probably necessary. The results in the following section

verify this assumption.

While most microprocessors currently only support one issued load per

cycle (because they only have one load/store unit), this issue-rate is likely to

increase in the near future. With every fifth instruction being a load, eight-

way superscalar CPUs already take a considerable performance hit when

only allowing one load per cycle.

I decided to allow up to four loads to issue in the simulated CPU to illus-

trate that predicting and/or updating multiple loads per cycle is straightforward

in load value predictors. Note that the baseline CPU, which does not contain

a load value predictor, is also able to issue up to four loads per cycle. The

four-wide load issue width results in a high-performing baseline CPU, which

makes it harder for a load value predictor to be effective and ensures that no

 74

performance improvements are attributed to the load value predictors that are

actually an artifact of a limited load issue width. Limiting the load issue width

to one decreases the baseline processor’s performance more than the per-

formance of the CPU with a load value predictor. As a consequence, the

speedup (i.e., the performance of the load value predictor) would appear to

be higher.

I believe that if I can show load value predictors to be effective under the

more demanding conditions of a four-wide baseline processor, there is a

good chance that load value predictors will be included in future microproces-

sors and be effective for years to come.

Since the simulated processor I use mimics an Alpha 21264, it fetches

naturally aligned instructions. Consequently, any set of up to four loads that

can be fetched or issued during the same cycle can only contain loads whose

addresses (PC values) differ in the two least significant bits (that are not al-

ways zero). Using these two bits to determine which bank a load should be

handled by guarantees that there is never a bank conflict between issued

loads and results in an interleaved bank design as illustrated in Figure 6.1.

1 Bank 4 Banks

a
e

a I
b
c b
d f
e j
f
g
h c
I g
j k
k
l d

h
l

4 Queues1 Queue

Single Bank Predictor Interleaved Predictor

Figure 6.1: Line correspondence of single-bank and interleaved predictor.

 75

Because the address of an instruction never changes during program

execution, a given load will always be handled by the same predictor bank.

With an interleaved banking scheme, all the load instructions that the mod-

eled CPU can possibly fetch during the same cycle not only go to distinct

banks but the first of the four instructions will always be handled by the first

predictor bank (if it is a load), the second instruction by the second bank and

so forth. Hence, neither arbitration nor rotation logic is necessary for predic-

tions. For CPUs that fetch contiguous but not necessarily naturally aligned

sets of instructions, the relative position of the instructions within the fetch

block may have to be rotated before accessing the predictor banks. There

should be enough time available to perform this rotation during the decode

stage, making the interleaved banking scheme applicable to a broad range of

processors. Gabbay and Mendelson describe a more complex predictor

banking scheme for CPUs with trace-caches that do not necessarily fetch

contiguous instructions [GaMe98].

Unfortunately, predictor updates also take time and keep the predictor

bank that is being updated busy for one cycle during which it is not available

for making a prediction. Since it is vital for good performance that the pre-

dicted load values be available as soon as possible, updates should be given

a lower priority than predictions. Hence, updates are only allowed during cy-

cles when the respective bank is not making a prediction, i.e., when it is idle.

To avoid dropping (i.e., losing) updates whenever the bank is busy, which

would considerably decrease the performance of the predictor, updates are

temporarily stored in a FIFO (first-in first-out) queue. Each predictor bank

contains one such queue that can accept one update per cycle. Updates are

only dropped if the queue is full. Whenever a queue is not empty and the

corresponding predictor bank is idle, the queue issues updates at a rate of

one per cycle. The following section shows that sixteen-entry queues are suf-

ficient to essentially avoid dropping any updates.

 76

6.3 Bank Performance

Figure 6.2 shows the speedup delivered by the five basic load value pre-

dictors from Section 4.3 with one, two, and four (interleaved) predictor banks

as well as with four banks that support an infinite number of accesses per cy-

cle (denoted as “unlimited”). Each predictor has a total of 2048 lines that are

equally distributed among the banks, meaning that the total predictor size is

roughly the same for the four configurations. Nevertheless, the two and in

particular the four bank predictors require a little more state than their single

bank counterparts because each bank requires its own sixteen-entry update

queue and second level of the SAg confidence estimator in order to be inde-

pendent of the other banks. The CEs are configured with the parameters

shown in Table 5.4.

Re-fetch Speedup of SAg Predictors with Various Bank Configurations

0

2

4

6

8

10

12

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

1 Bank
2 Banks
4 Banks
Unlimited

Figure 6.2: Re-fetch speedup of differently banked SAg predictors.

 77

Figure 6.2 illustrates the performance of the five predictors with SAg CEs

and a re-fetch misprediction recovery mechanism. The results for the predic-

tors with bimodal CEs and re-fetch, with bimodal CEs and re-execute, and

with SAg CEs and a re-execute exhibit the same general trends and can be

found in Appendix B.

Clearly, the single-bank predictors perform substantially worse than their

four-banked counterparts in all cases. On average, the roughly same sized

four-bank predictors outperform the one-bank predictors by 42.7%. The two-

bank predictors outperform the one-bank predictors by 26.4% on average but

underperform their four-banked counterparts in all cases.

Interestingly, the four-banked predictors sometimes perform slightly better

than the same predictors with four banks that support an unlimited number of

accesses per cycle. Since the predictors are structurally identical and only

differ in their timing behavior, this apparent paradox must be explainable by

the delayed updates. The predictions cannot be the reason because their

timing behavior is the same in both cases since the four banks never drop a

prediction and predictions take precedence over updates. Hence, predictions

happen at the same time in both the four-banked and the unlimited predic-

tors.

The updates, however, take place later in the implementable four-bank

predictors than in the unlimited predictors. At first sight it seems illogical that

a predictor that is more likely to contain out-of-date information would outper-

form a more up-to-date predictor. While I do not have proof for this, I believe

that the outdated value information indeed decreases the performance but

the outdated confidence information is actually helpful for bridging phase

transitions by providing some hysteresis, which could explain the slightly im-

proved performance. A detailed analysis of this phenomenon and possible

exploitation thereof is left for future work.

Figure 6.2 (and the results shown in Appendix B) provides strong evi-

dence that a processor should have one predictor bank for every load that it

 78

can issue per cycle. In our case, the four-bank implementations outperform

their counterparts with fewer banks, which are scaled to the same total size.

At the same time, the four-banked predictors yield the same performance as

the unlimited predictors, meaning that a simple interleaved banking scheme

is sufficient to reap the full potential of the predictor.

Because predictions take precedence over updates and because no more

than four predictions need to be made per cycle, no predictions are ever

dropped in the four-bank case. With only two banks, nineteen percent of the

requested predictions have to be dropped on average because the required

bank is already busy making another prediction. With one bank, 50.4% of

the predictions cannot be made due to a busy predictor. Table 12.1 in Ap-

pendix B shows the percentage of dropped predictions for different numbers

of banks and a variety of load value predictors.

Delaying updates by a few cycles (in the update queue) and dropping up-

dates when the queue is full appears not to impact the performance at all.

The sixteen-entry update queues are large enough so that on average only

0.026% of all the updates have to be dropped due to a full queue in the four-

bank case. With two banks, the queues are full 2.1% of the time and with just

one bank 23.9% of the updates have to be dropped on average. The drop-

rates of the individual predictors are listed in Appendix B. The investigation

of the performance of shorter update-queues is left for future work.

Table 12.1 in Appendix B lists relevant bank information for the five basic

predictors with one, two, and four banks for all combinations of re-fetch and

re-execute as well as bimodal and SAg CEs. The information in the table in-

cludes the average number of load instructions that are retired per cycle, the

average number of load value predictor accesses per cycle, the average

number of references to the load value predictor per cycle (i.e., the number of

prediction requests), the average number of updates per cycle, the percent-

age of prediction requests that have to be dropped due to a busy bank, and

the percentage of dropped updates due to a full update queue.

 79

As the data in the table shows, the number of prediction requests per cy-

cle is often higher than the number of updates because of wrong-path load

instructions that request a prediction but are cancelled before they can up-

date the predictor. However, in a few cases there are more updates than

predictions. This only happens with re-execute, though, because re-executed

load instructions update the predictor multiple times.

Note also that for both re-fetch and re-execute, the number of predictor

accesses is on average about 2.23 times higher than the number of commit-

ted load instructions. Assuming exactly two predictor accesses per load, we

find that in addition to the committed loads, another 11.5% of load instruc-

tions affect the predictor that stem from wrong path executions.

6.4 Bank Usage

The utilization of the four predictor banks is almost identical for all the

tested predictor configurations. The first bank is accessed 27.6%±0.2% of

the time (depending on the predictor), the second bank 21.8%±0.1%, the

third bank 29.3%±0.2%, and the fourth bank 21.3%±0.2% of the time. This

result is hardly surprising since the utilization is a function of the distribution

of load instructions in the fetch blocks. The observed percentages show that

this distribution is quite uniform and not biased by the code scheduler.

Hence, it appears that banking does not result in uneven utilization.

6.5 Summary

The performance numbers in this chapter show that in order to be effec-

tive, a load value predictor has to support multiple accesses per cycle in con-

nection with a CPU that has a load-issue-width greater than one. Splitting a

predictor into multiple interleaved banks is a straightforward approach and

 80

provides the needed support for multiple simultaneous predictor accesses.

The performance results show that such a banking scheme can deliver the

same speedup as a predictor that supports an unlimited number of accesses

per cycle. Unless otherwise noted, all the predictors in this dissertation are

split into four predictor banks.

 81

Chapter 7
7 Improving Predictor Utilization

Improving Predictor Utilization

This chapter investigates the utilization of load value predictors and sug-

gests an alternative predictor design that performs better due to improved

and more balanced hardware utilization.

Furthermore, speedup results for individual programs and not only aver-

ages over the whole benchmark suite are presented. A sensitivity analysis of

several last four value predictor parameters concludes this chapter.

7.1 Line Utilization

While every line in a load value predictor requires the same amount of

state to store information, not every line is used equally frequently. In fact,

even in relatively small predictors most of the lines are seldom utilized, as the

quantile information from Section 3.2.2 illustrates. As discussed, only a small

percentage of the load instructions contained in a binary contributes most of

the dynamically executed loads. For example, Table 3.3 shows that on aver-

age only 36.6% of the load sites (the static load instructions in the binary) are

visited at all during execution, 3.5% of the load sites contribute ninety percent

of the executed loads, and less than one percent of the load sites contributes

over half of the dynamically executed loads.

Clearly, only a small percentage of the load sites is responsible for most

of the executed loads. As a consequence, only a few lines in the load value

predictor are accessed most of the time and thus have to handle most of the

predictions and updates.

 82

To find out what number of predictor lines is really needed to handle a

given percentage of executed loads in absolute terms, the number of load

sites that account for the given percentages of executed loads is shown in

Figure 7.1 for each of the eight SPECint95 programs individually. Note that

the scale on the y-axis is logarithmic.

Number of Load Sites Contributing the Given Percentage of Executed
Loads

1

10

100

1000

10000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Dynamically Executed Loads (%)

N
um

be
r

of
 S

ta
tic

 L
oa

d
S

ite
s

compress gcc
go ijpeg
li m88ksim
perl vortex

Figure 7.1: Absolute quantile numbers for the eight SPECint95 programs.

With the exception of gcc, which is by far the largest of the eight pro-

grams, ten load sites and therefore ten predictor lines handle almost fifteen

percent of the executed loads. Except for gcc and go, fewer than sixty pre-

dictor lines are needed to cover over half of all the predictions and updates.

The program go requires about two hundred lines and gcc about nine hun-

dred predictor lines to handle half of all the executed loads. Again with the

exception of gcc and go, fewer than six-hundred predictor lines are necessary

to handle ninety percent of the predictor traffic.

 83

As these numbers illustrate, over half of all the predictor lines in a 2048-

line predictor are scarcely used when running the SPECint95 programs. This

observation prompted me to investigate alternative predictor designs to im-

prove the utilization of the hardware, hoping that better utilization will also re-

sult in higher performance.

One generic approach to increase the usage of the available real-estate is

to take away hardware from the infrequently executed loads and “give” it to

the frequently executed load instructions. Doing so reduces the predictor’s

capability to predict infrequently executed loads, but at the same time it

should increase the prediction accuracy and the number of times the fre-

quently executed loads can be predicted. Due to the widely varying execu-

tion frequency of loads, missing infrequently executed loads and better pre-

dicting frequently executed loads is likely to be a beneficial trade-off.

7.2 Trading off Height for Width

An increase in prediction accuracy and in particular in the absolute num-

ber of correct predictions can be achieved by increasing the amount of infor-

mation available for making predictions. For example, instead of only retain-

ing the last seen load value, one could store the last n load values in every

predictor line. Of course, this would significantly increase the size of the pre-

dictor, which is why the number of predictor lines has to be reduced by a fac-

tor of n if the overall predictor size is to be maintained.

Reducing the number of predictor lines and increasing the amount of in-

formation stored in each line has the desired effect of retaining more informa-

tion about frequently executed load instructions while expelling infrequently

executed loads from the predictor (because of the smaller number of predic-

tor lines).

A predictor that stores the last n load values is called a last n value predic-

tor. The last four value predictor from Section 4.3.4 is an example of such a

 84

predictor. As explained in Section 5.4.1, the confidence estimators in each of

the n predictor components can be used to select one of the n components

for making the next prediction by “measuring” which of the n values is the

most likely to result in a correct prediction.

The architecture and operation of a last n value predictor is identical to

that of the last four value predictor except that there may be fewer or more

than four values per predictor line. In fact, the last value predictor (Section

4.3.1) is one extreme of the more general last n value predictor (n = 1).

The number n is often referred to as the width of a last n value predictor.

The wider such a predictor is, the fewer lines it can have for a given predictor

size. Hence, there exists a trade-off between the predictor’s height (the

number of lines) and its width.

Based on the quantile numbers from the previous section, it is likely that

reducing the predictor height and increasing its width is beneficial until the

predictor becomes so short that it cannot hold the frequently executed load

instructions anymore or until retaining additional values in the predictor lines

no longer results in better predictions. Performance studies are therefore

necessary to find the optimal width and height of a last n value predictor for a

given predictor size and workload.

7.3 SAg L4V Predictor Design and Performance

The previous section established that a load value predictor’s height ought

to be tall enough (i.e., have a sufficiently large number of lines) to accommo-

date the load instruction working set size. If the predictor is too short, some

frequently executed load instructions will have to share a predictor slot, which

almost always results in detrimental aliasing. Predictors that are too tall, on

the other hand, underutilize their hardware. The optimal predictor width

therefore depends on the working set size of the programs and the available

predictor real-estate.

 85

To better evaluate the trade-off between predictor height and width,

Figure 7.2 and Figure 7.3 are presented. They show the mean speedup of a

last one, two, four, eight, and sixteen value predictor with re-fetch and a re-

execute recovery, respectively. Three speedup numbers are given for each

predictor. The first one shows the speedup for a predictor with a total capac-

ity of 512 load values, the second one for a predictor size of 2048 values, and

the last one for a predictor with 8192 values. For each predictor size and

width, the performance obtained with the best threshold and penalty values is

shown. All the predictors are partially tagged and contain SAg confidence

estimators with ten-bit histories. The counter top is sixteen with re-fetch and

eight with re-execute. The CE is also used as selector.

Figure 7.2 shows that for small predictors with only four kilobytes of state

for storing values (512 values), a width of one results in the highest speedup.

Storing two values per line and halving the number of predictor lines yields

less speedup because there are not enough lines left for the frequently exe-

cuted loads in the SPECint95 programs, which results in detrimental aliasing

and thus lower performance. The shorter the predictor the more pronounced

the aliasing is, hence the continuous decrease in speedup as the predictors

become wider.

With sixteen kilobytes of state (2048 values), a width of four results in the

highest speedup and the detrimental aliasing only sets in above four entries

per predictor line. When the predictor size is increased even further (to sixty-

four kilobytes or 8192 values of total storage), the best width turns out to be

eight. Only at a width of sixteen does the performance decrease again.

 86

Performance of Several Tag SAg Last n Value Predictors with Re-fetch

0

2

4

6

8

10

12

14

512 values 2048 values 8192 values

Predictor Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

LV
L2V
L4V
L8V
L16V

Figure 7.2: Re-fetch speedup of three sizes of last n value predictors.

Performance of Several Tag SAg Last n Value Predictors with Re-execute

0

2

4

6

8

10

12

14

16

512 values 2048 values 8192 values

Predictor Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

LV
L2V
L4V
L8V
L16V

Figure 7.3: Re-execute speedup of three sizes of last n value predictors.

 87

Figure 7.3 is identical to Figure 7.2 except that the misprediction recovery

mechanism used is re-execute instead of re-fetch. The best performing pre-

dictor widths are exactly the same for the three sizes and are even more pro-

minent.

Interestingly, the last two value predictor performs worse than the last

value predictor in all presented cases. Since the last two value predictor has

a selector and the last value predictor does not, it appears that the loss due

to imperfect selections is slightly larger than the benefit of having the two last

values available for making predictions. Note, however, that the last two

value predictor outperforms the last value predictor when both are given the

same number of predictor lines (i.e., the LV predictor is half the size of the

L2V predictor) and that the last two value predictor does outperform the

same-sized last value predictor for sizes above the depicted 8192-entry

predictors.

