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Abstract—The rapidly growing dimensionality of datasets has
made feature selection indispensable. We introduce the TS-CACD
feature-selection algorithm, which uses a generalization of the
Stern-Brocot tree to traverse the search space. This family of
trees supports different divergence ratios, i.e., enables the search
to focus on and reach certain areas of interest more quickly.
TS-CACD uses a continuous filter method, which combines an
inter/intra-class distance measure with a pair-wise ranked feature
correlation measure. It requires almost no parameters, explicitly
selects the most important features, and performs well.

I. INTRODUCTION

Datasets are rapidly increasing in size and complexity. This
growth, especially in dimensionality, makes it progressively
harder to discover important information and relationships.
Hence, feature-selection algorithms that reduce this complex-
ity are essential for the successful mining of non-trivial data.

In multidimensional datasets, each item has several at-
tributes (called features). For example, a dataset of cars might
include the make, model, color, efc. of a large number of
cars, and we may want to classify which of these cars are
likely to develop engine problems. Feature selection aims to
minimize the number of features that need to be considered
while minimally degrading the classification accuracy or even
improving it. Thus, feature selection can be described as
determining a combination of features (i.e., a subset) that
optimizes an evaluation function. This evaluation function
takes into account the number of selected features as well
as the classification accuracy, that is, the ability to predict the
class of a given item from the dataset. In the car example,
feature selection should eliminate all attributes that do not
correlate with engine breakdowns, such as the cars’ color.

Feature selection is widely used, including in hand-writing
analysis [1], social media [2], diagnostic medicine and gene
selection in micro-array data [3]. Each domain has its own
set of preferences for the feature-selection algorithm. Some
prefer to avoid manually optimizing parameters to fine tune
the accuracy and instead want an algorithm that explicitly
chooses a subset. Others favor algorithms with a complexity
that is linear in the number of items in the dataset. The
TS-CACD algorithm does not require any parameters, targets
medium-sized data sets, and does not run in linear time but
therefore considers the interaction between features. A number
of excellent publications exist that summarize and compare
many different feature-selection algorithms [4], [5], [6].
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To successfully perform feature selection, two components
are needed: (1) a method to determine subsets and (2) a
measure to assess the quality of a subset. Our algorithm uses a
tree-search (TS) approach to find subsets and the correlation-
adjusted class distance (CACD) to evaluate their quality.

At its core, our feature selection process attempts to deter-
mine a scalar coefficient (i.e., a weight) between zero and one
for each feature to minimize the dimensionality while max-
imizing the classification accuracy. To achieve this goal, the
weights are chosen to deemphasize redundancy among features
by considering the correlation between them. Furthermore, the
weights are selected such that items of the same class are
placed close to each other whereas items from different classes
are placed far apart, which promotes class locality and thus
improves the accuracy of many classification algorithms.

For instance, in the car example, the mileage and the year
typically correlate and are therefore indicative of the same
chance of engine failure. Hence, the weights are selected to
ensure that the generated feature list includes only one or the
other, thus lowering the dimensionality while maintaining the
same predictive power. In contrast, the license plate number
generally is not indicative of engine failure and is hence
not useful in the classification process or may even degrade
it. Thus, this feature will be deemphasized (its weight will
be small) whereas other features that do discriminate engine
failures will be assigned correspondingly greater weights. To
generate the final subset, our approach eliminates all features
whose weights are insignificant, i.e., close to zero.

To efficiently explore the search space for determining good
sets of scalar coefficients, we introduce a novel tree-search
approach that is a generalization of the Stern-Brocot tree.
This tree represents a way to construct all rational numbers
by starting with two fractions (9, #) and iteratively inserting
the mediant between each two adjacent fractions. Thus, every
iteration yields a refinement of the previous set of fractions.
This construction generates a binary tree that contains every
rational fraction exactly once and in reduced form. Figure 1
illustrates the first few levels of the Stern-Brocot tree [7].

