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Abstract
The IEEE 754 floating-point standard is the most used representa-
tion for real numbers in modern computer systems, despite issues
in accuracy for certain applications. The posit format, which has
several advantages, has been proposed as a direct drop-in replace-
ment for IEEE floats. Many works compare the use of posits to
floats in a wide range of scientific computing domains. However,
there has not been any work looking into the compressibility of
posit data. In this paper, we compare the compression ratios of
different algorithms when the input is encoded in IEEE format and
in posit format. We evaluate 5 lossless general-purpose compres-
sors as well as several new compression algorithms synthesized
by our LC framework on 14 single-precision inputs from the SDR-
Bench suite, encoded in float and posit format. Our results show
that that 4 of the 6 compressors yield an average of 2.59% reduction
in compression ratio on posit data, whereas bzip2 provides a 1.74%
increase in compression ratio, with XZ providing the highest ratios
for both encodings.
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1 Introduction
The IEEE 754 floating-point standard is the de facto numerical rep-
resentation for real numbers in modern computer systems. Floating-
point data is used extensively in scientific computing applications,
especially in high-performance computing. However, floating-point
operations are among the slowest andmost energy-hungrymachine
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instructions due to IEEE 754 functional units using substantial chip
area and power to handle the many corner cases and exceptions de-
scribed in the standard [10]. Furthermore, some studies have shown
that the standard is error-prone [18], and different implementations
of the standard may produce different results [31].

Some areas of scientific computing, particularly machine learn-
ing, have started using less precise floating-point types (e.g., float16,
float8, etc.) in an effort to speed up computation—and in some
cases reduce energy consumption—while reducing the accuracy.
Google’s bfloat16, NVIDIA’s TensorFloat-32, and the practice of
mixed precision all attempt to reduce the accuracy while preserving
the dynamic range when possible. However, reducing precision is
not a solution for applications where accuracy is key. As a conse-
quence, some research has looked into alternative representations
for real numbers. Gustafson introduced “posits” as a direct drop-in
replacement for the IEEE 754 standard to alleviate some of the is-
sues with floats [19]. Posits use a variable number of bits for the
fraction and exponent fields, offering a larger dynamic range and
higher accuracy compared to IEEE floats of the same size.

Since the introduction of posits, there have been many works
comparing the use of posits to floats in different scientific com-
puting domains. In general, posits are more accurate and, in some
cases, faster than floats. Some prior works have proposed hardware
units for posit arithmetic but only use hardware simulators in their
evaluation. Most prior works studying the accuracy of posits con-
vert existing IEEE 754 encoded data (input files, machine learning
weights, etc.) into posit format before computation and do not store
any values in posit format.

Scientific applications and instruments often emit huge amounts
of floating-point data. For example, the Hardware/Hybrid Accel-
erated Cosmology Code (HACC) generates petabytes of data in a
single simulation [20], and the Large Hadron Collider (LHC) pro-
duces approximately one petabyte of data per second [7]. Given
the massive amount of data used and produced by many scientific
applications, storing said data in posit format for applications that
require it eliminates the need for converting between posits and
floats before and after the computation. However, there are no prior
studies looking into whether doing so affects the compressibility.

In this paper, we study the compressibility of posit data by com-
paring the compression ratios of different compression algorithms
when the input is encoded in IEEE 754 format versus in posit format.
We use single-precision IEEE floating-point data and convert each
input file to use posit encoding. We investigate 5 existing general-
purpose lossless compression algorithms and several new compres-
sion algorithms generated by our LC synthesis framework [13].
Note that there are no special-purpose compressors designed for
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posit data, so we are unable to compare against compressors de-
signed for floating-point data, in particular, lossy floating-point
compressors. We use 14 single-precision datasets from 7 scientific
domains from the SDRBench suite [33] as inputs for our study.

This paper makes the following main contributions.
• It provides the first study on the compressibility of posit data
converted from IEEE formatted data, evaluating 6 lossless
general-purpose compressors on 14 inputs from the SDR-
Bench suite, encoded in IEEE 754 single-precision format
and in posit<32,3> format.

• It shows that the XZ [3] compressor provides the highest
compression on both float and posit encoded data, and that
posit data can be compressed at a similar rate to float data
with the same algorithm.

