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Abstract 
 

Microprocessors are becoming faster at such a rapid pace that other 

components like random access memory cannot keep up.  As a result, the 

latency of load instructions grows constantly and already often impedes proc-

essor performance. 

Fortunately, load instructions frequently fetch predictable sequences of 

values.  Load value predictors exploit this behavior to predict the results of 

load instructions.  Because the predicted values are available before the 

memory can deliver the true load values, the CPU is able to speculatively 

continue processing without having to wait for memory accesses to complete, 

which improves the execution speed. 

The contributions of this dissertation to the area of load value prediction 

include a novel technique to decrease the number of mispredictions, a predic-

tor design that increases the hardware utilization and thus the number of cor-

rectly predicted load values, a detailed analysis of hybrid predictor combina-

tions to determine components that complement each other well, and several 

approaches to substantially reduce the size of hybrid load value predictors 

without affecting their performance. 

One result of this research is a very small yet high-performing load value 

predictor.  Cycle-accurate simulations of a four-way superscalar microproces-

sor running SPECint95 show that this predictor outperforms other predictors 

from the literature by twenty or more percent over a wide range of sizes.  

With about fifteen kilobytes of state, the smallest examined configuration, it 

surpasses the speedups delivered by other, five-times larger predictors both 

with a re-fetch and a re-execute misprediction recovery mechanism. 
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Chapter 1 
1 Introduction 

Introduction 
 

 

This chapter describes how the slow execution speed (the latency) of load 

instructions can impact the performance of a processor and introduces load 

value prediction, a promising approach to alleviate the load latency problem. 

Furthermore, the contributions of this dissertation to the area of load value 

prediction are presented. 

 

1.1 Problem 

Processor technology is advancing at a rapid pace.  Over the past two 

decades the CPU speed has roughly doubled every one and a half years (this 

is informally known as Moore’s Law).  To continue this trend and to satisfy the 

incessantly growing need for more computing power, novel techniques are 

needed to make microprocessors faster and faster.  This dissertation ex-

plores and improves one such technique called load value prediction. 

While the CPU performance has been accelerating at a high speed, the 

advances in other areas (such as the reduction of the memory latency) have 

not been as dramatic.  As a consequence, memory accesses have in relative 

terms become slower over the years and have reached a point where they 

present one of the biggest processor performance bottlenecks.  Load value 

prediction reduces the effective memory latency and thus speeds up the 

CPU. 

Load instructions copy data from memory to a register inside the CPU.  

The register that receives the data is called the target register and is specified 
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in the load instruction.  Registers can be accessed very rapidly, but a CPU 

can only have relatively few of them (usually fewer than about sixty-four).  

The memory, on the other hand, can hold over a million times more data than 

the register file but accessing it takes on the order of a hundred times longer, 

making such accesses very time consuming. 

To reduce the access time of frequently used data, most computers in-

corporate levels of fast cache memory.  The first cache level (L1) is normally 

the smallest but also the fastest and temporarily stores the most recently 

used data in case it is needed again.  Consecutive levels are larger and 

slower.  The main memory is at the end of the (volatile) memory hierarchy 

and has the longest access time.  When a load instruction is executed, the 

caches are successively queried until the desired data item is found.  If the L1 

cache contains that data, the load value will be available quickly.  If the data 

cannot be found in any cache, the data has to be retrieved from the main 

memory.  Hence, the time it takes to execute a load instruction depends on 

the cache level that satisfies the load request and can vary from a few cycles 

to over a hundred cycles.  In comparison, reading a value from the CPU’s 

register file never takes longer than one cycle. 

Because the technological enhancements have improved CPUs more 

than memory chips, the speed-gap between CPU and memory grows con-

stantly, making load instructions slower and slower relative to the CPU.  If this 

trend continues, and there is currently no indication that it will not, the load 

latency will become even longer and more of a problem in the future. 

Load instructions belong to the most frequently executed instructions.  

Many programs, even highly optimized ones, execute more than one load for 

every five executed instructions [LCB+98].  Hence, the latency of load instruc-

tions can, and frequently does, hamper system performance.  Conversely, 

reducing the (effective) load latency has the potential to substantially speed 

up program execution. 

Only branch instructions present a similarly substantial source of over-
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head in modern microprocessors.  While extensive research has been per-

formed to alleviate the performance impact of branches (for example by using 

sophisticated branch predictors [LCM97], branch target buffers [PeSm93], 

and return address stacks [KaEm91]), relatively little has been done to ad-

dress the load latency problem. 

As opposed to load instructions, latency is not an issue with store instruc-

tions because their (slow) memory access takes place “after” the execution of 

the store, i.e., the CPU can proceed without having to wait for the store to 

complete.  Write buffers [Jou93] perform the actual store operation at some 

later time and make sure that consistency is maintained. 

Unfortunately, nothing similar can be done for load instructions because 

the fetched values are often almost instantly needed by the immediately fol-

lowing instructions.  These instructions cannot execute before the load they 

depend on has completed.  Even worse, all the indirectly dependent instruc-

tions are also delayed until the load has completed. 

 

1.2 Load Value Locality 

Fortunately, load instructions often fetch predictable sequences of values 

[LWS96].  For instance, about half of all the load instructions in the 

SPECint95 benchmark suite retrieve the same value that they did the previ-

ous time they were executed.  Such behavior, which has been demonstrated 

explicitly on a number of architectures, is referred to as value locality [Gab96, 

LWS96].  The predictability of load values can be exploited by predicting the 

result of a load instruction before the memory can provide the load value. 

Several distinct types of load value locality have been identified so far and 

predictors to exploit them have been proposed [BuZo99b, Gab96, LWS96, 

SaSm97b, TuSe99, WaFr97].  The main goal of this dissertation is to develop 

and evaluate new and better performing load value predictors. 

If load values are predicted quickly and correctly, the CPU is able to con-
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tinue processing the dependent instructions without having to wait for the 

memory access to finish.  Of course it is only known whether a prediction was 

correct once the true value has been retrieved from memory, which can take 

many cycles.  Speculative execution allows the CPU to continue execution 

with a predicted value before the prediction outcome is known [John91].  If it 

later turns out that the prediction was correct, the speculative status can sim-

ply be dropped.  If the prediction was incorrect, everything that the CPU did 

using the incorrect value has to be purged and redone with the correct value. 

Because branch predictors require a similar mechanism to recover from 

mispredictions, most modern CPUs already contain the necessary hardware 

to perform this kind of speculation [Gab96].  However, recovering from mis-

predictions takes time and slows down the processor.  Load value prediction 

therefore only makes sense if the predictions are often correct.  Improving the 

accuracy of load value predictions is another goal of this thesis. 

Empirically, papers have shown that the results of most instructions are 

predictable [Gab96, LiSh96, SaSm97a].  While predicting the result of every 

instruction potentially enables wide issue CPUs to exceed the existing in-

struction level parallelism (ILP) [GaMe98, LiSh96], predicting only load values 

requires substantially less and simpler hardware while still yielding most of 

the performance potential found in value prediction [ReCa98], and can even 

be advantageous in single-issue CPUs. 

 

1.3 Prediction Approaches 

There are three basic ways to find predictable load instructions and to de-

termine their load values.  The first possibility is static prediction.  This ap-

proach makes all decisions prior to program execution.  Hence, the only in-

formation available is the binary, predefined heuristics, and possibly the 

source code.  Profile-based approaches represent another possibility.  They 

measure and record the behavior of programs for several sample inputs.  Fi-
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nally, dynamic approaches continuously measure the behavior of programs 

while they are executing. 

The static approach is rather limited due to the large number of runtime 

constants whose values are not known at compile time [CFE97].  Profiling of-

ten suffers from insufficient coverage, i.e., not all parts of a program are exe-

cuted during the profile run, which means that no information for those parts 

is gathered.  Furthermore, both static and profile-based approaches need 

support in the instruction set architecture (ISA) to communicate information to 

the hardware.  Such support is generally not available in existing CPU fami-

lies.  The dynamic approach does not suffer from these problems, but it re-

quires a predictor to be present in hardware.  Furthermore, the dynamic ap-

proach does not know a priori which load instructions are predictable, mean-

ing that space has to be provided in the predictor for both predictable and 

unpredictable loads.  Hence, it may be advantageous to combine a static or 

profile-based approach with a dynamic predictor to filter out the unpredictable 

loads so that the predictor only has to be designed large enough to handle 

the predictable loads [GaMe97]. 

Another important advantage of the dynamic approach is that it can adapt 

to changes in the program behavior during the course of the execution.  The 

information provided by static approaches or by profiles is normally fixed and 

cannot be changed at runtime. 

Due to the limitations of the static and the profile-based approaches, I will 

restrict my investigation to dynamic, hardware-based load value predictors 

that are completely transparent (i.e., do not require changes to the ISA) and 

can therefore be added to existing as well as future microprocessors.  No 

profiling or compiler support is needed for my predictors. 

 

1.4 Confidence Estimation 

Thirty to fifty percent of the executed load instructions cannot be correctly 
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predicted with the currently known prediction techniques.  Trying to predict 

these loads will inevitably result in mispredictions.  Because recovering from 

mispredictions takes time, a high misprediction-rate can incur a recovery cost 

that eradicates any benefit that was gained from the correct predictions.  

Hence, it is possible for a load value predictor to slow down the processor in-

stead of speeding it up. 

To keep the number of mispredictions at a minimum, almost all load value 

predictors incorporate some form of confidence estimator that tries to identify 

predictions that are likely to be incorrect so that they can be inhibited.  Inhibit-

ing such predictions reduces the number of mispredictions (and the associ-

ated recovery cost) and thus improves the predictor’s performance. 

This dissertation presents a new confidence estimator that makes fewer 

mispredictions than the conventional confidence estimator and therefore re-

sults in more effective load value predictors. 

 

1.5 Contributions 

The goal of this dissertation is to develop and evaluate methods for con-

text-based load value prediction, that is, to enhance various aspects of trans-

parent, hardware-based load value predictors.  My contributions towards this 

goal include the following: 

 

• Fewer mispredictions 

 The development of an improved confidence estimator that decreases 

the number of mispredictions and consequently increases the perform-

ance of load value predictors 

• Better hardware utilization 

 The design of a load value predictor that allocates more hardware to the 

frequently executed loads, which improves the predictor utilization and 

results in more load instructions being correctly predicted  
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• Hybrid analysis 

 The analysis of a large number of hybrid predictor combinations to de-

termine components that complement each other well and thus yield 

high-performing hybrid load value predictors 

• Size reduction techniques 

 Several approaches to substantially reduce the size of hybrid load value 

predictors by sharing large amounts of state between their components, 

which decreases the predictor size while maintaining the performance 

 

One direct result of this research is a high-performing load value predictor 

that includes all of the above mentioned enhancements.  It is a hybrid of well-

complementing components that is very small due to the large degree of 

state sharing.  With about fifteen kilobytes of state, it outperforms five-times 

larger predictors from the literature.  Among predictors of similar size, my 

predictor outperforms others by twenty or more percent over a large range of 

predictor sizes.  The individual contributions are discussed in a little more de-

tail in the following paragraphs. 

Analyzing the performance of an existing confidence estimator revealed a 

weakness that prevents it from correctly handling sequences of alternating 

predictability, which represent an important subset of the predictable load 

value sequences.  To alleviate this problem, I developed a more complex 

confidence estimator that is somewhat larger but yields on average ten per-

cent more performance in connection with most load value predictors.  More-

over, there is evidence that the new confidence estimator embodies a better 

selector for hybrid load value predictors, improving the performance even fur-

ther over the conventional confidence estimator. 

An investigation of the utilization of the hardware in a basic load value 

predictor revealed that most parts of the predictor are hardly ever or never 

used while a small part is used extremely frequently.  To improve the utiliza-

tion, I studied possible rearrangements of the predictor’s hardware.  I found 
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an arrangement that allocates more hardware to the frequently executed load 

instructions and that is therefore able to correctly predict a larger number of 

loads, which improves the average predictor performance by about ten per-

cent. 

Then I noticed that many of the values this improved predictor retains dif-

fer only by a small amount.  This allowed me to devise a predictor in which 

the values are stored in a compressed format.  Compressing the values re-

duces the predictor size by about one half while essentially maintaining the 

predictor’s performance. 

Next I discovered that components of hybrid predictors frequently store 

the same information.  Hence, the redundant information can be eliminated, 

which can reduce the size of hybrids by more than a factor of two without 

compromising the predictor’s performance. 

A detailed component analysis of a large number of predictor combina-

tions revealed some unexpected results.  For example, powerful individual 

components frequently do not complement each other well in a hybrid con-

figuration.  Conversely, some components that perform rather poorly when 

used in isolation can form strong coalitions with other components.  The re-

sults of this analysis allowed me to design a hybrid out of components that 

are small yet complement each other well.  Many other hybrid predictors were 

found to contain components that predict highly overlapping sets of load in-

structions and therefore do not ideally complement one another.  Further-

more, some hybrids actually yield a lower performance than their individual 

components due to negative interference. 

Finally, this dissertation presents performance numbers for a large num-

ber of load value predictors that are all evaluated in the same environment 

(i.e., the same simulator, the same benchmark programs, etc.), making it 

possible to truly compare the predictors.  Furthermore, various performance 

metrics are introduced and studied, and a simple predictor banking scheme is 

evaluated. 
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1.6 Summary 

One of the largest performance bottlenecks in current microprocessors is 

the growing load latency.  Load value prediction has the potential to substan-

tially reduce the load latency. 

The main contribution of this dissertation is the development and evalua-

tion of a high-performing yet relatively small load value predictor that signifi-

cantly outperforms other predictors from the literature. 

 

1.7 Organization 

The remainder of this dissertation is organized as follows.  Chapter 2 ex-

plains the impact of the load latency on modern superscalar CPUs as well as 

the operation of two misprediction recovery mechanisms.  Chapter 3 de-

scribes the configuration of the simulator that is used to measure the 

speedup numbers and discusses the benchmarks and their load value local-

ity.  Chapter 4 introduces the architecture of five basic load value predictors.  

Chapter 5 investigates two confidence estimation schemes.  Chapter 6 ana-

lyzes the performance of predictor banking.  Chapter 7 takes a closer look at 

the utilization of the predictor hardware and proposes an improved design.  

Chapter 8 evaluates a large number of predictor combinations to build well 

performing hybrids. Chapter 9 improves the results from Chapter 8 by investi-

gating ways to shrink the size of predictors through hardware reuse.  Chapter 

10 presents related work.  Chapter 11 summarizes my work and takes a look 

into the future. 
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Chapter 2 
2 Background 

Background 
 

 

This chapter provides background on several features of high-

performance microprocessors, including parallel instruction execution (super-

scalar execution), the dynamic re-sequencing of the execution order of inde-

pendent instructions (out-of-order execution), and their interaction with load 

value predictors. 

Two misprediction recovery mechanisms are presented.  The first one, 

which is the one that is also used for recovering from branch mispredictions, 

is already implemented in current processors but does not yield the best per-

formance in combination with load value predictors.  This is why a better, not 

yet implemented alternative is also discussed. 

 

2.1 Conventional High-Performance Processor Architecture 

Most of today’s high-performance microprocessors are superscalar and 

have built-in hardware support for speculative and out-of-order execution 

[Edm+95, Half95, Yeag96, You94].  Since it is my goal to improve the per-

formance of a high-end microprocessor, all the performance numbers pre-

sented in this dissertation are based on such a CPU.  The specifications of 

the actual processor that is used for these measurements are described in 

Section 3.1. 

A superscalar CPU is capable of executing more than one instruction at a 

time.  Out-of-order execution refers to the ability to dynamically adjust the or-

der in which instructions are executed to increase the utilization of the avail-
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able hardware and thus to improve the performance.  Speculative execution 

is execution that can be undone if necessary.  Having this ability makes it 

possible to process instructions whose execution and/or input values are 

based on a guess (such as a predicted branch outcome or a predicted load 

value) because it may later be necessary to undo the execution of such 

instructions if the guess turns out to be incorrect. 

Only the execution-core of a processor usually handles instructions out-of-

order.  Instruction fetch, decode, rename, and retirement is performed in-

order [SmSo95] because dependencies are either not known in these pipe-

line stages or need to be handled in-order to facilitate correct execution.  In-

structions are retired in-order to support precise exceptions, to be able to re-

play instructions, and to enforce sequential semantics. 

Register renaming removes false dependencies from the in-flight instruc-

tions by dynamically mapping the logical registers to a larger set of physical 

registers, thus ensuring that instructions that have their input operands avail-

able are truly independent and can therefore be executed in any order or 

even in parallel with all other ready instructions. 

The renamed instructions are (at least conceptually) fed into the CPU’s 

instruction window as long as there are slots available.  An inserted instruc-

tion remains in this window in a waiting state until all of its source operands 

are available.  Once all the inputs are obtained, the instruction becomes 

ready, i.e., eligible for execution.  The CPU’s issue logic continuously scans 

the instruction window for such instructions.  If a ready instruction is found 

and a functional unit capable of executing that type of instruction is available, 

the issue logic assigns the instruction to the functional unit for execution.  At 

this point, the instruction is marked as executing.  Once the functional unit 

has completed the execution, the result is stored and forwarded to the waiting 

instructions, making them ready if the current result was the last input oper-

and they were waiting for.  Completed instructions are marked as done.  Only 

instructions marked as done can be retired (or committed) from the instruc-
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tion window. 

Superscalar processors are able to locate and issue multiple ready in-

structions per cycle (with a fixed upper limit), as long as there are enough 

functional units (FUs) and ready instructions available.  In addition, they are 

able to forward multiple results per cycle to waiting instructions. 

Most of the FUs in high-performance CPUs are either pipelined (i.e., they 

can start executing a new instruction every cycle) or they only have a one-

cycle latency.  The most frequently used FUs are often duplicated for faster 

execution.  Figure 2.1 shows the described pipeline stages, the instruction 

window, the issue logic, and several functional units.  The instruction window 

contains some sample instructions in different stages of execution (i.e., wait-

ing, ready, executing, and done).  Actual CPU implementations may vary 

from this diagram (for example, most processors contain more slots in the in-

struction window than are depicted). 
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Figure 2.1: The execution pipeline of a high-performance microprocessor. 

 

To improve their performance, some processors predict the outcome of 

conditional branch instructions so that they can continue fetching instructions 

and feeding them into the instruction window without having to wait for the 
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branches to resolve.  All the instructions that follow a predicted branch are 

executed speculatively until the branch outcome is known.  If it turns out that 

the branch was predicted incorrectly, the speculatively executed instructions 

have to be purged.  Doing so is possible because all the instructions that fol-

low the branch must stay in the instruction window at least until the branch 

has been resolved (because instructions are retired in-order).  Whenever a 

prediction is made, a copy of the internal processor state is made, called a 

check-point, which is restored after a misprediction to reestablish the correct 

architectural state [John91].  This allows the CPU to continue with the pro-

gram execution as though it had never made a misprediction.  Of course, per-

forming such recovery actions takes time (usually on the order of a few cy-

cles), which slows down the CPU.  Correct speculations, on the other hand, 

save cycles because some instructions are able to execute that would not 

have been able to if they had had to wait for the branch to resolve. 

Since the speculation support necessary for value prediction is essentially 

identical to the one used with branch prediction [Gab96], no novel hardware 

is required to recover from load value mispredictions. 

Modern processors are able to hide some of the occurring load latencies 

by executing independent instructions out-of-order.  However, it is unlikely 

that a CPU will find enough instructions to keep itself busy for eighty cycles, 

which corresponds to the load-to-use memory access latency on a DEC Al-

pha 21264 [KMW98].  Allowing the CPU to already execute the load-

dependent instructions while the memory access is still in progress potentially 

frees a large number of instructions in the instruction window for execution, 

whose advanced execution can substantially boost the performance.  In fact, 

even during the execution of short-latency loads the issue logic may not be 

able to keep all the functional units busy because of a quickly vanishing se-

lection of available ready instructions.  Hence, it may be advantageous to 

predict short-latency loads as well. 

Since all the load value predictors discussed in this dissertation require 
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only the load instruction’s address (PC) for making a load value prediction, 

the prediction can be started as soon as a load instruction has been de-

coded.  The memory access, on the other hand, cannot be initiated before 

the effective address has been computed, which can take several cycles.  As 

a consequence, it is even beneficial to predict loads that hit in the L1-cache 

because the predicted value is available before the cache can satisfy the load 

request. 

 

2.2 Misprediction Recovery Mechanisms 

Two misprediction recovery mechanisms have been proposed for load 

value prediction.  The simpler but less powerful re-fetch mechanism is the 

one already used for recovering from branch mispredictions [Gab96].  When 

a misprediction is detected in this scheme, all the instructions that follow a 

mispredicted instruction are purged from the instruction window and the 

processor state is reset to what it would have been had no instruction beyond 

the mispredicted one executed.  The CPU then continues processing instruc-

tions by fetching the next instruction, that is, the instruction that immediately 

follows the instruction that was mispredicted.  Because the purged instruc-

tions are re-fetched, I call this misprediction recovery mechanism re-fetch. 

Re-fetch recovery incurs a cycle-penalty because it takes time to purge 

instructions from the instruction window and to restore the CPU’s state.  Even 

worse, in this scheme instructions are sometimes purged whose results are 

correct.  For example, if instruction X is independent of an earlier load instruc-

tion L, then X may execute in an out-of-order processor before the load is 

completed.  Because instruction X is independent of L, its result is also inde-

pendent on the load value.  Purging X is therefore not necessary, even in the 

presence of a mispredicted value for L. 

In fact, mispredicting L does not even invalidate the instructions that do 

depend on L (up to the first conditional branch instruction whose branch tar-
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get depends on L).  In the worst case, these instructions are executed with an 

incorrect input value.  Because all the affected instructions remain in the in-

struction window, it suffices to re-execute them with the correct input value 

[LiSh96].  Consequently, the state of the directly and indirectly dependent in-

structions “only” needs to be reset to ready or waiting after a misprediction so 

that the issue logic will select them again for execution.  This second (or sub-

sequent) execution will produce the correct result because the input operands 

are now correct.  I refer to this misprediction recovery mechanism as re-

execute recovery. 

While the re-execute mechanism avoids the unnecessary purging of inde-

pendent instructions and the overhead of re-fetching already fetched instruc-

tions, it still incurs a cycle-penalty for identifying the dependent instructions 

and changing their state.  However, the penalty is considerably smaller than 

the one incurred by the re-fetch recovery mechanism.  Note that, as opposed 

to re-fetch hardware, re-execute hardware does not yet exist and incorporat-

ing it requires changes to the CPU core, which may or may not be cost-

effective. 

 

2.3 Summary 

Superscalar execution, out-of-order execution, register renaming, and 

branch prediction are but a few of the techniques used to improve the 

performance of microprocessors.  Some of these features are able to hide 

the access latency of load instructions to a certain degree.  Nevertheless, a 

substantial and growing load latency problem remains.  Load value predictors 

present a promising new approach to alleviate this problem. 

Because predictions are sometimes wrong, misprediction recovery 

mechanisms are needed.  The mechanism that is used for recovering from 

branch mispredictions can readily be applied to load value prediction.  Unfor-

tunately, it is rather conservative and hampers performance, which is why an 
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alternative recovery mechanism has also been proposed, which results in 

better performance. 
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Chapter 3 
3 Evaluation Methods 

Evaluation Methods 
 

 

This chapter describes the configuration of the baseline CPU that is used 

for the cycle-accurate simulations, gives information about the benchmark 

programs that are used for the performance evaluations, and presents the 

metrics used to measure the effectiveness of load value predictors. 

 

3.1 Baseline Architecture 

All measurements in this dissertation are based on the DEC Alpha AXP 

architecture [DEC92].  The various load value predictor designs are evalu-

ated using the ATOM binary instrumentation tool-kit [EuSr94, SrEu94] and 

the AINT simulator [Pai96] with a cycle-accurate superscalar back-end. 

ATOM is used to instrument the benchmark suite (see next section) for 

fast and thorough parameter-space evaluations because of its speed and 

ease of simulating the proposed predictors in software.  Promising configura-

tions are then fed to the pipeline-level simulator for more detailed measure-

ments. 

The simulator is configured to emulate a high-performance microproces-

sor similar to the DEC Alpha 21264 [KMW98].  It accurately models the proc-

essor’s internal timing behavior, resource constraints, and speculative execu-

tion as well as the memory hierarchy and its latencies.  Only bus-contention is 

not modeled.  Such detailed simulations are necessary to obtain realistic per-

formance results.  Unfortunately, they are about two orders of magnitude 

slower than ATOM simulations. 
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The simulated CPU is four-way superscalar, issues instructions out-of-

order from a 128-entry instruction window, has a 32-entry load/store buffer, 

four integer and two floating point units, a 64kB two-way set associative L1 

instruction-cache, a 64kB two-way set associative L1 data-cache, a 4MB uni-

fied direct-mapped L2 cache, a 4096-entry branch target buffer (BTB), and a 

2048-line hybrid gshare-bimodal branch predictor.  The three caches have a 

block size of 32 bytes.  The modeled latencies are shown in Table 3.1.  The 

six functional units are fully pipelined and each unit can execute all opera-

tions in its class.  Operating system calls are executed but not simulated, 

which should not be a problem since the benchmark programs used for this 

thesis hardly perform any operating system calls [SPEC95].   Loads can only 

execute when all prior store addresses are known.  Up to four load instruc-

tions are able to issue per cycle.  This CPU represents the baseline proces-

sor (CPUBase).  All reported speedups are relative to CPUBase, which does not 

contain a load value predictor. 

 

Operation Latency
 integer multiply 8-14
 conditional move 2
 other int and logical 1
 floating point multiply 4
 floating point divide 16
 other floating point 4
 L1 load-to-use 1
 L2 load-to-use 12
 memory load-to-use 80  

Table 3.1: Functional unit and memory latencies (in cycles). 

 

In the CPUs that include a load value predictor (CPULVP), predictions take 

place during the rename-stage in the instruction pipeline and have a one-

cycle latency.  If a predictor cannot be accessed in one cycle, it has to be 

pipelined.  Fortunately, multi-cycle access latencies can be hidden as long as 

there are enough stages between the decode and the execute stage in the 
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processor’s instruction pipeline (usually two or more stages in current high-

performance microprocessors). 

To support up to four predictions/updates per cycle, all the load value pre-

dictors used in this study are split into four banks that can operate in parallel 

(see Chapter 6).  Since the modeled CPU fetches naturally aligned four-

tuples of instructions, it is not possible to fetch or issue two load instructions 

during the same cycle that go to the same predictor bank. 

All the predictors are updated when the true load value becomes available 

(i.e., when the verification memory access completes), predictions do not 

speculatively update the predictor’s state, out-of-date predictions are made 

as long as there are pending updates (for the same predictor line), and out-

of-order and wrong-path updates of the predictor are accurately modeled in 

the simulator.  All predictor updates are final and cannot be undone.  Investi-

gating the benefit of speculative updates is left for future work. 

Not modeling bus-contention, assuming fully pipelined functional units, 

and allowing up to four load instructions to be issued per cycle reduce the 

average instruction latency somewhat in comparison to real CPUs.  Further-

more, ignoring bus-contention also reduces the memory latency.  A lower in-

struction latency implies more executed load instructions per time-unit, which 

increases the pressure on the load value predictor.  Hence, the performance 

of a load value predictor would likely, if anything, be higher in a real CPU than 

the measurements in this thesis indicate due to the reduced chance of mak-

ing an out-of-date prediction and the fewer dropped updates due to a busy 

predictor.  The slightly longer-than-modeled memory latency in real systems 

has the same effect, i.e., it decreases the pressure on the predictor while at 

the same time making correct load value predictions more beneficial because 

of the even longer load-latency that is hidden. 

Similar effects of the simulator-limitations on other parts of the CPU 

should cancel each other out because the baseline CPU suffers/benefits as 

much from them as the CPUs do that include a load value predictor. 
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3.2 Benchmarks 

This section discusses the benchmark suite used throughout this disserta-

tion to evaluate the performance of load value predictors. 

 

3.2.1 General Information 

All the measurements in this thesis are based on the eight integer pro-

grams of the SPEC95 benchmark suite [SPEC95].  These programs are well 

understood, non-synthetic, and compute-intensive, which is ideal for proces-

sor performance evaluations.  Despite the lack of desktop application code, 

the suite is nevertheless representative thereof, as Lee et al. found [LCB+98].  

The SPECint95 programs are written in C and perform the following tasks: 

 

compress : compresses and decompresses a file in memory 

gcc : C compiler that builds SPARC code 

go : artificial intelligence, plays the game of “GO” 

ijpeg : graphic compression and decompression 

li : Lisp interpreter 

m88ksim : Motorola 88000 chip simulator, runs a test program 

perl : manipulates strings (anagrams) and prime numbers in Perl 

vortex : an object oriented database program 

 

The suite includes two sets of inputs for every program and allows two 

levels of optimization.  To acquire as many load value samples as possible, 

the larger reference inputs are used.  However, due to a restriction in the 

simulation infrastructure, only the first of the multiple input-files from the ref-

erence set is used with gcc. 