In general, and as expected, the optimal predictor width increases as the

predictors become larger (for a fixed workload). Because of the highly

skewed distribution of the execution frequency among load instructions, al-

ready relatively small load value predictors benefit from an increase in width

even at the cost of a decreased height. For example, both with re-fetch and

re-execute, the sixteen kilobyte last four value predictor outperforms the other

last n value predictors of the same size. Consequently, a width of four and a

height of 512 represents the optimal width over height ratio for this workload

and predictor size.

7.4 SAg L4V Predictor Potential

In brief, the four-banked, 2048-entry eight-bit partially tagged SAg last four

value predictor’s average accuracy over SPECint95 measured in the CPU’s

commit stage is 97.6% using re-fetch with a counter top of sixteen, a thresh-

old of fourteen, and a penalty of eleven. On average, 32.6% of the commit-

 88

ted load instructions are predicted with the correct value and 0.8% with an

incorrect value. This results in a harmonic mean speedup of 11.0% relative

to the same CPU without the load value predictor.

With re-execute, a counter top of eight, a threshold of seven, and a pen-

alty of four, the average accuracy of the predicted load instructions that are

committed is 94.2%. 34.6% of the load instructions are correctly predicted on

average and 2.1% are incorrectly predicted. The resulting harmonic mean

speedup is 12.5%.

7.4.1 Comparison with Oracles

To better understand the potential that lies in load value prediction and to

see how much of this potential the last four value predictor can reap, I modi-

fied the simulator to provide various degrees of perfect knowledge to the load

value predictor, i.e., to include oracles that can make perfect predictions.

The first predictor (no-oracle) represents the Tag SAg L4V predictor in its

conventional and implementable form. It has a capacity of 2048 values and

does not contain an oracle.

The first oracle (ce-oracle) represents the same predictor except it incor-

porates a perfect confidence estimator. Because the confidence information

is always correct, no incorrect predictions are made (they are all inhibited)

and the predictor always makes a prediction if the (imperfectly) selected

component contains the correct value.

The next oracle (ce/sel-oracle) improves on the first one by also including

a perfect selector. This means that the oracle not only always makes a pre-

diction if the correct value is available and never makes a prediction other-

wise, but also that it chooses the component that will make a correct predic-

tion if such a component exists. Hence, if any component in the predictor

can make a correct prediction, it is selected and a prediction is made, other-

wise no prediction is attempted. This oracle also never causes a mispredic-

 89

tion.

The final oracle (all-oracle) predicts all executed load instructions cor-

rectly. The all(tag)-oracle does the same except it only attempts a prediction

if there is a tag-match in the 512-line predictor. Again, there are no mispre-

dictions. As opposed to all the other oracles, the all-oracle never decides not

to make a prediction.

Figure 7.4 shows the speedups of the oracle-less L4V predictor and the

four oracles with a re-fetch and a re-execute misprediction recovery mecha-

nism.

Performance of Various Oracles

11.0

19.6

24.2

51.4

55.7

12.5

19.6

24.2

51.4

55.7

0

10

20

30

40

50

60

no-oracle ce-oracle ce/sel-oracle all(tag)-oracle all-oracle

Oracle

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch

re-execute

Figure 7.4: Performance of L4V predictors with different oracles.

Adding perfect confidence estimation (ce-oracle) results in a significant in-

crease in speedup in comparison with the implementable predictor (no-

oracle). Because the no-oracle’s accuracy is already very high (mid to high

 90

nineties), the performance improvement most likely does not stem from inhib-

iting the few incorrect predictions that the no-oracle predictor makes but

rather from the relatively large number of times the no-oracle does not make

a prediction even though it has the correct information available. Since the

CE setting of the no-oracle predictor is the result of a global optimization and

therefore yields the highest speedup, I conclude that trading off missing po-

tentially correct predictions for reducing the number of incorrect predictions is

beneficial in the simulated CPU. Apparently, incorrect predictions incur a

high cycle penalty and should therefore be avoided, which results in a con-

servative predictor with a high accuracy but a relatively low coverage. Note

that, because there are no mispredictions and hence no recoveries, the ce-

oracle speedups for re-fetch and re-execute are (almost) the same. They are

not exactly the same because a quite different SAg CE setting is used for re-

fetch than for re-execute, which affects the performance of the (imperfect)

selector. The more precise speedup numbers are 19.614% for re-fetch and

19.643% for re-execute, showing that rather different CE settings result in

similar but not quite identical selector performance.

Perfect confidence estimation in combination with perfect selection

(ce/sel-oracle) boosts the speedup even more. Clearly, the selection mecha-

nism used in the no-oracle predictor is not perfect. Overall, the L4V predic-

tor’s confidence estimator and selector are able to reap 45% to 52% of the

theoretically possible speedup for this predictor (no-oracle versus ce/sel-

oracle speedup).

A comparison with the perfect load value predictor (all-oracle), however,

shows that there is still a large amount of potential for improvement left. The

predictor only yields 20% to 23% of the speedup that can theoretically be at-

tained with load value prediction. Comparing the all-oracle with the ce/sel-

oracle shows that the L4V predictor does not even contain the necessary in-

formation to reach half the possible speedup. This large gap suggests that

there exists significant opportunity for other prediction methods. It is, how-

 91

ever, unclear how much of the remaining potential can be realized, in particu-

lar with a limited amount of state for storing information.

Comparing all(tag)-oracle with all-oracle shows that having only 512 pre-

dictor lines does not hamper the performance much due to aliasing, which

was to be expected since the last two value predictor with 1024 lines per-

forms worse than the L4V predictor of the same size (see Section 7.3). The

average loss of prediction potential over SPECint95 due to tag misses is less

than eight percent in a 512-line load value predictor.

7.5 SAg L4V Sensitivity Analysis

So far, the different load value predictors have been optimized to yield the

highest harmonic mean speedup over the eight benchmark programs. In this

section, the L4V predictor’s performance will be optimized for each individual

program separately. Furthermore, the sensitivity of the SAg history length

and counter size is analyzed.

Unless otherwise noted, the load value predictor used is an eight-bit par-

tially tagged, SAg-based last four value predictor with a capacity of 2048 val-

ues (requiring sixteen kilobytes of state for retaining load values). The SAg

counter top is sixteen for re-fetch and eight for re-execute. The threshold and

penalty values are optimized and differ for each case as indicated.

7.5.1 SAg History Length

I have already shown the SAg confidence estimator to work well with ten-

bit histories in the last value predictor [BuZo98b]. Figure 7.5 shows the per-

formance of the last four value predictor for different history lengths. Note

that, in order to make the trend more apparent, the figure is not zero-based.

 92

Performance Sensitivity to the SAg History-Length

7

8

9

10

11

12

13

6 bits 7 bits 8 bits 9 bits 10 bits 11 bits 12 bits

Number of History Bits

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch

re-execute

Figure 7.5: Mean speedup with different history lengths.

 93

As the figure illustrates, ten-bit histories also mark the beginning of the

performance saturation for the last four value predictor, both with re-fetch and

re-execute. Similar investigations of several other predictors with SAg confi-

dence estimators show that ten-bit histories are sufficient for most SAg-based

load value predictors.

Note that it is important to chose as short a history as possible because

every additional bit doubles the number of required saturating counters in the

second level of the SAg confidence estimator. Hence, to maximize the

performance while keeping the number of history bits at a minimum, I chose

ten-bit histories for basically all of my predictors.

Note that all the predictors in Figure 7.5 use the same threshold and pen-

alty values. Only the number of history bits and therefore the number of satu-

rating counters is varied. A threshold of fourteen and a penalty of eleven for

re-fetch and a threshold of seven and a penalty of four for re-execute repre-

sents the optimum for the ten-bit case. Using these parameters with the

longer and shorter histories does not necessarily result in the best perform-

ance. However, the results from Section 7.5.3 indicate that the performance

is most likely very close to optimal. Nevertheless, this suboptimality is proba-

bly the reason why the eleven-bit re-execute performance is slightly lower

than its ten-bit counterpart. Note that while the expected optimal perform-

ance in the nine-bit case is slightly higher than shown, it is not as high as the

performance in the ten-bit case.

7.5.2 SAg Counter Parameters

Figure 7.6 illustrates how well the last four value predictor performs with

differently sized saturating counters in the SAg CE. Note that the presented

performances are obtained with an optimized threshold and penalty value for

each predictor configuration. Again, the trends seen in the figure are repre-

sentative of other SAg-based load value predictors as well.

 94

Best Performance Depending on the SAg Counter-Size

-2

0

2

4

6

8

10

12

14

1 bit 2 bits 3 bits 4 bits 5 bits

Counter Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
) re-fetch

re-execute

Figure 7.6: Best L4V performance for different saturating-counter sizes.

 95

As the figure shows, counter top values smaller than eight (three bit

counters) for re-execute and sixteen (four bit counters) for re-fetch diminish

the achievable performance, while larger counters do not significantly im-

prove the performance. To keep the counters as small as possible without

affecting the performance overly much, I selected three-bit counters for re-

execute and four-bit counter for re-fetch for all predictors in this dissertation

(unless otherwise indicated).

7.5.3 Optimizing Individual Programs

So far, all the presented performance numbers have been harmonic mean

speedups over the eight SPECint95 benchmark programs. While these num-

bers are hopefully representative of the average benefit one can expect from

adding a load value predictor to a CPU, the actual performance im-

provements of individual programs do vary substantially.

Figure 7.7 and Figure 7.8 show the individual speedups of the eight

benchmark programs for re-fetch and re-execute, respectively, as well as the

harmonic mean speedup over the entire suite. Two results are given for each

program. The left bar shows the speedup of each program using the last four

value predictor configuration that yields the highest average speedup,

whereas the right bar shows the highest individual speedup, i.e., when the

predictor’s threshold and penalty values are optimized for each program

separately.

 96

L4V Performance Gain of Individual Programs using Re-fetch

-10

0

10

20

30

40

50

60

70

80

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

ha
rm

on
ic

m
ea

n

Program

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

best average
best individual

Figure 7.7: The speedup of the SPECint95 programs using re-fetch.

L4V Performance Gain of Individual Programs using Re-execute

-10

0

10

20

30

40

50

60

70

80

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

ha
rm

on
ic

m
ea

n

Program

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

best average

best individual

Figure 7.8: The speedup of the SPECint95 programs with re-execute.

 97

Clearly, perl and m88ksim benefit the most from load value prediction.

The speedup of the remaining programs is moderate. Surprisingly, no con-

figuration of the SAg-based last four value predictor yields a positive speedup

for vortex. Since vortex is a database program, I can only assume that it

simply does not exhibit sufficiently short and discernable predictability pat-

terns that the predictor could exploit. With re-fetch, the program li, which is a

Lisp interpreter, can also not be sped up by the L4V load value predictor.

It is quite evident in both figures that the speedups of the individual pro-

grams vary significantly. What is almost more surprising, though, is that the

individually optimized predictor configurations yield only marginally more per-

formance than the best average speedup with a re-fetch misprediction recov-

ery mechanism. This is a promising result because it shows that a single

predictor configuration fits most programs reasonably well.

Generally speaking, the same is also true with re-execute recovery. How-

ever, the re-execute speedups differ more between the individually optimized

programs and the best average case than the re-fetch speedups. The rea-

son for the large discrepancy between the individual and average harmonic

mean speedups for re-execute is the program ijpeg. For some reason, this

program benefits very much from a better threshold and penalty setting.

Clearly, the setting that yields the best average performance does not work

well for ijpeg.

I conclude that adapting the confidence estimator setting to individual pro-

grams is only seldom necessary and that a good predictor configuration gen-

erally yields good results for most programs.

Of course one would expect all the programs to perform better with re-

execute than with re-fetch. This is indeed so for seven of the eight programs.

However, perl performs slightly better with re-fetch than with re-execute. The

reason is that for perl the re-execute counter top of eight is too restrictive,

which is why it performs better with the re-fetch counter top of sixteen in spite

of the more costly recovery mechanism. This result shows that the selected

 98

counter tops of eight and sixteen are not necessarily good for all programs

and that performance analyses are required to obtain the ideal counter top

value for individual programs.

Table 7.1 lists the fixed counter top values and the best threshold and

penalty value of the SAg L4V predictor for each SPECint95 program as well

as the parameters that result in the best average performance.

compress gcc go ijpeg li m88ksim perl vortex best avg

counter top 16 16 16 16 16 16 16 16 16
threshold 11 15 15 12 15 14 13 15 14
penalty 4 6 9 4 13 12 3 13 11
counter top 8 8 8 8 8 8 8 8 8
threshold 0 6 7 0 7 7 6 7 7
penalty n/a 1 4 n/a 7 4 1 7 4

re
-f

et
ch

re
-e

xe
c

Table 7.1: Best individual and average predictor configurations.

With re-fetch, we find that all the programs have a threshold close to the

best average threshold of fourteen. With re-execute, compress and ijpeg are

outliners in the sense that they both perform best with a threshold of zero,

which disables the confidence estimator altogether (but not the selector) and

allows every load to be predicted. In other words, these two programs per-

form best without a confidence estimator. Note that while a penalty value is

not applicable (n/a) with a threshold of zero as far as the confidence estima-

tor is concerned, the chosen penalty value of one still affects the performance

of the selector. However, the impact of different penalties on the selector

performance is only minimal, as was noted in Section 7.4.1.

Unlike the threshold values, the optimal penalty values vary considerably

from one program to another. However, there is a clear correlation between

the best re-fetch and re-execute penalties because whenever the best pen-

alty value is low for one recovery mechanism then it is also low for the other

recovery mechanism and vice-versa (relative to the counter top value).

While the penalties listed in Table 7.1 represent the best values for the

given predictor and workload, changing them quite drastically does not impact

 99

the performance much, as the results from Figure 7.7 and Figure 7.8 indicate.

Table 7.2 illustrates this weak dependence between the speedup and the se-

lected penalty value for the program gcc. It shows the speedup of gcc for dif-

ferent penalty values when all the other parameters are held constant.

penalty 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
speedup -1.44 0.67 1.06 1.15 1.17 1.18 1.16 1.16 1.14 1.13 1.13 1.10 1.10 1.09 1.08

Re-fetch speedup of gcc using a Tag SAg L4V predictor with 512 lines, a counter top of 16 and a threshold of 15

Table 7.2: The L4V speedup of gcc for different penalty values.

The highest speedup is obtained with a penalty of six. For both higher

and lower penalties the speedup drops slightly. However, any penalty be-

tween three and fifteen results in close to optimal performance. Only penal-

ties of one and two yield significantly inferior performance. This behavior of a

stable performance over a wide range of penalties (sometimes with drop-offs

at either end) is quite typical for most load value predictors, as the speedup

maps in Appendix C verify (see Section 8.2 for the definition of a speedup

map).

Table 7.3 shows that the dependence between the speedup and the

threshold value is more pronounced than the dependence between the

speedup and the selected penalty.

threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
speedup -23.30 -10.77 -4.56 -1.84 -0.50 0.15 0.53 0.75 0.89 0.98 1.04 1.07 1.10 1.10 1.13

Re-fetch speedup of gcc using a Tag SAg L4V predictor with 512 lines, a counter top of 16 and a penalty of 11

Table 7.3: The L4V speedup of gcc for different threshold values.

With a penalty of eleven, the best threshold is fifteen. Threshold values

above about eight yield a decent performance, but lower thresholds signifi-

cantly affect the predictor’s effectiveness. In fact, the two lowest thresholds

result in a substantial slowdown, illustrating the need for a good threshold

value. Nevertheless, the performance does not abruptly drop off near the op-

 100

timal threshold value. Rather, thresholds near the optimal value still result in

relatively good performance. Again, this behavior is rather typical for load

value predictors, as the speedup maps in Appendix C show.

7.5.4 Using Distinct Last Values

Instead of simply retaining the last four values, Wang and Franklin pro-

pose a last distinct four value predictor [WaFr97], which also stores four val-

ues per line, but the predictor only inserts a new value if that value is not al-

ready among the four values. Unfortunately, finding out whether the value is

already present requires content addressable memory, which storing the last

four values regardless of whether any of them are identical does not.

In previous work [BuZo99b] and Section 9.4.1, I show that the regular last

four value predictor with its lower complexity outperforms Wang and Frank-

lin’s last distinct four value predictor in spite of the latter’s somewhat higher

predictability potential. Figure 7.9 shows the last n value predictability when

retaining every loaded value versus only retaining distinct values. The poten-

tial is given as the percentage of the fetched load values that are identical to

at least one of the retained values.

According to Figure 7.9, larger n yield a higher predictability potential.

This result is intuitive since the chance of finding the correct value increases

as the number of retained values becomes larger. The increase is consider-

able for small n up to about four. Then the “curve” starts flattening out and

saturates at approximately n = 11, at which point almost no extra potential is

gained by further increasing n.

 101

Last (Distinct) n Value Locality

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n

P
er

ce
nt

 o
f E

xe
cu

te
d

Lo
ad

s

non-distinct

distinct

Figure 7.9: The average last n value and last distinct n value predictability.