By following the edges in this binary tree from the root,
we can reach every fraction, i.e., every possible weight as-
signment for two features. Similarly, in our k-dimensional
generalization, we follow edges to explore the search space
of the weights for k features. Note that descending down the
tree corresponds to a refinement of the search space. In other
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Fig. 1. Top five levels of the Stern-Brocot tree

words, every step narrows the range of possible weights.
The key operation of taking a left or right step in the Stern-

Brocot tree can be expressed using the following matrices:

1 1 1 0
L<O 1) andR<1 1>

Since multiplying by one of these two matrices corresponds
to following an edge, a path in the tree is tantamount to the
product of a sequence of these matrices. For example, starting
at the root, going left, then left again, and then right, we end
up at % Using the matrix notation, we multiply L by L and
then by R. The resulting fraction is the sum of the elements in
the bottom row over the sum of the elements in the top row.

3 2 1+1 2

L><L><R—<1 1> —>3+2—5
The rest of this paper is organized as follows. Section II
compares our approach to related work. Section III describes
our correlation-adjusted class distance in detail. Section IV ex-
plains our tree-based search strategy. Section V discusses how
we use the tree search in the context of our evaluation function.

Section VI presents the results. Section VII concludes.

II. RELATED WORK

A well-known filter method is Relief [8]. Relief and its
variants rank features based on the number of near hits and
misses in the original space. This is done by repeatedly
selecting a random sample and measuring its distance to the
nearest sample of the same class (hit) and the nearest sample
of a different class (miss). The final result is a ranking of how
relevant each feature is in predicting the class. The user then
has to select the proper subset by deciding which features to
keep or discard based on the ranked relevance.

The core principle, and a similarity to our approach, is that
Relief assigns meaning to the distances between neighboring
samples based on the distance of their classes. However, unlike
our method, Relief measures these distances in the original
space. This can be a problem because removing a feature
potentially changes the distances, which might increase the

relevance of another feature and rank it higher in the new
space. Unfortunately, it is computationally infeasible to check
every combination of features to find the optimal subset. Later
we discuss how we address this issue using the tree search.
The feature ranks that Relief and similar algorithms provide
are a guide to help the user select an appropriate subset.
Whereas this allows the consideration of multiple subsets, it
does not explicitly select features. Moreover, these choices
are constrained to be ‘near’ each other in terms of possible
subsets. In particular, by changing the cut-off point, the user
can include more or fewer features, but he or she cannot try
new combinations such as removing a higher ranked feature
and adding two lower ranked features instead that, together,
supersede the higher ranked feature. In contrast, our tree
traversal produces explicit subsets from the entire range of
possible subsets. This is an important yet often overlooked
concept. A consequence of this restriction of Relief is that it
has a lower asymptotic time complexity than our method.
Another filter approach that is related to ours is EUBAFES
(EUclidean BAsed FEature Selection) [9]. It is similar in
that it also uses a class distance measure and scalar feature
weights to enable a continuous search. One key difference
is that our method uses a correlation measure to balance
the class distance measure and to promote a reduction in
dimensionality. EUBAFES relies on parameters to stabilize its
class distance measure. When switching from one dataset to
another without adjusting these parameters, we found a similar
design to often converge to one extreme of the subset size
or to be dominated by the parameters rather than the data.
In contrast, our approach only has two internal parameters
that are designed to counterbalance each other, meaning that
they work well across a range of datasets. Hence, the users of
our approach do not have to tune parameters. Another major
difference is that EUBAFES employs a Euclidean metric in
the distance measure. We found an inverted sum, i.e., the sum
of the inverse distances, to result in better subset quality.
There are also feature selection algorithms that perform
regularization on the feature weights (generally on binary
weights) by penalizing larger feature subsets, which, in turn,
can force a reduction in dimensionality. Whereas we also
employ such a strategy, we do so by placing a constraint
on our feature weights that can only force a reduction in
dimensionality in the presence of the correlation adjustment.

III. CORRELATION-ADIJUSTED CLASS DISTANCE

In this section, we present the CACD criterion function and
discuss the reasons for choosing this function.

A. Criterion

With @ denoting the number of features and N denoting
the number of instances in a dataset, let our domain be R =
{X1,...,Xn} € RVXQ where X; = {zi1,...,2iq} for
1 < ¢ < N. Furthermore, let C' = {c1,...,cn} be the set
of class labels so that each ¢; is associated with instance X;
for 1 <7 < N. Based on these inputs, we want to compute



aset W = {wi,...,wg} of positive feature weights (scalar
coefficients) that satisfy the Ly constraint
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We then define the distance d; ; between two instances X; and
X as a function of these feature weights

Q
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To also capture non-linear correlations between features, we
use the Kendall Tau-b [10] distance, which is defined as
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where n. is the number of concordant (correlated) pairs, ng
is the number of discordant (anti-correlated) pairs, n; is the
number of pairs not tied (neither correlated nor anti-correlated)
in X;, and ny is the number of pairs not tied in X;.