To avoid possible side-effects that may be attributed to poor code quality, 

the peak-versions of the programs are utilized, which were compiled with 
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DEC GEM-CC on a DEC Alpha 21164 using the highest optimization level 

“-migrate -O5 -ifo”.  The optimizations include common sub-expression elimi-

nation, split lifetime analysis, code scheduling, no-op insertion, code motion 

and replication, loop unrolling, software pipelining, local and global inlining, 

inter-file optimizations, and many more.  In addition, the binaries are statically 

linked, which allows the linker to perform further optimizations to reduce the 

number of run-time constants that are loaded during execution.  These op-

timizations are similar to the optimizations that OM [SrWa93] performs. 

The few floating point load instructions contained in the binaries are also 

taken into account and loads to the zero-registers (R31 and F31) as well as 

load immediate instructions (LDA and LDAH) are ignored since they do not 

access the memory and therefore do not need to be predicted. 

Table 3.2 summarizes relevant information about the SPECint95 pro-

grams.  It shows the number of total instructions and load instructions exe-

cuted as well as the static number of instructions and load instructions con-

tained in the binaries.  The numbers in parentheses indicate the percentage 

of all instructions that are loads.  The static counts are in thousands (k) and 

the dynamic counts in millions (M).  The five rightmost columns of the table 

reflect several kinds of load value predictability (see also Chapter 4). 

 

Information about the SPECint95 Benchmark Suite
dynamic static predictability (%)

program insts loads %lds insts loads %lds reg lv st2d l4v fcm
compress 60,156 M 10,537 M (17.5) 22 k 4 k (17.9) 9.0 40.4 65.8 41.3 35.9 
gcc 334 M 80 M (23.9) 337 k 73 k (21.6) 19.9 48.5 49.8 65.6 52.0 
go 35,971 M 8,764 M (24.4) 81 k 16 k (20.1) 9.2 45.9 47.2 64.0 44.7 
ijpeg 41,579 M 7,141 M (17.2) 70 k 14 k (19.8) 9.4 47.5 47.7 54.1 45.4 
li 66,613 M 17,792 M (26.7) 37 k 7 k (18.2) 14.3 43.4 50.4 63.8 60.8 
m88ksim 82,810 M 14,849 M (17.9) 51 k 9 k (17.4) 29.9 76.1 80.0 83.4 79.6 
perl 19,934 M 6,207 M (31.1) 105 k 21 k (20.3) 19.8 50.7 51.4 80.6 70.8 
vortex 95,791 M 22,471 M (23.5) 161 k 32 k (20.0) 17.8 65.7 66.0 78.6 66.2 
total 403,188 M 87,842 M 864 k 176 k 
average 50,399 M 10,980 M (21.8) 108 k 22 k (20.4) 16.2 52.3 57.3 66.4 56.9  

Table 3.2: Information about the SPECint95 benchmark suite. 

 



 22     

 

Register predictability “reg” indicates how often the target register of a 

load instruction already contains the value that the load is about to fetch.  

Last value predictability “lv” shows how often a load fetches a value that is 

identical to the previous value fetched by the same load instruction.  Stride 

predictability “st2d” reflects how often a value is loaded that is identical to the 

last value plus the difference between the last and the second to last value 

fetched by the same load instruction.  Last four value predictability “l4v” indi-

cates how often a value is loaded that is identical to any one of the last four 

values fetched by the same load.  Finally, finite context method predictability 

“fcm” shows how often a value is loaded that is identical to the value that fol-

lowed the last time the same last four value sequence was encountered 

(modulo some hash function).  Section 4.3 describes load value predictors 

that are based on the five presented kinds of predictability.  Note that, unlike 

reg, lv, st2d, and l4v, the fcm predictability results are implementation spe-

cific, i.e., they depend on the hash function. 

Table 3.2 shows that all eight binaries contain several thousand load in-

structions (gcc contains the most by a large margin).  Except for gcc, which 

only compiles the first of its reference input-files, all programs execute sev-

eral billion load instructions.  Despite the high optimization level, the percent-

age of load instructions is quite high.  About every fifth static instruction in the 

binaries as well as every fifth executed instruction is a load. 

The predictability of the load instructions in these programs is also quite 

high.  At least one half of the executed load instructions are theoretically pre-

dictable using any method other than “reg”. 

 

3.2.2 Quantile Information 

To better estimate how large a load value predictor needs to be, it is im-

portant to know how many of the individual load instructions are actually exe-

cuted and how frequently.  Table 3.3 shows the number of load instructions 
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that contribute the given quantiles (percentages) of all the executed loads in 

the eight programs.  The quantiles are given both in absolute terms as well as 

in percent of the total number of load sites.  For example, the first line in 

Table 3.3 indicates that of the nearly four thousand load instructions con-

tained in compress, only 690 are ever executed (i.e., are executed at least 

once), which is 17.4% of all the load sites.  Furthermore, the 81, 58, and 17 

most frequently executed load sites contribute 99, 90, and 50 percent of the 

dynamically executed loads, respectively. 

 

load sites
compress 3,961 690 (17.4) 81 ( 2.0) 58 ( 1.5) 17 ( 0.4) 
gcc 72,941 34,345 (47.1) 14,135 (19.4) 5,380 ( 7.4) 870 ( 1.2) 
go 16,239 12,334 (76.0) 4,221 (26.0) 1,708 (10.5) 204 ( 1.3) 
ijpeg 13,886 3,456 (24.9) 423 ( 3.0) 187 ( 1.3) 42 ( 0.3) 
li 6,694 1,932 (28.9) 312 ( 4.7) 138 ( 2.1) 42 ( 0.6) 
m88ksim 8,800 2,677 (30.4) 456 ( 5.2) 216 ( 2.5) 52 ( 0.6) 
perl 21,342 3,586 (16.8) 227 ( 1.1) 169 ( 0.8) 44 ( 0.2) 
vortex 32,194 16,651 (51.7) 3,305 (10.3) 585 ( 1.8) 57 ( 0.2) 
average 22,007 9,459 (36.6) 2,895 ( 9.0) 1,055 ( 3.5) 166 ( 0.6) 

Quantile Information about the SPECint95 Benchmark Suite
Q50Q90Q99Q100

 

Table 3.3: SPECint95 quantile information. 

 

The data in Table 3.3 show that a surprisingly small number of load sites 

contribute most of the executed load instructions.  On average, 3.5% of the 

load sites contribute ninety percent and only 0.6% of the load sites contribute 

half of all the executed loads.  Less than 37% of the load sites are visited at 

all during execution. 

These quantile numbers are promising because they imply that load value 

predictors do not have to be large enough to store information about all the 

load sites in a binary.  Rather, a predictor capable of only holding nine per-

cent of the load sites can, on average, already handle 99 percent of the dy-

namically executed loads.  Of course, actual predictors need to be designed 

somewhat larger to handle 99 percent of the executed load instructions due 

to aliasing and uneven predictor utilization. 
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3.2.3 Segment Information 

For ATOM simulations, the SPECint95 programs are run to completion, 

resulting in approximately 87.8 billion executed load instructions.  However, 

on the cycle-accurate simulator each benchmark program is only executed 

for about 300 million instructions (to keep the simulation time reasonable) af-

ter having skipped over the initialization code in “fast-simulation” mode.  This 

fast-forwarding is important when only a fraction of a program’s execution can 

be simulated because the initialization part of a program is not usually repre-

sentative of the general program behavior [ReCa98].  No instructions are 

skipped with gcc and it is executed for 334 million instructions on the simula-

tor since this amounts to the complete compilation of the first reference input-

file.  Note that simulating 300 million instructions is an improvement over the 

100 million instructions often used for simulations in the current literature 

[e.g., RFKS98, WaFr97].  Each simulated segment contains over 49 million 

executed load instructions, which should be sufficient to render any warm-up 

effects in the load value predictors negligible.  Table 3.4 gives information 

about the simulated segments of each of the eight SPECint95 programs. 
 

Information about the Simulated Segments of the SPECint95 Benchmark Suite
skipped base

instrs instrs loads %lds IPC L1 L2 reg lv st2d l4v fcm
compress 5.6 G 300.0 M 53.5 M (17.8) 1.338 11.72 6.17 13.0 40.7 64.0 41.5 34.6 
gcc 0.0 G 334.1 M 79.7 M (23.9) 1.510 2.39 6.44 19.9 48.5 49.8 65.6 51.9 
go 7.0 G 300.0 M 72.1 M (24.0) 1.414 1.62 15.72 9.4 46.3 48.1 64.5 44.8 
ijpeg 2.0 G 300.0 M 49.5 M (16.5) 1.498 2.31 65.20 9.8 47.5 48.1 55.1 42.8 
li 5.0 G 300.0 M 86.4 M (28.8) 1.911 4.13 0.67 11.7 35.4 41.2 52.4 62.2 
m88ksim 2.0 G 300.0 M 62.1 M (20.7) 1.258 0.13 11.21 49.3 82.3 85.0 88.2 84.3 
perl 1.0 G 300.0 M 93.5 M (31.2) 1.567 0.00 46.87 20.0 50.7 51.4 80.6 70.6 
vortex 7.0 G 300.0 M 71.0 M (23.7) 2.922 2.16 11.99 16.4 65.7 66.3 79.9 69.4 
average 304.3 M 71.0 M (23.3) 1.677 3.06 20.53 18.7 52.1 56.7 66.0 57.6 

simulated predictability (%)load miss-rate

 

Table 3.4: Information about the eight simulated program segments. 

 

The table shows the number of instructions (in billions) that are skipped 

before starting the pipeline-level simulations, the number of simulated instruc-

tions and load instructions (in millions), the percentage of the simulated 

instructions that are loads, the instructions per cycle (IPC) on the baseline 
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structions that are loads, the instructions per cycle (IPC) on the baseline 

processor (CPUBase), the L1 data-cache and the L2 cache load miss-rates, 

and the load value predictability similar to Table 3.2.  Note that the number of 

instructions and loads as well as the predictability shown in Table 3.4 are 

measured in the CPU’s commit stage, meaning that only correct path infor-

mation is included in the table. 

As with the complete executions, the percentage of load instructions exe-

cuted by the programs is also uniformly high in the simulated segments.  

About every fifth instruction is a load.  With an average IPC of 1.7, this results 

in one executed load instruction every 2.6 cycles.  Given that each executed 

load accesses the predictor twice, once to request a prediction and once to 

update the predictor, this amounts to one predictor access every 1.3 cycles 

on average.  When accounting for wrong-path loads and loads that are re-

executed, the number turns out to be close to one access per cycle.  Since 

prediction and update requests are not evenly distributed over time, some-

times more than one access per cycle is needed.  This is why all the predic-

tors used in this study are banked to support multiple accesses per cycle 

(Chapter 6). 

Note that with the exception of compress, the benchmark programs do not 

have very high L1 data-cache load miss-rates, making it hard for a load value 

predictor to be effective.  Some of the L2 load miss-rates are, on the other 

hand, quite large.  However, since the corresponding number of cache ac-

cesses is very small (not shown), the large L2 miss-rates do not have a sig-

nificant impact on the performance. 

The fast-forward points were carefully hand-selected such that the simu-

lated segments would be as representative of the whole program as possible.  

The segment length is 300 million instructions since this appears to be 

enough to exhibit “average” program behavior.  Longer segments do not yield 

significantly better results.  A comparison of Table 3.2 and Table 3.4 shows 

that both the percentage of executed instructions that are loads and in par-
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ticular the predictability found in the eight segments closely match the respec-

tive numbers measured over the entire program executions.  Only with li and 

m88ksim was the search for a representative segment not very successful.  

Fortunately, li’s segment exhibits too low a predictability and m88ksim’s too 

high a predictability, making the average over the eight programs very close 

to the average over the complete executions. 

 

3.2.4 Segment Quantile Information 

Table 3.5 repeats the quantile study shown in Table 3.3, but only takes in-

structions from the simulated segments into account. 

 

load sites
compress 3,961 62 ( 1.6) 35 ( 0.9) 28 ( 0.7) 9 ( 0.2) 
gcc 72,941 34,345 (47.1) 14,135 (19.4) 5,380 ( 7.4) 870 ( 1.2) 
go 16,239 9,619 (59.2) 3,868 (23.8) 1,719 (10.6) 263 ( 1.6) 
ijpeg 13,886 2,757 (19.9) 379 ( 2.7) 184 ( 1.3) 53 ( 0.4) 
li 6,694 419 ( 6.3) 237 ( 3.5) 120 ( 1.8) 43 ( 0.6) 
m88ksim 8,800 747 ( 8.5) 537 ( 6.1) 199 ( 2.3) 25 ( 0.3) 
perl 21,342 1,437 ( 6.7) 225 ( 1.1) 167 ( 0.8) 44 ( 0.2) 
vortex 32,194 1,973 ( 6.1) 958 ( 3.0) 355 ( 1.1) 55 ( 0.2) 
average 22,007 6,420 (19.4) 2,547 ( 7.6) 1,019 ( 3.2) 170 ( 0.6) 

Q100 Q99 Q90 Q50
Quantile Information about the Simulated SPECint95 Segments

 

Table 3.5: Quantile information about the simulated program segments. 

 

Executing only part of a program usually produces lower quantile num-

bers, in particular for the high quantiles.  This phenomenon is quite apparent 

in Table 3.5.  The Q100 and the Q99 numbers are significantly lower than 

their counterparts in Table 3.3, whereas the Q90 and the Q50 numbers are 

quite similar.  The good match of the Q90 numbers indicates that the se-

lected segments will likely exercise the load value predictors sufficiently to 

obtain representative results.  The low Q99 and Q100 quantiles mean that 

the selected segments contain proportionately too few infrequently executed 
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loads.  As a result, below average predictor aliasing has to be expected.  

Note, however, that techniques exist to keep low-frequency load instructions 

from influencing the predictor (see Section 9.5.2). 

 

3.3 Speedup 

Throughout this dissertation, the term speedup denotes how much faster 

a processor becomes when a load value predictor is added to it. 

To obtain the speedup delivered by a load value predictor for a given pro-

gram, the program is executed on both CPUBase (the baseline processor with-

out a load value predictor) and CPULVP (the same CPU but with a load value 

predictor).  By definition, the speedup then evaluates to the runtime on CPUB-

ase divided by the runtime on CPULVP.  To be independent of the CPU’s clock 

speed the runtime is usually measured in cycles rather than seconds. 

 

LVP

Base

LVP

Base

cycles

cycles

runtime

runtime
speedup ==  

 
Since a speedup of one indicates no improvement in performance, the 

speedup over baseline is often easier to understand.  It is defined as the 

regular speedup minus one, making the speedup over baseline positive if the 

load value predictor improves the execution speed and negative if it slows the 

execution down.  Note that the regular speedup is always positive. 

 
100%speedupbaselineoverspeedup −=  

 
To better estimate the expected performance improvement that a load 

value predictor will deliver, the speedup over more than one program is nor-

mally measured.  This is done because a suite of programs is assumed to 

exhibit a more “average” program-behavior than an individual program. 

Once the individual speedups have been obtained, they need to be com-
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bined into a single speedup.  Several approaches to combining (averaging) 

speedups can be found in the literature, the most prominent of which are the 

harmonic mean, the geometric mean, and the arithmetic mean.  The har-

monic mean always yields the lowest and therefore the most conservative re-

sult.  Since the arithmetic mean always produces the highest result, the geo-

metric mean is sometimes used as a compromise. 

Intuitively, the combined speedup should be equal to the speedup over 

the single program P that does nothing but run the benchmark programs one 

after the other (in any order).  However, to avoid over-representing longer 

running programs, P must execute all the programs for the same amount of 

time.  This corresponds to weighing (i.e., normalizing) the individual bench-

mark programs with the inverse of their runtimes. 

The runtimes can be normalized for CPUBase or for CPULVP.  If the nor-

malization is done for CPUBase, the combined speedup evaluates to the har-

monic mean of the individual speedups.  If, on the other hand, the normaliza-

tion is done for CPULVP, the combined speedup turns out to be the arithmetic 

mean of the individual speedups.  The proof can be found in Appendix A. 

For example, let us assume a benchmark suite consisting of two pro-

grams A and B that require ca and cb cycles, respectively, to execute on 

CPUBase.  Let us further assume a load value predictor L that speeds up pro-

gram A by a factor of ten and program B by a factor of one (i.e., B’s runtime 

remains the same).  The runtimes on CPULVP are consequently 0.1*ca and cb. 

When normalizing for CPUBase, the combined speedup should be equal to 

the speedup of the program P that executes program A cb times and program 

B ca times.  Doing so takes ca*cb+cb*ca = 2*ca*cb cycles on the baseline CPU 

(both programs are executed for ca*cb cycles).  When predictor L is added, 

the total runtime becomes 0.1*ca*cb+cb*ca = 1.1*ca*cb cycles.  The combined 

speedup is therefore 2.0/1.1 ≈ 1.818, which is equal to the harmonic mean of 

the two individual speedups. 

When normalizing for CPULVP, program P needs to execute program A cb 
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times and program B 0.1*ca times.  This takes 0.1*ca*cb+cb*0.1*ca = 0.2*ca*cb 

cycles on CPULVP (both programs are executed for 0.1*ca*cb cycles) and 

ca*cb+cb*0.1*ca = 1.1*ca*cb cycles on the baseline processor.  The speedup 

now evaluates to 1.1/0.2 = 5.5, which is the arithmetic mean of the individual 

speedups.  For reference, the geometric mean of the two speedups is about 

3.162. 

As the example illustrates, normalizing for CPULVP weighs program B, 

which cannot be sped up by the load value predictor, ten times less heavily 

than normalizing for CPUBase does (the weights are shown in bold face).  In 

general, the more a program can be sped up the relatively more weight it is 

given when using the arithmetic mean to compute the combined speedup.  

Thus, the arithmetic mean speedup assumes the “average” program to con-

tain proportionately more code that benefits from a load value predictor than 

code that does not.  I do not believe this to be a valid assumption, which is 

why all the averaged speedups presented in this dissertation are harmonic 

mean speedups. 

 

3.4 Other Metrics 

The main metric used in this thesis is the speedup that a load value pre-

dictor delivers (previous section).  Unfortunately, determining the speedup 

requires the use of a cycle-accurate simulator, which can be prohibitively 

slow.  Moreover, the speedup is dependent on the architectural features of 

the underlying CPU and the characteristics of the memory subsystem.  Non-

implementation specific metrics, on the other hand, are independent of any 

particular processor architecture and are often quite easy to obtain. 

Most load value predictors include some form of confidence estimator to 

help determine how likely a predicted value is to be correct (Chapter 5).  If the 

likelihood for a correct prediction is below a preset threshold, no prediction is 

attempted.  This can significantly reduce the number of mispredictions and 
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consequently the overhead incurred by the misprediction recovery mecha-

nism. 

A load value predictor with a confidence estimator can produce four out-

comes for every executed load instruction, as is depicted in Figure 3.1.  The 

number of times each of these four classes is encountered during the execu-

tion of a program is referred to as P+, P-, N+, and N-. 

 

predicted value is

correct incorrect

correct P+ P-

incorrect N- N+

value is 
estimated 

to be  

Figure 3.1: The four prediction classifications. 

 

Measuring these four numbers is straightforward.  To make the result in-

dependent of the total number of executed load instructions, the numbers 

need to be normalized. 

 

Normalization: (P+) + (P-) + (N+) + (N-) = 1 

 

After the normalization, P+ represents the percentage of all executed load 

instructions that were correctly predicted.  P- indicates the percentage of all 

loads that were mispredicted.  N+ shows what percentage of the dynamically 

executed load instructions the predictor did not attempt to predict and, if it 

had, the predicted value would indeed not have been correct.  Finally, N- is 

the percentage of all loads the predictor decided not to predict (because of a 

low confidence) even though the prediction would have been correct. 

Unfortunately, the four numbers by themselves do not represent adequate 

metrics for comparing predictors.  For example, it is unclear if predictor A is 

superior to predictor B if predictor A has both a higher P+ and a higher P- 
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than predictor B, i.e., predictor A makes both more correct and more incorrect 

predictions than predictor B. 

Fortunately, meaningful metrics for confidence estimation exist that can 

be derived from these four numbers.  These metrics have recently been 

adapted to and used in the domain of branch prediction and multi-path 

execution [JRS96, GKMP98].  I adopted the metrics for load value prediction 

[BuZo99a] with a change in nomenclature.  The terms in parentheses repre-

sent the standard terminology for diagnostic tests.  They are all higher-is-

better metrics. 

 

•• Potential : )()( −++= NPPOT  

 The POT represents the percentage of predictable values (predictability). 

 

•• Accuracy  (Predictive Value of a Positive Test): 
)()( −++

+=
PP

P
ACC  

 The ACC represents the probability that an attempted prediction is correct. 

 

•• Coverage  (Sensitivity): 
OT

OV
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 The COV represents the fraction of predictable values identified as such. 

 

Note that ACC, COV, and POT fully determine P+, P-, N+, and N- given that 

they are normalized. 

The potential describes the quality of the value predictor and is independ-

ent of the confidence estimator as long as predictor updates are not con-

trolled by the confidence estimator (which is the case throughout this disser-

tation). 

Together, the accuracy and the coverage describe the quality of the confi-

dence estimator. A high accuracy represents a high ratio of correct predic-

tions (which save cycles) over incorrect predictions (which cost cycles) but 



 32     

 

usually also means few overall prediction attempts (i.e., the higher the accu-

racy, the more conservative the predictor).  A high coverage, on the other 

hand, represents a good exploitation of the existing potential, which normally 

translates into many prediction attempts. 

The accuracy and the coverage are antagonistic, meaning that tuning a 

predictor to increase either one almost always decreases the other.  Improv-

ing both ACC and COV at the same requires fundamental changes to the pre-

dictor’s design such as replacing the confidence estimator with a more ad-

vanced one (see Chapter 5). 

 

3.5 Summary 

The baseline CPU used for the cycle-accurate simulations is configured to 

closely mimic a DEC Alpha 21264, which is one of the fastest currently avail-

able microprocessors.  This choice was made to illustrate that even a high-

performance CPU can greatly benefit from a load value predictor. 

The performance of the various load value predictors discussed in this 

dissertation is evaluated using the eight integer programs of the SPEC95 

benchmark suite.  Highly optimized binaries are used to show that load value 

prediction is beneficial beyond what current optimizing compilers can achieve.  

A detailed comparison of information about the benchmark suite as a whole 

and about the program-segments used for the simulations shows that the se-

lected segments are very representative of the complete program executions. 

To get as close as possible to measuring the real effectiveness of a load 

value predictor, speedup results from a cycle-accurate simulator are used 

almost exclusively as a performance metric in this thesis.  Moreover, the 

speedups over the individual benchmark programs are combined using the 

harmonic mean so as not to overestimate the performance of the studied 

load value predictors. 
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Chapter 4 
4 Context-Based Value Predictors 

Context-Based Value Predictors 
 

 

This chapter introduces the basic architecture common to all context-

based load value predictors discussed in this thesis.  Furthermore, the archi-

tecture of an implementable predictor for each kind of load value predictability 

mentioned in Section 3.2 (i.e., last value, stride 2-delta, register file, finite 

context method, and last four value predictability) is presented.  The chapter 

concludes with a performance study of these five predictors. 

 

4.1 Context-Based Value Prediction 

Without context, it is almost impossible to predict a load value since a 32-

bit word can hold over four billion distinct values and a 64-bit word over 1019 

values.  Even if a highly uneven distribution with only twenty likely load values 

is assumed, the best we can hope for is still only a five percent prediction 

accuracy, which is probably too low to be useful. 

Fortunately, load values tend to cluster, repeat, occur in iterating se-

quences, exhibit discernable patterns, and correlate with one another, all of 

which is referred to as load value locality.  This locality is the reason why it is 

not only feasibly but actually quite effective to make predictions based on re-

cently seen load values, i.e., based on context.  I use the terms load value 

locality and load value predictability interchangeably in this dissertation.  Both 

terms refer to the percentage of load values that can be correctly predicted 

with a given prediction method. 

Based on the numbers shown in Table 3.2, the five measured kinds of 
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load value locality vary from nine to about 83 percent, depending on the pro-

gram and the type of locality.  These percentages are much higher than the 

five percent from the example of twenty equally distributed values.  Of 

course, it remains to be determined how much of this potential can actually 

be exploited by a predictor. 

The remainder of this chapter describes the design of five load value pre-

dictors that are able to exploit a substantial amount of the existing load value 

locality. 

 

4.2 Generic Context-Based Load Value Predictor 

Figure 4.1 shows the general structure common to all context-based load 

value predictors that are discussed in this dissertation.  A context-based pre-

dictor is essentially a direct mapped cache of 2n lines.  Each line retains in-

formation about previous executions of one load instruction (modulo the pre-

dictor size). 

 

Generic Load Value Predictor

address of load update info.

instruction

n-bit
(PC>>2)%2n

. 2n lines
index .

function

64-bit value   

predicted value

n 
to

 2
n  d

ec
od

er

 

Figure 4.1: The components of a context-based load value predictor. 
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When a load instruction has to be predicted, the predicted value is com-

puted using the stored information of that load instruction, hence the term 

context-based.  The function that computes the prediction can be as simple 

as the identity function (last value predictor) and as complex as accessing a 

lookup table (finite context method predictor).  Naturally, accessing the pre-

dictor must be faster than accessing the conventional memory since a predic-

tion becomes obsolete as soon as the true load value is available. 

Whenever the memory subsystem satisfies a load request, the 

corresponding predictor line is updated with the true load value and possibly 

other information.  Note that all load instructions, whether they are predictable 

or not, access the memory and therefore update the predictor. 

All the predictors used in this study are direct mapped, that is, the n least 

significant bits of a load instruction’s PC (that are not always zero) are used 

as an index into the predictor to select one of the 2n predictor lines.  Note that 

the PC of the load instruction is used and not the effective address. 

 

index(PCload) = (PCload >> 2) % 2n 

 

This is probably the simplest and fastest meaningful hash-function.  The 

“>> 2” eliminates the two least significant bits that are always zero because 

instructions need to be word aligned in the Alpha processor on which all my 

measurements are based.  Adding a more complex hash-function may result 

in less aliasing but will most likely increase the length of the critical path.  

Since direct-mapping results in only little aliasing even with moderate predic-

tor sizes (see Section 5.4), this simple but effective hash-function is fre-

quently used [Gab96, GaMe98, LiSh96, LWS96, SaSm97b, WaFr97].  An 

investigation of more sophisticated hash-functions (e.g., set associativity) is 

left for future work. 

Note that in cache terminology, direct-mapping implies the presence of 

tag bits.  However, unlike caches load value predictors do not have to be cor-
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rect all the time, meaning that tags are not mandatory.  Because of the small 

amount of observed aliasing (see Section 5.4), only partial tags or no tags are 

often used in predictors to reduce their size.  Load instructions that do alias 

simply have to share a line in the load value predictor, i.e., they overwrite 

each other’s information in the predictor. 

 

4.3 Five Context-Based Load Value Predictors 

Based on the generic load value predictor from Figure 4.1, predictors can 

be built and tailored to exploit different kinds of load value locality by choos-

ing what information to store in them and by performing various kinds of 

computations with this information.  The following subsections show possible 

implementations of five basic load value predictors to exploit last value, stride 

2-delta, register, finite context method, and last four value locality. 

 

4.3.1 Last Value Predictor “LV” 

The last value predictor [Gab96, LWS96] (abbreviated as LV) always pre-

dicts that a load instruction will load the same value that it did the previous 

time it was executed.  Hence, the only information that needs to be stored in 

the predictor is the most recently loaded value.  Predictions retrieve this value 

and updates overwrite the stored value with the new load value to make it 

available for the next prediction. 

The last value predictor’s operation can formally be described with the fol-

lowing pseudo-code, where the numeral subscripts indicate the size in num-

ber of bits, “load” refers to the load instruction being predicted or updated, 

and “value” is either the predicted value or the update value.  The first line, 

which describes the predictor, lists the fields that make up a predictor line in-

side the curly brackets as well as the number of predictor lines.  In this in-
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stance, each predictor line contains a single field called “last_value” that is 

64-bits wide and there are 2n such lines. 

 

 predictor: {last_value64} • 2n 

 

 prediction: value = last_value[index(PCload)]; 

 update: last_value[index(PCload)] = value; 

 

predictable sequences: 

- repeating values, e.g., 3, 3, 3, 3, ... 

 

Figure 4.2 illustrates the structure of this predictor.  The number 64 in the 

first predictor line denotes the width of this field, i.e., every line contains a 64-

bit wide field to store the last value. 

 

Last Value Predictor

address of load new load value

instruction
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Figure 4.2: The last value predictor. 
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4.3.2 Register Predictor “Reg” 

The register predictor [TuSe99] (abbreviated as Reg) is even easier to 

implement.  Since it always predicts that the target register of the load 

instruction (the register that is about to receive the loaded value) already con-

tains the correct load value even before the load is executed, no information 

has to be stored in the predictor.  In Chapter 5 we will see that this predictor 

still needs to store some information to work well.  Figure 4.3 illustrates the 

structure of the register predictor. 