• It highlights that customized compression algorithms offer
higher compression ratios than using a single algorithm for
all inputs.

The rest of the paper is organized as follows. Section 2 provides
background into the posit and IEEE floating-point formats. Section
3 summarizes related work. Section 4 describes the experimental
methodology. Section 5 presents and discusses the results. Section
6 concludes the paper.

2 Background
The IEEE 754 floating-point standard describes the format and
rules for floating-point data and arithmetic and is by far the most
commonly used standard in computing for real numbers. A float has
3 fields: the sign, a biased exponent, and the mantissa. For a 32-bit
float, there is 1 sign bit, an 8-bit exponent, and a 23-bit mantissa.
Figure 1 shows the layout of these bits. The mantissa, or significand,
is the fractional part of the number. It is stored as a binary fraction
with an implicit 1 added to the fraction. The exponent is stored
with a bias of half the maximum possible exponent value (with an
8-bit exponent, the bias is 127).

s  e1e2..e8  m1m2m3m4..m23
sign
bit

8-bit
exponent

23-bit
mantissa

32 bits total

Figure 1: Bit layout of a 32-bit IEEE 754 float

Floats can represent normal finite numbers and several special
numbers, including subnormals, Not-a-Number (NaNs), positive or
negative 0, and positive or negative infinity. A float is a subnormal
if the exponent is all zeros with a non-zero mantissa. Subnormals
do not use the implicit 1. A float is a NaN if the exponent is all ones
with a non-zero mantissa. A float is zero if all the bits are zero, and
negative zero if all the bits except the sign bit are zero. A float is
infinity if the exponent is all ones with an all zero mantissa.

Let 𝑠 be the sign bit, 𝑒 the biased exponent, and𝑚 the mantissa
bit string. Assuming the float is a normal number, the value of the
float 𝑣 can be computed by the following formula:

𝑣 = (−1)𝑠 × 1.𝑚 × 2𝑒−127

Introduced in 2017, posits are designed to be a drop-in replace-
ment for IEEE 754 floats [19]. A posit has 4 fields: the sign, the
regime, the exponent, and the fraction. The regime, exponent, and
fraction fields are variable in length, and a posit is parameterized by
the total number of bits 𝑛 and the maximum number of exponent
bits 𝑒𝑠 , creating a posit<𝑛, 𝑒𝑠> number. The addition of a regime
field acts as additional scaling for the exponent of the fraction. For
a 32-bit posit with 𝑒𝑠 exponent bits, there is a sign bit, a run of
regime bits, a 𝑒𝑠-bit exponent, and a run of fraction bits. Figure 2
shows the layout of the bits in a posit. The number of regime bits
is computed by counting the run of identical bits 𝑘 after the sign
bit, terminated by an opposite bit. If the first bit of the regime is 0,
then the regime 𝑟 is equal to −𝑘 . If the first bit is 1, 𝑟 = 𝑘 − 1. The
exponent begins after all regime bits. The exponent in posit format
is not stored with a bias; it is stored as an unsigned integer. Similar
to floats, the fraction in posit format has an implicit 1. Negative
numbers are encoded in 2’s complement format.

s  rrr..r  e1e2..ees  f1f2f3f4...
sign
bit
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bits

exponent
bits

fraction
bits

32 bits total

Figure 2: Bit layout of a 32-bit posit with 𝑒𝑠 exponent bits

There are only 2 special numbers in the posit format: 0 and Not-
a-Real (NaR), an umbrella value for anything not mathematically
definable as a real number. Early iterations of the format referred
to NaR as ± inf. Posits have no subnormals. If the posit bits are all
zero, then the value is 0. If the sign bit is 1 and all other bits are
zero, the value is NaR. There is only one 0 value.