The above constraint on the weights and the two equa-
tions represent the fundamental components of our criterion.
Constraint (1) acts as a regularization strategy by limiting
the number of features selected. If some features have large
weights, others must necessarily have small weights. Since
we are only performing pair-wise correlation comparisons, we
may end up with an over-approximation, especially for subsets
that include more features. As a counterbalance, we inflate
the score of larger subsets by using the Lo (sum of squares)
instead of the L; norm while reducing the score based on the
correlation. Eq. (2) simply applies a weighted transformation
and measures the L; distance between two samples. Finally,
Eq. (3) measures the ranked correlation between pair-wise fea-
tures without dependence on the linearity of the correlation. It
does this by only considering the signs (but not the magnitude)
of the values, thus making it unsusceptible to outliers.

The following defines the interaction between the above
measures. Given a set of weights, we define an approximation
of the general correlation between our features by

QQ-1) = 2 wiwlm |
Q(Q —-1)
To handle class imbalances, i.e., inputs where most instances

are of the same class, we define the frequency of the intra-class
(equal or ‘eq’) and inter-class (not equal or ‘ne’) occurrences
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With 1S denoting an inverted sum, we define the intra-class

distance I.S.,(7V) and the inter-class distance I.5,,.(1V) as
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with constant parameter 4 = 1. Any g > 0 is suitable to
avoid divisions by zero, but choosing too large a p results in
the distances not mattering. Naturally, we want the distances
to be small when the classes match and large when they do
not. The value of  is empirically chosen as part of our design.
Figure 2 illustrates that this choice does not greatly impact the
score function. The total class distance is

IStotal(W) - ISeq(W) + ISne(W) (9)
Now we can define our criterion J (W), which is
IScq (W)
J(W) = KW)——1—-= 10
(W) = K(V) 7 05 (10)

where K (W) serves as a correlation adjustment.

The effect of using the sum of inverse distances is similar
to the least squares method. However, in the least squares
method, we discourage the non-equal terms whereas in this
‘most inverses’ method we encourage the equal terms.

Our method fundamentally promotes locality, i.e., it does
not force unrelated clusters together but instead allows for
disjoint clusters, which has a number of implications. It makes
no assumptions about the general nature of the sample set (it
does not dictate one rule globally), it allows for the existence
of multiple centers within one system, it is minimally affected
by outliers, and it measures simultaneous and possibly disjoint
clusters while performing feature weighing.

B. Discussion

The first significant concept to note is that we deliberately
inflate the distances when more features are present. This is
achieved by the interaction between the distance metric (2) and
the constraint on the feature weights (1). The use of squares
rather than some other exponent in the constraint is one of the
internal parameters mentioned earlier. We use an appropriate
power to make the constraint act much like the correlation.
Without the effect of 1 on the correlation measure, if we used
an L;-projection constraint () |w| = 1) instead of constraint
(1), the number of features present (the subset size) would
not affect the final score function because we would have
a homogeneous space (e.g., the weight vectors {1,2,5} and
{2,4,10} would be the same after normalization). However,
given our Lo projection, the weight vectors are larger when
considering a subset with more features. So, depending on the
similarity of the feature weights (w; =~ ws =~ ... = wq), the
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Fig. 2. Tllustration of the effect of different values for p



size of the weight vector will vary akin to how the respective
points on the surface of a unit hypersphere are greater than
or equal to the points on the surface of a unit hypercube. As
mentioned above, this ‘buffer’ is needed to compensate for the
nonlinear overestimation that is introduced by only considering
pair-wise correlations. Considering all correlations would be
computationally intractable for high-dimensional datasets and
would typically only yield a small improvement in accuracy.

Since p determines the degree of this increase for larger
subsets, varying p allows to adjust the relative influence of
the correlation measure (4) on our criterion and, thus, we have
a mechanism to ‘encourage’ pair-wise uncorrelated subsets
with little extra computation. In other words, ;1 represents a
knob to bias the criterion more towards correlation or more
towards class distance. For example, in case of redundant
dimensions with well-organized classes, a larger p would
devalue subsets that include redundant dimensions despite the
subset’s excellent ability to discriminate the classes. Note that
all of this can be achieved with just one simple parameter.