Note that none of the benchmark programs used were compiled with this 

(or any other) kind of load value predictor in mind.  Consequently, the pre-

dictability for this predictor is not very high.  However, the register predictabil-

ity can be improved upon by modifying the register allocator [TuSe99]. 

 

Register File Predictor

no updates

64

register
target register . file (CPU)

.

64-bit value   

predicted value

de
co

de
r

 

Figure 4.3: The register predictor. 

 

 predictor: { }  (CPU’s register file is used as source of values) 
 

 prediction: value = register[target(load)]; 

 update: no operation 
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predictable sequences: 

- depends on register allocator 

 

4.3.3 Stride 2-delta Predictor “St2d” 

The stride predictor [Gab96] (abbreviated as St) truly computes the pre-

dicted value and is therefore able to predict never before seen values. 

In its conventional form, this predictor stores the last value along with the 

difference (called the stride) between the last and the second to last loaded 

value.  The stride is added to the last value when a prediction is made to form 

the predicted value.  Once the true load value is available, the predictor’s 

stride field is updated to reflect the difference between the last value (which is 

stored in the predictor) and the true load value.  Then the last value stored in 

the predictor is replaced with the new load value.  Since about 98% of all the 

observed strides fall within the range of –128 to 127 [RFKS98], eight bits per 

predictor line are sufficient to capture almost all strides. 

A last value predictor can only predict sequences of constant values.  

Such sequences can, however, also be predicted with a stride predictor.  The 

stride is simply zero in this case.  Hence, the stride predictor might be re-

garded as a superset of the last value predictor.  There exists, however, a 

subtle difference between the two predictors.  A closer look at the following 

sequence of load values illustrates this difference. 

 

.  .  .  A  A  A  B  B  B  C  C  C  .  .  . 

 

If we assume that both a stride and a last value predictor have been pre-

dicting Xs before reaching the first A of the above sequence (where X≠A, 

A≠B, and B≠C), we find that the last value predictor predicts six out of the 

nine values correctly (66.7%), whereas the stride predictor only gets three 
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values right (33.3%).  Evidently, the last value predictor is superior to the 

stride predictor for sequences of repeating values and particularly for short 

sequences of repeating values.  The reason is that the last value predictor 

makes one mistake per transition in the sequence and the stride predictor 

makes two. 

This is indeed a problem in practice because programs fetch a surpris-

ingly large number of short sequences of repeating values.  For instance, 

Figure 4.4 shows the percentage of dynamically executed load instructions 

that fetch sequences of repeating values of the given lengths.  The numbers 

are averages over the eight SPECint95 programs. 
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Figure 4.4: Average run-length of sequences of repeating load values. 

 

As the figure illustrates, a considerable percentage of loads fetch se-

quences of between two and eight repeating values.  In fact, the number of 

short sequences comprising only two, three, or four repeating values is so 
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large in comparison to sequences that exhibit true stride behavior (i.e., have 

a non-zero stride) that the stride value locality is smaller than the last value 

locality for six out of the eight SPECint95 programs, as Table 4.1 shows (the 

corresponding six stride load value localities are shown in bold print).  Only li 

and compress exhibit more stride than last value locality. 

 
compress gcc go ijpeg li m88ksim perl vortex average

last value locality (%) 40.4 48.5 45.9 47.5 43.4 76.1 50.7 65.7 52.3
normal stride locality (%) 61.3 41.3 38.3 37.6 44.1 76.1 42.8 60.3 50.2
stride 2-delta locality (%) 65.8 49.8 47.2 47.7 50.4 80.0 51.4 66.0 57.3  

Table 4.1: Last value, stride, and stride 2-delta load value locality. 

 

To remedy this shortcoming, the more sophisticated stride 2-delta predic-

tor has been proposed [SaSm97a] (abbreviated as St2d).  The 2-delta refers 

to the fact that this predictor retains two strides instead of only one.  The first 

stride is identical to the one found in the conventional stride predictor.  The 

second stride is only updated if the current update-stride is the same as the 

stride already stored in the first stride field.  In other words, the second stride 

is only updated if the same stride has been seen at least twice in a row.  Only 

the second stride is used for computing the predicted value. 

This scheme effectively eliminates the problem of making two consecutive 

mispredictions upon a sequence change from one sequence of constant val-

ues to another because the working stride (the second stride) remains zero 

during this transition.  As the last line of Table 4.1 shows, the stride 2-delta 

load value locality is higher than the last value locality for all eight SPECint95 

programs.  Of course the second stride field also only needs to be eight bits 

wide, as is outlined in Figure 4.5.  In the pseudo code below, the function 

LSB0..7(x) extracts the eight least significant bits of x.  Unless otherwise noted, 

all stride predictor results in this dissertation refer to the more sophisticated 

stride 2-delta predictor. 
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 predictor: {last_value64, stride18, stride28} • 2n 

 

 prediction: value = last_value[index(PCload)] + stride2[index(PCload)]; 

 update: temp = LSB0..7(value – last_value[index(PCload)]); 

  if (temp == stride1[index(PCload)]) stride2[index(PCload)] = temp; 

  stride1[index(PCload)] = temp; 

  last_value[index(PCload)] = value; 

 

predictable sequences: 

- repeating values, e.g., -2, -2, -2, -2, ... 

- constant strides, e.g., -4, -2, 0, 2, 4, ... 
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Figure 4.5: The stride 2-delta predictor. 
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4.3.4 Last Four Value Predictor “L4V” 

The last four value predictor [BuZo99b, LiSh96] (abbreviated as L4V) is 

similar to the last value predictor except every predictor line retains the four 

most recently loaded values instead of only the most recent value.  Chapter 7 

discusses last n value predictors in more detail and shows that storing the 

last four values results in good performance. 

Deciding which one of the four values to use for a prediction is the job of 

the selector, which is described in Section 5.4.1.  The last four value predictor 

can be thought of as four independent last value predictors operating in par-

allel and a meta-predictor that chooses which predictor to believe.  Figure 4.6 

illustrates this.  The last four value predictor therefore represents a hybrid 

predictor.  Hybrid predictors are the topic of Chapter 8. 
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Figure 4.6: The last four value predictor. 

 

The difference between the last four value and a conventional hybrid pre-

dictor, and the reason why the last four value predictor is included here, is 

that a normal hybrid consists of different predictors that are updated with the 

same information whereas the last four value predictor comprises four identi-
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cal predictors that are updated with different information.  Section 5.4.1 

examines the last four value predictor in more detail and explains the select 

function used below. 

 

 predictor: {last_value164, last_value264, last_value364, last_value464} • 2n 

 

 prediction: value = select(last_value1[index(PCload)], 

last_value2[index(PCload)], last_value3[index(PCload)], 

last_value4[index(PCload)]); 

 update: last_value4[index(PCload)] = last_value3[index(PCload)]; 

  last_value3[index(PCload)] = last_value2[index(PCload)]; 

  last_value2[index(PCload)] = last_value1[index(PCload)]; 

  last_value1[index(PCload)] = value; 

 

predictable sequences: 

- repeating values, e.g., 2, 2, 2, 2, ... 

- alternating values, e.g., -1, 0, -1, 0, -1, ... 

- short repeating cycles, e.g., 1, 2, 3, 1, 2, 3, 1, ... 

 

4.3.5 Finite Context Method Predictor “FCM” 

The most complex and sophisticated non-hybrid predictor is the finite con-

text method predictor [SaSm97a, SaSm97b] (abbreviated as FCM).  It is simi-

lar to the last four value predictor in so far as that it retains the last four 

loaded values in every predictor line.  However, since these values are only 

used to compute an index into the predictor’s second level (a lookup table), 

they are not stored in their full length but rather in a more compact, preproc-

essed form.  The second level, a 2048-entry direct mapped, tag-less cache, 

stores the values that follow every seen sequences of four last values 

(modulo the table size).  Since the second level is shared, load instructions 
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can communicate information to other loads in this predictor.  Hence, after 

fetching a sequence of arbitrary load values, which warms up the finite con-

text method predictor, the same sequence can be predicted correctly even if 

it is fetched again by a different load instruction. 

For this study, the size of the second level of the FCM predictor is fixed at 

2048 entries and the index into the second level is computed as follows. 

 

hash(val) = val63..56 ⊕ val55..48 ⊕ val47..40 ⊕ val39..32 ⊕ val31..24 ⊕ val23..16 ⊕ val15..8 ⊕ val7..0; 

index2(val1, val2, val3, val4) = hash(val1) ⊕ hash(val2)*2 ⊕ hash(val3)*4 ⊕ hash(val4)*8; 

line = index2(last_value1, last_value2, last_value3, last_value4); 

 

The “⊕” in the above formulas represents the logical exclusive-or function.  

The presented index2 function is similar to the functions used by other people 

for the finite context method predictor [ReCa98, RFKS98, SaSm97b].  It util-

izes all 64 bits of the load values for computing the index.  Furthermore, the 

values are shifted relative to one another so that sequences of constant val-

ues do not cancel each other out (i.e., always yield an index of zero) when 

they are exclusive-or’ed. 

Another benefit of the above function is that part of it (the first line) can be 

evaluated before the information is inserted into the first level of the predictor.  

Doing so significantly reduces the size of the predictor.  Since hash(val) al-

ways yields an eight-bit result, each line in the first level of the predictor only 

needs to store four eight-bit values instead of the four 64-bit values, as is il-

lustrated in Figure 4.7. 
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 level1: {hash18, hash28, hash38, hash48} • 2n 

 level2: {FCMvalue64} • 2048 

 predictor: level1 + level2 
 

 prediction: line = hash1[index(PCload)] ⊕ hash2[index(PCload)]*2 ⊕ 

hash3[index(PCload)]*4 ⊕ hash4[index(PCload)]*8; 

  value = FCMvalue[line]; 

 

 update: line = hash1[index(PCload)] ⊕ hash2[index(PCload)]*2 ⊕ 

hash3[index(PCload)]*4 ⊕ hash4[index(PCload)]*8; 

  FCMvalue[line] = value; 

  hash4[index(PCload)] = hash3[index(PCload)]; 

  hash3[index(PCload)] = hash2[index(PCload)]; 

  hash2[index(PCload)] = hash1[index(PCload)]; 

  hash1[index(PCload)] = hash(value); 

 

predictable sequences: 

- reoccurring values, e.g., 3, 7, 4, 9, 2, ..., 3, 7, 4, 9, 2, ... 

- addresses loaded during the traversal of dynamic data structures 
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Figure 4.7: The finite context method predictor. 
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4.4 Predictor Performance 

Figure 4.8 shows the harmonic-mean speedup over SPECint95 delivered 

by the five predictors from the previous sections.  For these measurements, 

the predictors are 2048 lines tall and include an eight-bit partial tag in each 

line.  In the FCM predictor, both levels comprise 2048 lines.  No prediction is 

attempted in case of a tag miss.  Furthermore, each predictor is divided into 

four independent banks (see Chapter 6). 

Two speedup numbers are given for each predictor, one showing the 

speedup over the baseline processor when a re-fetch misprediction recovery 

mechanism is used and the other when a re-execute recovery mechanism is 

used (see Chapter 5).  Since the presented predictors vary greatly in size, the 

presented results should not be used for inter-predictor comparisons. 
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Figure 4.8: Mean speedup of five context-based predictors. 
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Clearly, the performance of the five predictors is rather poor.  In fact, all 

the predictors slow the processor down with a re-fetch misprediction recovery 

mechanism.  With re-execute, which incurs smaller penalties than re-fetch, 

the register value predictor slows down the SPECint95 programs on average 

while the remaining four predictors yield a small positive speedup. 

The reason for the poor performance is the large number of mispredic-

tions.  The average load value locality shown in Table 3.2 is roughly fifty per-

cent, meaning that a large fraction of loads cannot be correctly predicted with 

these prediction techniques.  Trying to predict these loads will inevitably result 

in mispredictions. 

Because incorrect predictions necessitate a recovery process and thus in-

cur a cycle penalty, a high misprediction-rate may result in more added cycles 

than are saved by the correct predictions.  With re-fetch, the misprediction 

penalties do indeed more than offset the benefit of the correct predictions, 

which is why the overall performance decreases. 

The next chapter introduces confidence estimators, which are able to re-

duce the number of mispredictions and thus improve the performance of all 

five predictors.  In fact, with confidence estimators, all five predictors yield 

positive speedups even with re-fetch recovery. 

 

4.5 Summary 

This chapter introduces the concept of context-based load value predic-

tion as well as the architecture of such predictors.  The functionality is ex-

plained and a possible implementation is given for a last value, a register, a 

stride 2-delta, a last four value, and a finite context method predictor. 

A performance evaluation of these five predictors shows that all of them 

make too many costly mispredictions to be effective.  In the next chapter a 

technique is discussed that can eliminate most mispredictions, which boosts 

the performance of these five predictors, making them profitable to employ. 
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Chapter 5 
5 Confidence Estimators 

Confidence Estimators 
 

 

This chapter introduces and evaluates two commonly used dynamic con-

fidence estimators.  First, the bimodal confidence estimator is described, 

which is based on saturating counters.  Then the prediction outcome history-

based SAg confidence estimator I developed is derived.  It is more complex 

but performs better than the bimodal confidence estimator on certain kinds of 

load value sequences, as sample traces illustrate.  The performance of both 

confidence estimators in connection with the five load value predictors from 

the previous chapter is evaluated.  Finally, the expressiveness of non-

speedup metrics is studied. 

 

5.1 The Need for Confidence Estimators 

As the speedup results from Section 4.4 illustrate, context-based load 

value predictors are quite ineffective in spite of the relatively high load value 

predictability (see Table 3.2).  As mentioned, the problem is the high cost of 

recovering from the many mispredicted loads, which can more than eradicate 

the performance advantage derived from the correctly predicted loads. 

Fortunately, making no prediction does not incur a cycle penalty, meaning 

that it is better not to make a prediction than to make an incorrect prediction.  

Consequently, identifying predictions that are likely to be incorrect and inhibit-

ing them can reduce the number of penalty cycles and thus improve the pre-

dictor performance. 

This is why almost all load value predictors include some form of confi-
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dence estimator (CE) to estimate how likely a prediction is to be correct 

[CRT99, LWS96, ReCa98, RFKS98, SaSm97b, TuSe99, WaFr97].  Predic-

tions are only allowed if the estimated confidence is high (i.e., above a preset 

threshold).  The two main approaches for dynamic confidence estimation in 

the domain of value prediction, saturating counters and prediction outcome 

histories, are described in the subsequent sections.  The latter was devel-

oped by me to overcome a deficiency of the former confidence estimator, as 

discussed in Section 5.2.1. 

 

5.2 The Bimodal Confidence Estimator 

One way of estimating the likelihood of a correct load value prediction is to 

count how often the load was correctly predicted in the (recent) past.  The in-

tuition behind this approach is that the past behavior tends to be indicative of 

what will happen in the near future.  For example, if a load was predicted 

successfully most of the time in the recent past, there is a good chance that 

its next prediction will be successful, too.  Therefore, counting the number of 

times a predictor was able to predict a load instruction correctly yields a 

measure of confidence where a higher count implies a higher probability that 

the next prediction will be correct. 

Note that it is vital to count both the correct prediction and the times the 

predictor could have made a correct prediction but was not allowed to do so 

due to a low confidence at the time.  If only the attempted predictions that 

turned out to be correct are counted, then the confidence cannot recover 

once it has reached a point that inhibits further predictions. 

A commonly used hardware device for counting events is the saturating 

up/down counter.  A saturating counter can count up and down within two 

boundaries, say zero and fifteen.  Once the counter has reached fifteen, 

counting up will not change its value.  Likewise, counting down from zero 

leaves the counter at zero.  Such a counter is said to have a bottom of zero 
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and a top of sixteen.  Note that while the bottom value is the lowest reachable 

value, the top value cannot actually be reached.  The highest reachable value 

is top-1.  This definition of top and bottom simplifies many aspects of dealing 

with saturating counters.  Note also that the counter increment and decre-

ment (the latter is often referred to as penalty) can be an integer greater than 

one.  In particular, penalties above one are frequently useful in connection 

with load value predictors. 

The bimodal confidence estimator is based on saturating up/down count-

ers that record how many predictable values were encountered in the recent 

past.  I adopted the name “bimodal” from the structurally identical bimodal 

branch predictor [McF93]. 

The higher the counter value in a bimodal CE, the higher the confidence 

that the next prediction will also be correct since predictable load instructions 

are assumed not to suddenly become unpredictable and vice-versa.  A preset 

threshold value determines when the confidence estimator allows predictions 

to take place and when it does not.  For instance, a threshold of ten allows 

predictions as long as the value of the saturating counter does not fall below 

ten.  If it does, further predictions are inhibited until the counter value rises to 

ten or higher again. 

A saturating counter-based confidence estimator can be described with 

five parameters: the top value, the bottom value, the increment, the decre-

ment or penalty, and the prediction threshold.  Only powers of two are used 

as the top value in this dissertation.  This is not mandatory but it limits the 

large search space somewhat.  By definition, the counter value is always 

lower than the top value.  The bottom value, the lower bound for the counter 

value, is always zero throughout this thesis.  This is not a restriction because 

the top, threshold, and bottom values can always be shifted to make the bot-

tom value zero without loss of generality.  The increment is always one since 

not even a single preliminary experiment of mine has shown larger incre-

ments to be useful.  The current literature also only uses increments of one 
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[ReCa98, RFKS98, WaFr97].  Finally, the threshold and penalty values are 

determined individually for each predictor and misprediction recovery mecha-

nism, as is the top value.  Since the smallest number of bits required to store 

any value in the range [0..top) is log2(top), the top value determines the 

width of the counters.  Frequently used top values in this dissertation are 

eight and sixteen, making the counters three to four bits wide. 

Figure 5.1 illustrates the structure of the bimodal confidence estimator 

when added to a generic load value predictor.  The shaded components 

make up the confidence estimator.  “c” indicates a saturating up/down 

counter. 
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Figure 5.1: The bimodal confidence estimator (shaded). 

 

Note that each line of the predictor contains its own saturating counter, 

meaning that the confidence of each line is measured separately.  As long as 

only one load instruction is mapped to each line in the predictor, each load’s 

confidence is measured individually.  If multiple loads alias in the same pre-

dictor line, the resulting counter value is a combination of the confidences of 

the loads that share the line. 
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Except for the saturating counters, the confidence estimator only consists 

of a comparator that checks whether the selected counter value is at or 

above the preset threshold.  This can be done in parallel with the prediction 

of the load value.  The predicted value is only used if the confidence is high 

enough. 

When the value predictor is updated, it first makes another prediction 

whose result is compared with the true load value.  If the two values are iden-

tical, the saturating counter in the selected predictor line is incremented by 

one, otherwise it is decremented by the preset penalty. 

A bimodal confidence estimator’s operation can be described with the fol-

lowing pseudo-code.  “x” is usually three or four (actually, x = log2(top)). 

 

 conf_estim: {counter_valuex} • 2n 

 

 prediction: predict = (counter_value[index(PCload)] >= threshold); 

 update: counter_value[index(PCload)] = (predicted_value == true_value) ? 

min(top-1, counter_value[index(PCload)]+1) : 

max(0, counter_value[index(PCload)]-1); 

 

predictable sequences: 

- sequences that do not frequently change from being predictable to being 

unpredictable and vice-versa 

 

5.2.1 Behavior Study 

Predictors with a bimodal CE yield good performance (see Section 5.4).  

Nevertheless, due to the counter-hysteresis, the bimodal CE performs poorly 

on certain kinds of load value sequences.  In particular, it cannot adapt to 

quickly alternating patterns of predictable and unpredictable loads. 

As was already shown in the discussion about the stride and the stride 
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2-delta predictor (Section 4.3.3), programs fetch a surprisingly large number 

of short sequences of repeating load values (Figure 4.4).  Such sequences 

pose a problem for a bimodal CE.  To illustrate this, let us assume a last 

value predictor with a bimodal confidence estimator that predicts the following 

infinite sequence of three repeating values (where A≠B, B≠C, etc.). 

 

.  .  .  A  A  A  B  B  B  C  C  C  .  .  . 

 

For a two-bit saturating counter (i.e., a counter with a top of four), we find 

that depending on the penalty and the counter value at the beginning of the 

sequence, one of three possible patterns of indefinitely repeating counter-

values emerges quickly.  The three patterns are “2, 3, 3”, “0, 1, 2”, and “1, 2, 

3” and are shown in the middle of Table 5.1 in bold print.  The left side of the 

table indicates which initial counter values and penalties result in which pat-

tern.  The right side of the table shows the number of prediction attempts, in-

hibited predictions, correct predictions, and incorrect predictions the bimodal 

CE makes (per three load instructions) depending on the threshold value. 

 
thresh- no correct wrong

initial pen- yes no yes yes no yes case hold predic- predic- predic- predic-
value alty B C C C D D value tions tions tions tions

C1 1 3 0 2 1
0, 1, 2, 3 1 … 3 2 3 3 2 … C2 2 3 0 2 1

C3 3 2 1 1 1
C4 1 2 1 1 1

0, 1, 2 2 … 2 0 1 2 0 … C5 2 1 2 0 1
0, 1, 2, 3 3 C6 3 0 3 0 0

C7 1 3 0 2 1
3 2 … 3 1 2 3 1 … C8 2 2 1 1 1

C9 3 1 2 0 1

{
{
{

last value predictable

 

Table 5.1: Behavior study of a bimodal confidence estimator. 

 

Note that a last value predictor without a CE would make three prediction 

attempts and get two of the three load values right and one wrong.  Hence, 

the bimodal CE does not help in the cases C1, C2, and C7.  In the cases C3, 

C4, and C8 the CE inhibits one of the correct predictions and none of the in-
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correct predictions, making the resulting performance worse than it would be 

without a CE.  The cases C5 and C9 are even worse since the CE inhibits all 

the correct predictions and only allows the incorrect prediction to take place.  

Finally, case C6 allows no predictions at all, meaning that the load value pre-

dictor is not used. 

Clearly, in all nine cases the bimodal CE either does not help or makes 

things worse.  Since short sequences of repeating load values make up a 

considerable part of the observed load value sequences (Figure 4.4), this un-

fortunate behavior of the bimodal confidence estimator is a problem. 

Note that a one-bit counter would result in the same prediction behavior 

as case C4 and three-bit and wider counters always end up in one of the four 

described outcomes, as the following thought experiment illustrates. 

The two cases where the confidence estimator allows no predictions or 

forces all values to be predicted are uninteresting.  In all the remaining two 

cases (with one or two predictions per three values), some of the values are 

predicted and some are not.  If the third of the three repeating values is pre-

dicted (i.e., the counter has reached the threshold), then any bimodal predic-

tor will also predict the following value, which happens to be the unpredict-

able one, because the third value is predictable and will therefore increment 

the counter, meaning that the next time the counter is queried it will again be 

above the threshold and cause a prediction.  Likewise, if the first of the three 

repeating values is not predicted (i.e., the counter value is below the thresh-

old), then any bimodal predictor will also not attempt to predict the next value, 

which in our example is predictable, because the first value is unpredictable 

and will consequently decrement the counter, meaning that the next time the 

counter is queried it will still be below the threshold and therefore inhibit a 

prediction.  In other words, it is impossible for a bimodal confidence estimator 

to predict the last predictable value and not predict the following unpredict-

able value and it is also impossible not to predict an unpredictable value while 

at the same time predicting the following predictable value.  As a conse-
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quence, only the following four scenarios for the three repeating values are 

possible: none of them are predicted, only one value is predicted, which has 

to be the unpredictable one, two values are predicted, of which one has to be 

the unpredictable value, or all three values are predicted.  Consequently, any 

bimodal CE is, independent of its threshold and top value, incapable of pre-

dicting the predictable values without also predicting the unpredictable value 

in the above sample sequence.  Hence, the observed deficiency is intrinsic to 

the bimodal CE and cannot be overcome by adjusting parameters. 

 

5.3 The SAg Confidence Estimator 

Based on the observations made in the previous section, designing a con-

fidence estimator that does not suffer from the described deficiency may be 

worthwhile.  Ideally, a CE should predict the two predictable values and inhibit 

every third prediction in the example of three repeating load values from the 

previous section.  To recognize the iterating pattern of two predictions fol-

lowed by one non-prediction, some sort of a history mechanism is probably 

necessary. 

Since confidence estimators are similar to branch predictors, I turned to 

the branch prediction literature to find an alternative approach that is history-

based.  One successful idea in branch prediction is keeping a small history 

recording in which direction each branch recently went [LeSm84].  This idea 

was later refined to retaining the most recent prediction outcome (success or 

failure) [SCAP97] rather than the branch direction, which makes the approach 

useful as a confidence estimator. 

In such a CE, the outcome of a prediction is stored in a bit-pattern (called 

a history) where the nth bit represents the outcome of the nth last prediction.  

Usually a one is used to encode a successful prediction and a zero to encode 

a misprediction. 

Whenever the memory returns a load value, the true load value is com-
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pared with its predicted value (even if the prediction was not used) and the 

outcome of this comparison is shifted into the history, whereby all the bits in 

the history are shifted by one position and the oldest bit is lost. 

If such histories are to be used as a measure of confidence, it is essential 

to know which ones are (frequently) followed by a correct prediction and 

which ones are not.  The branch prediction literature describes algorithms to 

accomplish this.  For instance, Sechrest et al. [SLM95] suggest profiling a set 

of programs to record the behavior. 

Table 5.2 shows the average SPECint95 last value predictability following 

each of the sixteen possible four-bit prediction outcome history.  For example, 

the second row of the table states that a failure, failure, failure, success his-

tory (denoted as 0001) is followed by a successful last value prediction 26.9% 

of the time.  In this history, success denotes the outcome of the most recent 

prediction.  Of all the encountered histories, 2.7% were 0001. 

 

SPECint95 Last Value Predictability
history predictability (%) occurrence (%)
0000 6.9         32.2         
0001 26.9         2.7         
0010 19.1         2.9         
0011 49.9         1.6         
0100 34.3         2.9         
0101 33.6         1.9         
0110 44.9         1.3         
0111 59.4         2.2         
1000 24.2         2.7         
1001 46.3         1.8         
1010 66.8         1.9         
1011 66.1         1.9         
1100 53.1         1.6         
1101 57.2         1.9         
1110 52.3         2.2         
1111 96.6         38.3          

Table 5.2: History-pattern frequency and last value predictability. 

 

Note that it is not necessary to make a prediction following every history 

with a greater than fifty percent probability of resulting in a correct prediction.  
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Rather, the predictable/not-predictable threshold can be set anywhere.  The 

optimal setting strongly depends on the characteristics of the CPU the predic-

tion is going to be made on [BuZo99a]. 

If only a small cost is associated with making a misprediction (as is the 

case with a re-execute recovery mechanism), it is most likely wiser to predict 

a larger number of load values, albeit also a somewhat larger number of in-

correct ones.  If, on the other hand, the misprediction penalty is high and 

should therefore be avoided (as is the case with re-fetch recovery), it makes 

more sense not to predict quite as many loads but to be very confident that 

the ones that are predicted will be correct. 

If we want to be highly confident that a prediction is correct, say at least 

ninety percent confident, the history-based CE would only allow predictions 

for histories whose predictability is greater than ninety percent, i.e., only for 

history 1111 based on the data in Table 5.2.  Such a four-bit history-based 

confidence estimator can yield a 96.6% prediction accuracy and predicts 

38.3% of all loads of the SPECint95 benchmark suite.  Longer histories result 

in even higher accuracies and better coverage [BuZo98a]. 

Initially, I built a confidence estimator in which the history patterns that 

should be followed by a prediction have to be preprogrammed using tables 

similar to Table 5.2 [BuZo98a].  While this confidence estimator (called an 

SSg CE after the structurally identical SSg branch predictor [YePa93]) al-

ready outperforms its bimodal counterpart [BuZo99a], profile-runs are unfor-

tunately necessary to program the history patterns.  Furthermore, the SSg CE 

is completely static and cannot adapt to changing program behavior. 

To remedy these shortcomings, the CE’s design needed to be changed so 

that the table can be maintained in hardware and updated on-the-fly.  In other 

words, the CE has to record how many correct predictions recently followed 

each of the possible history patterns.  Saturating counters are, of course, ap-

propriate for this task. 

By letting saturating counters record the number of correct predictions that 
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followed each history pattern in the recent past, the counter values dynami-

cally assign a confidence to each history and thus continuously adjust which 

patterns should be followed by a prediction and which ones should not.  Pre-

dictions are only allowed if the counter value associated with the current pre-

diction outcome history is above a preset threshold. 

The architecture of the resulting SAg confidence estimator, which is 

named after the structurally identical SAg branch predictor [YePa93] (the 

naming conventions are explained in Appendix D), is shown in Figure 5.2. 
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Figure 5.2: The SAg confidence estimator (shaded). 