 102

One interesting observation is that the potential difference between dis-

tinct and non-distinct values is virtually constant. Hence, the relative advan-

tage of storing distinct values becomes smaller as n gets larger.

For n = 4, which is the predictor width Wang and Franklin chose

[WaFr97], the potential difference is one eighteenth of the total potential of

about sixty-four percent. Therefore, a predictor that retains the last four not

necessarily distinct values is theoretically able to perform nearly as well as its

more complex counterpart that retains the last distinct four values.

Wang and Franklin’s predictor uses a least recently used replacement pol-

icy and a bimodal CE (and selector) that is indexed by a usage-pattern. Their

predictor only outperforms the Tag SAg L4V predictor for very small predictor

sizes (see Section 9.4.1). To see whether it is possible to reap the additional

potential that lies in retaining only distinct values in larger predictors as well, I

modified the Tag SAg L4V predictor so that it only inserts a new value if the

new value is not already among the four stored values. In all other aspects

the new predictor (called Ld4V) operates just like the old one (L4V), i.e., it

has a SAg CE in each of the four sub-components that are also used as the

selector. The performance of this new predictor is presented in Figure 7.10

for three predictor sizes (in number of total values retained).

Retaining only distinct values is clearly beneficial. With re-execute recov-

ery, larger predictors appear to benefit less from retaining only distinct values.

The opposite seems to be true for re-fetch. The reason why Wang and

Franklin’s predictor with its least recently used replacement policy (the Ld4V

uses first-in first-out) does not perform as well as the comparable L4V and

Ld4V predictors is probably the usage-pattern-based bimodal confidence es-

timator. The performance of their predictor is shown in Section 9.4.1.

 103

Tag SAg L4V versus Tag SAg Ld4V Performance

0

2

4

6

8

10

12

14

512 2048
re-fetch

4096 512 2048
re-execute

4096

Predictor Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

L4V (any values)

Ld4V (distinct values)

Figure 7.10: Speedup of the Tag SAg L4V and the Tag SAg Ld4V.

 104

7.6 Summary

This chapter shows that the highly skewed distribution of the execution

frequency of load instructions results in an unbalanced utilization of the load

value predictor hardware. As a result, it can be advantageous to make load

value predictors wider and shorter, that is, to retain more information about

few load instructions instead of retaining little information about a large num-

ber of loads. For example, among last n value predictors with a capacity of

2048 load values, the last four value predictor represents the best width ver-

sus height trade-off for SPECint95 and yields the highest speedup. The lar-

ger the predictor, the larger a predictor width results in the best performance.

In addition, this chapter also investigates the sensitivity of the L4V predic-

tor’s performance of various predictor parameters. For instance, three to

four-bit saturating counters and ten-bit histories seem to be necessary for

good SAg CE performance. Larger counters and histories do not result in

significantly higher speedup for most programs. Furthermore, the perform-

ance delivered by a load value predictor varies greatly from program to pro-

gram. Nonetheless, the predictor configuration that yields the best average

performance over the SPECint95 benchmark suite also yields close to opti-

mal performance for each of the individual programs with only one significant

exception. Finally, retaining only distinct values in a last four value predictor

instead of retaining values regardless of whether some of them are identical

appears to be somewhat beneficial, in particular with small predictor sizes.

 105

Chapter 8
8 Hybridizing Load Value Predictors

Hybridizing Load Value Predictors

This chapter investigates the benefit of building predictors that combine

several load value predictors in one, i.e., of hybridizing predictors. The next

chapter will show how to reduce the size of hybrid load value predictors.

8.1 The Benefit of Hybridization

It is not a priori clear whether combining multiple load value predictors re-

sults in a predictor that is capable of predicting more load instructions cor-

rectly or that can make more accurate predictions. For example, it may hap-

pen that two different predictors essentially predict the same load instructions

with the same values. Obviously, combining two such predictors would not

result in improved performance but only in a larger and more complex predic-

tor. As mentioned in Section 4.3.3, the stride (2-delta) predictor is able to

make last value predictions with a stride value of zero. Consequently, com-

bining a last value predictor with a stride predictor will probably not yield a

predictor that is more effective than the stride predictor by itself.

Like the last n value predictor from the previous chapter, hybrid predictors

consist of multiple component predictors of which one component must be

selected for making a prediction. The confidence estimators are used to

guide the selection process, i.e., the component that reports the highest con-

fidence is selected but the selected component is only allowed to make a

prediction if its confidence is above the preset threshold.

 106

8.2 Hybrid Performance

In order to determine which predictors complement each other well in a

hybrid configuration, I tested every possible combination between a register,

last value, stride 2-delta, last four value, and finite context method predictor.

Because the last four value predictor is a strict superset of the last value pre-

dictor (with the same number of predictor lines), hybrid combinations that in-

clude both a LV and a L4V predictor are excluded from this study. The per-

formance of the excluded hybrids is exactly the same as the performance of

the same predictor without the LV component.

The components in the hybrid predictors discussed in this chapter are pri-

oritized to resolve selector ties, i.e., when two or more components report the

same highest confidence. In such a case, the component with the highest

confidence and the highest priority is selected. If only one component reports

the highest confidence, then that component is selected regardless of its pri-

ority. Since changing the priority among the components of a hybrid does not

appear to affect the performance considerably (see Section 9.5.1), only hy-

brids in which the components are prioritized in the following order (from high

priority to low priority) are investigated: Reg, LV, St2d, L4V, FCM.

Because it is the goal of this chapter to study which predictors comple-

ment each other well, all components are 2048 lines tall regardless of the re-

sulting hybrid’s size. This height was chosen because such predictors al-

ready yield a performance that is close to the performance of the same pre-

dictor with an infinite number of lines. (This observation is also supported by

the quantile numbers from Figure 7.1.) Hence, studying hybrids of 2048-line

components should suffice to identify the most promising combinations for

building high-performing hybrid load value predictors.

While the size of some of the resulting hybrids is rather large, they can

frequently be made smaller by sharing state between their components (see

Chapter 9). Nevertheless, due to the varying predictor sizes, care must be

taken when using the performance numbers shown in this section for inter-

 107

hybrid comparisons.

Figure 8.1 shows the performance of all hybrid combinations with bimodal

and SAg confidence estimators (and selectors) when a re-fetch misprediction

recovery mechanism is used. The predictors are sorted by increasing SAg

performance. The hybrid’s names are character combinations in which each

character represents one component: r stands for register, l for last value, s

for stride 2-delta, 4 for last four value, and f for finite context method predic-

tor.

Hybrid Re-fetch Performance

0

2

4

6

8

10

12

14

f r rf l lf 4f s ls
f

s4
f sf ls 4

rs
4f r4
f

rls
f rlf rs
f

rls rl s4 rs r4 rs
4

Predictor Combination

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

bimodal
SAg

Figure 8.1: Hybrid performance using re-fetch.

Note that it is not feasible to optimize the threshold and penalty for every

hybrid individually. Instead, the threshold and penalty values that yield the

highest average speedup over the included components are used as an ap-

proximation. This average speedup is computed as follows. I evaluated the

speedup of the five basic predictors for a large number of threshold and pen-

 108

alty pairs and recorded the results in speedup maps, which are shown in Ap-

pendix C. A speedup map is essentially a matrix with different thresholds in

one dimension and different penalties in the other dimension. The matrix

elements are the speedups measured for the threshold and penalty that in-

tersect at that element. Then an average map is computed by forming the

arithmetic mean of the entries in the individual maps of each included com-

ponent (e.g., the register predictor’s map and the last value predictor’s map

for the rl-hybrid). The highest speedup in the averaged map determined the

threshold and penalty value used for the given hybrids. Note that this ap-

proach does not always yield the best performing hybrid but is usually close.

For example, the St2d+FCM hybrid yields a speedup of 9.99% with re-fetch

and 13.09% with re-execute when using the parameters from the averaged

speedup map, whereas truly optimizing the threshold and penalty values re-

sults in a speedup of 10.01% for re-fetch and 13.94% for re-execute.

The confidence estimator configurations derived from the averaged

speedup maps are summarized in Table 8.1. The counter top value is six-

teen for re-fetch and eight for re-execute.

4 4f f l lf ls lsf r r4 r4f rf rl rlf rls rlsf rs rs4 rs4f rsf s s4 s4f sf

SAg re-fetch threshold 15 15 15 13 15 12 14 15 15 15 15 13 15 14 15 11 15 15 15 12 15 15 15
penalty 8 11 11 5 9 5 6 7 8 10 10 8 9 5 7 7 7 7 7 5 7 7 7

re-exec threshold 7 7 6 5 6 5 5 4 7 6 6 6 5 5 5 5 6 5 5 5 6 6 5
penalty 3 3 3 2 3 1 2 1 3 3 3 1 2 2 2 1 1 2 2 1 1 2 2

bimodal re-fetch threshold 15 13 13 10 13 11 13 10 13 13 13 10 13 11 13 11 12 13 13 12 12 13 13
penalty 13 11 11 15 11 12 11 7 12 11 11 7 11 12 11 12 12 11 11 12 12 11 11

re-exec threshold 6 7 7 5 4 5 5 2 6 7 4 4 4 5 5 5 5 4 5 5 5 6 3
penalty 3 3 3 1 3 1 2 2 3 3 3 2 3 1 2 1 2 3 2 1 2 3 4

Table 8.1: The confidence estimator parameters of the hybrid predictors.

As has been determined in Section 5.4, with re-fetch the FCM predictor

performs better with a bimodal than a SAg confidence estimator. Because of

that, some of the bimodal hybrids that contain an FCM component outper-

form their SAg-based counterparts, as Figure 8.1 illustrates. However, most

hybrids benefit from having a SAg CE and all the high speedups are obtained

with SAg CEs.

 109

Hybrids with more components tend to yield more speedup than the ones

with fewer components. This is particularly true for the bimodal hybrids.

However, there are many notable exceptions with the SAg-based hybrids.

For instance, the speedup of the best performing predictor (Reg+St2d+L4V)

decreases when adding an FCM component to it. Likewise, Reg+L4V,

Reg+St2d, St2d+L4V, Reg+LV, Reg+LV+St2d, L4V, and LV+St2d all suffer

when an FCM component is included. Only the Reg, the LV, and the St2d

predictors benefit from an FCM. This is clearly a result of the poor perform-

ance of the SAg CE in connection with the FCM predictor. Maybe hybridizing

with a bimodal FCM would result in a better performance. However, the in-

vestigation of heterogeneous hybrids in which the components use different

kinds of confidence estimators is left for future work.

Aside from the FCM component, there also exist other “anomalies”. For

example, the Reg+St2d predictor outperforms the Reg+LV+St2d predictor.

The Reg+L4V+FCM, the Reg+LV+FCM, and the Reg+LV predictors do not

benefit from having an St2d component added to them. Furthermore, the

speedup of the Reg+St2d+FCM and the St2d+FCM predictors decreases

when adding a L4V component to them. The reason for this counterintuitive

behavior is negative interference.

Because adding a component to a hybrid makes the task of the selector

harder (there are more choices), it can happen that the additional predictabil-

ity potential is unable to offset the increased selector-related losses. When

that situation occurs, the hybrid’s components interfere negatively with one

another and lower the overall performance.

Note that some of the most effective hybrids are small hybrids with only

two components (Reg+LV and Reg+St2d). The remaining three of the five

best combinations are significantly larger because they include an L4V com-

ponent. However, Chapter 9 demonstrates how the size of a Reg+St+L4V

predictor can be reduced to only slightly more than that of a Reg+St2d hybrid

basically without loss of performance.

 110

Note also that eleven of the twelve best performing SAg hybrids include

the storage-less register predictor, indicating that the Reg predictor is a very

important component in a hybrid. This result is particularly surprising be-

cause the Reg predictor by itself performs only poorly. Note that no profiling

was used to adapt the register allocation, which can significantly improve the

performance of the Reg predictor [TuSe99], yet the benefit from including a

register value predictor is already substantial.

Figure 8.2 shows the performance of all hybrid combinations with a re-

execute misprediction recovery mechanism. Again, the predictors are sorted

by increasing SAg performance.

Hybrid Re-execute Performance

0

2

4

6

8

10

12

14

16

18

r l f rf 4 ls s rl lf 4f rls s4 r4 s4
f rs sf ls
f rlf r4
f

rs
4 rs
f

rls
f

rs
4f

Predictor Combination

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

bimodal
SAg

Figure 8.2: Hybrid performance using re-execute.

Clearly, hybrid load value predictors have the potential to yield signifi-

cantly higher speedups than even the best single-component predictors.

With re-execute, the Reg+LV+St2d hybrid is the only bimodal predictor

that outperforms its SAg counterpart. It is not clear why that is and it could be

 111

an artifact of not truly optimizing the predictors’ CE configurations. Neverthe-

less, all the other hybrids perform better with a SAg CE than a bimodal CE

and the highest speedups are again obtained with a SAg CE.

There is also negative interference with a re-execute misprediction recov-

ery mechanism. Again, the L4V component diminishes the performance

when it is included in the St2d+FCM predictor, and the Reg+St2d predictor

suffers when an LV component is added to it. There is one new case of

negative interference that was not present with re-fetch. The St2d predictor

outperforms the LV+St2d hybrid with re-execute.

Clearly, the problem with the FCM component is gone because with re-

execute even the FCM predictor performs better with a SAg CE than with a

bimodal CE (see Section 5.4). In fact, seven of the eight best performing hy-

brids include an FCM, six of them include an St2d, and six include a Reg

component. The best performing re-fetch hybrid (Reg+St2d+L4V) is among

the four best performing re-execute hybrids and is the only one of them that

does not include an FCM component, which may be significant because the

FCM is a two-level value predictor whereas the other four studied basic pre-

dictors comprise only one level.

With re-execute, there is a tendency showing that the more components a

predictor has the more it benefits from a SAg CE as opposed to a bimodal

CE. This may indicate that the SAg CE not only makes better confidence es-

timations but also better selections than the bimodal confidence estimator.

When averaging the re-fetch and the re-execute speedups of the SAg hy-

brids, the Reg+St2d+L4V predictor turns out to perform best by a consider-

able margin. The most effective two-component hybrid is the Reg+L4V,

which is closely followed by the Reg+St2d hybrid. The best single-

component predictor is L4V, which is trailed by the St2d predictor. None of

the four-component hybrids outperform the best three-component hybrid.

Because of its generally inferior performance and to reduce the number of

data-points, I will disregard the bimodal CE for the rest of this chapter.

 112

Table 8.2 and Table 8.3 show the results from Figure 8.1 and Figure 8.2,

respectively, in a different form. Both tables list the hybrids and their speed-

ups over the baseline processor on the left. The numbers on the right repre-

sent the increase in speedup percentage points when adding the given

components to the listed hybrids.

Clearly, both with re-fetch and re-execute, all the hybrids that do not in-

clude Reg would benefit considerably from having a Reg component. This is

particularly surprising because the Reg predictor does not perform very well

when used in isolation. Similarly, the Reg predictor benefits from being aug-

mented with any other component. Except for the Reg predictor, only the

FCM and Reg+FCM hybrids benefit considerably from an LV component.

These two predictors also profit the most from having a St2d or a L4V com-

ponent added to them. As mentioned earlier, most hybrids are slowed down

by an FCM component with re-fetch, whereas it is advantageous for most hy-

brids to have an FCM component with re-execute. Several predictors benefit

from an L4V component, which is understandable because the L4V and the

FCM are the largest single-component predictors.

 113

hybrid speedup +r +l +s +4 +f
r 7.4 5.1 5.3 6.0 1.2
l 10.2 2.2 0.7 1.6 0.2
rl 12.5 0.0 0.9 -0.4
s 10.5 2.1 0.4 2.0 0.2
rs 12.6 -0.1 0.9 -0.5
ls 10.9 1.5 1.6 1.2
rls 12.5 1.1 -0.4
4 11.8 1.5 0.0 0.7 -1.3
r4 13.4 0.0 0.2 -1.5
s4 12.6 1.0 0.0 -1.8
rs4 13.6 0.0 -1.7

f 6.6 2.0 3.9 4.2 4.0
rf 8.6 3.6 3.6 3.4
lf 10.4 1.7 0.2 0.1
rlf 12.1 0.0 -0.2
sf 10.7 1.4 -0.1 0.0
rsf 12.1 0.0 -0.3
lsf 10.6 1.5 0.1
rlsf 12.1 -0.2
4f 10.5 1.4 0.0 0.2
r4f 11.9 0.0 0.0
s4f 10.7 1.2 0.0
rs4f 11.9 0.0

Re-fetch Speedup Benefit of Adding Components to SAg Hybrids

Table 8.2: Re-fetch speedup benefit from adding components.

hybrid speedup +r +l +s +4 +f
r 8.0 6.6 8.5 8.0 5.3
l 11.6 2.9 2.4 2.3 3.8
rl 14.5 1.1 1.4 2.1
s 14.2 2.2 -0.2 1.5 2.2
rs 16.4 -0.8 0.7 1.2
ls 14.0 1.6 1.7 3.7
rls 15.6 1.6 2.2
4 13.9 2.1 0.0 1.8 1.7
r4 16.0 0.0 1.2 1.0
s4 15.7 1.5 0.0 0.5
rs4 17.2 0.0 0.7

f 11.9 1.4 3.5 4.6 3.7
rf 13.3 3.3 4.4 3.7
lf 15.4 1.2 1.1 0.2
rlf 16.6 1.2 0.4
sf 16.4 1.2 0.0 -0.3
rsf 17.7 0.1 0.2
lsf 16.5 1.3 -0.3
rlsf 17.8 0.1
4f 15.6 1.5 0.0 0.6
r4f 17.0 0.0 0.9
s4f 16.2 1.8 0.0
rs4f 17.9 0.0

Re-execute Speedup Benefit of Adding Components to SAg Hybrids

Table 8.3: Re-execute speedup benefit from adding components.