Another important feature of our approach is the choice of
an inverted sum to measure the quality of the class separation.
It provides several key benefits. First, it (along with using
Kendall’s Tau-b) makes the criterion robust in the presence
of outliers. Since we are dividing by the distance, outliers,
which have a large distance, contribute essentially nothing
to the inverted sum. In contrast, a least squares approach
is easily thrown off by a single large outlier. Second, our
method naturally encourages locality, i.e., many small dis-
tances. Hence, it encourages class separation on a local context
as the large-distance terms are insignificant. Third, it does
all this without making assumptions about independence or
a general inherent structure among the features. We consider
these aspects fundamental advantages of our design.

The inverted sum also provides an important performance-
optimization opportunity. Since only the short-distance terms
matter, using a nearest-neighbor list in the search method
incurs a minimal approximation error. When restricting the
algorithm to only considering a fixed number of nearest
neighbors, the time complexity decreases by a factor of O(n).

Many of the components of our criterion are embedded
within our design (e.g., ) or pre-computed and therefore do
not add significantly to the computation cost. However, they
do add to the complexity of the score function. Since we
are performing feature selection in a continuous manner, this
makes it more difficult to find optimal subsets and may cause
some search strategies to require extra iterations to achieve
equivalent quality. This is one of the reasons why, in the
following section, we introduce a search strategy that is not
dependent on analytic methods or linear programming models.

IV. TREE SEARCH

This section introduces our tree-based search and discusses
its matrix and tree representation as well as some of its
computational qualities. Since each feature weight can have
any value between 0.0 and 1.0, it is important to establish a

systematic and efficient way of subdividing and traversing the
search space. We use a generalization of the Stern-Brocot tree.

A. Overview

A number of pre-existing search strategies that produce
reliable results only work for criterion functions that meet
certain strict requirements, such as having to be monotonic.
Other search strategies tend to get stuck in local optima. Our
approach does not suffer from either of these limitations.

One of the fundamental qualities of our tree search is the
effect that taking a direction, i.e., choosing a child to follow,
has on the range of possible values for the weights. Consider
the Stern-Brocot tree in Figure 1. Given an initial choice of
‘left’, all subsequent paths are limited to values below 1.
Hence, the tree represents an effective way of partitioning the
search space into independent regions with little computational
overhead or dependency among workers. Another important
quality is that the tree makes it possible to quantify the distance
between different subsets in a meaningful manner without the
need to compute the actual weights (cf. Section V).

Additional benefits of using a tree-based search include
the following. In the presence of a dominant path, ie., a
monotonic score function, only one child needs to be followed
after each step and the search converges exponentially. Even
when optimizing a function that is not analytic, our approach
is guaranteed to terminate. First, unlike in gradient descent,
the tree search cannot jump back and forth between the same
two values because the step size diminishes with each level
in the tree. Second, every downward step moves us closer
to the (local) optimum as the range of possible weights is
further confined. Hence, any desired degree of accuracy can
be attained. Finally, the generated weights are guaranteed to be
unique and therefore fit well with and can also be used in the
parameterized coefficient search paradigm that is common in
many combinatorial optimization problems that occur in fields
like statistics, data mining, and linear programming.

B. Matrix representation

We consider the matrix representation very useful for rea-
soning about the tree-based search method. After all, de-
constructing the matrices enabled us to greatly reduce the
computational complexity of our approach (c¢f. Section V).

Given the real numbers € (0,1) (a factor that determines
how quickly the tree ‘spreads out’) and d € N (the number of
features), let J, denote a d-element vector of all ones, S;(i)

a d x d zero matrix with r in every row of the i*" column,
0 -+ 7 - 0
Sd(Z) = rJdei =10 r 0
0 r 0

dxd



and I (i) the d x d identity matrix with the i'" 1 removed

1 0 .0
0
. 1
I;(@)=Is—¢le;= |1 0
1
: : .0
[UNEEE 0 1_dxd

The transformation matrix T4(i) 1 < ¢ < d is their sum.

Tu(i) = Sa(i) + I; (i)

Finally, we define a sequence P = {p1,p2,...,px | 1 < p; <
dVi} as a path, with each p; denoting a step or direction in
the path (i.e., choosing the i** child of the current node in the
tree), and the vectorization operation V' of a path P as

-
V(P) = T<Td(P1)Td(p2) . ~~Td(pk)Jd) =7eR?