 

The SAg CE was developed by me [BuZo98b], and independently by Cal-

der et al. [CRT99].  The following pseudo-code describes its operation.  m 

denotes the number of history bits in each predictor line and x represents the 

number of bits in each saturating counter.  The prediction outcome histories 

are marked with ‘h’ and the saturating counters with ‘c’. 

 

 CE_level1: {historym} • 2n 

 CE_level2: {counter_valuex} • 2m 
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 conf_estim: CE_level1 + CE_level2 
 

 prediction: predict = (counter_value[history[index(PCload)]] >= threshold); 

 update: counter_value[history[index(PCload)]] = (predicted_value == 

true_value) ? 

min(top-1, counter_value[history[index(PCload)]]+1) : 

max(0, counter_value[history[index(PCload)]]-1); 

  history[index(PCload)] = LSB0..m-1(history[index(PCload)] << 1) | 

(predicted_value == true_value); 

 

predictable sequences: 

- sequences that exhibit (short) repeating behavior 

 

5.4 Performance Comparison 

The SAg CE requires more hardware than the bimodal CE and is most 

likely slower because of its two-level design.  This raises the question 

whether the extra complexity is worthwhile. 

The SAg CE has been developed to avoid the poor behavior of the bi-

modal CE on short sequences that alternate between being predictable and 

being unpredictable.  Revisiting the sample sequence from Section 5.2.1 

shows that a two-bit history is already sufficient to obtain perfect confidence 

estimation because the saturating counters associated with the histories 01 

and 10 are constantly incremented, meaning that a prediction will be allowed 

following these histories, the saturating counter associated with history 11 is 

incessantly decremented and thus inhibits predictions after two consecutive 

correct predictions, and history 00 never occurs.  Hence, the SAg CE is able 

to learn the predictability pattern and can identify the two predictable values 

and the unpredictable value as such, thus reaping the maximum benefit by 

predicting all the predictable values and allowing no mispredictions that could 
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incur cycle-penalties. 

To better visualize the behavior and the performance of the two kinds of 

CEs with a last value predictor, Table 5.3 shows excerpts of real traces from 

three load instructions found in gcc (one of the SPECint95 programs) along 

with the behavior of four bimodal CEs and one SAg CE.  The first trace (on 

the left) exhibits almost no last value predictability, the middle trace exhibits 

almost full last value locality, and the last trace has medium predictability. 

 
Low Last Value Predictability High Last Value Predictability Medium Last Value Predictability

L CE1 CE1 CE3 CE4 SAg CE L CE1 CE1 CE3 CE4 SAg CE L CE1 CE1 CE3 CE4 SAg CE
load value V C P C P C P C P history C P load value V C P C P C P C P history C P load value V C P C P C P C P history C P

1074930240 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 _oo_oo_o 3
0 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 oo_oo_oo 0

1074930256 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
1074930248 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 3 + 3 + 1 1 _oo_oo_o 4
1074930376 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 2 - 2 oo_oo_oo 0
1074930368 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 o_oo_oo_ 15 +
1074930240 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 _oo_oo_o 5

22 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 oo_oo_oo 0
0 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
0 * 0 0 0 0 ________ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 1 1 _oo_oo_o 6
0 * 1 1 1 1 _______o 2 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 oo_oo_o_ 15 +
2 2 - 2 2 - 2 ______oo 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 3 + 3 + 1 1 o_oo_o_o 0
0 1 1 0 0 _____oo_ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 2 - 2 _oo_o_oo 0
2 0 0 0 0 ____oo__ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 * 2 + 2 0 0 oo_o_oo_ 15 +

1074908984 0 0 0 0 ___oo___ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 3 - 3 - 1 1 o_o_oo_o 0
1074908976 0 0 0 0 __oo____ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 556550514 * 2 + 2 0 0 _o_oo_o_ 11 +
1074909000 0 0 0 0 _oo_____ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1714188861 3 - 3 - 1 1 o_oo_o_o 1

0 0 0 0 0 oo______ 0 0 * 3 + 3 + 3 + 7 + oooooooo 15 + 1361864236 2 - 2 0 0 _oo_o_o_ 0
1074908984 0 0 0 0 o_______ 0 144 3 - 3 - 3 - 7 - oooooooo 15 - 1361128529 1 1 0 0 oo_o_o__ 0
1074908976 0 0 0 0 ________ 1 144 * 2 + 2 1 5 + ooooooo_ 15 + 1361128529 * 0 0 0 0 o_o_o___ 15 +
1074909000 0 0 0 0 ________ 0 144 * 3 + 3 + 2 + 6 + oooooo_o 15 + 1714188861 1 1 1 1 _o_o___o 0

10 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + ooooo_oo 15 + 1714188861 * 0 0 0 0 o_o___o_ 15 +
1074911312 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooo_ooo 15 + 1714188861 * 1 1 1 1 _o___o_o 12 +

0 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + ooo_oooo 15 + 556550514 2 - 2 2 - 2 o___o_oo 0
1074911312 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oo_ooooo 15 + 556550514 * 1 1 0 0 ___o_oo_ 15 +

6 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + o_oooooo 15 + 556550514 * 2 + 2 1 1 __o_oo_o 11 +
1074911568 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + _ooooooo 15 + 1714188861 3 - 3 - 2 - 2 _o_oo_oo 0

0 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 11 + 1714188861 * 2 + 2 0 0 o_oo_oo_ 15 +
1074911568 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 12 + 556550514 3 - 3 - 1 1 _oo_oo_o 2

6 0 0 0 0 ________ 0 144 * 3 + 3 + 3 + 7 + oooooooo 13 + 556550514 * 2 + 2 0 0 oo_oo_o_ 15 +

correct 0 0 0 0 0 correct 29 28 28 29 29 correct 13 4 0 0 13
missed 2 2 2 2 2 missed 0 1 1 0 0 missed 4 13 17 19 4

incorrect 1 0 1 0 0 incorrect 1 1 1 1 1 incorrect 11 9 6 0 0  

Table 5.3: Bimodal and SAg CE behavior on three gcc traces. 

 

The first column in each trace shows the actual load value, the second 

column (LV) indicates with a star which of the values are last value predict-

able, the next four columns, CE1 through CE4, show the values of the satu-

rating counters of four bimodal CEs as well as the prediction outcome (plus = 

correct prediction, minus = misprediction, space = no prediction), and the final 

column (SAg CE) shows the history (for better readability, underscores are 

used to mark correct predictions), the value of the saturating counter corre-

sponding to the given history, and the prediction outcome of a SAg CE.  At 
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the bottom of each trace the number of correct predictions, missed opportuni-

ties for making a correct prediction, and the number of incorrect predictions 

are summarized for each individual CE. 

The five sample CEs are configured as follows.  The bimodal CE1 has a 

top of four, a threshold of two, and a penalty of one.  CE2 has a top of four, a 

threshold of three, and a penalty of one.  CE3 has a top of four, a threshold 

of two, and a penalty of two.  Finally, CE4 has a top of eight, a threshold of 

four, and a penalty of two.  The SAg CE uses eight-bit histories, a top of six-

teen, a threshold of eight, and a penalty of four. 

As Table 5.3 illustrates, both the SAg and the bimodal CE are well suited 

for predicting highly predictable and highly unpredictable sequences of load 

values.  With mixed predictability, however, the SAg CE significantly outper-

forms the bimodal CEs.  This is reassuring because, after all, the SAg CE has 

been developed to perform better than the bimodal CE in exactly this case.  

Note that with all three traces, none of the bimodal CEs result in more correct 

predictions, fewer missed opportunities, or fewer incorrect predictions than 

the SAg CE.  While this is true for most traces, there are examples in which 

the bimodal CE outperforms the SAg CE.  A study of such traces revealed 

that this behavior occurs when the histories of several loads alias detrimen-

tally in the second level of the SAg CE, which suggests that in certain cases it 

may be beneficial to have a hybrid CE that consists of both a bimodal and a 

SAg CE and chooses the better one for each load instruction.  The analysis 

of such a CE is left for future work. 

To determine the genuine effectiveness of the SAg and the bimodal CE, 

speedup measurements are necessary.  To obtain these results, the five 

value predictors from Section 4.3 were outfitted with both kinds of CEs.  

Based on previous studies [BuZo98b], a history length of ten bits is used with 

the SAg CEs and the top values for the saturating counters are sixteen for re-

fetch recovery and eight with re-execute.  A global search was performed to 

obtain the optimal threshold and penalty values for each predictor and CE 
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pair.  The result of this search is summarized in Table 5.4. 

 

cntr top threshold penalty hist bits cntr top threshold penalty
FCM 16 13 11 10 16 15 11
L4V 16 15 13 10 16 15 8
LV 16 10 15 10 16 13 5
Reg 16 10 7 10 16 15 7
St2d 16 12 12 10 16 12 5
FCM 8 7 3 10 8 6 3
L4V 8 6 3 10 8 7 3
LV 8 5 1 10 8 5 2
Reg 8 2 2 10 8 4 1
St2d 8 5 1 10 8 5 1

SAg confidence estimatorbimodal confidence estim.
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Table 5.4: Predictor configurations yielding the highest mean speedup. 

 

Note that the penalties yielding the highest performance with a re-execute 

misprediction recovery mechanism are quite low in comparison with those for 

re-fetch, even when accounting for the wider re-fetch counters.  This is a di-

rect reflection of the lower misprediction cycle-penalty with re-execute. 

The speedups delivered by the twenty combinations of predictors, CEs, 

and recovery mechanisms are shown in Figure 5.3 and Figure 5.4.  The for-

mer shows the re-fetch speedups and the latter the re-execute speedups.  

Each predictor comprises a total of 2048 lines divided into four banks.  Since 

the predictor sizes vary greatly, the given results should only be used for in-

tra-predictor comparisons between the two kinds of CEs. 
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Speedup with a Re-fetch Misprediction Recovery Mechanism

7.9

9.3
8.6

7.3

9.4

6.6

11.8

10.2

7.4

10.5

0

2

4

6

8

10

12

14

16

FCM L4V LV Reg St2d

Predictor

S
pe

ed
up

 o
ve

r 
B

as
el

in
e 

(%
)

Bimodal CE

SAg CE

 

Figure 5.3: Re-fetch speedup comparison between Bimodal and SAg CEs. 
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Figure 5.4: Re-execute speedup comparison of Bimodal and SAg CEs. 
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With a re-fetch misprediction recovery mechanism, four of the five predic-

tors perform better with a SAg CE than with a bimodal CE.  The L4V, St2d 

and, as expected, the LV predictors’ speedups are considerably higher with a 

SAg CE.  Surprisingly, the Reg predictor does not seem to benefit much from 

the more complex CE at all. 

The FCM predictor actually performs substantially worse with a SAg CE 

than with a bimodal CE.  This unexpected result is caused by the aforemen-

tioned detrimental aliasing in the second level of the SAg CE.  As Figure 5.4 

shows, aliasing is less of a problem (but still present) with the FCM predictor 

when re-execute recovery is used. 

With a re-execute misprediction recovery mechanism, all five predictors 

perform better with a SAg CE than with a bimodal CE.  However, again the 

Reg predictor does not seem to benefit much from the SAg CE.  It appears 

that register predictable loads are either highly predictable or not predictable 

at all and that there is not much alternating register predictability.  Clearly, the 

bimodal CE is the CE of choice for the Reg predictor. 

While the re-execute speedups are higher than the re-fetch speedups, the 

delivered speedup is considerable for all five predictors even with re-fetch re-

covery, in particular in comparison with the speedups achieved without CEs, 

as shown in Figure 4.8.  I conclude that confidence estimators make load 

value predictors somewhat larger and more complex but definitely appear to 

be worthwhile having.  In fact, even the best predictor without a CE does not 

come close to the speedup of the worst studied predictor with a CE. 

 

5.4.1 The L4V Selector 

Interestingly, the L4V predictor benefits the most from having a SAg CE 

over having a bimodal CE with both misprediction recovery mechanisms.  To 

explain this fact, it is necessary to understand the implementation of the se-

lection mechanism in the L4V predictor. 
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The L4V comprises four replicated LV predictors with their CEs.  Each 

component of the L4V operates independently, meaning that they each make 

a value prediction and a confidence estimation in parallel.  Whichever com-

ponent reports the highest confidence is chosen to make the actual load 

value prediction if the confidence is also above the threshold.  In case of a tie 

the component with the youngest value is selected.  The implementation of 

the select function from Section 4.3.4 can now be given. 

 

select(val1, val2, val3, val4) = val1 if val1conf = max(val1conf, val2conf, val3conf, val4conf), 

val2 if val2conf = max(val1conf, val2conf, val3conf, val4conf), 

val3 if val3conf = max(val1conf, val2conf, val3conf, val4conf), 

val4 otherwise; 

 

The confidence information is therefore not only used to determine 

whether a value prediction should be allowed but also which component of 

the L4V predictor to select.  Hence, the fact that the L4V benefits more from 

the SAg CE relative to the bimodal CE than the LV predictor implies that the 

SAg CE represents a better selector than the bimodal CE. 

 

5.4.2 Other Performance Metrics 

Often, metrics other than the speedup are used to evaluate the effective-

ness of CEs and value predictors (see Section 3.4).  For example, the per-

centage of correct predictions, incorrect predictions, and inhibited predictions 

is of interest for load value predictors with CEs.  Figure 5.5 shows this classi-

fication for the twenty predictor configurations under discussion. 
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Load Classification of 2048-Line Predictors for Re-fetch (left half) and Re-
execute (right half)
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Figure 5.5: Load classification of Bimodal and SAg confidence estimators. 
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It is quite evident in Figure 5.5 that fewer overall predictions are attempted 

with re-fetch than with re-execute.  While this conservativism significantly re-

duces the number of incorrect predictions, it also lowers the number of cor-

rect predictions.  However, this trade-off must be beneficial in the modeled 

CPU since the configurations used yield the highest speedups. 

Note that none of the predictors predict more than 45% of the dynamically 

executed loads correctly.  In particular, the Reg predictor only correctly pre-

dicts between eleven and fifteen percent of all the loads.  In spite of this very 

low prediction rate, the Reg predictor yields a respectable speedup.  One can 

speculate from this that the loads the Reg predictor is able to predict are 

more important than the loads the remaining four predictors can predict.  As it 

turns out, this is indeed so.  The loads predicted by Reg have a substantially 

longer average latency than the ones predicted by the other four predictors, 

as the shaded columns in Table 5.5 illustrate.  For example, the loads pre-

dicted by the Reg predictor have an average latency of over twenty cycles 

both with re-fetch and re-execute recovery whereas the St2d’s loads only 

have a latency of 12.5 cycles for re-fetch and about fifteen for re-execute. 

 

latency usage latency usage
Bim FCM 15.0 3.3 17.5 3.8
SAg FCM 14.6 3.8 16.6 4.0
Bim L4V 14.9 4.5 15.3 5.8
SAg L4V 14.6 4.9 16.8 5.7
Bim LV 15.3 4.7 16.6 5.2
SAg LV 15.2 5.0 17.2 5.7
Bim Reg 21.2 3.3 20.7 4.7
SAg Reg 20.4 3.9 20.2 4.9
Bim St2d 12.1 3.4 14.8 3.2
SAg St2d 12.7 3.0 15.4 3.2
average 15.6 4.0 17.1 4.6

re-executere-fetch

 

Table 5.5: Latency and cycles to first usage of the predicted load values. 

 

Evidently, the number of correct predictions, the number of incorrect pre-

dictions, and the prediction rate (the sum of the two) do not adequately pre-
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dict the delivered performance of a CE.  Rather, it appears that the latency of 

the predicted loads also has to be taken into account. 

Table 5.6 demonstrates two even more striking examples of metric-

anomalies.  The first two lines show that while the bimodal FCM makes fewer 

correct predictions, more incorrect predictions, fewer prediction attempts, and 

has a lower prediction rate and a lower accuracy than the bimodal L4V with 

re-execute, the FCM still outperforms the L4V speedup-wise.  To ensure that 

this result is not an artifact of the averaging of the speedups, the table shows 

the harmonic, geometric, and arithmetic mean speedup as well as the aver-

age IPC (instructions per cycle) improvement of the eight SPECint95 pro-

grams.  All four ways of averaging the measured speedups yield the same 

result, i.e., the FCM performs better than the L4V.  Again, the higher average 

latency (Table 5.5) of the loads predicted by the FCM predictor appears to 

offer at least one explanation.  The second example in Table 5.6 illustrates 

another possible reason. 

 

% correct % no % wrong prediction accuracy
predictions predictions predictions rate (%) (%) harmonic geometric arithmetric IPC

Bim FCM 31.15 65.93 2.93 34.08 91.40 11.16 13.63 16.66 13.03
Bim L4V 35.37 62.73 1.90 37.27 94.90 10.66 12.34 14.50 11.58
SAg FCM 34.71 61.34 3.95 38.66 89.78 11.88 14.89 18.55 14.60
SAg LV 40.28 57.26 2.46 42.74 94.24 11.63 13.36 15.59 12.47

mean speedup over baseline (%)

 

Table 5.6: Various metrics showing anomaly. 

 

The second set of two lines in Table 5.6 shows that according to all non-

speedup metrics the SAg FCM should perform worse than the SAg LV but 

again all the shown re-execute speedup averages are in disagreement.  This 

time even the load latency is in favor of the LV, meaning that there has to be 

at least one other as of yet unaccounted for influence on the CE perform-

ance. 

The non-shaded columns of Table 5.5 offer a possible explanation.  The 

average time to the first usage of a predicted load value is much lower for the 
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FCM (4.0 cycles) than it is for the LV (5.7 cycles), meaning that the FCM’s 

predictions are needed sooner by the CPU and are therefore more important 

than the LV’s.  Again, it looks like the time to the first use of a predicted load 

value needs to be accounted for to properly establish a CE’s performance. 

Another issue with non-speedup metrics is the time (or physical location) 

of the actual measurement.  Optimizing predictors for speedup implies opti-

mizing the performance at instruction commit.  The interaction between the 

CPU and the predictor, however, take place at the time of prediction and then 

again at the time of update, possibly long before the time of commit.  This 

discrepancy may be an issue because, for instance, the accuracy with which 

wrong path instructions are predicted is most likely less important than the 

accuracy of correct path instructions.  Hence, a high overall accuracy meas-

ured at predict or update may not be representative of the predictor’s per-

formance since it makes no statement about the prediction accuracy of the 

instructions that are actually retired.  The ratio of total predicted loads over 

committed value-predicted loads is just under 1.5, indicating that a substantial 

number of predictions exist that probably have little impact on the overall per-

formance.  To account for any effects this might have, out-of-order and 

wrong-path updates of the predictor may have to be accurately modeled and 

non-speedup events should be sampled in the commit stage of the CPU and 

not at the time of prediction or update. 

 

5.5 Summary 

This chapter introduces confidence estimators, which are an essential part 

in every load value predictor, as performance numbers illustrate. 

First, the simple but effective bimodal confidence estimator is presented 

and its operation is described.  A behavior study revealed a deficiency of this 

CE on sequences of load values that frequently change from being predict-

able to being unpredictable and vice-versa. 



 71     

 

To alleviate this problem, the more complex SAg CE is derived.  Speedup 

results show that it performs better in connection with most load value predic-

tors than the bimodal CE.  Furthermore, there is strong evidence that the SAg 

CE represents a better selector than the bimodal CE in hybrid predictors. 

A study of the expressiveness of non-speedup-based metrics concludes 

this chapter.  Interestingly, all the simple metrics that are discussed appear to 

be misleading in some cases, which is why speedup numbers are used al-

most exclusively in this dissertation for performance evaluation purposes. 
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Chapter 6 
6 Predictor Banking 

Predictor Banking 
 

 

This chapter discusses predictor banking, a technique used to enable 

multiple predictor accesses (predictions and updates) per cycle.  Several 

measurements show that a banked predictor design is necessary but also 

sufficient for good load value predictor performance. 

 

6.1 The Need for Banking 

As discussed in Section 3.2.3, about 23.3 percent of the committed in-

structions in the SPECint95 benchmark programs are loads.  With an aver-

age IPC (instructions per cycle) of 1.677, this results in roughly one executed 

load instruction every 2.5 cycles.  Since each load accesses the predictor 

twice, once to request a prediction and once to update the predictor, the pre-

dictor is accessed once every 1.25 cycles.  When also accounting for wrong-

path loads and loads that are re-executed, the number of predictor accesses 

increases to 0.962 per cycle on average.  However, since prediction and up-

date requests are not evenly distributed over time, it frequently happens that 

more than one access per cycle is needed. 

Moreover, load value predictors improve the CPU throughput (perform-

ance), which in turn increases the pressure on the predictor because there is 

less time between the execution of consecutive load instructions.  The col-

umn “accesses per cycle“ in Table 12.1 in Appendix B shows the average 

number of predictor accesses for various predictor configurations.  As can be 

seen, with some of the predictors even the average number of accesses ex-
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ceeds one per cycle, clearly demonstrating the need for multi-access support.  

Limiting the predictor to one prediction or update per cycle severely hampers 

the performance (see Section 6.3), which also shows the importance of an 

architecture that supports more than one access per cycle. 

 

6.2 Bank Architecture 

One approach to enable multiple accesses per cycle is to break the pre-

dictor up into multiple predictor banks [GaMe98].  In such a predictor, each 

bank comprises a small, identical load value predictor.  There is no communi-

cation between the banks, making it possible to operate them independently 

and in parallel.  While each bank by itself is still only able to handle one pre-

diction or update per cycle, taken together the n banks support up to n ac-

cesses per cycle. 

The number of banks needed depends on the maximum number of ac-

cesses that the predictor should be able to handle per cycle.  Since the CPU I 

use can issue up to four load instructions per cycle, a load value predictor 

with four banks is probably necessary.  The results in the following section 

verify this assumption. 

While most microprocessors currently only support one issued load per 

cycle (because they only have one load/store unit), this issue-rate is likely to 

increase in the near future.  With every fifth instruction being a load, eight-

way superscalar CPUs already take a considerable performance hit when 

only allowing one load per cycle. 

I decided to allow up to four loads to issue in the simulated CPU to illus-

trate that predicting and/or updating multiple loads per cycle is straightforward 

in load value predictors.  Note that the baseline CPU, which does not contain 

a load value predictor, is also able to issue up to four loads per cycle.  The 

four-wide load issue width results in a high-performing baseline CPU, which 

makes it harder for a load value predictor to be effective and ensures that no 
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performance improvements are attributed to the load value predictors that are 

actually an artifact of a limited load issue width.  Limiting the load issue width 

to one decreases the baseline processor’s performance more than the per-

formance of the CPU with a load value predictor.  As a consequence, the 

speedup (i.e., the performance of the load value predictor) would appear to 

be higher. 

I believe that if I can show load value predictors to be effective under the 

more demanding conditions of a four-wide baseline processor, there is a 

good chance that load value predictors will be included in future microproces-

sors and be effective for years to come. 

Since the simulated processor I use mimics an Alpha 21264, it fetches 

naturally aligned instructions.  Consequently, any set of up to four loads that 

can be fetched or issued during the same cycle can only contain loads whose 

addresses (PC values) differ in the two least significant bits (that are not al-

ways zero).  Using these two bits to determine which bank a load should be 

handled by guarantees that there is never a bank conflict between issued 

loads and results in an interleaved bank design as illustrated in Figure 6.1. 
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Figure 6.1: Line correspondence of single-bank and interleaved predictor. 
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Because the address of an instruction never changes during program 

execution, a given load will always be handled by the same predictor bank.  

With an interleaved banking scheme, all the load instructions that the mod-

eled CPU can possibly fetch during the same cycle not only go to distinct 

banks but the first of the four instructions will always be handled by the first 

predictor bank (if it is a load), the second instruction by the second bank and 

so forth.  Hence, neither arbitration nor rotation logic is necessary for predic-

tions.  For CPUs that fetch contiguous but not necessarily naturally aligned 

sets of instructions, the relative position of the instructions within the fetch 

block may have to be rotated before accessing the predictor banks.  There 

should be enough time available to perform this rotation during the decode 

stage, making the interleaved banking scheme applicable to a broad range of 

processors.  Gabbay and Mendelson describe a more complex predictor 

banking scheme for CPUs with trace-caches that do not necessarily fetch 

contiguous instructions [GaMe98]. 

Unfortunately, predictor updates also take time and keep the predictor 

bank that is being updated busy for one cycle during which it is not available 

for making a prediction.  Since it is vital for good performance that the pre-

dicted load values be available as soon as possible, updates should be given 

a lower priority than predictions.  Hence, updates are only allowed during cy-

cles when the respective bank is not making a prediction, i.e., when it is idle. 

To avoid dropping (i.e., losing) updates whenever the bank is busy, which 

would considerably decrease the performance of the predictor, updates are 

temporarily stored in a FIFO (first-in first-out) queue.  Each predictor bank 

contains one such queue that can accept one update per cycle.  Updates are 

only dropped if the queue is full.  Whenever a queue is not empty and the 

corresponding predictor bank is idle, the queue issues updates at a rate of 

one per cycle.  The following section shows that sixteen-entry queues are suf-

ficient to essentially avoid dropping any updates. 
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6.3 Bank Performance 

Figure 6.2 shows the speedup delivered by the five basic load value pre-

dictors from Section 4.3 with one, two, and four (interleaved) predictor banks 

as well as with four banks that support an infinite number of accesses per cy-

cle (denoted as “unlimited”).  Each predictor has a total of 2048 lines that are 

equally distributed among the banks, meaning that the total predictor size is 

roughly the same for the four configurations.  Nevertheless, the two and in 

particular the four bank predictors require a little more state than their single 

bank counterparts because each bank requires its own sixteen-entry update 

queue and second level of the SAg confidence estimator in order to be inde-

pendent of the other banks.  The CEs are configured with the parameters 

shown in Table 5.4. 
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Figure 6.2: Re-fetch speedup of differently banked SAg predictors. 
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Figure 6.2 illustrates the performance of the five predictors with SAg CEs 

and a re-fetch misprediction recovery mechanism.  The results for the predic-

tors with bimodal CEs and re-fetch, with bimodal CEs and re-execute, and 

with SAg CEs and a re-execute exhibit the same general trends and can be 

found in Appendix B. 

Clearly, the single-bank predictors perform substantially worse than their 

four-banked counterparts in all cases.  On average, the roughly same sized 

four-bank predictors outperform the one-bank predictors by 42.7%.  The two-

bank predictors outperform the one-bank predictors by 26.4% on average but 

underperform their four-banked counterparts in all cases. 

Interestingly, the four-banked predictors sometimes perform slightly better 

than the same predictors with four banks that support an unlimited number of 

accesses per cycle.  Since the predictors are structurally identical and only 

differ in their timing behavior, this apparent paradox must be explainable by 

the delayed updates.  The predictions cannot be the reason because their 

timing behavior is the same in both cases since the four banks never drop a 

prediction and predictions take precedence over updates.  Hence, predictions 

happen at the same time in both the four-banked and the unlimited predic-

tors. 

The updates, however, take place later in the implementable four-bank 

predictors than in the unlimited predictors.  At first sight it seems illogical that 

a predictor that is more likely to contain out-of-date information would outper-

form a more up-to-date predictor.  While I do not have proof for this, I believe 

that the outdated value information indeed decreases the performance but 

the outdated confidence information is actually helpful for bridging phase 

transitions by providing some hysteresis, which could explain the slightly im-

proved performance.  A detailed analysis of this phenomenon and possible 

exploitation thereof is left for future work. 

Figure 6.2 (and the results shown in Appendix B) provides strong evi-

dence that a processor should have one predictor bank for every load that it 
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can issue per cycle.  In our case, the four-bank implementations outperform 

their counterparts with fewer banks, which are scaled to the same total size.  

At the same time, the four-banked predictors yield the same performance as 

the unlimited predictors, meaning that a simple interleaved banking scheme 

is sufficient to reap the full potential of the predictor. 

Because predictions take precedence over updates and because no more 

than four predictions need to be made per cycle, no predictions are ever 

dropped in the four-bank case.  With only two banks, nineteen percent of the 

requested predictions have to be dropped on average because the required 

bank is already busy making another prediction.   With one bank, 50.4% of 

the predictions cannot be made due to a busy predictor.  Table 12.1 in Ap-

pendix B shows the percentage of dropped predictions for different numbers 

of banks and a variety of load value predictors. 

Delaying updates by a few cycles (in the update queue) and dropping up-

dates when the queue is full appears not to impact the performance at all.  

The sixteen-entry update queues are large enough so that on average only 

0.026% of all the updates have to be dropped due to a full queue in the four-

bank case.  With two banks, the queues are full 2.1% of the time and with just 

one bank 23.9% of the updates have to be dropped on average.  The drop-

rates of the individual predictors are listed in Appendix B.  The investigation 

of the performance of shorter update-queues is left for future work. 