 114

8.3 Shared and Unique Performance Contributions

In an effort to determine why the Reg predictor is such a valuable addition

to all hybrids while the LV component, for example, generally is not, I investi-

gated how frequently each component in a hybrid is able to make a correct

prediction that none of the other components can make, how often the

predictions from the individual components overlap, and how often they

interfere with one another. Because not every prediction is equally important

(e.g., predicting a load that hits in the L1 data-cache is not as important as

predicting a load that has to go all the way to memory), the following

subsections study the speedup contributions of the individual hybrid compo-

nents rather than the actual set of load instructions that each component is

able to predict.

8.3.1 Two-component Hybrids

A hybrid component’s unique speedup contribution is the part of the over-

all performance that is lost when that component is removed. Hence, the

component must actually be present to deliver its unique performance contri-

bution. Conversely, in a two-component hybrid, the shared contribution is

common to both components, meaning that either one is able to provide the

contribution, but the contribution does no increase if both components are

used together. Therefore, only one of the two components is needed to de-

liver the shared performance contribution.

The unique and shared speedup contributions in two-component hybrids

are computed as follows. Assuming that predictor A yields a speedup of a

when used in isolation, predictor B yields a speedup of b, and the hybrid pre-

dictor A+B yields a speedup of c, then A contributes c-b unique speedup, B

contributes c-a unique speedup, and the shared contribution is a+b-c.

Venn-diagrams are used to visualize the different contributions. For ex-

ample, the top left Venn-diagram in Figure 8.3 indicates that with re-execute

 115

recovery, twenty percent of the SAg-based Reg+LV hybrid’s speedup stems

uniquely from the Reg component, 45.2% from the LV component, and the

shared contribution is about 34.7%. (The sum of the three contributions is

one-hundred percent, but sometimes the rounding to one digit after the deci-

mal point makes it appear otherwise.) Figure 8.3 shows results for all two-

component hybrids (the L4V predictor is treated as a single component).

re-execute re-fetch

rl 20.0 34.7 45.2 18.0 40.9 41.1 rl

rs 13.4 35.0 51.6 16.6 41.8 41.7 rs

r4 13.0 36.8 50.2 11.6 43.4 45.1 r4

rf 10.5 49.4 40.1 23.4 62.6 14.0 rf

ls -1.6 84.5 17.0 3.6 90.1 6.3 ls

lf 22.7 52.8 24.4 37.3 60.7 2.0 lf

s4 11.4 79.4 9.2 5.7 78.0 16.3 s4

sf 27.7 58.8 13.4 39.0 59.0 2.0 sf

4f 23.6 65.8 10.6 37.7 75.0 -12.7 4f

Figure 8.3: Re-execute and re-fetch Venn-diagrams for SAg hybrids.

The Reg+LV hybrid exhibits the smallest shared contribution of any two-

component hybrid with both recovery mechanisms. Clearly, the Reg compo-

 116

nent complements the LV component well and vice-versa, implying that each

of them can predict important loads that the other one cannot. In fact, Reg

complements any predictor well. The three predictors with the smallest over-

lap all include a Reg component. The Reg+St2d predictor, which was found

to be the most effective two-component hybrid in the previous section, has

the second smallest overlap both with re-fetch and re-execute. The three

predictors with the smallest overlap are all among the best performing re-

fetch hybrids. However, this observation does not apply to re-execute very

well. Furthermore, for both recovery mechanisms there are hybrids that per-

form well in spite of a large shared contribution, for example, the St2d+L4V

and St2d+FCM predictors.

The hybrids LV+St2d, St2d+L4V, and L4V+FCM exhibit a large shared

contribution. In these three hybrids, both components predict mostly the

same load instructions and therefore complement each other only poorly.

The LV component in the LV+St2d hybrid with re-execute and the FCM

component in the L4V+FCM hybrid with re-fetch show a negative individual

contribution because with re-execute the St2d component performs better

than the LV+St2d hybrid and with re-fetch the L4V component outperforms

the L4V+FCM hybrid. Therefore, hybridizing lowers the performance and

thus results in a negative unique contribution in both cases.

The reason for this is the aforementioned negative interference between

the involved components. Since single-component predictors do not require

a selector whereas hybrids do, the culprit for the lower performance must be

the imperfect selector. After all, the St2d component in the LV+St2d hybrid is

identical to the single-component St2d predictor that outperforms the hybrid.

With only one exception (St2d+L4V), re-fetch recovery results in larger

shared contributions than re-execute for the same predictors. This probably

means that the easily predictable loads (i.e., loads that have very high confi-

dences associated with them) tend to be the loads that can be predicted with

either component. Those loads are most likely the runtime constants that are

 117

always predictable because their values never change [CFE97].

Overall, the Reg predictor complements the other four predictors excep-

tionally well, meaning that it can predict a rather distinct set of load instruc-

tions. Second, but not nearly as good of a partner, is the FCM predictor. The

St2d predictor does not complement the LV or the L4V predictor well. This is

consistent with the results from Section 4.3.3, which show that there is only a

small number of truly stride predictable load values (i.e., with a non-zero

stride). The last value and the last four value predictor can both capture all

the zero-stride predictable loads, eliminating the need for a stride predictor in

those cases.

Figure 8.4 shows the speedup contributions for two bimodal predictors.

The first one, St2d+L4V, is similar to the LD4V+St predictor proposed by

Wang and Franklin [WaFr97], and the second one, St2d+FCM, is the hybrid

proposed by Rychlik et al. [RFKS98] except it is not set-associative.

re-execute re-fetch

s4 11.6 96.6 -8.2 4.8 91.0 4.3 s4

sf 14.8 84.9 0.3 20.6 73.4 6.0 sf

Figure 8.4: Re-execute and re-fetch Venn-diagrams for bimodal hybrids.

Figure 8.4 illustrates that the two predictors result in significantly more

shared speedup with a bimodal CE than they do with a SAg CE (see Figure

8.3). In general, the shared contribution is quite high for both hybrids. In

case of the St2d+L4V hybrid, all the last value predictable loads can be han-

dled by both components, resulting in significant overlap. Something similar

probably happens with the St2d+FCM hybrid because the FCM component

can predict stride sequences after having seen them once. Furthermore,

both the St2d and the FCM predictor are able to predict last value predictable

 118

loads.

Together with the performance results from Figure 8.1 and Figure 8.2, we

find that the substantially smaller and simpler Reg+St2d hybrid outperforms

both the St2d+L4V and the St2d+FCM predictors with either misprediction

recovery mechanism, illustrating the importance of component analyses

when designing hybrid load value predictors.

8.3.2 Three-component Hybrids

Figure 8.5 shows the shared and unique speedup contributions (in per-

cent of total predictor performance) of all SAg-based three-component hy-

brids. A set of seven equations has to be solved to compute the seven val-

ues in each Venn-diagram. The numbers in the center of each diagram de-

note the contribution that is shared among all three predictor components,

the other three overlapping regions represent the shared contribution of all

pairs of components, and the non-overlapped parts list the unique perform-

ance contributions. For example, in the top left (rs4) of Venn-diagram, the

top left oval lists the contribution of the Reg component, the top right oval

presents the contribution of the St2d component, and the oval at the bottom

shows the contribution of the L4V component.

Figure 8.5 illustrates that all three components in the LV+St2d+FCM and

the St2d+L4V+FCM hybrids suffer from large shared speedup. In both hy-

brids, over half of the performance is shared among all three components.

The Reg+St2d+L4V and the Reg+LV+St2d predictors have somewhat large

shared contributions, and the remaining hybrids exhibit relatively high unique

contributions in at least one of their components. Note that Reg’s unique

contribution is at least seven percent in every case.

 119

re-execute re-fetch

3.4 4.1
8.7 7.0 7.3 1.2

rs4 30.1 34.7 rs4
4.1 42.3 8.1 37.5

4.3 7.0

3.8 4.3
10.3 -5.3 12.4 -1.2

rls 28.5 36.6 rls
8.4 47.4 5.6 42.3

6.9 -0.1

0.9 2.7
7.5 20.1 13.8 29.4

rlf 29.4 39.4 rlf
10.0 19.4 4.7 12.9

12.6 -3.0

21.0 37.7
0.2 6.7 -1.1 1.7

lsf 50.9 54.9 lsf
-1.6 7.8 4.8 4.8

15.0 -2.8

24.5 36.9
3.7 -1.8 2.1 0.0

s4f 52.6 54.4 s4f
7.3 10.8 4.6 19.1

2.9 -17.1

0.9 5.0
7.0 24.9 11.6 29.5

rsf 31.6 38.4 rsf
5.5 23.1 5.6 13.7

7.0 -3.9

-0.4 5.1
8.6 21.9 11.7 28.1

r4f 34.9 43.7 r4f
3.6 25.2 1.3 22.6

6.1 -12.5

Figure 8.5: Venn-diagrams for SAg-based three-component hybrids.

 120

As was true with the two-component predictors, the amount of sharing in-

versely correlates to a reasonable degree with the re-fetch performance of a

hybrid, but there is not much correlation with the re-execute performance.

Nevertheless, the Venn-diagrams illustrate nicely which components do not

significantly contribute to the overall performance and can consequently be

left out. More importantly, the diagrams reveal the components that cause

negative interference and should therefore be removed.

Because it is hard to show a four-component Venn-diagram in two dimen-

sions and because the four-component hybrids do not outperform the best

three-component hybrids with re-fetch and do not significantly outperform the

best three-component hybrids with re-execute, I will refrain from studying the

speedup contributions of the two four-component hybrids.

8.4 Summary

This chapter presents the performance of all hybrid load value predictors

that can be built out of the five basic predictors (Reg, LV, St2d, L4V, FCM).

The results show that such hybrids are able to deliver substantially more per-

formance than even the best single-component predictor because different

components contribute independently to the overall performance.

Most hybrids, in particular the effective ones, perform better with a SAg

confidence estimator than with a bimodal CE. Furthermore, there is evidence

that the SAg CE embodies a better selector than the bimodal CE.

Studying the hybrids’ performances as well as the unique and shared

speedup contributions of their components revealed that the register predictor

with its poor individual performance represents a valuable addition to all the

other predictors. Conversely, combining well-performing predictors frequently

does not result in an effective hybrid. In fact, some predictor combinations

underperform a similar predictor with fewer components due to negative inter-

ference between the components. This can happen because adding compo-

 121

nents to a predictor makes the task of the selector more difficult, which some-

times increases the selector-related losses more than the added predictability

potential can compensate for. Hence, care must be taken when selecting

predictors as components for a hybrid. To identify components that comple-

ment each other well, performance analyses are most likely unavoidable.

With re-fetch as well as when averaging the re-fetch and the re-execute

speedups, the Reg+St2d+L4V predictor outperforms all the other studied

predictors. The next chapter shows how this relatively large hybrid can be

made smaller without compromising its effectiveness.

 122

Chapter 9
9 Hybridizing with Hardware Reuse

Hybridizing with Hardware Reuse

Of all the predictors studied in Chapter 8, the Reg+St2d+L4V hybrid is the

most promising load value predictor with re-fetch and one of the best

performing ones with re-execute. Unfortunately, it is also rather large. The

goal of this chapter is to shrink the size of this load value predictor without

degrading its performance.

Several storage-reduction techniques are presented that together shrink

the size of the Reg+St2d+L4V hybrid to less than half its original size without

compromising its performance. Speedup comparisons show that this stor-

age-reduced hybrid significantly outperforms other same-sized predictors

from the literature. A sensitivity analysis concludes this chapter.

9.1 Shrinking the Reg+St2d+L4V Hybrid

Replacing the St2d with an St component in the Reg+St2d+L4V hybrid

yields a first, very small size-reduction. The St component is smaller be-

cause it requires only one stride field whereas the St2d component requires

two. Note that in Section 4.3.3 the stride 2-delta predictor was introduced

because it outperforms the simpler stride predictor. As discussed, the per-

formance difference between the two predictors is mainly a result of short se-

quences of repeating load values, which the stride predictor cannot handle

well. However, a last value predictor can handle such sequences. Since a

Reg+St+L4V hybrid already contains a last value predictor as part of the L4V

component, it is not necessary for the stride component to be able to cope

 123

with such sequences. Rather, the LV subcomponent will report a higher con-

fidence than the St component for short repeating value sequences and will

therefore be selected over the St component. As a result, the St component

is only needed to predict the truly stride predictable loads, which it can do

about as well as the St2d predictor. Consequently, there is no need for a

St2d component because the smaller St component suffices.

If we assume ten-bit histories for the six SAg CEs in the Reg+St+L4V hy-

brid, 64 bits for retaining load values in the St and the L4V components, and

eight-bit strides, then each predictor line in the Reg+St2d+L4V hybrid re-

quires 396 bits of storage. Because the Reg+St+L4V hybrid has one fewer

stride field, its lines are “only” 388 bits long, a saving of about two percent.

Clearly, replacing the St2d with an St component does not significantly re-

duce the amount of state required by the predictor, but it does make the pre-

dictor a little less complex.

Note that switching the first two components (i.e., the Reg and the St

component) in the Reg+St+L4V hybrid results in slightly improved perform-

ance (see Section 9.5.1), which is why an St+Reg+L4V hybrid will be used in

the rest of this chapter.

9.1.1 Shrinking the L4V Component

The L4V predictor is by far the largest component in the St+Reg+L4V hy-

brid. Studying the four values stored in each line of this component revealed

a relatively straight-forward way to compress them. As it turns out, the four

values are almost always similar in magnitude. The reason for this is twofold.

Data values often cluster around zero and do not generally use the whole

range of numbers that can be represented with 64-bit values. Address values

are also often similar. Their absolute values depend on where a program’s

data and code is mapped to in virtual memory, but memory is often allocated

with significant spatial locality, which results in address values that are close

 124

together.

Since the four values within each predictor line are similar in magnitude,

their most significant bits are almost always identical. Hence, it suffices to

store those bits only once instead of four times. Surprisingly, in the

SPECint95 programs as many as 48 bits (or three quarters of all the value

bits) can be shared among the four retained values virtually without degrading

the predictor’s performance [BuZo00].

Because the number of identical bits depends on the workload and the

memory allocator, I designed a predictor in which “only” the 44 most signifi-

cant bits are shared. The resulting predictor, which is called a last four partial

value predictor (L4pV), still stores the full 64 bits of the most recently loaded

(last) value in each line but retains only the twenty least significant bits of the

second, third, and fourth last value. The four SAg CEs are unchanged. To

form full 64-bit values, the twenty bits of the partial values are concatenated

with the (shared) 44 most significant bits in the first component of the L4V

predictor.

A 1024-line last four partial value predictor yields a harmonic mean

speedup of 11.522% with re-fetch and 13.687% with re-execute on

SPECint95. By comparison, the roughly same-sized L4V predictor with 512

lines delivers a re-fetch speedup of 10.978% and a re-execute speedup of

12.537%. This represents an improvement of one half to one percentage

point over the L4V predictor, which has already been shown to perform best

for the used predictor size of sixteen kilobytes for storing values (Chapter 7).

Note that the L4pV predictor has twice as many lines as the L4V predictor

of approximately the same size. Among predictors with the same number of

lines, the L4pV requires only about half as much state as the L4V predictor

while basically delivering the same performance.

Replacing the L4V component in the St+Reg+L4V hybrid with an L4pV

component with twenty-bit partial values reduces the line length from 388 bits

to 256 bits, which amounts to a state reduction of 34% without compromising

 125

the predictor’s performance.

Initially, the St+Reg+L4pV hybrid included three valid bits in each line of

the L4pV component that indicated whether the concatenation of the three

partial values with the shared bits resulted in the correct 64-bit value. How-

ever, it turned out that valid bits are superfluous because the confidence es-

timators already perform the task of the valid bits. During predictor updates,

an incorrect concatenation-result yields almost always a value that looks un-

predictable. As a consequence, the CE disallows predictions just like a valid

bit would. Therefore, the valid bits are omitted in the St+Reg+L4pV hybrid.

Instead of storing partial values, I also investigated storing 20-bit signed

offsets. This approach is more complex because differences and sums have

to be computed during each predictor access. Surprisingly, the resulting per-

formance is lower than that of the simpler concatenation approach. Hence,

partial values instead of offsets are used in the St+Reg+L4pV hybrid.