To simplify the notation, we assume that d and r are given
constants unless otherwise stated. For example, r = 1 and
d = 3 yield the following on the path {2, 3}

vi(2.3) = (TTE)1)

1 1 0] 1 0 1 1T\
:<010><011><1>
0 1 1] 0 0 1 1
1 1 2] M1\ T
(011><1>
0 1 2] 1
= (4,2,3)

This is analogous to summing across each row, multiplying
by r, and placing the result in the i*" column. Furthermore,
right-multiplication by I~ (i) results in the same matrix with
the i*" row removed as illustrated in the following

ail a2 a1d
21 Qa22 24
A= | . ) .
Qad1 QAdd
AXTE)=AxSE) +Ax I (i)
_O 'I’ZCLU 0 a1 0 aid
_ D r Z ag : 4|0 0
: . : R 0
_0 e T Z Qi e 0 aq1 0 QAdd
_a11 r E (437) aid
_ a1 E . r Z ag;
| aa1 Y. ag Add
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Fig. 3. r= é divergence (r = 1, d = 2)
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This construction ensures that, for any node, there exists
no other node in the tree that is a scalar multiple of it (this is
equivalent to the reduced-form quality of the rational numbers
in the original Stern-Brocot tree). This is important since
multiples of the same set of weights would be mapped to the
same final weights and thus result in redundant evaluations.

C. Tree representation

In the following illustrations, we use the projection (normal-
ization) of ¢ onto ), v; = 1 to show the effect of the diver-
gence ratio 7 on the tree. Informally, the divergence determines
how rapidly the tree ‘spreads out’. Note that our Stern-Brocot
variant is not identical to the original as we evaluate v1v+1v2
while the original Stern-Brocot approach evaluates % We
made this change because our projection generalizes to higher
dimensions. This difference is inconsequential for demonstrat-
ing the effect of the divergence. Whereas our variant deviates
from the original tree (which is no longer a subset of our
generalization), we can still obtain the rest of the original tree,
which spans (1,00), by inverting all nodes € (0, 1).

Figure 3 presents a perfectly balanced version of our tree.
With r = %, the projection space evenly partitions the region
(0,1) for any d, that is, any number of features. From the
point of view of a pre-projection vector, this divergence ratio
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Fig. 5. Stern-Brocot divergence (r = 1, d = 2)

means that we adjust the resulting vector length after adding
two vectors in each step down the tree to form a new vector
of the same length. It is important to note that not all weights
are reachable using a finite number of steps given r # 1, but
this is not an issue in terms of our search as we can still get
arbitrarily close and then terminate the search.

Figure 4 illustrates a divergence above the balance point.
We found such r < é ratios to be the most useful because,
for dimensionality reduction, we prefer faster divergence to
the boundaries. If the good solutions lie near the boundaries,
the original Stern-Brocot divergence (r = 1) performs poorly
since the rate of expansion towards the borders decreases as
we go down the tree, as Figure 5 illustrates.

Figure 6 presents these divergence ratios in d = 3 projected
to @ = (01+Z;+1J3, U1+zz+1}3) € R2. It shows the limitations
of using an r = 1 divergence in higher-dimensional domains,
which only covers a small part of the search space (it takes
many steps to get close to the borders) whereas r = é covers
the space evenly and r < é emphasizes the border regions.

V. COMPUTATIONAL QUALITIES

Figure 7 illustrates, for a 5D dataset, how every path from
the root (at the center) of our search tree leads to a unique
distribution of the five weights (each slice of a pie represents
a weight). In particular, every step along a path subdivides the
search space into ever smaller partitions, that is, it restricts
the range of possible values for each weight. We repeat this
process until there is no more improvement in J() or we
approach a local optimum. Given a specific path, we can define
our score function as

JW) = J(M)
IV (P)ll2
where V' is the vectorization function and P is the path.

Our search method starts from identity (where all weights
are equal) and uses a divergence parameter r that is either
equal to or less than the inverse of the dimensionality. In
the latter case, the tree emphasizes the boundary regions
where we assume the optimal results to be located, i.e.,
where the lower-dimensional subsets reside since some of
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Fig. 7. First four levels of our five-dimensional search tree where the size

of the pie slices represents the magnitude of each of the five weights

the weights are zero on the boundaries. This is similar to
a gradient descent except the step size is given by the tree
depth. Moreover, instead of moving locally (additively), we
are moving globally (multiplicatively) within the region of the
search space determined by the parent node. Every step down
the tree further constrains this region. Note that this is all done



as part of the tree traversal without additional computations.