Table 12.1 in Appendix B lists relevant bank information for the five basic 

predictors with one, two, and four banks for all combinations of re-fetch and 

re-execute as well as bimodal and SAg CEs.  The information in the table in-

cludes the average number of load instructions that are retired per cycle, the 

average number of load value predictor accesses per cycle, the average 

number of references to the load value predictor per cycle (i.e., the number of 

prediction requests), the average number of updates per cycle, the percent-

age of prediction requests that have to be dropped due to a busy bank, and 

the percentage of dropped updates due to a full update queue. 
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As the data in the table shows, the number of prediction requests per cy-

cle is often higher than the number of updates because of wrong-path load 

instructions that request a prediction but are cancelled before they can up-

date the predictor.  However, in a few cases there are more updates than 

predictions.  This only happens with re-execute, though, because re-executed 

load instructions update the predictor multiple times. 

Note also that for both re-fetch and re-execute, the number of predictor 

accesses is on average about 2.23 times higher than the number of commit-

ted load instructions.  Assuming exactly two predictor accesses per load, we 

find that in addition to the committed loads, another 11.5% of load instruc-

tions affect the predictor that stem from wrong path executions. 

 

6.4 Bank Usage 

The utilization of the four predictor banks is almost identical for all the 

tested predictor configurations.  The first bank is accessed 27.6%±0.2% of 

the time (depending on the predictor), the second bank 21.8%±0.1%, the 

third bank 29.3%±0.2%, and the fourth bank 21.3%±0.2% of the time.  This 

result is hardly surprising since the utilization is a function of the distribution 

of load instructions in the fetch blocks.  The observed percentages show that 

this distribution is quite uniform and not biased by the code scheduler.  

Hence, it appears that banking does not result in uneven utilization. 

 

6.5 Summary 

The performance numbers in this chapter show that in order to be effec-

tive, a load value predictor has to support multiple accesses per cycle in con-

nection with a CPU that has a load-issue-width greater than one.  Splitting a 

predictor into multiple interleaved banks is a straightforward approach and 
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provides the needed support for multiple simultaneous predictor accesses.  

The performance results show that such a banking scheme can deliver the 

same speedup as a predictor that supports an unlimited number of accesses 

per cycle.  Unless otherwise noted, all the predictors in this dissertation are 

split into four predictor banks. 
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Chapter 7 
7 Improving Predictor Utilization 

Improving Predictor Utilization 
 

 

This chapter investigates the utilization of load value predictors and sug-

gests an alternative predictor design that performs better due to improved 

and more balanced hardware utilization. 

Furthermore, speedup results for individual programs and not only aver-

ages over the whole benchmark suite are presented.  A sensitivity analysis of 

several last four value predictor parameters concludes this chapter. 

 

7.1 Line Utilization 

While every line in a load value predictor requires the same amount of 

state to store information, not every line is used equally frequently.  In fact, 

even in relatively small predictors most of the lines are seldom utilized, as the 

quantile information from Section 3.2.2 illustrates.  As discussed, only a small 

percentage of the load instructions contained in a binary contributes most of 

the dynamically executed loads.  For example, Table 3.3 shows that on aver-

age only 36.6% of the load sites (the static load instructions in the binary) are 

visited at all during execution, 3.5% of the load sites contribute ninety percent 

of the executed loads, and less than one percent of the load sites contributes 

over half of the dynamically executed loads. 

Clearly, only a small percentage of the load sites is responsible for most 

of the executed loads.  As a consequence, only a few lines in the load value 

predictor are accessed most of the time and thus have to handle most of the 

predictions and updates. 
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To find out what number of predictor lines is really needed to handle a 

given percentage of executed loads in absolute terms, the number of load 

sites that account for the given percentages of executed loads is shown in 

Figure 7.1 for each of the eight SPECint95 programs individually.  Note that 

the scale on the y-axis is logarithmic. 
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Figure 7.1: Absolute quantile numbers for the eight SPECint95 programs. 

 

With the exception of gcc, which is by far the largest of the eight pro-

grams, ten load sites and therefore ten predictor lines handle almost fifteen 

percent of the executed loads.  Except for gcc and go, fewer than sixty pre-

dictor lines are needed to cover over half of all the predictions and updates.  

The program go requires about two hundred lines and gcc about nine hun-

dred predictor lines to handle half of all the executed loads.  Again with the 

exception of gcc and go, fewer than six-hundred predictor lines are necessary 

to handle ninety percent of the predictor traffic. 
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As these numbers illustrate, over half of all the predictor lines in a 2048-

line predictor are scarcely used when running the SPECint95 programs.  This 

observation prompted me to investigate alternative predictor designs to im-

prove the utilization of the hardware, hoping that better utilization will also re-

sult in higher performance. 

One generic approach to increase the usage of the available real-estate is 

to take away hardware from the infrequently executed loads and “give” it to 

the frequently executed load instructions.  Doing so reduces the predictor’s 

capability to predict infrequently executed loads, but at the same time it 

should increase the prediction accuracy and the number of times the fre-

quently executed loads can be predicted.  Due to the widely varying execu-

tion frequency of loads, missing infrequently executed loads and better pre-

dicting frequently executed loads is likely to be a beneficial trade-off. 

 

7.2 Trading off Height for Width 

An increase in prediction accuracy and in particular in the absolute num-

ber of correct predictions can be achieved by increasing the amount of infor-

mation available for making predictions.  For example, instead of only retain-

ing the last seen load value, one could store the last n load values in every 

predictor line.  Of course, this would significantly increase the size of the pre-

dictor, which is why the number of predictor lines has to be reduced by a fac-

tor of n if the overall predictor size is to be maintained. 

Reducing the number of predictor lines and increasing the amount of in-

formation stored in each line has the desired effect of retaining more informa-

tion about frequently executed load instructions while expelling infrequently 

executed loads from the predictor (because of the smaller number of predic-

tor lines). 

A predictor that stores the last n load values is called a last n value predic-

tor.  The last four value predictor from Section 4.3.4 is an example of such a 
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predictor.  As explained in Section 5.4.1, the confidence estimators in each of 

the n predictor components can be used to select one of the n components 

for making the next prediction by “measuring” which of the n values is the 

most likely to result in a correct prediction. 

The architecture and operation of a last n value predictor is identical to 

that of the last four value predictor except that there may be fewer or more 

than four values per predictor line.  In fact, the last value predictor (Section 

4.3.1) is one extreme of the more general last n value predictor (n = 1). 

The number n is often referred to as the width of a last n value predictor.  

The wider such a predictor is, the fewer lines it can have for a given predictor 

size.  Hence, there exists a trade-off between the predictor’s height (the 

number of lines) and its width. 

Based on the quantile numbers from the previous section, it is likely that 

reducing the predictor height and increasing its width is beneficial until the 

predictor becomes so short that it cannot hold the frequently executed load 

instructions anymore or until retaining additional values in the predictor lines 

no longer results in better predictions.  Performance studies are therefore 

necessary to find the optimal width and height of a last n value predictor for a 

given predictor size and workload. 

 

7.3 SAg L4V Predictor Design and Performance 

The previous section established that a load value predictor’s height ought 

to be tall enough (i.e., have a sufficiently large number of lines) to accommo-

date the load instruction working set size.  If the predictor is too short, some 

frequently executed load instructions will have to share a predictor slot, which 

almost always results in detrimental aliasing.  Predictors that are too tall, on 

the other hand, underutilize their hardware.  The optimal predictor width 

therefore depends on the working set size of the programs and the available 

predictor real-estate. 
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To better evaluate the trade-off between predictor height and width, 

Figure 7.2 and Figure 7.3 are presented.  They show the mean speedup of a 

last one, two, four, eight, and sixteen value predictor with re-fetch and a re-

execute recovery, respectively.  Three speedup numbers are given for each 

predictor.  The first one shows the speedup for a predictor with a total capac-

ity of 512 load values, the second one for a predictor size of 2048 values, and 

the last one for a predictor with 8192 values.  For each predictor size and 

width, the performance obtained with the best threshold and penalty values is 

shown.  All the predictors are partially tagged and contain SAg confidence 

estimators with ten-bit histories.  The counter top is sixteen with re-fetch and 

eight with re-execute.  The CE is also used as selector. 

Figure 7.2 shows that for small predictors with only four kilobytes of state 

for storing values (512 values), a width of one results in the highest speedup.  

Storing two values per line and halving the number of predictor lines yields 

less speedup because there are not enough lines left for the frequently exe-

cuted loads in the SPECint95 programs, which results in detrimental aliasing 

and thus lower performance.  The shorter the predictor the more pronounced 

the aliasing is, hence the continuous decrease in speedup as the predictors 

become wider. 

With sixteen kilobytes of state (2048 values), a width of four results in the 

highest speedup and the detrimental aliasing only sets in above four entries 

per predictor line.  When the predictor size is increased even further (to sixty-

four kilobytes or 8192 values of total storage), the best width turns out to be 

eight.  Only at a width of sixteen does the performance decrease again. 
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Figure 7.2: Re-fetch speedup of three sizes of last n value predictors. 

Performance of Several Tag SAg Last n  Value Predictors with Re-execute
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Figure 7.3: Re-execute speedup of three sizes of last n value predictors. 
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Figure 7.3 is identical to Figure 7.2 except that the misprediction recovery 

mechanism used is re-execute instead of re-fetch.  The best performing pre-

dictor widths are exactly the same for the three sizes and are even more pro-

minent. 

Interestingly, the last two value predictor performs worse than the last 

value predictor in all presented cases.  Since the last two value predictor has 

a selector and the last value predictor does not, it appears that the loss due 

to imperfect selections is slightly larger than the benefit of having the two last 

values available for making predictions.  Note, however, that the last two 

value predictor outperforms the last value predictor when both are given the 

same number of predictor lines (i.e., the LV predictor is half the size of the 

L2V predictor) and that the last two value predictor does outperform the 

same-sized last value predictor for sizes above the depicted 8192-entry 

predictors. 

In general, and as expected, the optimal predictor width increases as the 

predictors become larger (for a fixed workload).  Because of the highly 

skewed distribution of the execution frequency among load instructions, al-

ready relatively small load value predictors benefit from an increase in width 

even at the cost of a decreased height.  For example, both with re-fetch and 

re-execute, the sixteen kilobyte last four value predictor outperforms the other 

last n value predictors of the same size.  Consequently, a width of four and a 

height of 512 represents the optimal width over height ratio for this workload 

and predictor size. 

 

7.4 SAg L4V Predictor Potential 

In brief, the four-banked, 2048-entry eight-bit partially tagged SAg last four 

value predictor’s average accuracy over SPECint95 measured in the CPU’s 

commit stage is 97.6% using re-fetch with a counter top of sixteen, a thresh-

old of fourteen, and a penalty of eleven.  On average, 32.6% of the commit-
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ted load instructions are predicted with the correct value and 0.8% with an 

incorrect value.  This results in a harmonic mean speedup of 11.0% relative 

to the same CPU without the load value predictor. 

With re-execute, a counter top of eight, a threshold of seven, and a pen-

alty of four, the average accuracy of the predicted load instructions that are 

committed is 94.2%.  34.6% of the load instructions are correctly predicted on 

average and 2.1% are incorrectly predicted.  The resulting harmonic mean 

speedup is 12.5%. 

 

7.4.1 Comparison with Oracles 

To better understand the potential that lies in load value prediction and to 

see how much of this potential the last four value predictor can reap, I modi-

fied the simulator to provide various degrees of perfect knowledge to the load 

value predictor, i.e., to include oracles that can make perfect predictions. 

The first predictor (no-oracle) represents the Tag SAg L4V predictor in its 

conventional and implementable form.  It has a capacity of 2048 values and 

does not contain an oracle. 

The first oracle (ce-oracle) represents the same predictor except it incor-

porates a perfect confidence estimator.  Because the confidence information 

is always correct, no incorrect predictions are made (they are all inhibited) 

and the predictor always makes a prediction if the (imperfectly) selected 

component contains the correct value. 

The next oracle (ce/sel-oracle) improves on the first one by also including 

a perfect selector.  This means that the oracle not only always makes a pre-

diction if the correct value is available and never makes a prediction other-

wise, but also that it chooses the component that will make a correct predic-

tion if such a component exists.  Hence, if any component in the predictor 

can make a correct prediction, it is selected and a prediction is made, other-

wise no prediction is attempted.  This oracle also never causes a mispredic-
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tion. 

The final oracle (all-oracle) predicts all executed load instructions cor-

rectly.  The all(tag)-oracle does the same except it only attempts a prediction 

if there is a tag-match in the 512-line predictor.  Again, there are no mispre-

dictions.  As opposed to all the other oracles, the all-oracle never decides not 

to make a prediction. 

Figure 7.4 shows the speedups of the oracle-less L4V predictor and the 

four oracles with a re-fetch and a re-execute misprediction recovery mecha-

nism. 
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Figure 7.4: Performance of L4V predictors with different oracles. 

 

Adding perfect confidence estimation (ce-oracle) results in a significant in-

crease in speedup in comparison with the implementable predictor (no-

oracle).  Because the no-oracle’s accuracy is already very high (mid to high 



 90     

 

nineties), the performance improvement most likely does not stem from inhib-

iting the few incorrect predictions that the no-oracle predictor makes but 

rather from the relatively large number of times the no-oracle does not make 

a prediction even though it has the correct information available.  Since the 

CE setting of the no-oracle predictor is the result of a global optimization and 

therefore yields the highest speedup, I conclude that trading off missing po-

tentially correct predictions for reducing the number of incorrect predictions is 

beneficial in the simulated CPU.  Apparently, incorrect predictions incur a 

high cycle penalty and should therefore be avoided, which results in a con-

servative predictor with a high accuracy but a relatively low coverage.  Note 

that, because there are no mispredictions and hence no recoveries, the ce-

oracle speedups for re-fetch and re-execute are (almost) the same.  They are 

not exactly the same because a quite different SAg CE setting is used for re-

fetch than for re-execute, which affects the performance of the (imperfect) 

selector.  The more precise speedup numbers are 19.614% for re-fetch and 

19.643% for re-execute, showing that rather different CE settings result in 

similar but not quite identical selector performance. 

Perfect confidence estimation in combination with perfect selection 

(ce/sel-oracle) boosts the speedup even more.  Clearly, the selection mecha-

nism used in the no-oracle predictor is not perfect.  Overall, the L4V predic-

tor’s confidence estimator and selector are able to reap 45% to 52% of the 

theoretically possible speedup for this predictor (no-oracle versus ce/sel-

oracle speedup). 

A comparison with the perfect load value predictor (all-oracle), however, 

shows that there is still a large amount of potential for improvement left.  The 

predictor only yields 20% to 23% of the speedup that can theoretically be at-

tained with load value prediction.  Comparing the all-oracle with the ce/sel-

oracle shows that the L4V predictor does not even contain the necessary in-

formation to reach half the possible speedup.  This large gap suggests that 

there exists significant opportunity for other prediction methods.  It is, how-
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ever, unclear how much of the remaining potential can be realized, in particu-

lar with a limited amount of state for storing information. 

Comparing all(tag)-oracle with all-oracle shows that having only 512 pre-

dictor lines does not hamper the performance much due to aliasing, which 

was to be expected since the last two value predictor with 1024 lines per-

forms worse than the L4V predictor of the same size (see Section 7.3).  The 

average loss of prediction potential over SPECint95 due to tag misses is less 

than eight percent in a 512-line load value predictor. 

 

7.5 SAg L4V Sensitivity Analysis 

So far, the different load value predictors have been optimized to yield the 

highest harmonic mean speedup over the eight benchmark programs.  In this 

section, the L4V predictor’s performance will be optimized for each individual 

program separately.  Furthermore, the sensitivity of the SAg history length 

and counter size is analyzed. 

Unless otherwise noted, the load value predictor used is an eight-bit par-

tially tagged, SAg-based last four value predictor with a capacity of 2048 val-

ues (requiring sixteen kilobytes of state for retaining load values).  The SAg 

counter top is sixteen for re-fetch and eight for re-execute.  The threshold and 

penalty values are optimized and differ for each case as indicated. 

 

7.5.1 SAg History Length 

I have already shown the SAg confidence estimator to work well with ten-

bit histories in the last value predictor [BuZo98b].  Figure 7.5 shows the per-

formance of the last four value predictor for different history lengths.  Note 

that, in order to make the trend more apparent, the figure is not zero-based. 
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Figure 7.5: Mean speedup with different history lengths. 
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As the figure illustrates, ten-bit histories also mark the beginning of the 

performance saturation for the last four value predictor, both with re-fetch and 

re-execute.  Similar investigations of several other predictors with SAg confi-

dence estimators show that ten-bit histories are sufficient for most SAg-based 

load value predictors. 

Note that it is important to chose as short a history as possible because 

every additional bit doubles the number of required saturating counters in the 

second level of the SAg confidence estimator.  Hence, to maximize the 

performance while keeping the number of history bits at a minimum, I chose 

ten-bit histories for basically all of my predictors. 

Note that all the predictors in Figure 7.5 use the same threshold and pen-

alty values.  Only the number of history bits and therefore the number of satu-

rating counters is varied.  A threshold of fourteen and a penalty of eleven for 

re-fetch and a threshold of seven and a penalty of four for re-execute repre-

sents the optimum for the ten-bit case.  Using these parameters with the 

longer and shorter histories does not necessarily result in the best perform-

ance.  However, the results from Section 7.5.3 indicate that the performance 

is most likely very close to optimal.  Nevertheless, this suboptimality is proba-

bly the reason why the eleven-bit re-execute performance is slightly lower 

than its ten-bit counterpart.  Note that while the expected optimal perform-

ance in the nine-bit case is slightly higher than shown, it is not as high as the 

performance in the ten-bit case. 

 

7.5.2 SAg Counter Parameters 

Figure 7.6 illustrates how well the last four value predictor performs with 

differently sized saturating counters in the SAg CE.  Note that the presented 

performances are obtained with an optimized threshold and penalty value for 

each predictor configuration.  Again, the trends seen in the figure are repre-

sentative of other SAg-based load value predictors as well. 
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Figure 7.6: Best L4V performance for different saturating-counter sizes. 
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As the figure shows, counter top values smaller than eight (three bit 

counters) for re-execute and sixteen (four bit counters) for re-fetch diminish 

the achievable performance, while larger counters do not significantly im-

prove the performance.  To keep the counters as small as possible without 

affecting the performance overly much, I selected three-bit counters for re-

execute and four-bit counter for re-fetch for all predictors in this dissertation 

(unless otherwise indicated). 

 

7.5.3 Optimizing Individual Programs 

So far, all the presented performance numbers have been harmonic mean 

speedups over the eight SPECint95 benchmark programs.  While these num-

bers are hopefully representative of the average benefit one can expect from 

adding a load value predictor to a CPU, the actual performance im-

provements of individual programs do vary substantially. 

Figure 7.7 and Figure 7.8 show the individual speedups of the eight 

benchmark programs for re-fetch and re-execute, respectively, as well as the 

harmonic mean speedup over the entire suite.  Two results are given for each 

program.  The left bar shows the speedup of each program using the last four 

value predictor configuration that yields the highest average speedup, 

whereas the right bar shows the highest individual speedup, i.e., when the 

predictor’s threshold and penalty values are optimized for each program 

separately. 
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L4V Performance Gain of Individual Programs using Re-fetch
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Figure 7.7: The speedup of the SPECint95 programs using re-fetch. 

L4V Performance Gain of Individual Programs using Re-execute
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Figure 7.8: The speedup of the SPECint95 programs with re-execute. 
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Clearly, perl and m88ksim benefit the most from load value prediction.  

The speedup of the remaining programs is moderate.  Surprisingly, no con-

figuration of the SAg-based last four value predictor yields a positive speedup 

for vortex.  Since vortex is a database program, I can only assume that it 

simply does not exhibit sufficiently short and discernable predictability pat-

terns that the predictor could exploit.  With re-fetch, the program li, which is a 

Lisp interpreter, can also not be sped up by the L4V load value predictor. 

It is quite evident in both figures that the speedups of the individual pro-

grams vary significantly.  What is almost more surprising, though, is that the 

individually optimized predictor configurations yield only marginally more per-

formance than the best average speedup with a re-fetch misprediction recov-

ery mechanism.  This is a promising result because it shows that a single 

predictor configuration fits most programs reasonably well. 

Generally speaking, the same is also true with re-execute recovery.  How-

ever, the re-execute speedups differ more between the individually optimized 

programs and the best average case than the re-fetch speedups.  The rea-

son for the large discrepancy between the individual and average harmonic 

mean speedups for re-execute is the program ijpeg.  For some reason, this 

program benefits very much from a better threshold and penalty setting.  

Clearly, the setting that yields the best average performance does not work 

well for ijpeg. 

I conclude that adapting the confidence estimator setting to individual pro-

grams is only seldom necessary and that a good predictor configuration gen-

erally yields good results for most programs. 

Of course one would expect all the programs to perform better with re-

execute than with re-fetch.  This is indeed so for seven of the eight programs.  

However, perl performs slightly better with re-fetch than with re-execute.  The 

reason is that for perl the re-execute counter top of eight is too restrictive, 

which is why it performs better with the re-fetch counter top of sixteen in spite 

of the more costly recovery mechanism.  This result shows that the selected 
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counter tops of eight and sixteen are not necessarily good for all programs 

and that performance analyses are required to obtain the ideal counter top 

value for individual programs. 

Table 7.1 lists the fixed counter top values and the best threshold and 

penalty value of the SAg L4V predictor for each SPECint95 program as well 

as the parameters that result in the best average performance. 

 
compress gcc go ijpeg li m88ksim perl vortex best avg

counter top 16 16 16 16 16 16 16 16 16
threshold 11 15 15 12 15 14 13 15 14
penalty 4 6 9 4 13 12 3 13 11
counter top 8 8 8 8 8 8 8 8 8
threshold 0 6 7 0 7 7 6 7 7
penalty n/a 1 4 n/a 7 4 1 7 4

re
-f

et
ch

re
-e

xe
c

 

Table 7.1: Best individual and average predictor configurations. 

 

With re-fetch, we find that all the programs have a threshold close to the 

best average threshold of fourteen.  With re-execute, compress and ijpeg are 

outliners in the sense that they both perform best with a threshold of zero, 

which disables the confidence estimator altogether (but not the selector) and 

allows every load to be predicted.  In other words, these two programs per-

form best without a confidence estimator.  Note that while a penalty value is 

not applicable (n/a) with a threshold of zero as far as the confidence estima-

tor is concerned, the chosen penalty value of one still affects the performance 

of the selector.  However, the impact of different penalties on the selector 

performance is only minimal, as was noted in Section 7.4.1. 

Unlike the threshold values, the optimal penalty values vary considerably 

from one program to another.  However, there is a clear correlation between 

the best re-fetch and re-execute penalties because whenever the best pen-

alty value is low for one recovery mechanism then it is also low for the other 

recovery mechanism and vice-versa (relative to the counter top value). 

While the penalties listed in Table 7.1 represent the best values for the 

given predictor and workload, changing them quite drastically does not impact 
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the performance much, as the results from Figure 7.7 and Figure 7.8 indicate.  

Table 7.2 illustrates this weak dependence between the speedup and the se-

lected penalty value for the program gcc.  It shows the speedup of gcc for dif-

ferent penalty values when all the other parameters are held constant. 

  

penalty 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
speedup -1.44 0.67 1.06 1.15 1.17 1.18 1.16 1.16 1.14 1.13 1.13 1.10 1.10 1.09 1.08

Re-fetch speedup of gcc using a Tag SAg L4V predictor with 512 lines, a counter top of 16 and a threshold of 15

 

Table 7.2: The L4V speedup of gcc for different penalty values. 

 

The highest speedup is obtained with a penalty of six.  For both higher 

and lower penalties the speedup drops slightly.  However, any penalty be-

tween three and fifteen results in close to optimal performance.  Only penal-

ties of one and two yield significantly inferior performance.  This behavior of a 

stable performance over a wide range of penalties (sometimes with drop-offs 

at either end) is quite typical for most load value predictors, as the speedup 

maps in Appendix C verify (see Section 8.2 for the definition of a speedup 

map). 

Table 7.3 shows that the dependence between the speedup and the 

threshold value is more pronounced than the dependence between the 

speedup and the selected penalty. 

 

threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
speedup -23.30 -10.77 -4.56 -1.84 -0.50 0.15 0.53 0.75 0.89 0.98 1.04 1.07 1.10 1.10 1.13

Re-fetch speedup of gcc using a Tag SAg L4V predictor with 512 lines, a counter top of 16 and a penalty of 11

 

Table 7.3: The L4V speedup of gcc for different threshold values. 

 

With a penalty of eleven, the best threshold is fifteen.  Threshold values 

above about eight yield a decent performance, but lower thresholds signifi-

cantly affect the predictor’s effectiveness.  In fact, the two lowest thresholds 

result in a substantial slowdown, illustrating the need for a good threshold 

value.  Nevertheless, the performance does not abruptly drop off near the op-
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timal threshold value.  Rather, thresholds near the optimal value still result in 

relatively good performance.  Again, this behavior is rather typical for load 

value predictors, as the speedup maps in Appendix C show. 

 

7.5.4 Using Distinct Last Values 

Instead of simply retaining the last four values, Wang and Franklin pro-

pose a last distinct four value predictor [WaFr97], which also stores four val-

ues per line, but the predictor only inserts a new value if that value is not al-

ready among the four values.  Unfortunately, finding out whether the value is 

already present requires content addressable memory, which storing the last 

four values regardless of whether any of them are identical does not. 

In previous work [BuZo99b] and Section 9.4.1, I show that the regular last 

four value predictor with its lower complexity outperforms Wang and Frank-

lin’s last distinct four value predictor in spite of the latter’s somewhat higher 

predictability potential.  Figure 7.9 shows the last n value predictability when 

retaining every loaded value versus only retaining distinct values.  The poten-

tial is given as the percentage of the fetched load values that are identical to 

at least one of the retained values. 

According to Figure 7.9, larger n yield a higher predictability potential.  

This result is intuitive since the chance of finding the correct value increases 

as the number of retained values becomes larger.  The increase is consider-

able for small n up to about four.  Then the “curve” starts flattening out and 

saturates at approximately n = 11, at which point almost no extra potential is 

gained by further increasing n. 
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Figure 7.9: The average last n value and last distinct n value predictability. 
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One interesting observation is that the potential difference between dis-

tinct and non-distinct values is virtually constant.  Hence, the relative advan-

tage of storing distinct values becomes smaller as n gets larger. 

For n = 4, which is the predictor width Wang and Franklin chose 

[WaFr97], the potential difference is one eighteenth of the total potential of 

about sixty-four percent.  Therefore, a predictor that retains the last four not 

necessarily distinct values is theoretically able to perform nearly as well as its 

more complex counterpart that retains the last distinct four values. 

Wang and Franklin’s predictor uses a least recently used replacement pol-

icy and a bimodal CE (and selector) that is indexed by a usage-pattern.  Their 

predictor only outperforms the Tag SAg L4V predictor for very small predictor 

sizes (see Section 9.4.1).  To see whether it is possible to reap the additional 

potential that lies in retaining only distinct values in larger predictors as well, I 

modified the Tag SAg L4V predictor so that it only inserts a new value if the 

new value is not already among the four stored values.  In all other aspects 

the new predictor (called Ld4V) operates just like the old one (L4V), i.e., it 

has a SAg CE in each of the four sub-components that are also used as the 

selector.  The performance of this new predictor is presented in Figure 7.10 

for three predictor sizes (in number of total values retained). 

Retaining only distinct values is clearly beneficial.  With re-execute recov-

ery, larger predictors appear to benefit less from retaining only distinct values.  

The opposite seems to be true for re-fetch.  The reason why Wang and 

Franklin’s predictor with its least recently used replacement policy (the Ld4V 

uses first-in first-out) does not perform as well as the comparable L4V and 

Ld4V predictors is probably the usage-pattern-based bimodal confidence es-

timator.  The performance of their predictor is shown in Section 9.4.1. 
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Figure 7.10: Speedup of the Tag SAg L4V and the Tag SAg Ld4V. 
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7.6 Summary 

This chapter shows that the highly skewed distribution of the execution 

frequency of load instructions results in an unbalanced utilization of the load 

value predictor hardware.  As a result, it can be advantageous to make load 

value predictors wider and shorter, that is, to retain more information about 

few load instructions instead of retaining little information about a large num-

ber of loads.  For example, among last n value predictors with a capacity of 

2048 load values, the last four value predictor represents the best width ver-

sus height trade-off for SPECint95 and yields the highest speedup.  The lar-

ger the predictor, the larger a predictor width results in the best performance. 

In addition, this chapter also investigates the sensitivity of the L4V predic-

tor’s performance of various predictor parameters.  For instance, three to 

four-bit saturating counters and ten-bit histories seem to be necessary for 

good SAg CE performance.  Larger counters and histories do not result in 

significantly higher speedup for most programs.  Furthermore, the perform-

ance delivered by a load value predictor varies greatly from program to pro-

gram.  Nonetheless, the predictor configuration that yields the best average 

performance over the SPECint95 benchmark suite also yields close to opti-

mal performance for each of the individual programs with only one significant 

exception.  Finally, retaining only distinct values in a last four value predictor 

instead of retaining values regardless of whether some of them are identical 

appears to be somewhat beneficial, in particular with small predictor sizes. 
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Chapter 8 
8 Hybridizing Load Value Predictors 

Hybridizing Load Value Predictors 
 

 

This chapter investigates the benefit of building predictors that combine 

several load value predictors in one, i.e., of hybridizing predictors.  The next 

chapter will show how to reduce the size of hybrid load value predictors. 