9.1.2 Making the Stride Predictor Storage-less

The second largest component in the St+Reg+L4pV hybrid is the stride

predictor. In Wang and Franklin’s LD4V+St predictor [WaFr97], the St com-

ponent shares its 64-bit base value with the LD4V component. The same

approach can be used in the St+Reg+L4pV hybrid because the L4pV and the

St component both store the 64-bit last value (among other things). Hence,

the St component’s size can be reduced substantially by letting it use the last

value stored in the L4pV component instead of having it retain its own copy.

Note that sharing the last value has no effect on the performance but reduces

the predictor size.

Interestingly, the St component’s stride field is also superfluous. The

stride records the difference between the last loaded value and the second to

last loaded value. Since the L4pV component retains both the last and the

second to last loaded value, the difference can be computed on-the-fly, elimi-

 126

nating the need to store it explicitly [BuZo00]. The predicted value evaluates

to the second last value subtracted from the last value multiplied by two (i.e.,

shifted to the right by one bit).

As a result, the whole stride component has become storage-less, just like

the register component. Both components consist of only a confidence esti-

mator and obtain the values for making predictions from the register file and

the L4pV component.

The St+Reg+L4pV hybrid with a storage-less stride component requires

184 bits of state per predictor line. This represents a saving of 28% com-

pared to the 256 bits that the St+Reg+L4pV hybrid with a regular stride com-

ponent requires.

Section 9.5.3 shows that the fourth subcomponent in the L4pV predictor

does not add to the St+Reg+L4pV hybrid’s performance. It can (and should)

therefore be left out, which further reduces the predictor size and complexity.

The resulting St+Reg+L3pV predictor with its storage-less stride, storage-

less register, and a storage-reduced last three value component requires a

total of 154 bits of storage per predictor line. As compared to the initial

Reg+St2d+L4V predictor with its 396-bit lines, this represents a saving of

61% of state in each line. The saving over the entire predictor is somewhat

smaller because the size of the second-level of the SAg CEs remains con-

stant. For example, the storage-reduced St+Reg+L3pV hybrid with 512 lines

is 56% smaller than the initial Reg+St2d+L4V hybrid with the same number of

lines.

Note that the size of this predictor has been reduced to less than a half

almost without loss of performance. For example, the Reg+St2d+L4V hy-

brid’s SAg speedup with re-fetch is 13.558% and with re-execute it is

17.189%. Using the exact same CE setting and the same number of predic-

tor lines, the two times smaller storage-reduced St+Reg+L3pV hybrid yields a

re-fetch speedup of 13.544% and a re-execute speedup of 16.825%.

 127

9.2 Coalescing Hybrid Predictor Components

In the previous section, the size of all the components except the register

component was reduced. Since the Reg predictor essentially only consists of

a confidence estimator, a technique to shrink CEs is necessary to make the

Reg predictor smaller. Finding approaches to reduce the size of confidence

estimators is left for future work.

In the previous section, the Reg+St2d+L4V hybrid was used as the basis

for the size-reduction approaches because this predictor performs exception-

ally well. However, it is of course also possible to reduce the size of other

hybrids. For example, a stride predictor can be made storage-less in connec-

tion with any last n value predictor that has a width of at least two. In an

St+LV hybrid, the LV component can be made storage-less by reusing the

last value information from the St component. Hybridizing an St or LnV pre-

dictor with an FCM predictor also allows some state sharing. The first level of

the FCM stores the last n values in a hashed form. If the hash can be com-

puted on-the-fly, the hashed result of the last value (in case of an St compo-

nent) or the last n values (in connection with an LnV predictor) need not be

stored because the necessary information to compute it can be obtained from

the non-FCM component.

9.3 The Coalesced-Hybrid

To further improve the performance, I added one more enhancement to

the St+Reg+L3pV predictor. Bekerman et al. [BJR+99] and, independently,

by Calder et al. [CRT99] found that infrequently executed loads that alias with

frequently executed loads evict useful predictor entries often enough to de-

grade the performance. According to their suggestion, I added one bit to the

partial tags (which I termed b-tags) to indicate whether the last access to a

given predictor line resulted in a tag miss. This bit makes it possible to pre-

 128

vent updating a predictor line after the first tag miss. Only allowing updates

after two or more misses in a row effectively prevents infrequently executed

loads from being able to pollute the predictor. The extra bit in the b-tags es-

sentially represents a one-bit replacement counter [CRT99].

I named the resulting b-tagged, SAg-based St+Reg+L3pV predictor coa-

lesced-hybrid because its components and subcomponents are fused to-

gether by sharing a large amounts of state.

Figure 9.1 shows the architecture of the coalesced-hybrid load value pre-

dictor with its storage-less stride, storage-less register, and reduced-storage

last three partial value component. The numbers in the fields indicate their

widths in number of bits.

PC …yyxxx..xx00
btag 2nd pval 3rd pval

9 64

· · · ·
· · · · 1024 lines
· · · ·

4 4 4 4 4
match adder

· · · 1024 cntrs · ·
· · · · ·

register val

concatenate and select value

yes/no predict

·
·

2010 2010 10 10

··
·

valid and maximum confidence

hist

·
·
·

hist

·
·
·

10

predicted valuematch & >=threshold

last valuehist

·
·
·

hist

·

hist

 Figure 9.1: The architecture of the coalesced-hybrid load value predictor.

Every line of the predictor includes a nine-bit partial b-tag. The first of the

five identical SAg confidence estimators (they each consist of an array of ten-

bit histories “hist” and an array of three or four-bit saturating counters) forms

the storage-less register value component (Reg), which uses values from the

CPU’s register file for making predictions. The second confidence estimator

 129

belongs to the stride storage-less predictor (St) whose only other element is

the adder since it uses values from the L3pV component for making predic-

tions. The remaining three confidence estimators, the 64-bit and the two

twenty bit value fields form the last three partial value (L3pV) component.

The five sub-components operate independently and perform five value

predictions and five confidence estimations in parallel. The value of the

component reporting the highest confidence is used for making a prediction,

but only if the confidence is above the preset threshold. To break ties, the

components are prioritized from left to right, that is, the stride component has

the highest priority, the register component has a medium priority, and the

last three value component has the lowest priority. Within the last three value

component, the more recent values have a higher priority.

When the predictor is updated, each component again makes a value

prediction whose result is compared with the true load value. The confidence

estimators are then updated based on the outcome of this comparison. At

the same time, the values within the L3pV component are passed on to the

next “older” sub-component and the true load value is copied into the 64-bit

last value field.

9.4 Coalesced-Hybrid Performance

This section compares the performance of the coalesced-hybrid with other

load value predictors from the literature as well as with oracle predictors.

9.4.1 Comparison with Other Predictors

This section compares the harmonic-mean speedups over SPECint95 of

several well-performing predictors from the literature and some of mine. The

seven predictors I consider are:

 130

- Tag Bim LV, a partially tagged bimodal last value predictor [LWS96]

 This predictor has one of the least complex architectures.

- Tag SAg L4V, a partially tagged SAg last four value predictor [BuZo99b]

 This is the predictor from Chapter 7.

- Tag SAg St2d , a partially tagged SAg stride 2-delta predictor

[SaSm97a]

 This is Sazeides and Smith’s stride 2-delta predictor augmented with

my SAg confidence estimator, resulting in one of the best-performing

single-component load value predictors.

- Tag Bim St2d+FCM , a partially tagged bimodal stride 2-delta and finite

context method hybrid [RFKS98]

- B-Tag SAg St+Reg+L3pV , the partially b-tagged SAg coalesced-hybrid

predictor [BuZo00]

 This hybrid includes a storage-less stride, a storage-less register,

and a reduced-storage last three (partial) value component. The

b-tags include a one-bit replacement counter.

- Tag apBim LD4V, a tagged last distinct four value predictor with an ac-

cess-pattern-based bimodal confidence estimator [WaFr97]

- Tag apBim LD4V+St , a hybrid between the LD4V and a bimodal stride

predictor [WaFr97]

 This hybrid uses a two-bit bimodal selector. The St component gets

its base value from the LD4V component, i.e., the two components

are coalesced.

 131

Since the predictors vary greatly in their architectures and complexities,

they cannot be scaled to be of identical size. Consequently, it is only possi-

ble to compare predictors of similar sizes. I was able to scale all seven pre-

dictors to require between 19 and 31 kilobytes of state, which I believe is a

realistic size for a load value predictor to be included in an upcoming CPU.

From these base-configurations I created two additional configurations for

each predictor, a smaller one (by quartering the number of predictor lines)

and a larger one (by quadrupling the number of predictor lines). The resulting

predictor sizes for the three size-ranges (denoted as small, base, and large)

are shown in Table 9.1. Note that the numbers in the table include the

amount of state required to retain values, tags, and confidence information

and are for a re-fetch architecture. With re-execute, some of the predictors

require a little less state because the saturating counters are smaller. Be-

cause the access-pattern-based bimodal CE (acBim) in the LD4V predictor as

well as the FCM predictor require large second-level tables, splitting predic-

tors that include either an FCM or an LD4V component into several banks

would substantially increase their size. The amounts shown in the table are

for non-banked FCM and LD4V sizes.

small base large
Tag Bim LV 4.8 19.0 76.0
Tag acBim LD4V 12.3 25.0 76.0
Tag acBim LD4V+St 12.4 25.6 78.5
Tag SAg St2d 8.1 26.5 100.0
Tag SAg L4V 12.8 27.0 84.0
B-Tag SAg St+Reg+L3pV 15.1 30.4 91.5
Tag Bim St2d+FCM 19.9 31.5 78.0

Predictor Size in Kilobytes of State

Table 9.1: State requirement of the seven predictors’ three configurations.

A detailed parameter space evaluation was performed to determine the

CE setting that yields the highest speedup for each of the seven predictors.

This evaluation included varying the prediction threshold and the counter

decrement (penalty). The counter-top is fixed at sixteen for re-fetch and eight

 132

rement (penalty). The counter-top is fixed at sixteen for re-fetch and eight for

re-execute unless otherwise noted. The St2d+FCM hybrid allows many dif-

ferent ways of distributing the state over its two components. The second-

level table of the FCM component used in this study has a capacity of 2048

entries. Table 9.2 shows the parameters of the best base-configurations of

the seven predictors.

predictor tag hist
lines bits bits top thr pen top thr pen

Tag Bim LV 2048 8 - 8 5 1 16 10 15
Tag acBim LD4V 512 8 - 8 3 2 16 14 9
Tag acBim LD4V+St 512 8 - 8 7 2 16 13 10
Tag SAg St2d 2048 8 10 8 5 1 16 12 5
Tag SAg L4V 512 8 10 8 7 4 16 14 11
B-Tag SAg St+Reg+L3pV 1024 8+1 10 8 7 2 16 14 9
Tag Bim St2d+FCM 1024/2048 8 - 8 5 1 16 15 11

re-fetchre-execute

Table 9.2: The base-configurations of the seven predictors.

All the predictors are configured to work as well as possible in their base-

configuration (19 to 31 kilobytes of state). Except for the number of predictor

lines, the same parameters are used with the other two predictor sizes and

no search for an optimal setting is performed. I use this approach to mimic

what would happen if programs that are much larger or much smaller than

the SPECint95 programs are run on these predictors. The intuition is that a

larger program performs similarly on a load value predictor to a smaller pro-

gram on a proportionately smaller version of the same predictor.

Figure 9.2 and Figure 9.3 present the harmonic-mean speedups of the

eight predictors with a re-fetch and a re-execute misprediction recovery

mechanism, respectively. Three speedup results are shown for each predic-

tor corresponding to the three predictor sizes.

 133

Re-fetch Performance of Several Predictors for Different Sizes

0

2

4

6

8

10

12

14

16

Tag Bim LV Tag acBim LD4V Tag acBim
LD4V+St

Tag SAg St2d Tag SAg L4V B-Tag SAg
St+Reg+L3pV

Tag Bim
St2d+FCM

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

small

base

large

Figure 9.2: Re-fetch speedup of several predictors for three sizes.

Re-execute Performance of Several Predictors for Different Sizes

0

2

4

6

8

10

12

14

16

18

Tag Bim LV Tag acBim
LD4V

Tag acBim
LD4V+St

Tag SAg St2d Tag SAg L4V B-Tag SAg
St+Reg+L3pV

Tag Bim
St2d+FCM

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

small
base
large

Figure 9.3: Re-execute speedup of several predictors for three sizes.

 134

The coalesced-hybrid predictor (B-Tag SAg St+Reg+L3pV) clearly outper-

forms the other predictors both with a re-fetch and a re-execute misprediction

recovery policy. More importantly, its re-fetch speedup is close to the other

predictors’ re-execute speedup in the larger size-ranges and actually exceeds

it in the smallest size-range.

Furthermore, the performance of the smallest coalesced-hybrid configura-

tion (which requires fifteen kilobytes of state) surpasses the performance of

the other predictors, including the ones from the largest size-range that re-

quire over five times as much state. Only the Tag acBim LD4V+St predictor

is able to slightly outperform the five times smaller coalesced-hybrid when re-

execute is used. This clearly shows that hybrid predictors do not necessarily

have to be large to perform well and that coalescing the components in a hy-

brid predictor is a very effective technique to save state.

The good re-fetch speedup of the coalesced-hybrid is encouraging, in par-

ticular because it allows microprocessor designers to use the already existing

branch misprediction hardware to recover from load value mispredictions,

which makes it less urgent to design and add a processor core that is capa-

ble of re-execution.

Note that the performance of the Tag acBim LD4V+St predictor actually

decreases with re-fetch when increasing the predictor size. An investigation

of this phenomenon revealed a somewhat surprising result. As it turns out,

the smallest configuration of this predictor suffers significantly from aliasing.

The confidence estimator detects this problem and inhibits the affected lines

from making predictions. Consequently, the predictor only attempts relatively

few predictions, which is reflected in its low performance when compared to

the other predictors. The larger versions of this predictor suffer less from

aliasing and the confidence estimator allows more predictions to take place.

Unfortunately, the CE also allows significantly more incorrect predictions,

which more than offset the benefit of the additional correct predictions.

Hence, the overall performance decreases as the predictor becomes larger.

 135

Using a better selector and confidence estimator than the suggested two-bit

bimodal CE [WaFr97] would most likely increase this predictor’s re-fetch per-

formance.

Interestingly, the stride 2-delta predictor (Tag SAg St2d) performs better

than the Tag Bim St2d+FCM hybrid. The reason is partly the difference in

the confidence estimators and partly the fact that the relatively small FCM

component does not perform very well and therefore takes away valuable

real-estate from the St2d component. With even larger predictor sizes, the

Tag Bim St2d+FCM hybrid would probably surpass the Tag SAg St2d predic-

tor’s performance.

Among the predictors in a given size-range, the predictors with more

components have fewer lines (i.e., are shorter) than the single-component

predictors and are consequently more likely to experience capacity problems,

in particular in the smallest configuration. The effect of the resulting aliasing

is visible in the two figures. The performance difference between the small

and the middle configuration is significantly larger with the multi-component

predictors (Tag SAg L4V, Tag acBim LD4V, and Tag acBim LD4V+St) than

with the other predictors. Note that the coalesced-hybrid has more compo-

nents than the Tag SAg L4V and the Tag acBim LD4V predictors, yet it is not

affected nearly as much by detrimental aliasing since the high degree of coa-

lescing allows it to have twice the number of predictor lines, which alleviates

the capacity problem.

9.4.2 Comparison with Oracles

In Section 7.4.1 the last four value predictor was compared to versions of

itself that contain oracles. In this section the same is done with the coa-

lesced-hybrid to determine how much larger a fraction of the existing potential

this predictor can reap.

The first predictor (no-oracle) represents the coalesced-hybrid in its con-

 136

ventional and implementable form as it is described in Section 9.3. It does

not include an oracle. The first oracle (ce-oracle) represents the same pre-

dictor except it incorporates a perfect confidence estimator. The next oracle

(ce/sel-oracle) is the coalesced-hybrid with a perfect confidence estimator

and a perfect selector. The all(b-tag)-oracle makes a correct load value pre-

diction whenever there is a tag-match in the 1024-line b-tags. The final ora-

cle (all-oracle) predicts every executed load with the correct value.

None of the genuine oracles make any mispredictions, but the ce-oracle

makes imperfect selections. Only the all-oracle always makes a prediction.

Figure 7.4 shows the speedups delivered by the oracle-less predictor and the

four oracles.

Coalesced-Hybrid Performance with Various Degrees of Perfect Knowledge

13.7

22.9

27.8

53.4
55.7

17.4

23.2

27.8

53.4
55.7

0

10

20

30

40

50

60

no-oracle ce-oracle ce/sel-oracle all(b-tag)-oracle all-oracle

Oracle

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch
re-execute

Figure 9.4: Performance of different coalesced-hybrid oracles.

The figure shows that neither the confidence estimator nor the selector

perform close to optimal in the no-oracle predictor. Again, because there are

 137

no mispredictions, the discrepancy between the re-fetch and the re-execute

speedup with the ce-oracle must stem from the dissimilar CE settings that af-

fect the performance of the selector. The difference is more pronounced with

the coalesced-hybrid than it is with the last four value predictor (see Section

7.4.1). The reason could be the more regular design of the L4V predictor,

which may make the task of the selector easier and less susceptible to the

CE setting than in the Reg+St+L3pV hybrid.