Algorithm 1: Vectorize(P)
Input: r is a scalar constant, k is the number of steps in
the path, and d is the number of features

Input: P = {p1,p2,...,px | 1 <pp <d,k €N}
Output: ¥ = {vy,vs,...,04}

begin
/* populate matrix */
fori=1—ddo
col[i] «— e;
end
sums «— {1,1, ...

{{1,0,...,0},{0,1,...,0},...}
1}

/* apply transformations */
for:=1— k do

old +— col[p;]

col[p;] «— 7 X sums

sums <— col[p;] + sums — old
end

return sums
en

{given identity I}

Note that each assignment requires d operations.

In high-dimensional datasets, concurrently following multi-
ple tree branches using the matrix representation is expensive
as multiple large matrices have to be stored. Fortunately, this
problem can be remedied by identifying a tree node using the
path leading to it, which allows us to exploit the vectorization
process of a path. Without this optimization, performing a
V(P) calculation for some path P = {p1,pa,...,Dx} Te-
quires k matrix multiplications, which take O(kd®) opera-
tions. Reusing the old row sums in Algorithm 1 reduces the
complexity to O(d? + kd), where the O(d?) component is
for generating the initial sums and the O(kd) component is
for applying the transformations. We can further lower this
complexity to O(kd) by recording the sum for each step,
i.e., by storing d?> + d values instead of only d? values.
This small increase in storage greatly reduces the amount of
computation because it eliminates the need to reinitialize the
matrix; instead, we can simply continue the traversal from
a tree node using the recorded sum. This benefit makes the
path approach a computationally interesting alternative to the
matrix approach. Moreover, both types of search are amenable
to parallelization on multicore processors if desired.

Another useful aspect of the path notation is that it allows
the direct measurement of the distances between subsets with-
out having to compute any weights. As mentioned, this benefit
is often overlooked. For example, given » = 1, d = 3 and the
paths ¢ = (3,1,1,1),b = (2,1,1,1) and ¢ = (1, 3, 3, 3), path
a may at first glance appear to be closer to b than to ¢, but
this is not the case. Path c is quite close to @ much like paths
(LRRR...) and (RLLL...) converge towards each other in
the original 2D Stern-Brocot tree in Figure 1. To formally
show that path a is closer to c than to b, let us deconstruct the

three vectors into binary form with respect to each possible
direction. As shown below, we decompose the £k elements
of each path into d binary vectors with k£ elements where
each element indicates the presence or absence of a particular
direction in that position. For example, following child 3 in
the first step of path a results in Os in the first position of all
d vectors except in the vector representing 3, which has a 1 in
the first position. The remaining bits are determined similarly.

a=(3,1,1,1) ={[0,1,1,1]4,[0,0,0,0]2,[1,0,0,0]3}
b=(2,1,1,1)={[0,1,1,1}1,[1,0,0,0]2,[0,0,0,0]5}
c= (1737 37 3) = {[1707 Oa 0]17 [07 Oa 070]27 [07 17 1a 1]3}

Given this format, we can easily compare the paths by
subtracting one from the other. Since 1 and —1 are equally far
away from 0, it suffices to only consider the absolute value
of each term. For improved readability, we convert the binary
differences into decimal vectors as a final step.

a—b=1{[0,0,0,0],[1,0,0,0],[1,0,0,0]3} = {0,8, 8}
a—c=1{[0,0,0,1]1,[0,0,0,0]2,[0,0,0,1]5} = {1,0,1}

Since d = 3, the distance between two paths is a vector of
three elements. Clearly, the vector {0, 8,8} is longer than the
vector {1,0,1}, confirming that path « is closer to ¢ than b.

We are explaining this computation in such detail to high-
light that one can quickly compute the distance between two
paths using simple binary operations, i.e., without the matrices,
vectorization, or explicit computation of the weights. This is
useful for exploring multiple tree branches based on diversity
because the distance of each candidate path can be rapidly
evaluated so that sufficiently different paths can be chosen.