 

8.1 The Benefit of Hybridization 

It is not a priori clear whether combining multiple load value predictors re-

sults in a predictor that is capable of predicting more load instructions cor-

rectly or that can make more accurate predictions.  For example, it may hap-

pen that two different predictors essentially predict the same load instructions 

with the same values.  Obviously, combining two such predictors would not 

result in improved performance but only in a larger and more complex predic-

tor.  As mentioned in Section 4.3.3, the stride (2-delta) predictor is able to 

make last value predictions with a stride value of zero.  Consequently, com-

bining a last value predictor with a stride predictor will probably not yield a 

predictor that is more effective than the stride predictor by itself. 

Like the last n value predictor from the previous chapter, hybrid predictors 

consist of multiple component predictors of which one component must be 

selected for making a prediction.  The confidence estimators are used to 

guide the selection process, i.e., the component that reports the highest con-

fidence is selected but the selected component is only allowed to make a 

prediction if its confidence is above the preset threshold. 
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8.2 Hybrid Performance 

In order to determine which predictors complement each other well in a 

hybrid configuration, I tested every possible combination between a register, 

last value, stride 2-delta, last four value, and finite context method predictor.  

Because the last four value predictor is a strict superset of the last value pre-

dictor (with the same number of predictor lines), hybrid combinations that in-

clude both a LV and a L4V predictor are excluded from this study.  The per-

formance of the excluded hybrids is exactly the same as the performance of 

the same predictor without the LV component. 

The components in the hybrid predictors discussed in this chapter are pri-

oritized to resolve selector ties, i.e., when two or more components report the 

same highest confidence.  In such a case, the component with the highest 

confidence and the highest priority is selected.  If only one component reports 

the highest confidence, then that component is selected regardless of its pri-

ority.  Since changing the priority among the components of a hybrid does not 

appear to affect the performance considerably (see Section 9.5.1), only hy-

brids in which the components are prioritized in the following order (from high 

priority to low priority) are investigated: Reg, LV, St2d, L4V, FCM. 

Because it is the goal of this chapter to study which predictors comple-

ment each other well, all components are 2048 lines tall regardless of the re-

sulting hybrid’s size.  This height was chosen because such predictors al-

ready yield a performance that is close to the performance of the same pre-

dictor with an infinite number of lines.  (This observation is also supported by 

the quantile numbers from Figure 7.1.)  Hence, studying hybrids of 2048-line 

components should suffice to identify the most promising combinations for 

building high-performing hybrid load value predictors. 

While the size of some of the resulting hybrids is rather large, they can 

frequently be made smaller by sharing state between their components (see 

Chapter 9).  Nevertheless, due to the varying predictor sizes, care must be 

taken when using the performance numbers shown in this section for inter-
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hybrid comparisons. 

Figure 8.1 shows the performance of all hybrid combinations with bimodal 

and SAg confidence estimators (and selectors) when a re-fetch misprediction 

recovery mechanism is used.  The predictors are sorted by increasing SAg 

performance.  The hybrid’s names are character combinations in which each 

character represents one component: r stands for register, l for last value, s 

for stride 2-delta, 4 for last four value, and f for finite context method predic-

tor. 
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Figure 8.1: Hybrid performance using re-fetch. 

 

Note that it is not feasible to optimize the threshold and penalty for every 

hybrid individually.  Instead, the threshold and penalty values that yield the 

highest average speedup over the included components are used as an ap-

proximation.  This average speedup is computed as follows.  I evaluated the 

speedup of the five basic predictors for a large number of threshold and pen-
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alty pairs and recorded the results in speedup maps, which are shown in Ap-

pendix C.  A speedup map is essentially a matrix with different thresholds in 

one dimension and different penalties in the other dimension.  The matrix 

elements are the speedups measured for the threshold and penalty that in-

tersect at that element.  Then an average map is computed by forming the 

arithmetic mean of the entries in the individual maps of each included com-

ponent (e.g., the register predictor’s map and the last value predictor’s map 

for the rl-hybrid).  The highest speedup in the averaged map determined the 

threshold and penalty value used for the given hybrids.  Note that this ap-

proach does not always yield the best performing hybrid but is usually close.  

For example, the St2d+FCM hybrid yields a speedup of 9.99% with re-fetch 

and 13.09% with re-execute when using the parameters from the averaged 

speedup map, whereas truly optimizing the threshold and penalty values re-

sults in a speedup of 10.01% for re-fetch and 13.94% for re-execute. 

The confidence estimator configurations derived from the averaged 

speedup maps are summarized in Table 8.1.  The counter top value is six-

teen for re-fetch and eight for re-execute. 

 
4 4f f l lf ls lsf r r4 r4f rf rl rlf rls rlsf rs rs4 rs4f rsf s s4 s4f sf

SAg re-fetch threshold 15 15 15 13 15 12 14 15 15 15 15 13 15 14 15 11 15 15 15 12 15 15 15
penalty 8 11 11 5 9 5 6 7 8 10 10 8 9 5 7 7 7 7 7 5 7 7 7

re-exec threshold 7 7 6 5 6 5 5 4 7 6 6 6 5 5 5 5 6 5 5 5 6 6 5
penalty 3 3 3 2 3 1 2 1 3 3 3 1 2 2 2 1 1 2 2 1 1 2 2

bimodal re-fetch threshold 15 13 13 10 13 11 13 10 13 13 13 10 13 11 13 11 12 13 13 12 12 13 13
penalty 13 11 11 15 11 12 11 7 12 11 11 7 11 12 11 12 12 11 11 12 12 11 11

re-exec threshold 6 7 7 5 4 5 5 2 6 7 4 4 4 5 5 5 5 4 5 5 5 6 3
penalty 3 3 3 1 3 1 2 2 3 3 3 2 3 1 2 1 2 3 2 1 2 3 4  

Table 8.1: The confidence estimator parameters of the hybrid predictors. 

 

As has been determined in Section 5.4, with re-fetch the FCM predictor 

performs better with a bimodal than a SAg confidence estimator.  Because of 

that, some of the bimodal hybrids that contain an FCM component outper-

form their SAg-based counterparts, as Figure 8.1 illustrates.  However, most 

hybrids benefit from having a SAg CE and all the high speedups are obtained 

with SAg CEs. 
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Hybrids with more components tend to yield more speedup than the ones 

with fewer components.  This is particularly true for the bimodal hybrids.  

However, there are many notable exceptions with the SAg-based hybrids.  

For instance, the speedup of the best performing predictor (Reg+St2d+L4V) 

decreases when adding an FCM component to it.  Likewise, Reg+L4V, 

Reg+St2d, St2d+L4V, Reg+LV, Reg+LV+St2d, L4V, and LV+St2d all suffer 

when an FCM component is included.  Only the Reg, the LV, and the St2d 

predictors benefit from an FCM.  This is clearly a result of the poor perform-

ance of the SAg CE in connection with the FCM predictor.  Maybe hybridizing 

with a bimodal FCM would result in a better performance.  However, the in-

vestigation of heterogeneous hybrids in which the components use different 

kinds of confidence estimators is left for future work. 

Aside from the FCM component, there also exist other “anomalies”.  For 

example, the Reg+St2d predictor outperforms the Reg+LV+St2d predictor.  

The Reg+L4V+FCM, the Reg+LV+FCM, and the Reg+LV predictors do not 

benefit from having an St2d component added to them.  Furthermore, the 

speedup of the Reg+St2d+FCM and the St2d+FCM predictors decreases 

when adding a L4V component to them.  The reason for this counterintuitive 

behavior is negative interference. 

Because adding a component to a hybrid makes the task of the selector 

harder (there are more choices), it can happen that the additional predictabil-

ity potential is unable to offset the increased selector-related losses.  When 

that situation occurs, the hybrid’s components interfere negatively with one 

another and lower the overall performance. 

Note that some of the most effective hybrids are small hybrids with only 

two components (Reg+LV and Reg+St2d).  The remaining three of the five 

best combinations are significantly larger because they include an L4V com-

ponent.  However, Chapter 9 demonstrates how the size of a Reg+St+L4V 

predictor can be reduced to only slightly more than that of a Reg+St2d hybrid 

basically without loss of performance. 



 110     

 

Note also that eleven of the twelve best performing SAg hybrids include 

the storage-less register predictor, indicating that the Reg predictor is a very 

important component in a hybrid.  This result is particularly surprising be-

cause the Reg predictor by itself performs only poorly.  Note that no profiling 

was used to adapt the register allocation, which can significantly improve the 

performance of the Reg predictor [TuSe99], yet the benefit from including a 

register value predictor is already substantial. 

Figure 8.2 shows the performance of all hybrid combinations with a re-

execute misprediction recovery mechanism.  Again, the predictors are sorted 

by increasing SAg performance. 
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Figure 8.2: Hybrid performance using re-execute. 

 

Clearly, hybrid load value predictors have the potential to yield signifi-

cantly higher speedups than even the best single-component predictors. 

With re-execute, the Reg+LV+St2d hybrid is the only bimodal predictor 

that outperforms its SAg counterpart.  It is not clear why that is and it could be 
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an artifact of not truly optimizing the predictors’ CE configurations.  Neverthe-

less, all the other hybrids perform better with a SAg CE than a bimodal CE 

and the highest speedups are again obtained with a SAg CE. 

There is also negative interference with a re-execute misprediction recov-

ery mechanism.  Again, the L4V component diminishes the performance 

when it is included in the St2d+FCM predictor, and the Reg+St2d predictor 

suffers when an LV component is added to it.  There is one new case of 

negative interference that was not present with re-fetch.  The St2d predictor 

outperforms the LV+St2d hybrid with re-execute. 

Clearly, the problem with the FCM component is gone because with re-

execute even the FCM predictor performs better with a SAg CE than with a 

bimodal CE (see Section 5.4).  In fact, seven of the eight best performing hy-

brids include an FCM, six of them include an St2d, and six include a Reg 

component.  The best performing re-fetch hybrid (Reg+St2d+L4V) is among 

the four best performing re-execute hybrids and is the only one of them that 

does not include an FCM component, which may be significant because the 

FCM is a two-level value predictor whereas the other four studied basic pre-

dictors comprise only one level. 

With re-execute, there is a tendency showing that the more components a 

predictor has the more it benefits from a SAg CE as opposed to a bimodal 

CE.  This may indicate that the SAg CE not only makes better confidence es-

timations but also better selections than the bimodal confidence estimator. 

When averaging the re-fetch and the re-execute speedups of the SAg hy-

brids, the Reg+St2d+L4V predictor turns out to perform best by a consider-

able margin.  The most effective two-component hybrid is the Reg+L4V, 

which is closely followed by the Reg+St2d hybrid.  The best single-

component predictor is L4V, which is trailed by the St2d predictor.  None of 

the four-component hybrids outperform the best three-component hybrid. 

Because of its generally inferior performance and to reduce the number of 

data-points, I will disregard the bimodal CE for the rest of this chapter. 
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Table 8.2 and Table 8.3 show the results from Figure 8.1 and Figure 8.2, 

respectively, in a different form.  Both tables list the hybrids and their speed-

ups over the baseline processor on the left.  The numbers on the right repre-

sent the increase in speedup percentage points when adding the given 

components to the listed hybrids. 

Clearly, both with re-fetch and re-execute, all the hybrids that do not in-

clude Reg would benefit considerably from having a Reg component.  This is 

particularly surprising because the Reg predictor does not perform very well 

when used in isolation.  Similarly, the Reg predictor benefits from being aug-

mented with any other component.  Except for the Reg predictor, only the 

FCM and Reg+FCM hybrids benefit considerably from an LV component.  

These two predictors also profit the most from having a St2d or a L4V com-

ponent added to them.  As mentioned earlier, most hybrids are slowed down 

by an FCM component with re-fetch, whereas it is advantageous for most hy-

brids to have an FCM component with re-execute.  Several predictors benefit 

from an L4V component, which is understandable because the L4V and the 

FCM are the largest single-component predictors. 
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hybrid speedup +r +l +s +4 +f
r 7.4 5.1 5.3 6.0 1.2
l 10.2 2.2 0.7 1.6 0.2
rl 12.5 0.0 0.9 -0.4
s 10.5 2.1 0.4 2.0 0.2
rs 12.6 -0.1 0.9 -0.5
ls 10.9 1.5 1.6 1.2
rls 12.5 1.1 -0.4
4 11.8 1.5 0.0 0.7 -1.3
r4 13.4 0.0 0.2 -1.5
s4 12.6 1.0 0.0 -1.8
rs4 13.6 0.0 -1.7

f 6.6 2.0 3.9 4.2 4.0
rf 8.6 3.6 3.6 3.4
lf 10.4 1.7 0.2 0.1
rlf 12.1 0.0 -0.2
sf 10.7 1.4 -0.1 0.0
rsf 12.1 0.0 -0.3
lsf 10.6 1.5 0.1
rlsf 12.1 -0.2
4f 10.5 1.4 0.0 0.2
r4f 11.9 0.0 0.0
s4f 10.7 1.2 0.0
rs4f 11.9 0.0

Re-fetch Speedup Benefit of Adding Components to SAg Hybrids

 

Table 8.2: Re-fetch speedup benefit from adding components. 

 

hybrid speedup +r +l +s +4 +f
r 8.0 6.6 8.5 8.0 5.3
l 11.6 2.9 2.4 2.3 3.8
rl 14.5 1.1 1.4 2.1
s 14.2 2.2 -0.2 1.5 2.2
rs 16.4 -0.8 0.7 1.2
ls 14.0 1.6 1.7 3.7
rls 15.6 1.6 2.2
4 13.9 2.1 0.0 1.8 1.7
r4 16.0 0.0 1.2 1.0
s4 15.7 1.5 0.0 0.5
rs4 17.2 0.0 0.7

f 11.9 1.4 3.5 4.6 3.7
rf 13.3 3.3 4.4 3.7
lf 15.4 1.2 1.1 0.2
rlf 16.6 1.2 0.4
sf 16.4 1.2 0.0 -0.3
rsf 17.7 0.1 0.2
lsf 16.5 1.3 -0.3
rlsf 17.8 0.1
4f 15.6 1.5 0.0 0.6
r4f 17.0 0.0 0.9
s4f 16.2 1.8 0.0
rs4f 17.9 0.0

Re-execute Speedup Benefit of Adding Components to SAg Hybrids

 

Table 8.3: Re-execute speedup benefit from adding components. 
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8.3 Shared and Unique Performance Contributions 

In an effort to determine why the Reg predictor is such a valuable addition 

to all hybrids while the LV component, for example, generally is not, I investi-

gated how frequently each component in a hybrid is able to make a correct 

prediction that none of the other components can make, how often the 

predictions from the individual components overlap, and how often they 

interfere with one another.  Because not every prediction is equally important 

(e.g., predicting a load that hits in the L1 data-cache is not as important as 

predicting a load that has to go all the way to memory), the following 

subsections study the speedup contributions of the individual hybrid compo-

nents rather than the actual set of load instructions that each component is 

able to predict.  

8.3.1 Two-component Hybrids 

A hybrid component’s unique speedup contribution is the part of the over-

all performance that is lost when that component is removed.  Hence, the 

component must actually be present to deliver its unique performance contri-

bution.  Conversely, in a two-component hybrid, the shared contribution is 

common to both components, meaning that either one is able to provide the 

contribution, but the contribution does no increase if both components are 

used together.  Therefore, only one of the two components is needed to de-

liver the shared performance contribution. 

The unique and shared speedup contributions in two-component hybrids 

are computed as follows.  Assuming that predictor A yields a speedup of a 

when used in isolation, predictor B yields a speedup of b, and the hybrid pre-

dictor A+B yields a speedup of c, then A contributes c-b unique speedup, B 

contributes c-a unique speedup, and the shared contribution is a+b-c. 

Venn-diagrams are used to visualize the different contributions.  For ex-

ample, the top left Venn-diagram in Figure 8.3 indicates that with re-execute 
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recovery, twenty percent of the SAg-based Reg+LV hybrid’s speedup stems 

uniquely from the Reg component, 45.2% from the LV component, and the 

shared contribution is about 34.7%.  (The sum of the three contributions is 

one-hundred percent, but sometimes the rounding to one digit after the deci-

mal point makes it appear otherwise.)  Figure 8.3 shows results for all two-

component hybrids (the L4V predictor is treated as a single component). 

 

re-execute re-fetch

rl 20.0 34.7 45.2 18.0 40.9 41.1 rl

rs 13.4 35.0 51.6 16.6 41.8 41.7 rs

r4 13.0 36.8 50.2 11.6 43.4 45.1 r4

rf 10.5 49.4 40.1 23.4 62.6 14.0 rf

ls -1.6 84.5 17.0 3.6 90.1 6.3 ls

lf 22.7 52.8 24.4 37.3 60.7 2.0 lf

s4 11.4 79.4 9.2 5.7 78.0 16.3 s4

sf 27.7 58.8 13.4 39.0 59.0 2.0 sf

4f 23.6 65.8 10.6 37.7 75.0 -12.7 4f

 

Figure 8.3: Re-execute and re-fetch Venn-diagrams for SAg hybrids. 

 

The Reg+LV hybrid exhibits the smallest shared contribution of any two-

component hybrid with both recovery mechanisms.  Clearly, the Reg compo-
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nent complements the LV component well and vice-versa, implying that each 

of them can predict important loads that the other one cannot.  In fact, Reg 

complements any predictor well.  The three predictors with the smallest over-

lap all include a Reg component.  The Reg+St2d predictor, which was found 

to be the most effective two-component hybrid in the previous section, has 

the second smallest overlap both with re-fetch and re-execute.  The three 

predictors with the smallest overlap are all among the best performing re-

fetch hybrids.  However, this observation does not apply to re-execute very 

well.  Furthermore, for both recovery mechanisms there are hybrids that per-

form well in spite of a large shared contribution, for example, the St2d+L4V 

and St2d+FCM predictors. 

The hybrids LV+St2d, St2d+L4V, and L4V+FCM exhibit a large shared 

contribution.  In these three hybrids, both components predict mostly the 

same load instructions and therefore complement each other only poorly. 

The LV component in the LV+St2d hybrid with re-execute and the FCM 

component in the L4V+FCM hybrid with re-fetch show a negative individual 

contribution because with re-execute the St2d component performs better 

than the LV+St2d hybrid and with re-fetch the L4V component outperforms 

the L4V+FCM hybrid.  Therefore, hybridizing lowers the performance and 

thus results in a negative unique contribution in both cases. 

The reason for this is the aforementioned negative interference between 

the involved components.  Since single-component predictors do not require 

a selector whereas hybrids do, the culprit for the lower performance must be 

the imperfect selector.  After all, the St2d component in the LV+St2d hybrid is 

identical to the single-component St2d predictor that outperforms the hybrid. 

With only one exception (St2d+L4V), re-fetch recovery results in larger 

shared contributions than re-execute for the same predictors.  This probably 

means that the easily predictable loads (i.e., loads that have very high confi-

dences associated with them) tend to be the loads that can be predicted with 

either component.  Those loads are most likely the runtime constants that are 
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always predictable because their values never change [CFE97]. 

Overall, the Reg predictor complements the other four predictors excep-

tionally well, meaning that it can predict a rather distinct set of load instruc-

tions.  Second, but not nearly as good of a partner, is the FCM predictor.  The 

St2d predictor does not complement the LV or the L4V predictor well.  This is 

consistent with the results from Section 4.3.3, which show that there is only a 

small number of truly stride predictable load values (i.e., with a non-zero 

stride).  The last value and the last four value predictor can both capture all 

the zero-stride predictable loads, eliminating the need for a stride predictor in 

those cases. 

Figure 8.4 shows the speedup contributions for two bimodal predictors.  

The first one, St2d+L4V, is similar to the LD4V+St predictor proposed by 

Wang and Franklin [WaFr97], and the second one, St2d+FCM, is the hybrid 

proposed by Rychlik et al. [RFKS98] except it is not set-associative. 

 

re-execute re-fetch

s4 11.6 96.6 -8.2 4.8 91.0 4.3 s4

sf 14.8 84.9 0.3 20.6 73.4 6.0 sf

 

Figure 8.4: Re-execute and re-fetch Venn-diagrams for bimodal hybrids. 

 

Figure 8.4 illustrates that the two predictors result in significantly more 

shared speedup with a bimodal CE than they do with a SAg CE (see Figure 

8.3).  In general, the shared contribution is quite high for both hybrids.  In 

case of the St2d+L4V hybrid, all the last value predictable loads can be han-

dled by both components, resulting in significant overlap.  Something similar 

probably happens with the St2d+FCM hybrid because the FCM component 

can predict stride sequences after having seen them once.  Furthermore, 

both the St2d and the FCM predictor are able to predict last value predictable 
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loads. 

Together with the performance results from Figure 8.1 and Figure 8.2, we 

find that the substantially smaller and simpler Reg+St2d hybrid outperforms 

both the St2d+L4V and the St2d+FCM predictors with either misprediction 

recovery mechanism, illustrating the importance of component analyses 

when designing hybrid load value predictors. 

 

8.3.2 Three-component Hybrids 

Figure 8.5 shows the shared and unique speedup contributions (in per-

cent of total predictor performance) of all SAg-based three-component hy-

brids.  A set of seven equations has to be solved to compute the seven val-

ues in each Venn-diagram.  The numbers in the center of each diagram de-

note the contribution that is shared among all three predictor components, 

the other three overlapping regions represent the shared contribution of all 

pairs of components, and the non-overlapped parts list the unique perform-

ance contributions.  For example, in the top left (rs4) of Venn-diagram, the 

top left oval lists the contribution of the Reg component, the top right oval 

presents the contribution of the St2d component, and the oval at the bottom 

shows the contribution of the L4V component. 

Figure 8.5 illustrates that all three components in the LV+St2d+FCM and 

the St2d+L4V+FCM hybrids suffer from large shared speedup.  In both hy-

brids, over half of the performance is shared among all three components.  

The Reg+St2d+L4V and the Reg+LV+St2d predictors have somewhat large 

shared contributions, and the remaining hybrids exhibit relatively high unique 

contributions in at least one of their components.  Note that Reg’s unique 

contribution is at least seven percent in every case. 
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re-execute re-fetch

3.4 4.1
8.7 7.0 7.3 1.2

rs4 30.1 34.7 rs4
4.1 42.3 8.1 37.5

4.3 7.0

3.8 4.3
10.3 -5.3 12.4 -1.2

rls 28.5 36.6 rls
8.4 47.4 5.6 42.3

6.9 -0.1

0.9 2.7
7.5 20.1 13.8 29.4

rlf 29.4 39.4 rlf
10.0 19.4 4.7 12.9

12.6 -3.0

21.0 37.7
0.2 6.7 -1.1 1.7

lsf 50.9 54.9 lsf
-1.6 7.8 4.8 4.8

15.0 -2.8

24.5 36.9
3.7 -1.8 2.1 0.0

s4f 52.6 54.4 s4f
7.3 10.8 4.6 19.1

2.9 -17.1

0.9 5.0
7.0 24.9 11.6 29.5

rsf 31.6 38.4 rsf
5.5 23.1 5.6 13.7

7.0 -3.9

-0.4 5.1
8.6 21.9 11.7 28.1

r4f 34.9 43.7 r4f
3.6 25.2 1.3 22.6

6.1 -12.5

 

Figure 8.5: Venn-diagrams for SAg-based three-component hybrids. 
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As was true with the two-component predictors, the amount of sharing in-

versely correlates to a reasonable degree with the re-fetch performance of a 

hybrid, but there is not much correlation with the re-execute performance.  

Nevertheless, the Venn-diagrams illustrate nicely which components do not 

significantly contribute to the overall performance and can consequently be 

left out.  More importantly, the diagrams reveal the components that cause 

negative interference and should therefore be removed. 

Because it is hard to show a four-component Venn-diagram in two dimen-

sions and because the four-component hybrids do not outperform the best 

three-component hybrids with re-fetch and do not significantly outperform the 

best three-component hybrids with re-execute, I will refrain from studying the 

speedup contributions of the two four-component hybrids. 

 

8.4 Summary 

This chapter presents the performance of all hybrid load value predictors 

that can be built out of the five basic predictors (Reg, LV, St2d, L4V, FCM).  

The results show that such hybrids are able to deliver substantially more per-

formance than even the best single-component predictor because different 

components contribute independently to the overall performance. 

Most hybrids, in particular the effective ones, perform better with a SAg 

confidence estimator than with a bimodal CE.  Furthermore, there is evidence 

that the SAg CE embodies a better selector than the bimodal CE. 

Studying the hybrids’ performances as well as the unique and shared 

speedup contributions of their components revealed that the register predictor 

with its poor individual performance represents a valuable addition to all the 

other predictors.  Conversely, combining well-performing predictors frequently 

does not result in an effective hybrid.  In fact, some predictor combinations 

underperform a similar predictor with fewer components due to negative inter-

ference between the components.  This can happen because adding compo-
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nents to a predictor makes the task of the selector more difficult, which some-

times increases the selector-related losses more than the added predictability 

potential can compensate for.  Hence, care must be taken when selecting 

predictors as components for a hybrid.  To identify components that comple-

ment each other well, performance analyses are most likely unavoidable. 

With re-fetch as well as when averaging the re-fetch and the re-execute 

speedups, the Reg+St2d+L4V predictor outperforms all the other studied 

predictors.  The next chapter shows how this relatively large hybrid can be 

made smaller without compromising its effectiveness. 
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Chapter 9 
9 Hybridizing with Hardware Reuse 

Hybridizing with Hardware Reuse 
 

 

Of all the predictors studied in Chapter 8, the Reg+St2d+L4V hybrid is the 

most promising load value predictor with re-fetch and one of the best 

performing ones with re-execute.  Unfortunately, it is also rather large.  The 

goal of this chapter is to shrink the size of this load value predictor without 

degrading its performance. 

Several storage-reduction techniques are presented that together shrink 

the size of the Reg+St2d+L4V hybrid to less than half its original size without 

compromising its performance.  Speedup comparisons show that this stor-

age-reduced hybrid significantly outperforms other same-sized predictors 

from the literature.  A sensitivity analysis concludes this chapter. 

 

9.1 Shrinking the Reg+St2d+L4V Hybrid 

Replacing the St2d with an St component in the Reg+St2d+L4V hybrid 

yields a first, very small size-reduction.  The St component is smaller be-

cause it requires only one stride field whereas the St2d component requires 

two.  Note that in Section 4.3.3 the stride 2-delta predictor was introduced 

because it outperforms the simpler stride predictor.  As discussed, the per-

formance difference between the two predictors is mainly a result of short se-

quences of repeating load values, which the stride predictor cannot handle 

well.  However, a last value predictor can handle such sequences.  Since a 

Reg+St+L4V hybrid already contains a last value predictor as part of the L4V 

component, it is not necessary for the stride component to be able to cope 
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with such sequences.  Rather, the LV subcomponent will report a higher con-

fidence than the St component for short repeating value sequences and will 

therefore be selected over the St component.  As a result, the St component 

is only needed to predict the truly stride predictable loads, which it can do 

about as well as the St2d predictor.  Consequently, there is no need for a 

St2d component because the smaller St component suffices. 

If we assume ten-bit histories for the six SAg CEs in the Reg+St+L4V hy-

brid, 64 bits for retaining load values in the St and the L4V components, and 

eight-bit strides, then each predictor line in the Reg+St2d+L4V hybrid re-

quires 396 bits of storage.  Because the Reg+St+L4V hybrid has one fewer 

stride field, its lines are “only” 388 bits long, a saving of about two percent.  

Clearly, replacing the St2d with an St component does not significantly re-

duce the amount of state required by the predictor, but it does make the pre-

dictor a little less complex. 

Note that switching the first two components (i.e., the Reg and the St 

component) in the Reg+St+L4V hybrid results in slightly improved perform-

ance (see Section 9.5.1), which is why an St+Reg+L4V hybrid will be used in 

the rest of this chapter. 

 

9.1.1 Shrinking the L4V Component 

The L4V predictor is by far the largest component in the St+Reg+L4V hy-

brid.  Studying the four values stored in each line of this component revealed 

a relatively straight-forward way to compress them.  As it turns out, the four 

values are almost always similar in magnitude.  The reason for this is twofold.  

Data values often cluster around zero and do not generally use the whole 

range of numbers that can be represented with 64-bit values.  Address values 

are also often similar.  Their absolute values depend on where a program’s 

data and code is mapped to in virtual memory, but memory is often allocated 

with significant spatial locality, which results in address values that are close 
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together. 