Let 𝑠 be the sign bit value, 𝑟 the regime value, 𝑒 the exponent
value,𝑚 the number of fraction bits, 𝐹 the bit string in the posit, and
𝑓 the fraction of the posit, computed by the following expression:

𝑓 = 2−𝑚Σ𝑚−1
𝑙=0 𝐹𝑙2𝑙

Assuming the posit is neither 0 nor NaR, the value of the posit 𝑣
can be computed with the following formula:

𝑣 = ((1 − 3𝑠) + 𝑓 ) × 2(1−2𝑠 )×(4𝑟+𝑒+𝑠 )

3 Related Work
Although there have been many related works studying the accu-
racy and energy benefits of using posits compared to IEEE 754 floats
or fixed-point representation, there has not been any prior work
looking into the compressibility of posits. Below, we summarize
related works exploring the accuracy benefits in general and the
(simulated) energy savings in machine learning, high-performance
computing, and other scientific computing domains.

Ciocirlan et al. design and implement a posit arithmetic unit,
called POSAR, and analyze the accuracy and efficiency of their
implementation using a series of machine learning benchmarks [10].
The authors found that 32-bit posits outperform 32-bit floats in
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terms of accuracy and execution speed but require 30% more FPGA
resources than 32-bit floats.

Romanov et al. evaluate several popular test suites and programs
used in machine learning (such as BLAS, GEMM, etc.) by compar-
ing floats, posits, and bfloats [28]. The results show that software
implementations of posit16 and posit32 have high accuracy but are
slow. Furthermore, bfloat16 is about the same as float32 in accuracy
but much better for performance. Therefore, bfloat and posit types
each have a specific use case depending on the application.

Lu et al. explore reduced-precision posits in Deep Neural Net-
works (DNN) to address the enormous memory requirements and
computational complexity [26]. The authors use multiple datasets
(MNIST, CIFAR-10, ImageNet, and Penn Treebank) and compare
their 8-bit posit DNN framework to a 32-bit float baseline. The posit
framework performs on par with the baseline while requiring less
memory. Furthermore, the authors provide a hardware posit imple-
mentation and run the training on a hardware simulator. Compared
to the float hardware, the posit hardware achieves a reduction in
terms of chip area, power usage, and memory requirement.

Carmichael et al. propose Deep Positron, a DNN framework
supporting 8-bit posits [8]. Moreover, they propose an FPGA soft
core supporting fixed-point, floating-point (IEEE 754), and posit
arithmetic to run their experiments. Posits provide better accuracy
than both 8-bit fixed-point and 8-bit floating-point values for 3D
datasets, comparable to 32-bit float accuracy.

Langroudi et al. study the use of 8-bit posits in DNNs compared
to 16-bit fixed-point representation using multiple datasets [23].
The results show that posits achieve better accuracy while also
requiring a smaller memory footprint than a fixed-point format.

Nakasota et al. implement 32-bit posit arithmetic on FPGAs and
GPUs to accelerate linear algebra operations [27]. For the FPGA
implementation, the authors use Flo-Posit, an existing open-source
project providing VHDL units supporting posits. For the GPU im-
plementation, they port the necessary operations from the SoftPosit
library to CUDA and OpenCL kernels. The posit arithmetic was
found to be approximately 0.5–1.0 digits more accurate than IEEE
754 single-precision float arithmetic.

Leong and Gustafson argue that 16-bit fixed-point and IEEE 754
float types lack the accuracy required for 1024- and 4096-point
Fast Fourier Transform computations, but 16-bit posits can be used
instead [24]. Similarly, 32-bit posit FFTs are able to replace 64-bit
IEEE 754 float FFTs for many high-performance computing tasks,
improving speed, energy efficiency, and storage costs by about a
factor of 2 for these workloads.

Chien et al. provide a 32-bit posit NAS parallel benchmark to
explore the feasibility of posit encoding in high-performance ap-
plications [9]. The authors show that posits yield higher accuracy
for all tested kernels and proxy-applications. The calculated over-
head of using a software implementation of posits are 4 to 19 times
slower than an IEEE 754 hardware implementation, highlighting
the need for hardware units that support posits.

Fernandez-Hart et al. look at replacing IEEE 754 floats with
posits when conducting spiking neuron simulations [16]. The au-
thors compare the accuracy of the computation, the spike count,
and the spike timing when using various-width posits and floats
compared against a 64-bit float standard. They found that there was
no difference in accuracy between 32-bit posits and 32-bit floats

compared to the 64-bit reference. However, the 16-bit posits pro-
vided higher accuracy than the 16-bit floats when comparing to
the standard, so much so that the 64-bit float reference could be re-
placed with the 16-bit posit version without significantly impacting
the computation.