Finally, let us take a look at the coefficients (vectorization)
generated by these paths: V(a) = (5,8,4), V(b) = (5,4,8)
and V(c) = (4,8,5). Again, V' (a) is more similar to V'(¢) than
to V' (b). More importantly, this technique can also be reversed
to generate a new path from existing paths to promote diversity
in the search space, which is another benefit of our approach.

Although the presented type of search is ideal for continuous
J() functions, it is also capable of producing a binary back-
wards or forwards search. For r = 0, the algorithm performs
a binary backward selection with the restriction that it can
only take a specific step of a path once to ensure termination.
If we define a new vector & = 1 — Zﬁvi with » = 0 and
a similar path restriction on repeating a step, we perform a
binary forward selection. We are not suggesting that anyone
use our method in this way. Rather, we want to point out that
the popular binary backwards and forwards searches emerge
as two special cases of our more general approach.

A. Traversal procedure and termination

Our search method starts at the root, with identity weights,
and calculates a coefficient of variation based on all children’s
J() score, which determines the number of branches to
consider. The higher the variation is, the more children are
visited. Generally, only few children need to be followed, thus
avoiding and drastically outperforming an exhaustive search.



This process continues recursively, with some decay based
on the depth as a soft termination criterion to limit the total
computation. The coefficient of variation also serves as a hard
termination criterion because, with each increase in depth,
the J()s of the children get closer to each other. Eventually,
the coefficient becomes arbitrarily small (indicating that the
score is not improving) because each step considers a finer
granularity than the previous step. An added benefit is that,
given a change in our weights (let us call this distance 9),
we can make certain assumptions about the corresponding
change in our J() function. This allows us to finish the search
outside the tree using an iterative uphill climb with § as
its step size because we can guarantee (with arbitrarily high
probability depending on the threshold) that we will not miss
a local optimum, i.e., we will be in the safe zone. This hybrid
approach between the tree search and the following uphill
climb greatly decreases the running time as the convergence
of the tree search slows down with increased depth.

VI. EVALUATION

A. Datasets

We use nine popular datasets from the UCI machine learn-
ing repository for our evaluation [11], [12], [13]. Aside from
ensuring proper formatting, we did not modify these datasets.
Table I summarizes pertinent information about each dataset.

TABLE I
DATASETS
Number of | Number of | Number of

Dataset classes features instances
Madelon 2 500 2000
Breast cancer 2 10 699
Indian liver patient 2 10 583
Musk 2 166 476
Ionosphere 2 34 351
Glass identification 7 9 214
Sonar 2 60 208
Parkinsons disease 2 23 197
Lung cancer 3 56 32

B. Methodology

We compare our TS-CACD approach to the LO, mRMR,
InfoGain, ReliefF, and CfsSubset feature-selection methods.
The LO subsets were generated using Matlab with the mc_svm
(multi-class support vector machine) function. For mRMR, we
used the mRMR website to perform the feature selection [14].
We employed Weka for the remaining three methods [15].

To evaluate each method, including ours, we averaged the
classification accuracy of the NaiveBayes (a Bayesian model
with a probabilistic metric), J48 (a decision tree with a region-
based metric), IBk (a k-nearest neighbor algorithm with a
distance metric), and SMO (a support vector machine with
a kernel metric) classifiers with ten-fold cross-validation on
the resulting subset recommendation using the R package
RWeka [16]. We performed our testing with these four archety-
pal classifiers to encourage diversity, i.e., so as not to bias
the results toward a single classifier and its associated metric.
Moreover, we made sure that none of the four algorithms

consistently performed poorly for a given classifier, which
would otherwise have resulted in an unfair comparison due
to a poor match of classifier to feature-selection method.

The TS-CACD results were obtained on an implementation
that works as described in this paper. In particular, it uses a
fixed ;4 = 1 so as not to rely on a parameter (note that, for
some subsets, a slightly smaller ;1 would give better results).
For the methods that produce a ranked list of features, we
attempted to match either the score or the dimensionality to
remain unbiased unless there was a strong preference for a
specific subset, in which case we show results for that subset.

The evaluated TS-CACD implementation does not take
advantage of some of the discussed performance optimizations
(such as the nearest neighbor search) as it is primarily intended
to demonstrate the quality of our proposed feature-selection
method. Nevertheless, preliminary tests of a nearest-neighbor
implementation on randomly generated subsets from the Sonar
dataset resulted in less than a 1% change in J() score,
indicating that only considering the %k nearest neighbors does
not hurt the classification accuracy significantly while, at the
same time, making the implementation much faster.