Since the four values within each predictor line are similar in magnitude, 

their most significant bits are almost always identical.  Hence, it suffices to 

store those bits only once instead of four times.  Surprisingly, in the 

SPECint95 programs as many as 48 bits (or three quarters of all the value 

bits) can be shared among the four retained values virtually without degrading 

the predictor’s performance [BuZo00]. 

Because the number of identical bits depends on the workload and the 

memory allocator, I designed a predictor in which “only” the 44 most signifi-

cant bits are shared.  The resulting predictor, which is called a last four partial 

value predictor (L4pV), still stores the full 64 bits of the most recently loaded 

(last) value in each line but retains only the twenty least significant bits of the 

second, third, and fourth last value.  The four SAg CEs are unchanged.  To 

form full 64-bit values, the twenty bits of the partial values are concatenated 

with the (shared) 44 most significant bits in the first component of the L4V 

predictor. 

A 1024-line last four partial value predictor yields a harmonic mean 

speedup of 11.522% with re-fetch and 13.687% with re-execute on 

SPECint95.  By comparison, the roughly same-sized L4V predictor with 512 

lines delivers a re-fetch speedup of 10.978% and a re-execute speedup of 

12.537%.  This represents an improvement of one half to one percentage 

point over the L4V predictor, which has already been shown to perform best 

for the used predictor size of sixteen kilobytes for storing values (Chapter 7). 

Note that the L4pV predictor has twice as many lines as the L4V predictor 

of approximately the same size.  Among predictors with the same number of 

lines, the L4pV requires only about half as much state as the L4V predictor 

while basically delivering the same performance. 

Replacing the L4V component in the St+Reg+L4V hybrid with an L4pV 

component with twenty-bit partial values reduces the line length from 388 bits 

to 256 bits, which amounts to a state reduction of 34% without compromising 
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the predictor’s performance. 

Initially, the St+Reg+L4pV hybrid included three valid bits in each line of 

the L4pV component that indicated whether the concatenation of the three 

partial values with the shared bits resulted in the correct 64-bit value.  How-

ever, it turned out that valid bits are superfluous because the confidence es-

timators already perform the task of the valid bits.  During predictor updates, 

an incorrect concatenation-result yields almost always a value that looks un-

predictable.  As a consequence, the CE disallows predictions just like a valid 

bit would.  Therefore, the valid bits are omitted in the St+Reg+L4pV hybrid. 

Instead of storing partial values, I also investigated storing 20-bit signed 

offsets.  This approach is more complex because differences and sums have 

to be computed during each predictor access.  Surprisingly, the resulting per-

formance is lower than that of the simpler concatenation approach.  Hence, 

partial values instead of offsets are used in the St+Reg+L4pV hybrid. 

 

9.1.2 Making the Stride Predictor Storage-less 

The second largest component in the St+Reg+L4pV hybrid is the stride 

predictor.  In Wang and Franklin’s LD4V+St predictor [WaFr97], the St com-

ponent shares its 64-bit base value with the LD4V component.  The same 

approach can be used in the St+Reg+L4pV hybrid because the L4pV and the 

St component both store the 64-bit last value (among other things).  Hence, 

the St component’s size can be reduced substantially by letting it use the last 

value stored in the L4pV component instead of having it retain its own copy.  

Note that sharing the last value has no effect on the performance but reduces 

the predictor size. 

Interestingly, the St component’s stride field is also superfluous.  The 

stride records the difference between the last loaded value and the second to 

last loaded value.  Since the L4pV component retains both the last and the 

second to last loaded value, the difference can be computed on-the-fly, elimi-
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nating the need to store it explicitly [BuZo00].  The predicted value evaluates 

to the second last value subtracted from the last value multiplied by two (i.e., 

shifted to the right by one bit). 

As a result, the whole stride component has become storage-less, just like 

the register component.  Both components consist of only a confidence esti-

mator and obtain the values for making predictions from the register file and 

the L4pV component. 

The St+Reg+L4pV hybrid with a storage-less stride component requires 

184 bits of state per predictor line.  This represents a saving of 28% com-

pared to the 256 bits that the St+Reg+L4pV hybrid with a regular stride com-

ponent requires. 

Section 9.5.3 shows that the fourth subcomponent in the L4pV predictor 

does not add to the St+Reg+L4pV hybrid’s performance.  It can (and should) 

therefore be left out, which further reduces the predictor size and complexity. 

The resulting St+Reg+L3pV predictor with its storage-less stride, storage-

less register, and a storage-reduced last three value component requires a 

total of 154 bits of storage per predictor line.  As compared to the initial 

Reg+St2d+L4V predictor with its 396-bit lines, this represents a saving of 

61% of state in each line.  The saving over the entire predictor is somewhat 

smaller because the size of the second-level of the SAg CEs remains con-

stant.  For example, the storage-reduced St+Reg+L3pV hybrid with 512 lines 

is 56% smaller than the initial Reg+St2d+L4V hybrid with the same number of 

lines. 

Note that the size of this predictor has been reduced to less than a half 

almost without loss of performance.  For example, the Reg+St2d+L4V hy-

brid’s SAg speedup with re-fetch is 13.558% and with re-execute it is 

17.189%.  Using the exact same CE setting and the same number of predic-

tor lines, the two times smaller storage-reduced St+Reg+L3pV hybrid yields a 

re-fetch speedup of 13.544% and a re-execute speedup of 16.825%. 
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9.2 Coalescing Hybrid Predictor Components 

In the previous section, the size of all the components except the register 

component was reduced.  Since the Reg predictor essentially only consists of 

a confidence estimator, a technique to shrink CEs is necessary to make the 

Reg predictor smaller.  Finding approaches to reduce the size of confidence 

estimators is left for future work. 

In the previous section, the Reg+St2d+L4V hybrid was used as the basis 

for the size-reduction approaches because this predictor performs exception-

ally well.  However, it is of course also possible to reduce the size of other 

hybrids.  For example, a stride predictor can be made storage-less in connec-

tion with any last n value predictor that has a width of at least two.  In an 

St+LV hybrid, the LV component can be made storage-less by reusing the 

last value information from the St component.  Hybridizing an St or LnV pre-

dictor with an FCM predictor also allows some state sharing.  The first level of 

the FCM stores the last n values in a hashed form.  If the hash can be com-

puted on-the-fly, the hashed result of the last value (in case of an St compo-

nent) or the last n values (in connection with an LnV predictor) need not be 

stored because the necessary information to compute it can be obtained from 

the non-FCM component. 

 

9.3 The Coalesced-Hybrid 

To further improve the performance, I added one more enhancement to 

the St+Reg+L3pV predictor.  Bekerman et al. [BJR+99] and, independently, 

by Calder et al. [CRT99] found that infrequently executed loads that alias with 

frequently executed loads evict useful predictor entries often enough to de-

grade the performance.  According to their suggestion, I added one bit to the 

partial tags (which I termed b-tags) to indicate whether the last access to a 

given predictor line resulted in a tag miss.  This bit makes it possible to pre-
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vent updating a predictor line after the first tag miss.  Only allowing updates 

after two or more misses in a row effectively prevents infrequently executed 

loads from being able to pollute the predictor.  The extra bit in the b-tags es-

sentially represents a one-bit replacement counter [CRT99]. 

I named the resulting b-tagged, SAg-based St+Reg+L3pV predictor coa-

lesced-hybrid because its components and subcomponents are fused to-

gether by sharing a large amounts of state.  

Figure 9.1 shows the architecture of the coalesced-hybrid load value pre-

dictor with its storage-less stride, storage-less register, and reduced-storage 

last three partial value component.  The numbers in the fields indicate their 

widths in number of bits. 
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 Figure 9.1: The architecture of the coalesced-hybrid load value predictor. 

 

Every line of the predictor includes a nine-bit partial b-tag.  The first of the 

five identical SAg confidence estimators (they each consist of an array of ten-

bit histories “hist” and an array of three or four-bit saturating counters) forms 

the storage-less register value component (Reg), which uses values from the 

CPU’s register file for making predictions.  The second confidence estimator 
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belongs to the stride storage-less predictor (St) whose only other element is 

the adder since it uses values from the L3pV component for making predic-

tions.  The remaining three confidence estimators, the 64-bit and the two 

twenty bit value fields form the last three partial value (L3pV) component. 

The five sub-components operate independently and perform five value 

predictions and five confidence estimations in parallel.  The value of the 

component reporting the highest confidence is used for making a prediction, 

but only if the confidence is above the preset threshold.  To break ties, the 

components are prioritized from left to right, that is, the stride component has 

the highest priority, the register component has a medium priority, and the 

last three value component has the lowest priority.  Within the last three value 

component, the more recent values have a higher priority. 

When the predictor is updated, each component again makes a value 

prediction whose result is compared with the true load value.  The confidence 

estimators are then updated based on the outcome of this comparison.  At 

the same time, the values within the L3pV component are passed on to the 

next “older” sub-component and the true load value is copied into the 64-bit 

last value field. 

 

9.4 Coalesced-Hybrid Performance 

This section compares the performance of the coalesced-hybrid with other 

load value predictors from the literature as well as with oracle predictors. 

 

9.4.1 Comparison with Other Predictors 

This section compares the harmonic-mean speedups over SPECint95 of 

several well-performing predictors from the literature and some of mine.  The 

seven predictors I consider are: 



 130     

 

- Tag Bim LV, a partially tagged bimodal last value predictor [LWS96] 

  This predictor has one of the least complex architectures. 

 

- Tag SAg L4V, a partially tagged SAg last four value predictor [BuZo99b] 

  This is the predictor from Chapter 7. 

 

- Tag SAg St2d , a partially tagged SAg stride 2-delta predictor 

[SaSm97a] 

  This is Sazeides and Smith’s stride 2-delta predictor augmented with 

my SAg confidence estimator, resulting in one of the best-performing 

single-component load value predictors. 

 

- Tag Bim  St2d+FCM , a partially tagged bimodal stride 2-delta and finite 

context method hybrid [RFKS98] 

 

- B-Tag SAg St+Reg+L3pV , the partially b-tagged SAg coalesced-hybrid 

predictor [BuZo00] 

  This hybrid includes a storage-less stride, a storage-less register, 

and a reduced-storage last three (partial) value component.  The 

b-tags include a one-bit replacement counter. 

 

- Tag apBim  LD4V, a tagged last distinct four value predictor with an ac-

cess-pattern-based bimodal confidence estimator [WaFr97] 

 

- Tag apBim  LD4V+St , a hybrid between the LD4V and a bimodal stride 

predictor [WaFr97] 

  This hybrid uses a two-bit bimodal selector.  The St component gets 

its base value from the LD4V component, i.e., the two components 

are coalesced. 
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Since the predictors vary greatly in their architectures and complexities, 

they cannot be scaled to be of identical size.  Consequently, it is only possi-

ble to compare predictors of similar sizes.  I was able to scale all seven pre-

dictors to require between 19 and 31 kilobytes of state, which I believe is a 

realistic size for a load value predictor to be included in an upcoming CPU.  

From these base-configurations I created two additional configurations for 

each predictor, a smaller one (by quartering the number of predictor lines) 

and a larger one (by quadrupling the number of predictor lines).  The resulting 

predictor sizes for the three size-ranges (denoted as small, base, and large) 

are shown in Table 9.1.  Note that the numbers in the table include the 

amount of state required to retain values, tags, and confidence information 

and are for a re-fetch architecture.  With re-execute, some of the predictors 

require a little less state because the saturating counters are smaller.  Be-

cause the access-pattern-based bimodal CE (acBim) in the LD4V predictor as 

well as the FCM predictor require large second-level tables, splitting predic-

tors that include either an FCM or an LD4V component into several banks 

would substantially increase their size.  The amounts shown in the table are 

for non-banked FCM and LD4V sizes. 

 

small base large
Tag Bim LV 4.8  19.0  76.0  
Tag acBim LD4V 12.3  25.0  76.0  
Tag acBim LD4V+St 12.4  25.6  78.5  
Tag SAg St2d 8.1  26.5  100.0  
Tag SAg L4V 12.8  27.0  84.0  
B-Tag SAg St+Reg+L3pV 15.1  30.4  91.5  
Tag Bim St2d+FCM 19.9  31.5  78.0  

Predictor Size in Kilobytes of State

 

Table 9.1: State requirement of the seven predictors’ three configurations. 

 

A detailed parameter space evaluation was performed to determine the 

CE setting that yields the highest speedup for each of the seven predictors.  

This evaluation included varying the prediction threshold and the counter 

decrement (penalty).  The counter-top is fixed at sixteen for re-fetch and eight 
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rement (penalty).  The counter-top is fixed at sixteen for re-fetch and eight for 

re-execute unless otherwise noted.  The St2d+FCM hybrid allows many dif-

ferent ways of distributing the state over its two components.  The second-

level table of the FCM component used in this study has a capacity of  2048 

entries.  Table 9.2 shows the parameters of the best base-configurations of 

the seven predictors. 

 

predictor tag hist
lines bits bits top thr pen top thr pen

Tag Bim LV 2048 8 - 8 5 1 16 10 15
Tag acBim LD4V 512 8 - 8 3 2 16 14 9
Tag acBim LD4V+St 512 8 - 8 7 2 16 13 10
Tag SAg St2d 2048 8 10 8 5 1 16 12 5
Tag SAg L4V 512 8 10 8 7 4 16 14 11
B-Tag SAg St+Reg+L3pV 1024 8+1 10 8 7 2 16 14 9
Tag Bim St2d+FCM 1024/2048 8 - 8 5 1 16 15 11

re-fetchre-execute

 

Table 9.2:  The base-configurations of the seven predictors. 

 

All the predictors are configured to work as well as possible in their base-

configuration (19 to 31 kilobytes of state).  Except for the number of predictor 

lines, the same parameters are used with the other two predictor sizes and 

no search for an optimal setting is performed.  I use this approach to mimic 

what would happen if programs that are much larger or much smaller than 

the SPECint95 programs are run on these predictors.  The intuition is that a 

larger program performs similarly on a load value predictor to a smaller pro-

gram on a proportionately smaller version of the same predictor. 

Figure 9.2 and Figure 9.3 present the harmonic-mean speedups of the 

eight predictors with a re-fetch and a re-execute misprediction recovery 

mechanism, respectively.  Three speedup results are shown for each predic-

tor corresponding to the three predictor sizes. 
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Figure 9.2: Re-fetch speedup of several predictors for three sizes. 

Re-execute Performance of Several Predictors for Different Sizes
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Figure 9.3: Re-execute speedup of several predictors for three sizes. 
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The coalesced-hybrid predictor (B-Tag SAg St+Reg+L3pV) clearly outper-

forms the other predictors both with a re-fetch and a re-execute misprediction 

recovery policy.  More importantly, its re-fetch speedup is close to the other 

predictors’ re-execute speedup in the larger size-ranges and actually exceeds 

it in the smallest size-range. 

Furthermore, the performance of the smallest coalesced-hybrid configura-

tion (which requires fifteen kilobytes of state) surpasses the performance of 

the other predictors, including the ones from the largest size-range that re-

quire over five times as much state.  Only the Tag acBim LD4V+St predictor 

is able to slightly outperform the five times smaller coalesced-hybrid when re-

execute is used.  This clearly shows that hybrid predictors do not necessarily 

have to be large to perform well and that coalescing the components in a hy-

brid predictor is a very effective technique to save state. 

The good re-fetch speedup of the coalesced-hybrid is encouraging, in par-

ticular because it allows microprocessor designers to use the already existing 

branch misprediction hardware to recover from load value mispredictions, 

which makes it less urgent to design and add a processor core that is capa-

ble of re-execution. 

Note that the performance of the Tag acBim LD4V+St predictor actually 

decreases with re-fetch when increasing the predictor size.  An investigation 

of this phenomenon revealed a somewhat surprising result.  As it turns out, 

the smallest configuration of this predictor suffers significantly from aliasing.  

The confidence estimator detects this problem and inhibits the affected lines 

from making predictions.  Consequently, the predictor only attempts relatively 

few predictions, which is reflected in its low performance when compared to 

the other predictors.  The larger versions of this predictor suffer less from 

aliasing and the confidence estimator allows more predictions to take place.  

Unfortunately, the CE also allows significantly more incorrect predictions, 

which more than offset the benefit of the additional correct predictions.  

Hence, the overall performance decreases as the predictor becomes larger.  
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Using a better selector and confidence estimator than the suggested two-bit 

bimodal CE [WaFr97] would most likely increase this predictor’s re-fetch per-

formance. 

Interestingly, the stride 2-delta predictor (Tag SAg St2d) performs better 

than the Tag Bim St2d+FCM hybrid.  The reason is partly the difference in 

the confidence estimators and partly the fact that the relatively small FCM 

component does not perform very well and therefore takes away valuable 

real-estate from the St2d component.  With even larger predictor sizes, the 

Tag Bim St2d+FCM hybrid would probably surpass the Tag SAg St2d predic-

tor’s performance. 

Among the predictors in a given size-range, the predictors with more 

components have fewer lines (i.e., are shorter) than the single-component 

predictors and are consequently more likely to experience capacity problems, 

in particular in the smallest configuration.  The effect of the resulting aliasing 

is visible in the two figures.  The performance difference between the small 

and the middle configuration is significantly larger with the multi-component 

predictors (Tag SAg L4V, Tag acBim LD4V, and Tag acBim LD4V+St) than 

with the other predictors.  Note that the coalesced-hybrid has more compo-

nents than the Tag SAg L4V and the Tag acBim LD4V predictors, yet it is not 

affected nearly as much by detrimental aliasing since the high degree of coa-

lescing allows it to have twice the number of predictor lines, which alleviates 

the capacity problem. 

 

9.4.2 Comparison with Oracles 

In Section 7.4.1 the last four value predictor was compared to versions of 

itself that contain oracles.  In this section the same is done with the coa-

lesced-hybrid to determine how much larger a fraction of the existing potential 

this predictor can reap. 

The first predictor (no-oracle) represents the coalesced-hybrid in its con-
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ventional and implementable form as it is described in Section 9.3.  It does 

not include an oracle.  The first oracle (ce-oracle) represents the same pre-

dictor except it incorporates a perfect confidence estimator.  The next oracle 

(ce/sel-oracle) is the coalesced-hybrid with a perfect confidence estimator 

and a perfect selector.  The all(b-tag)-oracle makes a correct load value pre-

diction whenever there is a tag-match in the 1024-line b-tags.  The final ora-

cle (all-oracle) predicts every executed load with the correct value. 

None of the genuine oracles make any mispredictions, but the ce-oracle 

makes imperfect selections.  Only the all-oracle always makes a prediction.  

Figure 7.4 shows the speedups delivered by the oracle-less predictor and the 

four oracles. 
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Figure 9.4: Performance of different coalesced-hybrid oracles. 

 

The figure shows that neither the confidence estimator nor the selector 

perform close to optimal in the no-oracle predictor.  Again, because there are 
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no mispredictions, the discrepancy between the re-fetch and the re-execute 

speedup with the ce-oracle must stem from the dissimilar CE settings that af-

fect the performance of the selector.  The difference is more pronounced with 

the coalesced-hybrid than it is with the last four value predictor (see Section 

7.4.1).  The reason could be the more regular design of the L4V predictor, 

which may make the task of the selector easier and less susceptible to the 

CE setting than in the Reg+St+L3pV hybrid. 

Overall, the coalesced-hybrid’s confidence estimator and selector (no-

oracle) are able to reap 49% to 63% of the theoretically possible speedup 

(ce/sel-oracle) for this predictor.  A comparison with the perfect load value 

predictor (all-oracle), however, shows that the predictor only yields 25% to 

31% of the speedup that can theoretically be attained with load value predic-

tion (all-oracle).  Comparing all-oracle with ce/sel-oracle shows that the coa-

lesced-hybrid only contains the necessary information to reach half the pos-

sible speedup. 

Finally, doubling the predictor height (due to savings in the predictor 

width) and adding b-tags considerably improves the potential of the predictor 

because the all(b-tag)-oracle delivers 96% of the all-oracle’s performance, 

whereas the all(tag)-oracle from Figure 7.4 only yields 92% of the perform-

ance. 

 

9.5 Coalesced-Hybrid Sensitivity Analysis 

This section investigates the sensitivity of the coalesced-hybrid’s perform-

ance to the order of its components, the type of tags used, and the width of 

the last n partial value component. 
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9.5.1 Component Permutations 

The five sub-components that make up the coalesced-hybrid load value 

predictor are prioritized from left to right, that is, the stride component has the 

highest priority, the register component has a medium priority, and the last 

three value component has the lowest priority.  Within the last three value 

component, the younger a value the higher its priority, which is slightly bene-

ficial as was determined in a previous study [BuZo99b].  The prioritization is 

used to resolve ties between multiple components reporting the same highest 

confidence.  If only one component reports the highest confidence, then it is 

selected independent of its priority. 

Table 9.3 shows the re-fetch and the re-execute speedup of the coa-

lesced-hybrid when its three major components are permuted, i.e., when the 

prioritization is changed.  The predictors shown in the table are sorted from 

top to bottom by decreasing average performance. 

 

re-fetch re-execute
St+Reg+L3pV 13.711 17.400
Reg+L3pV+St 13.666 17.419
Reg+St+L3pV 13.577 17.318
L3pV+Reg+St 13.579 17.182
L3pV+St+Reg 13.470 17.189
St+L3pV+Reg 13.461 16.971

Permutation Speedups

 

Table 9.3: Speedup of the six main component permutations. 

 

Clearly, no order is significantly better that any other.  All the permutations 

yield speedups within three percent of one another.  The only minute correla-

tion I was able to detect is that prioritizing the L3pV component over the Reg 

component seems to be slightly disadvantageous.  I use St+Reg+L3pV be-

cause it performs best by a slight margin in the re-fetch case and also when 

averaging the re-fetch and the re-execute numbers. 



 139     

 

9.5.2 Tags and B-Tags 

The coalesced-hybrid includes a special kind of (partial) tags that I call 

b-tags.  B-tags contain one extra bit that indicates whether the last access to 

any given line in the predictor resulted in a tag miss.  This information is used 

to inhibit updates from evicting the contents of a predictor line until two or 

more misses have been seen in a row.  As a consequence, infrequently exe-

cuted loads cannot easily expel information about frequently executed loads 

that they alias with, which improves the predictor performance.  The extra bit 

essentially represents a one-bit replacement counter [CRT99]. 

  Figure 9.5 shows how the coalesced-hybrid performs with eight-bit partial 

tags, eight-bit partial b-tags, and full b-tags. 
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Figure 9.5: The coalesced-hybrid’s speedup with various tag schemes. 

 

There is hardly any difference between the performance with partial and 
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full b-tags.  The reason is that eight bits are sufficient to allow the predictor to 

distinguish between all the load instructions in seven of the eight benchmark 

programs.  Only gcc’s executable is too large.  While the seven programs 

perform exactly the same with eight-bit partial b-tags and full b-tags, gcc ac-

tually performs slightly better when only partial b-tags are used, in particular 

with re-fetch.  Clearly, the resulting aliasing must somehow be helpful.  Nev-

ertheless, I believe that in most cases larger executables require more tag-

bits for optimal performance. 

Using b-tags instead of normal tags improves the speedup of the coa-

lesced-hybrid by half a percent with re-fetch and close to one percent with re-

execute.  Evidently, infrequently executed load instructions do affect the coa-

lesced-hybrid’s ability to correctly predict the frequently executed loads that 

they alias with. 

 

9.5.3 Predictor Width 

Figure 9.6 is presented to determine how wide the last n partial value 

component in the coalesced-hybrid needs to be.  It shows the predictor’s per-

formance with differently sized, twenty-bit last n partial value components. 

The performance of all the predictors in the figure is quite similar.  Only 

the St+Reg+L2pV predictor’s speedup is somewhat lower.  Clearly, retaining 

three last values per line appears to be sufficient to reap almost all the poten-

tial.  This result is particularly surprising because the predictors shown in the 

figure are not scaled to the same size but become larger as the width in-

creases.  Consequently, I use a last three partial value component in the coa-

lesced-hybrid to keep the predictor’s size and the number of components 

small while still reaping most of the performance. 
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Figure 9.6: Performance with different last n partial value components. 
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Note that this result indicates that hybridization is more important than 

making the hybrid’s components wider to improve their individual perform-

ance (Chapter 7). 

Interestingly, the re-fetch performance drops when going from a last four 

to a last five partial value component and the re-execute speedup decreases 

when going from a last three to a last four and then again to a last five partial 

value component before increasing again.  Since an St+Reg+L(n+1)pV pre-

dictor contains a complete St+Reg+LnpV predictor, these performance fluc-

tuations once again have to be the result of increased negative interference 

between the growing number of predictor components. 

 

9.6 Summary 

This chapter describes several state-reduction techniques to decrease the 

often large storage requirement of hybrid load value predictors.  For example, 

the amount of state required by a last n value predictor and a stride predictor 

can be reduced by a factor of two or more.  This substantial saving can be 

achieved by having the last n value component provide all the information 

that the stride component needs, making the latter storage-less.  In addition 

to that, the size of the last n value predictor can be decreased by sharing 

most of the bits among the n values in each predictor line.  Both techniques 

result in a large reduction in predictor size while essentially maintaining the 

predictor performance. 

Based on the well-performing Reg+St2d+L4V hybrid, I designed a very ef-

fective coalesced-hybrid load value predictor that requires only a small 

amount of state because it incorporates a storage-less stride, a storage-less 

register, and a reduced-storage last three partial value predictor.  Cycle-

accurate pipeline-level simulations of a four-way superscalar out-of-order 

CPU with many different predictors from the literature show that the coa-

lesced-hybrid outperforms even the best predictors by almost twenty percent 
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over a wide range of predictor sizes.  In the smallest configuration I investi-

gated, which requires fifteen kilobytes of state, the coalesced-hybrid yields a 

speedup with both a re-fetch and a re-execute misprediction recovery 

mechanism that surpasses the speedup of other predictors, including predic-

tors that are five times larger. 
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Chapter 10 
10 Related Work 

Related Work 
 

 

This chapter describes ideas from the current load value prediction litera-

ture, most of which are used or built upon in this dissertation, and discusses 

some of the differences to the presented work. 

 

10.1 Early Work 

Two independent research efforts [Gab96, LWS96] first recognized that 

load instructions exhibit value locality and concluded that there is potential for 

prediction. 

Lipasti et al. [LWS96] investigated why load values are often predictable 

and how predictable different kinds of load instructions are.  They found that 

while all types of loads exhibit significant value predictability, address loads 

have slightly better value locality than data loads, instruction address loads 

hold an edge over data address loads, and integer data values are more pre-

dictable than floating-point data values. 

In a follow-up paper, Lipasti and Shen [LiSh96] broaden their scope to 

predicting all result generating instructions and show how value prediction 

can be used to exceed the existing instruction level parallelism (ILP) by col-

lapsing dependencies.  They found that using a value predictor delivers three 

to four times more speedup than doubling the data cache (same hardware 

increase) and argue that a value predictor is unlikely to have an adverse ef-

fect on the processor cycle time whereas doubling the data-cache size 

probably would.  Furthermore, they note that loads are the most predictable 
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frequently executed instructions.  Lipasti and Shen also propose the re-

execute misprediction recovery mechanism, which is better suited for value 

prediction than the more conservative re-fetch recovery mechanism from the 

branch prediction literature.  Both mechanisms are discussed in Section 2.2. 

Gabbay’s dissertation proposal [Gab96] also discusses general value 

prediction and how to boost the ILP beyond the data-flow limit, but he studies 

load value prediction by itself as well. 

 

10.2 Predictors 

Lipasti et al. [LWS96] describe a last value predictor to exploit the existing 

load value locality.  Their predictor utilizes two-bit saturating up/down count-

ers to classify loads as unpredictable, predictable, or constant, i.e., the satu-

rating counters essentially represent a bimodal confidence estimator.  This 

kind of confidence estimator is discussed and improved upon in Chapter 5. 

Gabbay [Gab96] proposes four predictor schemes: a tagged last value 

predictor, a tagged stride predictor, a register-file predictor, and a sign-

exponent-fraction (SEF) predictor.  The SEF predictor is useful for predicting 

IEEE floating-point loads, and the register-file predictor was later improved by 

Tullsen and Seng [TuSe99]. 

In their next paper, Lipasti and Shen [LiSh96] suggest making predictions 

based on the last n values instead of the last value.  However, they only pro-

vide results for oracle predictors.  Chapter 7 presents an implementable last n 

value predictor. 

Wang and Franklin [WaFr97] propose a two-level prediction scheme that 

makes predictions based on the last distinct four loaded values.  They further 

propose a hybrid predictor that combines their last distinct four value predic-

tor with a stride predictor.  The two components in their hybrid are somewhat 

coalesced. 

Sazeides and Smith [SaSm97a] perform a theoretical limit study of the 
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predictability of data values.  They investigate the performance of three mod-

els: last value, stride 2-delta, and finite context method.  Their finite context 

method predictor predicts the next value based on a finite number of preced-

ing values by recording which value followed which sequence of values in the 

past.  In a follow-up paper [SaSm97b], Sazeides and Smith design an imple-

mentable two-level value predictor based on the finite context method.  They 

found that their predictor outperforms other, simpler predictors, but only with 

large predictor sizes.  Rychlik et al. [RFKS98] propose a hybrid between 

Sazeides and Smith’s finite context method and stride 2-delta predictors. 