Overall, the coalesced-hybrid’s confidence estimator and selector (no-

oracle) are able to reap 49% to 63% of the theoretically possible speedup

(ce/sel-oracle) for this predictor. A comparison with the perfect load value

predictor (all-oracle), however, shows that the predictor only yields 25% to

31% of the speedup that can theoretically be attained with load value predic-

tion (all-oracle). Comparing all-oracle with ce/sel-oracle shows that the coa-

lesced-hybrid only contains the necessary information to reach half the pos-

sible speedup.

Finally, doubling the predictor height (due to savings in the predictor

width) and adding b-tags considerably improves the potential of the predictor

because the all(b-tag)-oracle delivers 96% of the all-oracle’s performance,

whereas the all(tag)-oracle from Figure 7.4 only yields 92% of the perform-

ance.

9.5 Coalesced-Hybrid Sensitivity Analysis

This section investigates the sensitivity of the coalesced-hybrid’s perform-

ance to the order of its components, the type of tags used, and the width of

the last n partial value component.

 138

9.5.1 Component Permutations

The five sub-components that make up the coalesced-hybrid load value

predictor are prioritized from left to right, that is, the stride component has the

highest priority, the register component has a medium priority, and the last

three value component has the lowest priority. Within the last three value

component, the younger a value the higher its priority, which is slightly bene-

ficial as was determined in a previous study [BuZo99b]. The prioritization is

used to resolve ties between multiple components reporting the same highest

confidence. If only one component reports the highest confidence, then it is

selected independent of its priority.

Table 9.3 shows the re-fetch and the re-execute speedup of the coa-

lesced-hybrid when its three major components are permuted, i.e., when the

prioritization is changed. The predictors shown in the table are sorted from

top to bottom by decreasing average performance.

re-fetch re-execute
St+Reg+L3pV 13.711 17.400
Reg+L3pV+St 13.666 17.419
Reg+St+L3pV 13.577 17.318
L3pV+Reg+St 13.579 17.182
L3pV+St+Reg 13.470 17.189
St+L3pV+Reg 13.461 16.971

Permutation Speedups

Table 9.3: Speedup of the six main component permutations.

Clearly, no order is significantly better that any other. All the permutations

yield speedups within three percent of one another. The only minute correla-

tion I was able to detect is that prioritizing the L3pV component over the Reg

component seems to be slightly disadvantageous. I use St+Reg+L3pV be-

cause it performs best by a slight margin in the re-fetch case and also when

averaging the re-fetch and the re-execute numbers.

 139

9.5.2 Tags and B-Tags

The coalesced-hybrid includes a special kind of (partial) tags that I call

b-tags. B-tags contain one extra bit that indicates whether the last access to

any given line in the predictor resulted in a tag miss. This information is used

to inhibit updates from evicting the contents of a predictor line until two or

more misses have been seen in a row. As a consequence, infrequently exe-

cuted loads cannot easily expel information about frequently executed loads

that they alias with, which improves the predictor performance. The extra bit

essentially represents a one-bit replacement counter [CRT99].

 Figure 9.5 shows how the coalesced-hybrid performs with eight-bit partial

tags, eight-bit partial b-tags, and full b-tags.

Coalesced-Hybrid Performance with Different Tags

0

2

4

6

8

10

12

14

16

18

partial tags partial b-tags full b-tags

Type of Tag

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch
re-execute

Figure 9.5: The coalesced-hybrid’s speedup with various tag schemes.

There is hardly any difference between the performance with partial and

 140

full b-tags. The reason is that eight bits are sufficient to allow the predictor to

distinguish between all the load instructions in seven of the eight benchmark

programs. Only gcc’s executable is too large. While the seven programs

perform exactly the same with eight-bit partial b-tags and full b-tags, gcc ac-

tually performs slightly better when only partial b-tags are used, in particular

with re-fetch. Clearly, the resulting aliasing must somehow be helpful. Nev-

ertheless, I believe that in most cases larger executables require more tag-

bits for optimal performance.

Using b-tags instead of normal tags improves the speedup of the coa-

lesced-hybrid by half a percent with re-fetch and close to one percent with re-

execute. Evidently, infrequently executed load instructions do affect the coa-

lesced-hybrid’s ability to correctly predict the frequently executed loads that

they alias with.

9.5.3 Predictor Width

Figure 9.6 is presented to determine how wide the last n partial value

component in the coalesced-hybrid needs to be. It shows the predictor’s per-

formance with differently sized, twenty-bit last n partial value components.

The performance of all the predictors in the figure is quite similar. Only

the St+Reg+L2pV predictor’s speedup is somewhat lower. Clearly, retaining

three last values per line appears to be sufficient to reap almost all the poten-

tial. This result is particularly surprising because the predictors shown in the

figure are not scaled to the same size but become larger as the width in-

creases. Consequently, I use a last three partial value component in the coa-

lesced-hybrid to keep the predictor’s size and the number of components

small while still reaping most of the performance.

 141

Coalesced-Hybrid Performance with Different Last n Value Components

13.1
13.7 13.8 13.3 13.5

16.1

17.4 17.3 17.1
17.7

0

2

4

6

8

10

12

14

16

18

20

St+Reg+L2pV St+Reg+L3pV St+Reg+L4pV St+Reg+L5pV St+Reg+L6pV

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch
re-execute

Figure 9.6: Performance with different last n partial value components.

 142

Note that this result indicates that hybridization is more important than

making the hybrid’s components wider to improve their individual perform-

ance (Chapter 7).

Interestingly, the re-fetch performance drops when going from a last four

to a last five partial value component and the re-execute speedup decreases

when going from a last three to a last four and then again to a last five partial

value component before increasing again. Since an St+Reg+L(n+1)pV pre-

dictor contains a complete St+Reg+LnpV predictor, these performance fluc-

tuations once again have to be the result of increased negative interference

between the growing number of predictor components.

9.6 Summary

This chapter describes several state-reduction techniques to decrease the

often large storage requirement of hybrid load value predictors. For example,

the amount of state required by a last n value predictor and a stride predictor

can be reduced by a factor of two or more. This substantial saving can be

achieved by having the last n value component provide all the information

that the stride component needs, making the latter storage-less. In addition

to that, the size of the last n value predictor can be decreased by sharing

most of the bits among the n values in each predictor line. Both techniques

result in a large reduction in predictor size while essentially maintaining the

predictor performance.

Based on the well-performing Reg+St2d+L4V hybrid, I designed a very ef-

fective coalesced-hybrid load value predictor that requires only a small

amount of state because it incorporates a storage-less stride, a storage-less

register, and a reduced-storage last three partial value predictor. Cycle-

accurate pipeline-level simulations of a four-way superscalar out-of-order

CPU with many different predictors from the literature show that the coa-

lesced-hybrid outperforms even the best predictors by almost twenty percent

 143

over a wide range of predictor sizes. In the smallest configuration I investi-

gated, which requires fifteen kilobytes of state, the coalesced-hybrid yields a

speedup with both a re-fetch and a re-execute misprediction recovery

mechanism that surpasses the speedup of other predictors, including predic-

tors that are five times larger.

 144

Chapter 10
10 Related Work

Related Work

This chapter describes ideas from the current load value prediction litera-

ture, most of which are used or built upon in this dissertation, and discusses

some of the differences to the presented work.

10.1 Early Work

Two independent research efforts [Gab96, LWS96] first recognized that

load instructions exhibit value locality and concluded that there is potential for

prediction.

Lipasti et al. [LWS96] investigated why load values are often predictable

and how predictable different kinds of load instructions are. They found that

while all types of loads exhibit significant value predictability, address loads

have slightly better value locality than data loads, instruction address loads

hold an edge over data address loads, and integer data values are more pre-

dictable than floating-point data values.

In a follow-up paper, Lipasti and Shen [LiSh96] broaden their scope to

predicting all result generating instructions and show how value prediction

can be used to exceed the existing instruction level parallelism (ILP) by col-

lapsing dependencies. They found that using a value predictor delivers three

to four times more speedup than doubling the data cache (same hardware

increase) and argue that a value predictor is unlikely to have an adverse ef-

fect on the processor cycle time whereas doubling the data-cache size

probably would. Furthermore, they note that loads are the most predictable

 145

frequently executed instructions. Lipasti and Shen also propose the re-

execute misprediction recovery mechanism, which is better suited for value

prediction than the more conservative re-fetch recovery mechanism from the

branch prediction literature. Both mechanisms are discussed in Section 2.2.

Gabbay’s dissertation proposal [Gab96] also discusses general value

prediction and how to boost the ILP beyond the data-flow limit, but he studies

load value prediction by itself as well.

10.2 Predictors

Lipasti et al. [LWS96] describe a last value predictor to exploit the existing

load value locality. Their predictor utilizes two-bit saturating up/down count-

ers to classify loads as unpredictable, predictable, or constant, i.e., the satu-

rating counters essentially represent a bimodal confidence estimator. This

kind of confidence estimator is discussed and improved upon in Chapter 5.

Gabbay [Gab96] proposes four predictor schemes: a tagged last value

predictor, a tagged stride predictor, a register-file predictor, and a sign-

exponent-fraction (SEF) predictor. The SEF predictor is useful for predicting

IEEE floating-point loads, and the register-file predictor was later improved by

Tullsen and Seng [TuSe99].

In their next paper, Lipasti and Shen [LiSh96] suggest making predictions

based on the last n values instead of the last value. However, they only pro-

vide results for oracle predictors. Chapter 7 presents an implementable last n

value predictor.

Wang and Franklin [WaFr97] propose a two-level prediction scheme that

makes predictions based on the last distinct four loaded values. They further

propose a hybrid predictor that combines their last distinct four value predic-

tor with a stride predictor. The two components in their hybrid are somewhat

coalesced.

Sazeides and Smith [SaSm97a] perform a theoretical limit study of the

 146

predictability of data values. They investigate the performance of three mod-

els: last value, stride 2-delta, and finite context method. Their finite context

method predictor predicts the next value based on a finite number of preced-

ing values by recording which value followed which sequence of values in the

past. In a follow-up paper [SaSm97b], Sazeides and Smith design an imple-

mentable two-level value predictor based on the finite context method. They

found that their predictor outperforms other, simpler predictors, but only with

large predictor sizes. Rychlik et al. [RFKS98] propose a hybrid between

Sazeides and Smith’s finite context method and stride 2-delta predictors.

Tullsen and Seng [TuSe99] present a register value predictor that is stor-

age-less except for its confidence estimator. It predicts that a load will fetch a

value that is identical to the value already stored in the target register of the

load instruction. Since the predictor uses the CPU’s register file as a source

for values, it does not require any value storage. I found the register value

predictor to be a valuable complement in hybrid predictors (Chapter 8). I fur-

ther show that a stride predictor can also be made storage-less in combina-

tion with a last two value predictor (Chapter 9).

Most of the above predictors and many more are discussed and com-

pared performance-wise in Section 5.4 and Chapter 8.

10.3 Profile-based Approaches

Gabbay and Mendelson [GaMe97] explore the possibility of using pro-

gram profiles to enhance the efficiency of value prediction. They use profiling

to insert opcode directives to filter out highly unpredictable values from being

allocated in the load value predictor, which considerably reduces the amount

of aliasing. However, not even manual fine-tuning of the user supplied

threshold value allows them to outperform their relatively basic hardware-only

predictor in all cases. Furthermore, they found that training runs generally

correlate with test runs, indicating that a program’s input values do not signifi-

 147

cantly affect the value predictability.

Calder et al. [CaFe99, CFE97] examine the invariance found from profiling

instruction values and propose a new type of profiling called convergent pro-

filing, which is much faster than conventional profiling. Their measurements

reveal that a significant number of instructions (including loads) generate only

one value with high probability. They note that the invariance of load values

is crucial for the prediction of other types of instructions (by propagation).

Similar to Gabbay and Mendelson’s result, Calder et al. also found that the

observed value invariance does not change significantly across different sets

of program inputs.

Unfortunately, it is often difficult to obtain (good) profile information and

extra bits for flagging instructions are usually not available in existing instruc-

tion sets, which is why profile-based approaches are excluded from this dis-

sertation.

10.4 Other Related Work

Rychlik et al. [RFKS98] address the problem of useless predictions. They

introduce a simple hardware mechanism that inhibits predictions that were

never used (because the true load value became available before the pre-

dicted value was consumed) from updating the predictor, which results in im-

proved performance due to reduced predictor pollution. Unfortunately, incor-

porating their scheme is not possible with the SAg confidence estimator (CE)

that my predictors are based on. Finding and studying a similar mechanism

that works with a SAg CE is left for future work.

In their next paper [GaMe98], Gabbay and Mendelson show that the in-

struction fetch bandwidth has a significant impact on the efficiency of value

prediction. They found that value prediction (of one-cycle latency instruc-

tions) only makes sense if the producer and consumer instructions are

fetched during the same cycle. Hence, general value prediction is more ef-

 148

fective with high-bandwidth instruction fetch and issue mechanisms. They

argue that current processors can effectively exploit less than half of the cor-

rect value predictions, since the average true data-dependence distance is

greater than today’s fetch-bandwidth of four. This is one of the reasons why

this thesis focuses on predicting only load values, which requires significantly

smaller and simpler predictors while still reaping most of the performance po-

tential.

Gonzalez and Gonzalez [GoGo98] found that the benefit of data value

prediction increases significantly as the instruction window size grows, indi-

cating that value prediction is likely to play an important role in future proces-

sors. Furthermore, they observed an almost linear correlation between the

number of correctly predicted instructions and the resulting performance im-

provement.

Fu et al. [FJLC98] propose a mixed hardware and software-based ap-

proach to value speculation that leverages advantages of both hardware

schemes for value prediction and compiler schemes for exposing instruction-

level parallelism. They propose adding new instructions to explicitly load val-

ues from the predictor and to update the predictor. In this dissertation, I limit

myself to investigating only transparent prediction schemes, that is, predictors

that do not require changes to the instruction set architecture and that can

therefore be included in existing CPU families.

A more detailed study about predictability by Sazeides and Smith

[SaSm98] illustrates that most of the predictability originates in the program

control structure and immediate values, which explains the frequently ob-

served independence of program input. Another result of their work is that

over half of the mispredicted branches actually have predictable input values,

implying that a side-effect of value prediction should be improved branch pre-

diction accuracy. Gonzalez and Gonzalez [GoGo98] did indeed observe such

an improvement in their study and propose possible predictor implementa-

tions to exploit it in a follow-up paper [GoGo99].

 149

Sodani and Sohi’s paper [SoSo98] builds on the Gonzalez studies. They

found, among other things, that resolving branches using predicted operands

is only beneficial in the presence of low value misprediction rates.

Rychlik et al. [RFKS98] and Reinman and Calder [ReCa98] propose reus-

ing the confidence estimators in the components of their hybrid load value

predictor as selector, thus eliminating the need for extra storage to guide the

selection process. I use the same approach in my hybrid predictors.

Calder et al. [CRT99] examine selection techniques to minimize predictor

capacity conflicts by prohibiting unimportant instructions from using the pre-

dictor. At the same time, they classify instructions depending on their latency

so that the confidence threshold can be adapted to the potential gain of pre-

dicting a given instruction. Hence, operations with small gains are only pre-

dicted if the predictor’s confidence is very high, whereas operations with po-

tentially large gains are predicted even if the confidence is rather low. Inter-

estingly, they found that loads are responsible for most of the latency in the

critical path and hence predicting only loads represent a good filtering criteria.

I implicitly use this filtering criteria because all my predictors only predict load

values. Calder et al. further propose a use-bit that indicates if a predicted

value has been consumed. If it has not, the comparison for validating the

prediction can be omitted and no misprediction recovery is necessary even if

the predicted value is incorrect. Finally, they suggest utilizing replacement

and warm-up counters to minimize unnecessary replacements in their predic-

tor and to delay predictions until the predictor has warmed up. I use a one-bit

replacement counter in some of my predictors (Chapter 9). Instead of using

warm-up counters, I set the confidence value to a low level after a replace-

ment, which has the same effect, i.e., it inserts a delay before the confidence

estimator starts allowing predictions.

Nakra, Gupta, and Soffa [NGS99a] present techniques to predict values

based on global context, that is, the behavior of other instructions is used to

guide the prediction process. For example, they propose a last value and a

 150

stride predictor that make different predictions for the same instruction

depending on the current execution path by storing different values and/or

strides for each path. Furthermore, they suggest correlating predictions with

recently completed instructions. Both techniques improve the predictor per-

formance somewhat. I believe their predictors are good candidates for incor-

porating state reduction techniques similar to those discussed in Chapter 9,

which should yield more cost effective implementations.

In their next paper Nakra, Gupta, and Soffa [NGS99b] investigate value

prediction in connection with VLIW machines. Because such machines are

statically scheduled and the code cannot easily be re-ordered at runtime, ac-

tual compensation code has to be included in the binary to support value

prediction. In order to avoid the code increase and the performance impact

of the compensation code, Nakra et al. describe a two-execution-unit system

in which the second unit generates and executes the compensation code on-

the-fly and concurrently with the regular program execution on the first execu-

tion engine.