C. Results

Table II compares the classification accuracy and the num-
ber of selected features of the six methods on the nine
datasets. TS-CACD strictly outperforms the other algorithms
on Parkinsons and ILPD. On these two datasets, it ties with
one other method each for the smallest subset but outperforms
all methods in classification accuracy. On Sonar, Ionosphere,
and Glass, TS-CACD also achieves the highest accuracy of all
tested methods but not the smallest subset size. Nevertheless,
in two cases it produces the second smallest subset. On
Madelon and Musk, our method yields the smallest subset. On
Madelon, no method is strictly better than any other evaluated
method, ie., for each pair of methods, one has a higher
accuracy whereas the other results in a lower subset size.
On the remaining two datasets, Lung Cancer and BCW, our
method is a close second in terms of accuracy but yields much
smaller subsets than the most accurate methods. Importantly,
there is no case where one of the other methods provides better
accuracy and a smaller number of features. In summary, TS-
CACD results in the best or close to best accuracy on seven
of the nine datasets and yields the smallest subsets on the
remaining two datasets. This outcome highlights the merit of
our approach, that is, the importance of considering multiple
dimensions simultaneously when selecting features.

Since TS-CACD’s performance is a combination of the
CACD metric and the tree search, we also evaluated the
CACD metric in isolation, i.e., independent of any search. In
particular, we score random subsets using the CACD metric.
The subsets were generated by first choosing a random size
between one and the number of features and then randomly se-
lecting features until the chosen subset size has been reached.
Figure 8 presents the results where the lines in each panel
are linear trend lines and the shaded regions represent the
confidence interval for the associated plot.



TABLE I
CLASSIFICATION ACCURACY AND NUMBER OF SELECTED FEATURES BY METHOD

Dataset w/o feat. sel. LO mRMR InfoGain ReliefF CfsSubset TS-CACD

Madelon 59.462 500 | 63.650 3 70.275 11 | 70.637 16 | 72.682 20 | 68.175 7 62.050 2
Musk 81.985 166 | 78.571 23 | 72.899 20 | 77.836 14 | 73.897 21 | 82.983 36 | 77.416 18
Sonar 75.360 60 78.606 6 76.201 30 | 78.125 21 | 77.884 21 | 76.923 19 | 79.206 24
Lung Cancer  50.781 56 69.531 7 75.120 20 | 71.093 8 72.949 4 68.750 7 72.656 7
Tonosphere 87.250 34 86.609 13 | 89.316 10 | 88.176 18 | 89.102 5 89.814 14 | 90.384 9
Parkinsons 83.333 23 84.102 7 83.903 5 85.897 3 86.410 5 85.128 10 | 86.538 3
ILPD 65.112 10 71.012 2 64.193 5 65.780 3 64.837 3 66.166 5 71.549 2
BCW 95.815 9 93.919 3 94.921 5 96.030 8 94.563 2 95.815 9 95.565 3
Glass 60.864 9 60.981 5 60.981 5 62.500 7 60.514 3 60.864 7 62.850 5

Evaluation of randomly generated subsets

lonosphere

Glass ILPD

_ Classification Accuracy

0.62

68 0.69 0.70

Lung Parkinsons Sonar

0.71 0.72 066 067 068 069

CACD Score

Fig. 8.

The results from Figure 8 are consistent with the results
from Table II. Moreover, they show a strong correlation
between the CACD score and the final classification accuracy,
indicating that the CACD metric works well. Considering that
some of these subsets are unlikely to appear in combination
with a search, this demonstrates that the CACD metric accu-
rately assesses subsets independent of our tree search. Hence,
the CACD metric is likely to also be useful in combination
with other (non-tree-based) search techniques.

VII. CONCLUDING REMARKS

This paper presents and evaluates our correlation-adjusted
class distance criterion. In combination with our novel tree-
search approach, it is very successful in finding competitive
subsets in 9 datasets. The paper further presents an effective
way of combining a distance and a dependency measure.

In future work, we plan to present some of the more
mathematically oriented qualities of this tree and to generalize
its notation. We would also like to find better alternatives to
our coefficient of variation branching method so that it can
consider multiple consecutive steps in a path in each iteration.
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