Tullsen and Seng [TuSe99] present a register value predictor that is stor-

age-less except for its confidence estimator.  It predicts that a load will fetch a 

value that is identical to the value already stored in the target register of the 

load instruction.  Since the predictor uses the CPU’s register file as a source 

for values, it does not require any value storage.  I found the register value 

predictor to be a valuable complement in hybrid predictors (Chapter 8).  I fur-

ther show that a stride predictor can also be made storage-less in combina-

tion with a last two value predictor (Chapter 9). 

Most of the above predictors and many more are discussed and com-

pared performance-wise in Section 5.4 and Chapter 8. 

 

10.3 Profile-based Approaches 

Gabbay and Mendelson [GaMe97] explore the possibility of using pro-

gram profiles to enhance the efficiency of value prediction.  They use profiling 

to insert opcode directives to filter out highly unpredictable values from being 

allocated in the load value predictor, which considerably reduces the amount 

of aliasing.  However, not even manual fine-tuning of the user supplied 

threshold value allows them to outperform their relatively basic hardware-only 

predictor in all cases.  Furthermore, they found that training runs generally 

correlate with test runs, indicating that a program’s input values do not signifi-
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cantly affect the value predictability. 

Calder et al. [CaFe99, CFE97] examine the invariance found from profiling 

instruction values and propose a new type of profiling called convergent pro-

filing, which is much faster than conventional profiling.  Their measurements 

reveal that a significant number of instructions (including loads) generate only 

one value with high probability.  They note that the invariance of load values 

is crucial for the prediction of other types of instructions (by propagation).  

Similar to Gabbay and Mendelson’s result, Calder et al. also found that the 

observed value invariance does not change significantly across different sets 

of program inputs. 

Unfortunately, it is often difficult to obtain (good) profile information and 

extra bits for flagging instructions are usually not available in existing instruc-

tion sets, which is why profile-based approaches are excluded from this dis-

sertation. 

 

10.4 Other Related Work 

Rychlik et al. [RFKS98] address the problem of useless predictions.  They 

introduce a simple hardware mechanism that inhibits predictions that were 

never used (because the true load value became available before the pre-

dicted value was consumed) from updating the predictor, which results in im-

proved performance due to reduced predictor pollution.  Unfortunately, incor-

porating their scheme is not possible with the SAg confidence estimator (CE) 

that my predictors are based on.  Finding and studying a similar mechanism 

that works with a SAg CE is left for future work. 

In their next paper [GaMe98], Gabbay and Mendelson show that the in-

struction fetch bandwidth has a significant impact on the efficiency of value 

prediction.  They found that value prediction (of one-cycle latency instruc-

tions) only makes sense if the producer and consumer instructions are 

fetched during the same cycle.  Hence, general value prediction is more ef-
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fective with high-bandwidth instruction fetch and issue mechanisms.  They 

argue that current processors can effectively exploit less than half of the cor-

rect value predictions, since the average true data-dependence distance is 

greater than today’s fetch-bandwidth of four.  This is one of the reasons why 

this thesis focuses on predicting only load values, which requires significantly 

smaller and simpler predictors while still reaping most of the performance po-

tential. 

Gonzalez and Gonzalez [GoGo98] found that the benefit of data value 

prediction increases significantly as the instruction window size grows, indi-

cating that value prediction is likely to play an important role in future proces-

sors.  Furthermore, they observed an almost linear correlation between the 

number of correctly predicted instructions and the resulting performance im-

provement. 

Fu et al. [FJLC98] propose a mixed hardware and software-based ap-

proach to value speculation that leverages advantages of both hardware 

schemes for value prediction and compiler schemes for exposing instruction-

level parallelism.  They propose adding new instructions to explicitly load val-

ues from the predictor and to update the predictor.  In this dissertation, I limit 

myself to investigating only transparent prediction schemes, that is, predictors 

that do not require changes to the instruction set architecture and that can 

therefore be included in existing CPU families. 

A more detailed study about predictability by Sazeides and Smith 

[SaSm98] illustrates that most of the predictability originates in the program 

control structure and immediate values, which explains the frequently ob-

served independence of program input.  Another result of their work is that 

over half of the mispredicted branches actually have predictable input values, 

implying that a side-effect of value prediction should be improved branch pre-

diction accuracy.  Gonzalez and Gonzalez [GoGo98] did indeed observe such 

an improvement in their study and propose possible predictor implementa-

tions to exploit it in a follow-up paper [GoGo99]. 
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Sodani and Sohi’s paper [SoSo98] builds on the Gonzalez studies.  They 

found, among other things, that resolving branches using predicted operands 

is only beneficial in the presence of low value misprediction rates. 

Rychlik et al. [RFKS98] and Reinman and Calder [ReCa98] propose reus-

ing the confidence estimators in the components of their hybrid load value 

predictor as selector, thus eliminating the need for extra storage to guide the 

selection process.  I use the same approach in my hybrid predictors. 

Calder et al. [CRT99] examine selection techniques to minimize predictor 

capacity conflicts by prohibiting unimportant instructions from using the pre-

dictor.  At the same time, they classify instructions depending on their latency 

so that the confidence threshold can be adapted to the potential gain of pre-

dicting a given instruction.  Hence, operations with small gains are only pre-

dicted if the predictor’s confidence is very high, whereas operations with po-

tentially large gains are predicted even if the confidence is rather low.  Inter-

estingly, they found that loads are responsible for most of the latency in the 

critical path and hence predicting only loads represent a good filtering criteria.  

I implicitly use this filtering criteria because all my predictors only predict load 

values.  Calder et al. further propose a use-bit that indicates if a predicted 

value has been consumed.  If it has not, the comparison for validating the 

prediction can be omitted and no misprediction recovery is necessary even if 

the predicted value is incorrect.  Finally, they suggest utilizing replacement 

and warm-up counters to minimize unnecessary replacements in their predic-

tor and to delay predictions until the predictor has warmed up.  I use a one-bit 

replacement counter in some of my predictors (Chapter 9).  Instead of using 

warm-up counters, I set the confidence value to a low level after a replace-

ment, which has the same effect, i.e., it inserts a delay before the confidence 

estimator starts allowing predictions. 

Nakra, Gupta, and Soffa [NGS99a] present techniques to predict values 

based on global context, that is, the behavior of other instructions is used to 

guide the prediction process.  For example, they propose a last value and a 
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stride predictor that make different predictions for the same instruction 

depending on the current execution path by storing different values and/or 

strides for each path.  Furthermore, they suggest correlating predictions with 

recently completed instructions.  Both techniques improve the predictor per-

formance somewhat.  I believe their predictors are good candidates for incor-

porating state reduction techniques similar to those discussed in Chapter 9, 

which should yield more cost effective implementations. 

In their next paper Nakra, Gupta, and Soffa [NGS99b] investigate value 

prediction in connection with VLIW machines.  Because such machines are 

statically scheduled and the code cannot easily be re-ordered at runtime, ac-

tual compensation code has to be included in the binary to support value 

prediction.  In order to avoid the code increase and the performance impact 

of the compensation code, Nakra et al. describe a two-execution-unit system 

in which the second unit generates and executes the compensation code on-

the-fly and concurrently with the regular program execution on the first execu-

tion engine. 

Srinivasan and Lebeck [SrLe98] show that in some programs over sixty 

percent of the executed load instructions produce a value that is already 

needed in the next cycle.  They further found that up to thirty-six percent of 

the loads miss in the L1 data-cache but have a latency demand that is lower 

than the L2 cache’s access time.  These percentages, which are likely to 

grow as the issue width increases and the speed-gap between CPUs and 

memory widens, show the growing need for a mechanism to reduce the load 

latency.  Load value predictors are able to provide single and even zero cycle 

load latencies. 

Morancho et al. [MLO98] propose separating the confidence estimator 

from the predictor so that only the confidence estimator has to be large 

enough to handle “all” load instructions, whereas the predictor itself can be 

designed smaller because it only has to hold the predictable loads.  Unfortu-

nately, such a scheme is not possible in my predictors because it is neces-
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sary to also feed the unpredictable loads to the predictor so that predictability 

patterns can be established, which are essential for the SAg confidence es-

timator. 

 

10.4.1 Dependence Prediction 

In another paper [LiSh97], Lipasti and Shen add dependence prediction to 

their predictor and switch to predicting source operand values rather than in-

struction results to decouple dependence detection from value-speculative 

instruction dispatch.  They found their approach to be particularly effective in 

wide and deeply pipelined machines. 

Reinman and Calder [ReCa98] also examine dependence prediction and 

conclude that, due to the small hardware requirement, dependence prediction 

should be added to new processors first even though value prediction pro-

vides a larger performance improvement.  Furthermore, they found both ad-

dress prediction and memory renaming to be inferior to dependence and 

value prediction. 

In another paper [RCT+98], Reinman et al. propose a software-guided 

approach for identifying dependencies between store and load instructions 

and devise an architecture to communicate dependency information to the 

hardware.  Like other profile-based approaches, their approach requires 

changes to the instruction set architecture. 

 

10.4.2 Confidence Estimation 

Jacobsen et al. [JRS96], Tyson et al. [TLF97], and Grunwald et al. 

[GKMP98] introduce confidence estimation to the domain of branch predic-

tion, dual-path, and multi-path execution in order to decide whether to make a 

prediction or whether to execute two or multiple program paths, respectively.  
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I adopt some of their metrics for load value prediction (see Section 3.4).  

While their goals are similar to mine, the approaches between branch confi-

dence estimation and load value prediction differ.  In particular, their confi-

dence estimator (with two-bit saturating up/down counters) can be improved 

upon when applied to load value prediction (Chapter 5). 

 

10.4.3 Branch Prediction 

In the area of branch prediction, a significant amount of related work ex-

ists.  Lee and Smith [LeSm84] propose keeping a history of recent branch 

directions for every conditional branch and systematically analyze the pre-

dictability of every possible pattern. 

Yeh and Patt [YePa92, YePa93] and Pan, So, and Rahmeh [PSR92] de-

scribe sets of two-level branch predictors and invent a taxonomy to distin-

guish between them.  I adopt their naming convention and one of their de-

signs (the SAg predictor) for use as a confidence estimator in load value pre-

dictors. 

Sprangle et al. [SCAP97] describe a technique called agree prediction, 

which reduces the chance that items mapped to the same predictor slot will 

interfere negatively.  They achieve this by recording whether the previous 

branch predictions were correct or not instead of whether the branches were 

taken or not.  I use a similar approach in the SAg confidence estimator by re-

cording whether load values are predictable or not. 
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Chapter 11 
11 Summary and Conclusions 

Summary and Conclusions 
 

 

One of the largest performance-bottlenecks in current microprocessors is 

the continuously growing load latency.  Load value predictors can alleviate 

this problem by allowing the CPU to speculatively continue processing with a 

predicted load value while the memory access is still in progress.  The goal of 

this dissertation is to improve the effectiveness of transparent, context-based 

load value predictors. 

Most load value predictors contain confidence estimators to suppress un-

certain predictions, which is essential for good performance.  Analyzing the 

behavior of an existing confidence estimator revealed a deficiency that pre-

vents it from handling sequences of alternating predictability effectively.  Such 

sequences represent an important subset of the predictable load value se-

quences.  To eliminate this weakness, I designed a different confidence esti-

mator that is somewhat larger but yields higher speedups with most load 

value predictors. 

In order to be effective in superscalar CPUs, load value predictors have to 

support multiple accesses per cycle.  Splitting a predictor into several banks 

can provide the needed support for multiple simultaneous predictor accesses.  

My performance results show that a simple interleaved banking scheme can 

deliver the same speedup as a predictor that is able to handle an unlimited 

number of accesses per cycle. 

An investigation of the utilization of load value predictors revealed that 

most of the predictor hardware is hardly ever or never used while a small part 

is used extremely frequently.  To improve the utilization, I designed a predic-
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tor that allocates more hardware to the frequently executed load instructions 

and is therefore able to correctly predict a larger number of loads, which im-

proves the predictor performance considerably. 

Furthermore, several sensitivity studies illustrate the range of parameters 

that result in good predictor performance.  For instance, three to four-bit satu-

rating counters (and ten-bit histories) seem to be necessary for good confi-

dence estimator performance.  Load value predictors should be at least 512 

lines tall for the SPECint95 workload.  While the performance delivered by a 

load value predictor varies greatly from program to program, the predictor 

configuration that yields the highest average performance over the 

SPECint95 benchmark suite also yields close to optimal performance for 

most of the individual programs, implying that a load value predictor’s pa-

rameters do not have to be adapted to individual programs to yield a good 

average performance. 

A study of the expressiveness of non-speedup-based metrics revealed 

that all of the investigated metrics appear to be misleading in some cases, 

indicating that genuine speedup measurements are probably required for per-

formance evaluation purposes. 

Furthermore, this dissertation presents performance numbers for a large 

number of load value predictors that are all evaluated in the same environ-

ment (i.e., the same simulator, the same benchmark programs, etc.), making 

it possible to truly compare the performance of the studied predictors. 

An analysis of many hybrid predictor combinations shows that hybrids are 

able to deliver substantially more speedup than even the best single-

component predictor because different components contribute independently 

to the overall performance.  Studying the component’s speedup contributions 

revealed that the register predictor with its poor individual performance repre-

sents a valuable addition to all other studied components.  Conversely, com-

bining well-performing predictors frequently does not result in an effective hy-

brid.  In fact, some predictor combinations underperform a similar but smaller 
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hybrid due to negative interference. 

The hybridization analysis allowed me to design a predictor using compo-

nents that complement each other well.  Other hybrids were found to contain 

components that do not ideally complement one another because they pre-

dict highly overlapping sets of load instructions. 

Of all the studied predictors, the Reg+St2d+L4V predictor performs best 

with re-fetch as well as when averaging re-fetch and re-execute speedups.  

Since this predictor is rather large, I investigated techniques to reduce its 

size.  I discovered that hybrids often store the same information in multiple 

components.  Eliminating the redundant information can reduce the size of a 

component in a hybrid by more than a factor of two without compromising the 

performance.  Another effective size-reduction method I developed is storing 

load values in a compressed format.  A simple compression technique can 

reduce the predictor size by fifty percent while essentially maintaining the 

predictor’s full performance. 

Based on the well-performing Reg+St2d+L4V hybrid, I designed a very ef-

fective coalesced-hybrid load value predictor that requires only a small 

amount of state because it incorporates several of the developed state-

reduction approaches.  Cycle-accurate pipeline-level simulations of a four-

way superscalar out-of-order CPU with many different predictors from the lit-

erature show that the coalesced-hybrid outperforms even the best predictors 

by almost twenty percent over a wide range of predictor sizes.  In the smallest 

configuration I investigated, which requires fifteen kilobytes of state, the coa-

lesced-hybrid yields a speedup with both a re-fetch and a re-execute mispre-

diction recovery mechanism that surpasses the speedup of other predictors, 

including predictors that are over five times as large. 

With fifteen kilobytes of state, the coalesced-hybrid’s harmonic-mean re-

fetch speedup over the eight SPECint95 programs is twelve percent and the 

re-execute speedup is fifteen percent.  These performance improvements are 

obtained with a transparent load value predictor that can even be added to 
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existing CPU families because no change in the instruction set architecture is 

necessary.  Furthermore, these speedups are obtained on programs that 

were not compiled with load value prediction in mind.  In future work I will 

study compiler optimizations to further improve the performance of load value 

predictors. 

Only value predictors are hybridized in this thesis.  Since the number of 

transistors per chip continuously increases, more real-estate will soon be 

available for larger and more complex load value predictors.  Hence, it may 

be worthwhile studying hybrid confidence estimators as well. 

If the load latency continues to grow, and there is currently no indication 

that it will not, load value prediction will become more and more important.  At 

some point it may even become necessary to predict the load latency so that 

more aggressive (but slower) load value predictors can be used to predict the 

long-latency load instructions.  Thus, hierarchies of load value predictors with 

multiple levels may one day be commonplace. 
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Appendix 
12 Appendix 

Appendix A 
 

 

Theorem : If the runtime of the individual programs of a benchmark 

suite is normalized for CPUBase (i.e., the CPU without any load value 

predictor), the combined speedup evaluates to the harmonic mean of 

the individual speedups.  If the normalization is done for CPULVP (i.e., 

the CPU with the load value predictor), the combined speedup evalu-

ates to the arithmetic mean of the individual speedups. 

 

Proof : Suppose there are n programs with the runtimes RTBase,i and 

RTLVP,i for i = 1, 2, ..., n on CPUBase and CPULVP, respectively. 

 

By definition, the individual speedups are 
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where the starred values represent the normalized values.  We then 

find the overall speedup S (i.e., the total runtime on the baseline proc-

essor over the total runtime on the processor with the load value pre-
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dictor) to be the harmonic mean of the individual speedups. 
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and now find the overall speedup S to be the arithmetic mean of the 

individual speedups. 
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Appendix B 
 

 

 

 

 

 

Re-fetch Speedup of Bimodal Predictors with various Banking Configurations
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Figure 12.1: Re-fetch speedup of differently banked bimodal predictors. 
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Re-execute Speedup of Bimodal Predictors with various Banking Configurations
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Figure 12.2: Re-execute speedup of differently banked bimodal predictors. 

 

Re-execute Speedup of SAg Predictors with various Banking Configurations
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Figure 12.3: Re-execute speedup of differently banked SAg predictors. 
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number recovery confidence load value load instrs accesses references updates % dropped % dropped
of banks mechanism estimator predictor per cycle per cycle per cycle per cycle predictions updates

1 re-fetch bimodal FCM 0.410 0.794 0.403 0.391 49.8 20.5
1 re-fetch bimodal L4V 0.426 0.779 0.395 0.384 50.1 25.1
1 re-fetch bimodal LV 0.424 0.780 0.395 0.384 50.0 24.5
1 re-fetch bimodal Reg 0.421 0.774 0.391 0.383 50.8 23.7
1 re-fetch bimodal St2d 0.425 0.790 0.403 0.387 50.3 24.5
1 re-fetch SAg FCM 0.412 0.790 0.401 0.389 49.8 20.5
1 re-fetch SAg L4V 0.424 0.791 0.402 0.389 51.1 24.3
1 re-fetch SAg LV 0.424 0.791 0.403 0.388 50.6 24.2
1 re-fetch SAg Reg 0.420 0.774 0.391 0.383 50.5 23.7
1 re-fetch SAg St2d 0.425 0.800 0.408 0.392 51.1 24.1
1 re-execute bimodal FCM 0.425 0.780 0.390 0.390 50.0 22.7
1 re-execute bimodal L4V 0.429 0.781 0.395 0.386 50.0 24.9
1 re-execute bimodal LV 0.431 0.787 0.396 0.390 50.4 24.9
1 re-execute bimodal Reg 0.426 0.776 0.392 0.384 50.3 24.7
1 re-execute bimodal St2d 0.436 0.796 0.400 0.396 50.4 25.1
1 re-execute SAg FCM 0.423 0.780 0.388 0.391 50.3 22.1
1 re-execute SAg L4V 0.433 0.785 0.395 0.390 50.5 25.4
1 re-execute SAg LV 0.434 0.786 0.397 0.389 50.3 25.6
1 re-execute SAg Reg 0.424 0.776 0.391 0.384 50.8 24.1
1 re-execute SAg St2d 0.438 0.797 0.396 0.400 50.7 24.2
2 re-fetch bimodal FCM 0.418 0.977 0.501 0.476 19.3 1.7
2 re-fetch bimodal L4V 0.434 0.991 0.504 0.487 18.9 2.2
2 re-fetch bimodal LV 0.433 0.989 0.504 0.485 18.9 2.2
2 re-fetch bimodal Reg 0.428 0.980 0.500 0.479 19.0 2.2
2 re-fetch bimodal St2d 0.436 1.002 0.514 0.488 19.0 2.2
2 re-fetch SAg FCM 0.416 0.978 0.505 0.473 19.2 1.8
2 re-fetch SAg L4V 0.442 1.013 0.515 0.498 19.1 2.1
2 re-fetch SAg LV 0.437 1.010 0.517 0.493 19.0 2.2
2 re-fetch SAg Reg 0.428 0.980 0.500 0.480 19.0 2.1
2 re-fetch SAg St2d 0.438 1.016 0.522 0.494 19.0 2.2
2 re-execute bimodal FCM 0.441 0.987 0.492 0.495 19.1 1.9
2 re-execute bimodal L4V 0.437 0.997 0.506 0.491 19.0 2.1
2 re-execute bimodal LV 0.436 0.996 0.504 0.492 19.0 2.2
2 re-execute bimodal Reg 0.430 0.981 0.500 0.481 19.0 2.2
2 re-execute bimodal St2d 0.442 1.012 0.510 0.502 19.1 2.1
2 re-execute SAg FCM 0.439 0.987 0.495 0.493 19.1 1.9
2 re-execute SAg L4V 0.453 1.013 0.508 0.506 19.0 2.0
2 re-execute SAg LV 0.442 1.005 0.507 0.498 19.0 2.1
2 re-execute SAg Reg 0.429 0.980 0.499 0.481 19.0 2.2
2 re-execute SAg St2d 0.448 1.020 0.513 0.507 18.9 2.0
4 re-fetch bimodal FCM 0.433 1.100 0.603 0.497 0.0 0.017
4 re-fetch bimodal L4V 0.438 1.106 0.603 0.502 0.0 0.020
4 re-fetch bimodal LV 0.434 1.101 0.603 0.498 0.0 0.029
4 re-fetch bimodal Reg 0.428 1.092 0.600 0.492 0.0 0.013
4 re-fetch bimodal St2d 0.437 1.116 0.615 0.501 0.0 0.027
4 re-fetch SAg FCM 0.428 1.097 0.605 0.493 0.0 0.015
4 re-fetch SAg L4V 0.455 1.141 0.618 0.522 0.0 0.020
4 re-fetch SAg LV 0.440 1.130 0.619 0.511 0.0 0.039
4 re-fetch SAg Reg 0.429 1.093 0.600 0.493 0.0 0.013
4 re-fetch SAg St2d 0.440 1.137 0.626 0.511 0.0 0.030
4 re-execute bimodal FCM 0.451 1.108 0.595 0.513 0.0 0.032
4 re-execute bimodal L4V 0.442 1.112 0.604 0.508 0.0 0.041
4 re-execute bimodal LV 0.439 1.116 0.606 0.510 0.0 0.042
4 re-execute bimodal Reg 0.430 1.093 0.599 0.494 0.0 0.010
4 re-execute bimodal St2d 0.447 1.136 0.613 0.523 0.0 0.049
4 re-execute SAg FCM 0.459 1.116 0.597 0.519 0.0 0.027
4 re-execute SAg L4V 0.462 1.136 0.607 0.529 0.0 0.036
4 re-execute SAg LV 0.445 1.123 0.608 0.515 0.0 0.029
4 re-execute SAg Reg 0.431 1.095 0.599 0.496 0.0 0.014
4 re-execute SAg St2d 0.453 1.142 0.615 0.528 0.0 0.019  

Table 12.1: Banking information. 
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Appendix C 
 

8 9 10 11 12 13 14 15
4 105.78 105.89 106.06
5 106.13 106.25 106.29 106.36
6 106.15 106.20 106.32 106.35 106.39 106.44
7 106.39 106.44 106.47
8 106.44 106.48
9 106.44 106.51

10 106.36 106.46 106.53
11 106.25 106.36 106.46 106.55
12 106.25 106.38 106.46 106.54
13 106.47 106.54

8 9 10 11 12 13 14 15
4 111.22 111.38 111.51 111.58
5 111.48 111.61 111.65 111.73
6 111.59 111.67 111.73 111.81
7 111.73 111.79 111.82
8 111.81 111.85
9 111.81 111.84

10 111.84 111.84
11 111.81 111.83
12 111.79 111.83
13

8 9 10 11 12 13 14 15
4 109.86 110.08 110.18 110.20 110.21 110.21
5 110.20 110.23 110.23 110.23 110.22
6 110.03 110.20 110.22 110.23 110.23 110.21
7 110.18 110.20 110.22 110.22 110.21 110.20
8 110.10 110.18 110.19 110.21 110.22 110.21 110.20
9 110.17 110.19 110.20 110.19 110.18

10 110.09 110.16 110.17 110.17 110.16
11
12 110.13
13

8 9 10 11 12 13 14 15
4 107.19 107.23 107.25 107.29
5 107.24 107.25 107.28 107.31 107.32
6 107.22 107.27 107.29 107.32 107.33 107.32
7 107.27 107.32 107.35 107.35 107.35 107.36
8 107.28 107.34 107.34 107.35 107.36 107.36
9 107.31 107.35 107.36 107.36 107.36

10 107.35 107.35 107.36 107.35
11 107.35 107.35 107.33
12
13

8 9 10 11 12 13 14 15
4 110.44 110.49 110.48 110.48 110.45
5 110.47 110.51 110.52 110.51 110.49 110.43
6 110.44 110.49 110.50 110.51 110.47 110.44 110.40
7 110.46 110.49 110.45 110.43 110.39 110.39
8 110.44 110.44 110.41 110.35 110.34
9 110.36

10
11
12
13
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Figure 12.4: The re-fetch speedup maps for the five basic SAg predictors. 
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3 4 5 6 7
1 110.01 110.36 110.44 110.68 111.20
2 110.80 111.27 111.59 111.78 111.85
3 111.63 111.82 111.88 111.88
4 111.78 111.80 111.75
5 111.63

3 4 5 6 7
1 112.74 113.02 113.26 113.45
2 113.34 113.60 113.76 113.84
3 113.59 113.77 113.86 113.90
4 113.85 113.89
5 113.87

3 4 5 6 7
1 111.22 111.55 111.61 111.48
2 111.46 111.59 111.63 111.51 111.40
3 111.57 111.52 111.50 111.42
4 111.45 111.43 111.38
5

3 4 5 6 7
1 107.78 107.96 107.95 107.91 107.76
2 107.71 107.83 107.81 107.68 107.63
3 107.80 107.67 107.61 107.57
4 107.61 107.57 107.55
5

3 4 5 6 7
1 113.93 114.18 114.24 114.07 113.59
2 113.63 113.71 113.65 113.40 113.23
3 113.48 113.32 113.18 113.11
4 113.08 112.99
5
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Figure 12.5: Re-execute speedup maps for the five basic SAg predictors. 
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Appendix D 
 

Naming Conventions 

 

 

Load value predictors consist of several components, including tags, con-

fidence estimators, and value predictors.  I chose predictor names that are 

abbreviations of the various parts that make up a load value predictor, as de-

scribed below. 

Tags : The lines in a load value predictor may optionally be tagged.  If tags 

are present, they are usually shared among the value predictor and the confi-

dence estimator.  In this dissertation, the word tag in front of the predictor 

name indicates the presence of (partial) tags. 

Confidence Estimators : Strictly speaking, the confidence estimator is 

also optional, but to date there exists no proposed predictor that performs 

well without one (see Section 5.1). 

Several papers have been published that define taxonomies for branch 

predictors.  Since confidence estimators are structurally identical to branch 

predictors, I will adhere to the established branch predictor nomenclature 

when describing confidence estimators (e.g., SSg, SAg, bimodal, etc.). 

Yeh and Patt introduced a taxonomy for two-level (branch) predictors 

[YePa92, YePa93] that consist of a branch history register (BHR) and a pat-

tern history table (PHT).  They use three-letter combinations to describe the 

two components.  By convention, the first two letters are uppercase and the 

third letter is lowercase. 

The first letter characterizes the BHR.  If all branches share a common 

BHR, a G is used to indicate global.  If every branch has its own BHR, a P is 

used to indicate per-address.  If sets of branches are mapped to individual 
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BHRs, an S is used to indicate set.  Note that G and P represent the two ex-

tremes of the set case.  P means all sets have a size of one and G means 

there is only one set that encompasses all the branches. 

The second letter specifies whether the PHT is adaptive.  S stands for 

static, indicating that the PHT entries are fixed.  A stands for adaptive, mean-

ing that the PHT entries can be modified dynamically. 

The third (lowercase) letter is identical to the first letter, except it describes 

the PHT instead of the BHR.  Hence, g means one global PHT, s means one 

PHT per set, and p means one PHT per address. 

The most frequently used confidence estimators in this thesis are the SAg 

confidence estimator [YePa93] and the bimodal confidence estimator 

[McF93] (Chapter 5). 

Value Predictors : I use abbreviations of the kind of information that the 

predictor retains as a predictor name.  For instance, a predictor that retains 

the last four values is called an L4V predictor.  Other examples are St2d for 

stride 2-delta predictor, Reg for register file predictor, FCM for finite context 

method predictor, etc. 

Hybrid predictors, that is, predictors that contain multiple value predictor 

components, are named after their individual components, delimited by a plus 

sign (e.g., a hybrid between a stride and a last value predictor would be 

called an St+LV predictor). 

 