Srinivasan and Lebeck [SrLe98] show that in some programs over sixty

percent of the executed load instructions produce a value that is already

needed in the next cycle. They further found that up to thirty-six percent of

the loads miss in the L1 data-cache but have a latency demand that is lower

than the L2 cache’s access time. These percentages, which are likely to

grow as the issue width increases and the speed-gap between CPUs and

memory widens, show the growing need for a mechanism to reduce the load

latency. Load value predictors are able to provide single and even zero cycle

load latencies.

Morancho et al. [MLO98] propose separating the confidence estimator

from the predictor so that only the confidence estimator has to be large

enough to handle “all” load instructions, whereas the predictor itself can be

designed smaller because it only has to hold the predictable loads. Unfortu-

nately, such a scheme is not possible in my predictors because it is neces-

 151

sary to also feed the unpredictable loads to the predictor so that predictability

patterns can be established, which are essential for the SAg confidence es-

timator.

10.4.1 Dependence Prediction

In another paper [LiSh97], Lipasti and Shen add dependence prediction to

their predictor and switch to predicting source operand values rather than in-

struction results to decouple dependence detection from value-speculative

instruction dispatch. They found their approach to be particularly effective in

wide and deeply pipelined machines.

Reinman and Calder [ReCa98] also examine dependence prediction and

conclude that, due to the small hardware requirement, dependence prediction

should be added to new processors first even though value prediction pro-

vides a larger performance improvement. Furthermore, they found both ad-

dress prediction and memory renaming to be inferior to dependence and

value prediction.

In another paper [RCT+98], Reinman et al. propose a software-guided

approach for identifying dependencies between store and load instructions

and devise an architecture to communicate dependency information to the

hardware. Like other profile-based approaches, their approach requires

changes to the instruction set architecture.

10.4.2 Confidence Estimation

Jacobsen et al. [JRS96], Tyson et al. [TLF97], and Grunwald et al.

[GKMP98] introduce confidence estimation to the domain of branch predic-

tion, dual-path, and multi-path execution in order to decide whether to make a

prediction or whether to execute two or multiple program paths, respectively.

 152

I adopt some of their metrics for load value prediction (see Section 3.4).

While their goals are similar to mine, the approaches between branch confi-

dence estimation and load value prediction differ. In particular, their confi-

dence estimator (with two-bit saturating up/down counters) can be improved

upon when applied to load value prediction (Chapter 5).

10.4.3 Branch Prediction

In the area of branch prediction, a significant amount of related work ex-

ists. Lee and Smith [LeSm84] propose keeping a history of recent branch

directions for every conditional branch and systematically analyze the pre-

dictability of every possible pattern.

Yeh and Patt [YePa92, YePa93] and Pan, So, and Rahmeh [PSR92] de-

scribe sets of two-level branch predictors and invent a taxonomy to distin-

guish between them. I adopt their naming convention and one of their de-

signs (the SAg predictor) for use as a confidence estimator in load value pre-

dictors.

Sprangle et al. [SCAP97] describe a technique called agree prediction,

which reduces the chance that items mapped to the same predictor slot will

interfere negatively. They achieve this by recording whether the previous

branch predictions were correct or not instead of whether the branches were

taken or not. I use a similar approach in the SAg confidence estimator by re-

cording whether load values are predictable or not.

 153

Chapter 11
11 Summary and Conclusions

Summary and Conclusions

One of the largest performance-bottlenecks in current microprocessors is

the continuously growing load latency. Load value predictors can alleviate

this problem by allowing the CPU to speculatively continue processing with a

predicted load value while the memory access is still in progress. The goal of

this dissertation is to improve the effectiveness of transparent, context-based

load value predictors.

Most load value predictors contain confidence estimators to suppress un-

certain predictions, which is essential for good performance. Analyzing the

behavior of an existing confidence estimator revealed a deficiency that pre-

vents it from handling sequences of alternating predictability effectively. Such

sequences represent an important subset of the predictable load value se-

quences. To eliminate this weakness, I designed a different confidence esti-

mator that is somewhat larger but yields higher speedups with most load

value predictors.

In order to be effective in superscalar CPUs, load value predictors have to

support multiple accesses per cycle. Splitting a predictor into several banks

can provide the needed support for multiple simultaneous predictor accesses.

My performance results show that a simple interleaved banking scheme can

deliver the same speedup as a predictor that is able to handle an unlimited

number of accesses per cycle.

An investigation of the utilization of load value predictors revealed that

most of the predictor hardware is hardly ever or never used while a small part

is used extremely frequently. To improve the utilization, I designed a predic-

 154

tor that allocates more hardware to the frequently executed load instructions

and is therefore able to correctly predict a larger number of loads, which im-

proves the predictor performance considerably.

Furthermore, several sensitivity studies illustrate the range of parameters

that result in good predictor performance. For instance, three to four-bit satu-

rating counters (and ten-bit histories) seem to be necessary for good confi-

dence estimator performance. Load value predictors should be at least 512

lines tall for the SPECint95 workload. While the performance delivered by a

load value predictor varies greatly from program to program, the predictor

configuration that yields the highest average performance over the

SPECint95 benchmark suite also yields close to optimal performance for

most of the individual programs, implying that a load value predictor’s pa-

rameters do not have to be adapted to individual programs to yield a good

average performance.

A study of the expressiveness of non-speedup-based metrics revealed

that all of the investigated metrics appear to be misleading in some cases,

indicating that genuine speedup measurements are probably required for per-

formance evaluation purposes.

Furthermore, this dissertation presents performance numbers for a large

number of load value predictors that are all evaluated in the same environ-

ment (i.e., the same simulator, the same benchmark programs, etc.), making

it possible to truly compare the performance of the studied predictors.

An analysis of many hybrid predictor combinations shows that hybrids are

able to deliver substantially more speedup than even the best single-

component predictor because different components contribute independently

to the overall performance. Studying the component’s speedup contributions

revealed that the register predictor with its poor individual performance repre-

sents a valuable addition to all other studied components. Conversely, com-

bining well-performing predictors frequently does not result in an effective hy-

brid. In fact, some predictor combinations underperform a similar but smaller

 155

hybrid due to negative interference.

The hybridization analysis allowed me to design a predictor using compo-

nents that complement each other well. Other hybrids were found to contain

components that do not ideally complement one another because they pre-

dict highly overlapping sets of load instructions.

Of all the studied predictors, the Reg+St2d+L4V predictor performs best

with re-fetch as well as when averaging re-fetch and re-execute speedups.

Since this predictor is rather large, I investigated techniques to reduce its

size. I discovered that hybrids often store the same information in multiple

components. Eliminating the redundant information can reduce the size of a

component in a hybrid by more than a factor of two without compromising the

performance. Another effective size-reduction method I developed is storing

load values in a compressed format. A simple compression technique can

reduce the predictor size by fifty percent while essentially maintaining the

predictor’s full performance.

Based on the well-performing Reg+St2d+L4V hybrid, I designed a very ef-

fective coalesced-hybrid load value predictor that requires only a small

amount of state because it incorporates several of the developed state-

reduction approaches. Cycle-accurate pipeline-level simulations of a four-

way superscalar out-of-order CPU with many different predictors from the lit-

erature show that the coalesced-hybrid outperforms even the best predictors

by almost twenty percent over a wide range of predictor sizes. In the smallest

configuration I investigated, which requires fifteen kilobytes of state, the coa-

lesced-hybrid yields a speedup with both a re-fetch and a re-execute mispre-

diction recovery mechanism that surpasses the speedup of other predictors,

including predictors that are over five times as large.

With fifteen kilobytes of state, the coalesced-hybrid’s harmonic-mean re-

fetch speedup over the eight SPECint95 programs is twelve percent and the

re-execute speedup is fifteen percent. These performance improvements are

obtained with a transparent load value predictor that can even be added to

 156

existing CPU families because no change in the instruction set architecture is

necessary. Furthermore, these speedups are obtained on programs that

were not compiled with load value prediction in mind. In future work I will

study compiler optimizations to further improve the performance of load value

predictors.

Only value predictors are hybridized in this thesis. Since the number of

transistors per chip continuously increases, more real-estate will soon be

available for larger and more complex load value predictors. Hence, it may

be worthwhile studying hybrid confidence estimators as well.

If the load latency continues to grow, and there is currently no indication

that it will not, load value prediction will become more and more important. At

some point it may even become necessary to predict the load latency so that

more aggressive (but slower) load value predictors can be used to predict the

long-latency load instructions. Thus, hierarchies of load value predictors with

multiple levels may one day be commonplace.

 157

Bibliography

[BJR+99] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A.
Yoaz, U. Weiser. “Correlated Load-Address Predictors”. 26th Interna-
tional Symposium on Computer Architecture. May 1999.

[BuZo98a] M. Burtscher, B. G. Zorn. “Profile-Supported Confidence Estimation for
Load-Value-Prediction”. PACT'98 Workshop on Profile and Feedback-
Directed Compilation. Paris, France. October 1998.

[BuZo98b] M. Burtscher, B. G. Zorn. Load Value Prediction Using Prediction Out-
come Histories. Technical Report CU-CS-873-98, University of Colorado
at Boulder. October 1998.

[BuZo99a] M. Burtscher, B. G. Zorn. “Prediction Outcome History-based Confi-
dence Estimation for Load Value Prediction”. Journal of Instruction-Level
Parallelism, Vol. 1. May 1999.

[BuZo99b] M. Burtscher, B. G. Zorn. “Exploring Last n Value Prediction”. 1999 In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques. October 1999.

[BuZo00] M. Burtscher, B. G. Zorn. Coalescing and Hybridizing Load Value Predic-
tors. Technical Report CU-CS-903-00, University of Colorado at Boulder.
March 2000.

[CaFe99] B. Calder, P. Feller, A. Eustace. “Value Profiling and Optimization”.
Journal of Instruction-Level Parallelism, Vol. 1. March 1999.

[CFE97] B. Calder, P. Feller, A. Eustace. “Value Profiling”. 30th Annual ACM/IEEE
International Symposium on Microarchitecture. December 1997.

[CRT99] B. Calder, G. Reinmann, D. M. Tullsen. “Selective Value Prediction”. 26th
International Symposium on Computer Architecture. May 1999.

[DEC92] Digital Equipment Corporation. Alpha Architecture Handbook. 1992.

[Edm+95] J. H. Edmondson et al. “Superscalar Instruction Execution in the 21164
Alpha Microprocessor”. IEEE Micro, 15(2). April 1995.

[EuSr94] A. Eustace, A. Srivastava. ATOM: A Flexible Interface for Building High
Performance Program Analysis Tools. WRL Technical Note TN-44, Digi-
tal Western Research Laboratory, Palo Alto. July 1994.

 158

[FJLC98] C. Y. Fu, M. D. Jennings, S. Y. Larin, T. M. Conte. “Value Speculation
Scheduling for High Performance Processors”. Eighth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems. October 1998.

[Gab96] F. Gabbay. Speculative Execution Based on Value Prediction. EE De-
partment Technical Report #1080, Technion - Israel Institute of Technol-
ogy. November 1996.

[GaMe97] F. Gabbay, A. Mendelson. “Can Program Profiling Support Value Predic-
tion?”. 30th Annual ACM/IEEE International Symposium on Microarchi-
tecture. December 1997.

[GaMe98] F. Gabbay, A. Mendelson. “The Effect of Instruction Fetch Bandwidth on
Value Prediction”. 25th International Symposium on Computer Architec-
ture. June 1998.

[GKMP98] D. Grunwald, A. Klauser, S. Manne, A. Pleszkun. “Confidence Estimation
for Speculation Control”. 25th International Symposium on Computer Ar-
chitecture. June 1998.

[GoGo98] J. Gonzalez, A. Gonzalez. “The Potential of Data Value Speculation to
Boost ILP”. In 12th International Conference on Supercomputing. 1998.

[GoGo99] J. Gonzalez, A. Gonzalez. “Control-Flow Speculation through Value Pre-
diction for Superscalar Processors”. 1999 International Conference on
Parallel Architectures and Compilation Techniques. October 1999.

[Half95] T. R. Halfhill. “Intel’s P6”. BYTE, 20(4):42-58. April 1995.

[JRS96] E. Jacobsen, E. Rotenberg, J. Smith. “Assigning Confidence to Condi-
tional Branch Predictions”. 29th International Symposium on Microarchi-
tecture. December 1996.

[John91] M. Johnson. Superscalar Microprocessor Design. Prentice Hall. 1991.
ISBN 0-13-875634-1.

[Jou93] N. P. Jouppi. “Cache write policies and performance”. Computer Archi-
tecture News, Proceedings of ISCA '20, 191-201. May, 1993.

[KaEm91] D. R. Kaeli, P. Emma. “Branch History Table Prediction of Moving Target
Branches Due to Subroutine Returns”. 18th Annual International Sympo-
sium on Computer Architecture, 19(3):34-42. May 1991.

[KMW98] R. E. Kessler, E. J. McLellan, D. A. Webb. “The Alpha 21264 Microproc-
essor Architecture”. 1998 International Conference on Computer Design.
October 1998.

 159

[LCB+98] D. C. Lee, P. J. Crowley, J. J. Baer, T. E. Anderson, B. N. Bershad.
“Execution Characteristics of Desktop Applications on Windows NT”. 25th
International Symposium on Computer Architecture. June 1998.

[LCM97] C. Lee, I. Chen, T. Mudge. “The bi-mode branch predictor”. 30th Annual
ACM/IEEE International Symposium on Microarchitecture, 4-13. Decem-
ber 1997

[LeSm84] J. K. F. Lee, A. J. Smith. “Branch Prediction Strategies and Branch Tar-
get Buffer Design”. IEEE Computer 17(1):6-22. January 1984.

[LiSh96] M. H. Lipasti, J. P. Shen. “Exceeding the Dataflow Limit via Value Pre-
diction”. 29th International Symposium on Microarchitecture. December
1996.

[LiSh97] M. H. Lipasti, J. P. Shen. “The Performance Potential of Value and De-
pendence Prediction”. In EUROPAR-97. August 1997.

[LWS96] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. “Value Locality and Load
Value Prediction”. Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, 138-147.
October 1996.

[McF93] S. McFarling. Combining Branch Predictors. TN 36, DEC-WRL. June
1993.

[MLO98] E. Morancho, J. M. Llaberia, A. Olive. “Split Last-Address Predictor”.
1998 International Conference on Parallel Architectures and Compilation
Techniques. October 1998.

[NGS99a] T. Nakra, R. Gupta, M. L. Soffa. “Global Context-based Value Predic-
tion”. Fifth International Symposium on High Performance Computer Ar-
chitecture. January 1999.

[NGS99b] T. Nakra, R. Gupta, M. L. Soffa. “Value Prediction in VLIW Machines”.
26th International Symposium on Computer Architecture. May 1999.

[Pai96] A. Paithankar. AINT: A Tool for Simulation of Shared-Memory Multiproc-
essors. Master’s Thesis, University of Colorado at Boulder. 1996.

[PSR92] S. T. Pan, K. So, J. T. Rahmeh. “Improving the Accuracy of Dynamic
Branch Prediction using Branch Correlation”. Proceedings of the Fifth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 76-84. October 1992.

[PeSm93] C. H. Perleberg, A. J. Smith. “Branch Target Buffer Design and Optimi-
zation”. IEEE Transactions on Computers, 42(4):396-412. April 1993.

 160

[RCT+98] G. Reinman, B. Calder, D. Tullsen, G. Tyson, T. Austin. Profile Guided
Load Marking for Memory Renaming. Technical Report CS-98-593, Uni-
versity of California San Diego. July 1998.

[ReCa98] G. Reinman, B. Calder. “Predictive Techniques for Aggressive Load
Speculation”. 31st Annual ACM/IEEE International Symposium on Mi-
croarchitecture. December 1998.

[RFKS98] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. “Efficacy and Performance Im-
pact of Value Prediction”. Proceedings of the 1998 International Confer-
ence on Parallel Architectures and Compiler Technology (PACT ’98).
October 1998.

[SaSm97a] Y. Sazeides, J. E. Smith. “The Predictability of Data Values”. 30th Annual
ACM/IEEE International Symposium on Microarchitecture. December
1997.

[SaSm97b] Y. Sazeides, J. E. Smith. Implementations of Context Based Value Pre-
dictors. Technical Report ECE-97-8, University of Wisconsin-Madison.
December 1997.

[SaSm98] Y. Sazeides, J. E. Smith. “Modeling Program Predictability”. 25th Interna-
tional Symposium on Computer Architecture. June 1998.

[SCAP97] E. Sprangle, R. Chappell, M. Alsup, Y. Patt. “The Agree Predictor: A
Mechanism for Reducing Negative Branch History Interference”. 24th
Annual International Symposium of Computer Architecture, 284-291.
1997.

[SLM95] S. Sechrest, C. C. Lee, T. Mudge. “The Role of Adaptivity in Two-level
Adaptive Branch Prediction”. 28th International Symposium on Microar-
chitecture. 1995.

[SmSo95] J. E. Smith, G. S. Sohi. “The Microarchitecture of Superscalar Proces-
sors”. Proceedings of the IEEE. 1995.

[SoSo98] A. Sodani, G. S. Sohi. “Understanding the Differences Between Value
Prediction and Instruction Reuse”. Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture, 205-215.
1998.

[SrLe98] S. T. Srinivasan, A. R. Lebeck. “Load Latency Tolerance in Dynamically
Scheduled Processors”. Proceedings of the 31st Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, 148-159. 1998.

[SPEC95] SPEC CPU’95. August 1995.

 161

[SrEu94] A. Srivastava, A. Eustace. “ATOM: A System for Building Customized
Program Analysis Tools”. ACM SIGPLAN ’94 Conference on Program-
ming Language Design and Implementation. ACM SIGPLAN 29(6):196-
205. June 1994.

[SrWa93] A. Srivastava, D. Wall. “A Practical System for Inter-module Code Opti-
mization at Linktime”. Journal of Programming Languages 1(1). March
1993.

[TLF97] G. Tyson, K. Lick, M. Farrens. Limited Dual Path Execution. Technical
Report CSE-TR-346-97, University of Michigan. 1997.

[TuSe99] D. Tullsen, J. Seng. “Storageless Value Prediction Using Prior Register
Values”. 26th International Symposium on Computer Architecture. May
1999.

[WaFr97] K. Wang, M. Franklin. “Highly Accurate Data Value Prediction using Hy-
brid Predictors”. 30th Annual ACM/IEEE International Symposium on Mi-
croarchitecture. December 1997.

[Yeag96] K. C. Yeager. “The MIPS R10000 Superscalar Microprocessor”. IEEE
Micro, 28-40. April 1996.

[YePa92] T. Y. Yeh, Y. N. Patt. “Alternative Implementations of Two-level Adaptive
Branch Prediction”. 19th Annual International Symposium of Computer
Architecture, 124-134. May 1992.

[YePa93] T. Y. Yeh, Y. N. Patt. “A Comparison of Dynamic Branch Predictors that
use Two Levels of Branch History”. 20th Annual International Symposium
of Computer Architecture, 257-266. May 1993.

[You94] J. L. Young. Insider’s Guide to PowerPC Computing. Que Corporation.
1994. ISBN 1-56529-625-7.

 162

Appendix
12 Appendix

Appendix A

Theorem : If the runtime of the individual programs of a benchmark

suite is normalized for CPUBase (i.e., the CPU without any load value

predictor), the combined speedup evaluates to the harmonic mean of

the individual speedups. If the normalization is done for CPULVP (i.e.,

the CPU with the load value predictor), the combined speedup evalu-

ates to the arithmetic mean of the individual speedups.

Proof : Suppose there are n programs with the runtimes RTBase,i and

RTLVP,i for i = 1, 2, ..., n on CPUBase and CPULVP, respectively.

By definition, the individual speedups are

iLVP

iBase
i RT

RT
s

,

,=

When normalizing the baseline runtimes to be one, we obtain

1
RT

RT
RT

iBase

iBase
iBase ==

,

,*
,

iBase

iLVP
iLVP RT

RT
RT

,

,*
, =

where the starred values represent the normalized values. We then

find the overall speedup S (i.e., the total runtime on the baseline proc-

essor over the total runtime on the processor with the load value pre-

 163

dictor) to be the harmonic mean of the individual speedups.

),...,,(21

,

,
*

,
*

,

*
,

n

i ii iBase

iLVP

i
iLVP

i
iLVP

i
iBase

sssHM

s

1
n

RT

RT
n

RT

n

RT

RT
S =====

∑∑∑∑
∑

Similarly, when normalizing the CPULVP runtimes to be one, we get

1
RT

RT
RT

iLVP

iLVP
iLVP ==

,

,*
,

iLVP

iBase
iBase RT

RT
RT

,

,*
, =

and now find the overall speedup S to be the arithmetic mean of the

individual speedups.

),...,,(21
,

,*
,

*
,

*
,

n
i

i
i iLVP

iBase

i
iBase

i
iLVP

i
iBase

sssAM
n

s

n

RT

RT

n

RT

RT

RT
S =====

∑∑∑
∑
∑

♦

 164

Appendix B

Re-fetch Speedup of Bimodal Predictors with various Banking Configurations

0

1

2

3

4

5

6

7

8

9

10

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

1 Bank

2 Banks

4 Banks

Unlimited

Figure 12.1: Re-fetch speedup of differently banked bimodal predictors.

 165

Re-execute Speedup of Bimodal Predictors with various Banking Configurations

0

2

4

6

8

10

12

14

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

1 Bank
2 Banks

4 Banks

Unlimited

Figure 12.2: Re-execute speedup of differently banked bimodal predictors.

Re-execute Speedup of SAg Predictors with various Banking Configurations

0

2

4

6

8

10

12

14

16

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

1 Bank

2 Banks

4 Banks

Unlimited

Figure 12.3: Re-execute speedup of differently banked SAg predictors.

 166

number recovery confidence load value load instrs accesses references updates % dropped % dropped
of banks mechanism estimator predictor per cycle per cycle per cycle per cycle predictions updates

1 re-fetch bimodal FCM 0.410 0.794 0.403 0.391 49.8 20.5
1 re-fetch bimodal L4V 0.426 0.779 0.395 0.384 50.1 25.1
1 re-fetch bimodal LV 0.424 0.780 0.395 0.384 50.0 24.5
1 re-fetch bimodal Reg 0.421 0.774 0.391 0.383 50.8 23.7
1 re-fetch bimodal St2d 0.425 0.790 0.403 0.387 50.3 24.5
1 re-fetch SAg FCM 0.412 0.790 0.401 0.389 49.8 20.5
1 re-fetch SAg L4V 0.424 0.791 0.402 0.389 51.1 24.3
1 re-fetch SAg LV 0.424 0.791 0.403 0.388 50.6 24.2
1 re-fetch SAg Reg 0.420 0.774 0.391 0.383 50.5 23.7
1 re-fetch SAg St2d 0.425 0.800 0.408 0.392 51.1 24.1
1 re-execute bimodal FCM 0.425 0.780 0.390 0.390 50.0 22.7
1 re-execute bimodal L4V 0.429 0.781 0.395 0.386 50.0 24.9
1 re-execute bimodal LV 0.431 0.787 0.396 0.390 50.4 24.9
1 re-execute bimodal Reg 0.426 0.776 0.392 0.384 50.3 24.7
1 re-execute bimodal St2d 0.436 0.796 0.400 0.396 50.4 25.1
1 re-execute SAg FCM 0.423 0.780 0.388 0.391 50.3 22.1
1 re-execute SAg L4V 0.433 0.785 0.395 0.390 50.5 25.4
1 re-execute SAg LV 0.434 0.786 0.397 0.389 50.3 25.6
1 re-execute SAg Reg 0.424 0.776 0.391 0.384 50.8 24.1
1 re-execute SAg St2d 0.438 0.797 0.396 0.400 50.7 24.2
2 re-fetch bimodal FCM 0.418 0.977 0.501 0.476 19.3 1.7
2 re-fetch bimodal L4V 0.434 0.991 0.504 0.487 18.9 2.2
2 re-fetch bimodal LV 0.433 0.989 0.504 0.485 18.9 2.2
2 re-fetch bimodal Reg 0.428 0.980 0.500 0.479 19.0 2.2
2 re-fetch bimodal St2d 0.436 1.002 0.514 0.488 19.0 2.2
2 re-fetch SAg FCM 0.416 0.978 0.505 0.473 19.2 1.8
2 re-fetch SAg L4V 0.442 1.013 0.515 0.498 19.1 2.1
2 re-fetch SAg LV 0.437 1.010 0.517 0.493 19.0 2.2
2 re-fetch SAg Reg 0.428 0.980 0.500 0.480 19.0 2.1
2 re-fetch SAg St2d 0.438 1.016 0.522 0.494 19.0 2.2
2 re-execute bimodal FCM 0.441 0.987 0.492 0.495 19.1 1.9
2 re-execute bimodal L4V 0.437 0.997 0.506 0.491 19.0 2.1
2 re-execute bimodal LV 0.436 0.996 0.504 0.492 19.0 2.2
2 re-execute bimodal Reg 0.430 0.981 0.500 0.481 19.0 2.2
2 re-execute bimodal St2d 0.442 1.012 0.510 0.502 19.1 2.1
2 re-execute SAg FCM 0.439 0.987 0.495 0.493 19.1 1.9
2 re-execute SAg L4V 0.453 1.013 0.508 0.506 19.0 2.0
2 re-execute SAg LV 0.442 1.005 0.507 0.498 19.0 2.1
2 re-execute SAg Reg 0.429 0.980 0.499 0.481 19.0 2.2
2 re-execute SAg St2d 0.448 1.020 0.513 0.507 18.9 2.0
4 re-fetch bimodal FCM 0.433 1.100 0.603 0.497 0.0 0.017
4 re-fetch bimodal L4V 0.438 1.106 0.603 0.502 0.0 0.020
4 re-fetch bimodal LV 0.434 1.101 0.603 0.498 0.0 0.029
4 re-fetch bimodal Reg 0.428 1.092 0.600 0.492 0.0 0.013
4 re-fetch bimodal St2d 0.437 1.116 0.615 0.501 0.0 0.027
4 re-fetch SAg FCM 0.428 1.097 0.605 0.493 0.0 0.015
4 re-fetch SAg L4V 0.455 1.141 0.618 0.522 0.0 0.020
4 re-fetch SAg LV 0.440 1.130 0.619 0.511 0.0 0.039
4 re-fetch SAg Reg 0.429 1.093 0.600 0.493 0.0 0.013
4 re-fetch SAg St2d 0.440 1.137 0.626 0.511 0.0 0.030
4 re-execute bimodal FCM 0.451 1.108 0.595 0.513 0.0 0.032
4 re-execute bimodal L4V 0.442 1.112 0.604 0.508 0.0 0.041
4 re-execute bimodal LV 0.439 1.116 0.606 0.510 0.0 0.042
4 re-execute bimodal Reg 0.430 1.093 0.599 0.494 0.0 0.010
4 re-execute bimodal St2d 0.447 1.136 0.613 0.523 0.0 0.049
4 re-execute SAg FCM 0.459 1.116 0.597 0.519 0.0 0.027
4 re-execute SAg L4V 0.462 1.136 0.607 0.529 0.0 0.036
4 re-execute SAg LV 0.445 1.123 0.608 0.515 0.0 0.029
4 re-execute SAg Reg 0.431 1.095 0.599 0.496 0.0 0.014
4 re-execute SAg St2d 0.453 1.142 0.615 0.528 0.0 0.019

Table 12.1: Banking information.

 167

Appendix C

8 9 10 11 12 13 14 15
4 105.78 105.89 106.06
5 106.13 106.25 106.29 106.36
6 106.15 106.20 106.32 106.35 106.39 106.44
7 106.39 106.44 106.47
8 106.44 106.48
9 106.44 106.51

10 106.36 106.46 106.53
11 106.25 106.36 106.46 106.55
12 106.25 106.38 106.46 106.54
13 106.47 106.54

8 9 10 11 12 13 14 15
4 111.22 111.38 111.51 111.58
5 111.48 111.61 111.65 111.73
6 111.59 111.67 111.73 111.81
7 111.73 111.79 111.82
8 111.81 111.85
9 111.81 111.84

10 111.84 111.84
11 111.81 111.83
12 111.79 111.83
13

8 9 10 11 12 13 14 15
4 109.86 110.08 110.18 110.20 110.21 110.21
5 110.20 110.23 110.23 110.23 110.22
6 110.03 110.20 110.22 110.23 110.23 110.21
7 110.18 110.20 110.22 110.22 110.21 110.20
8 110.10 110.18 110.19 110.21 110.22 110.21 110.20
9 110.17 110.19 110.20 110.19 110.18

10 110.09 110.16 110.17 110.17 110.16
11
12 110.13
13

8 9 10 11 12 13 14 15
4 107.19 107.23 107.25 107.29
5 107.24 107.25 107.28 107.31 107.32
6 107.22 107.27 107.29 107.32 107.33 107.32
7 107.27 107.32 107.35 107.35 107.35 107.36
8 107.28 107.34 107.34 107.35 107.36 107.36
9 107.31 107.35 107.36 107.36 107.36

10 107.35 107.35 107.36 107.35
11 107.35 107.35 107.33
12
13

8 9 10 11 12 13 14 15
4 110.44 110.49 110.48 110.48 110.45
5 110.47 110.51 110.52 110.51 110.49 110.43
6 110.44 110.49 110.50 110.51 110.47 110.44 110.40
7 110.46 110.49 110.45 110.43 110.39 110.39
8 110.44 110.44 110.41 110.35 110.34
9 110.36

10
11
12
13

RfTagSAgSt2d512e1024ht16ct

Threshold

P
en

al
ty

P
en

al
ty

RfTagSAgReg512e1024ht16ct

P
en

al
ty

Threshold

RfTagSAgLV512e1024ht16ct

RfTagSAgL4V512e1024ht16ct

Threshold

Threshold

P
en

al
ty

P
en

al
ty

RfTagSAgFCM512e1024ht16ct

Threshold

Figure 12.4: The re-fetch speedup maps for the five basic SAg predictors.

 168

3 4 5 6 7
1 110.01 110.36 110.44 110.68 111.20
2 110.80 111.27 111.59 111.78 111.85
3 111.63 111.82 111.88 111.88
4 111.78 111.80 111.75
5 111.63

3 4 5 6 7
1 112.74 113.02 113.26 113.45
2 113.34 113.60 113.76 113.84
3 113.59 113.77 113.86 113.90
4 113.85 113.89
5 113.87

3 4 5 6 7
1 111.22 111.55 111.61 111.48
2 111.46 111.59 111.63 111.51 111.40
3 111.57 111.52 111.50 111.42
4 111.45 111.43 111.38
5

3 4 5 6 7
1 107.78 107.96 107.95 107.91 107.76
2 107.71 107.83 107.81 107.68 107.63
3 107.80 107.67 107.61 107.57
4 107.61 107.57 107.55
5

3 4 5 6 7
1 113.93 114.18 114.24 114.07 113.59
2 113.63 113.71 113.65 113.40 113.23
3 113.48 113.32 113.18 113.11
4 113.08 112.99
5

Threshold

RxTagSAgLV512e1024ht8ct

RxTagSAgSt2d512e1024ht8ct

P
en

al
ty

RxTagSAgReg512e1024ht8ct

Threshold

P
en

al
ty

P
en

al
ty

Threshold

RxTagSAgL4V512e1024ht8ct

Threshold

RxTagSAgFCM512e1024ht8ct

P
en

al
ty

P
en

al
ty

Threshold

Figure 12.5: Re-execute speedup maps for the five basic SAg predictors.

 169

Appendix D

Naming Conventions

Load value predictors consist of several components, including tags, con-

fidence estimators, and value predictors. I chose predictor names that are

abbreviations of the various parts that make up a load value predictor, as de-

scribed below.

Tags : The lines in a load value predictor may optionally be tagged. If tags

are present, they are usually shared among the value predictor and the confi-

dence estimator. In this dissertation, the word tag in front of the predictor

name indicates the presence of (partial) tags.

Confidence Estimators : Strictly speaking, the confidence estimator is

also optional, but to date there exists no proposed predictor that performs

well without one (see Section 5.1).

Several papers have been published that define taxonomies for branch

predictors. Since confidence estimators are structurally identical to branch

predictors, I will adhere to the established branch predictor nomenclature

when describing confidence estimators (e.g., SSg, SAg, bimodal, etc.).

Yeh and Patt introduced a taxonomy for two-level (branch) predictors

[YePa92, YePa93] that consist of a branch history register (BHR) and a pat-

tern history table (PHT). They use three-letter combinations to describe the

two components. By convention, the first two letters are uppercase and the

third letter is lowercase.

The first letter characterizes the BHR. If all branches share a common

BHR, a G is used to indicate global. If every branch has its own BHR, a P is

used to indicate per-address. If sets of branches are mapped to individual

 170

BHRs, an S is used to indicate set. Note that G and P represent the two ex-

tremes of the set case. P means all sets have a size of one and G means

there is only one set that encompasses all the branches.

The second letter specifies whether the PHT is adaptive. S stands for

static, indicating that the PHT entries are fixed. A stands for adaptive, mean-

ing that the PHT entries can be modified dynamically.

The third (lowercase) letter is identical to the first letter, except it describes

the PHT instead of the BHR. Hence, g means one global PHT, s means one

PHT per set, and p means one PHT per address.

The most frequently used confidence estimators in this thesis are the SAg

confidence estimator [YePa93] and the bimodal confidence estimator

[McF93] (Chapter 5).

Value Predictors : I use abbreviations of the kind of information that the

predictor retains as a predictor name. For instance, a predictor that retains

the last four values is called an L4V predictor. Other examples are St2d for

stride 2-delta predictor, Reg for register file predictor, FCM for finite context

method predictor, etc.

Hybrid predictors, that is, predictors that contain multiple value predictor

components, are named after their individual components, delimited by a plus

sign (e.g., a hybrid between a stride and a last value predictor would be

called an St+LV predictor).