Klower et al. study the effects of using posit arithmetic as an
alternative to float arithmetic for weather and climate models [22].
16-bit posits with 1 or 2 exponent bits are more accurate than 16-bit
floats, and the authors argue that reduced precision posit arithmetic
in computational fluid dynamics will provide a benefit.

Esmaeel et al. implement the second-order infinite impulse re-
sponse notch filter with two hardware posit versions, a standard
posit system and a posit system with a faster multiplier [12]. These
implementations are compared against an IEEE 754 implementation.
With the standard posit implementation, posits provide 3.9 times
higher accuracy than floats. With the improved multiplier version,
posits perform better than floats on all metrics—chip area, speed,
power, and energy.

Hou et al. explore a hardware implementation of posit arithmetic,
using Xilinx Vivado Design Suite for the hardware design and
Verilog HDL for the logic, and run the implementation through a
simulator [21]. They found that, due to the variable exponent and
fraction bits, posits require more logic for decoding but provide
better accuracy compared to IEEE 754 floats.

Wu et al. present a design for a posit vector arithmetic unit in
the Chisel language [32]. It supports vector operations such as
addition, subtraction, multiplication, division, and dot product. The
experiments show that the division operations are 95.85% accurate,
while the other operations are 100% accurate.

Gohil et al. propose a fixed-posit representation to alleviate the
complexity when handling a varying number of exponent and frac-
tion bits. They evaluate the design of their fixed-posit multiplier
on the error-resilient AxBench and OpenBLAS benchmarks. Com-
pared to standard posit multipliers and IEEE 754 floating-point
multipliers, the fixed-posit implementation provides savings for
power, chip area, and delay. Furthermore, they observe a minimal
quality loss when using fixed-posit.

Alouani et al. study the robustness of 32-bit posits and 32-bit
floats to bit flips [5]. First, the authors present a theoretical analysis
for IEEE 754 compliant numbers and posit numbers for single and
double bit flips. Then, they perform an exhaustive fault injection
experiment that shows that, in 95% of the tests, the posit represen-
tation is less impacted by faults than the float representation.

Lindstrom proposes an alternative block-based floating-point
representation that utilizes a variable-length encoding of the expo-
nent, rather than a fixed-length exponent like other block-based
approaches, borrowing from universal number representations,
such as posits [25]. Using numerical experiments with real data,
the author shows that his posit-based approach may yield as much
as six orders of magnitude increase in accuracy over conventional
posits for the same amount of storage, and even more accuracy
gains over IEEE floats.

4 Experimental Methodology
To evaluate the compressibility of posits, we took several IEEE 754
single-precision inputs from the SDRBench suite [33] and created
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Table 1: Information about the 5 evaluated compressors

Name Version Source
bzip2 1.1.0 [30]
gzip 1.13 [1]
lz4 1.04 [2]
XZ 5.4.1 [3]
Zstd 1.5.1 [4]

copies with posit encoding using the cppposit library [29]. Although
standard 32-bit posits use 2 maximum exponent bits (𝑒𝑠 = 2), we
opted for a 32-bit posit configuration with a maximum of 3 expo-
nent bits (𝑒𝑠 = 3) as this allows for the posit’s dynamic range to
capture more of the normal values from the IEEE 754 standard (see
Section 4.2 for more detail).

We ran all evaluated compressors on both the IEEE and the posit
version of the inputs. For each evaluated compressor, we report
the geometric mean compression ratio across all tested inputs. We
use the geometric mean rather than the arithmetic mean to help
dampen inputs that significantly outperform the general case [17].
Since the compression ratio depends only on the algorithm and is in-
dependent of the hardware, we do not list the system specifications
as the ratios will be the same on any system.

The rest of this section provides details on the selected inputs,
the evaluated compressors, and on the LC framework.

4.1 Evaluated Compressors
Table 1 lists information on the 5 studied compressors. These com-
pressors are designed for general-purpose data and are not special-
ized for floating-point data. We focus on general-purpose compres-
sors since no special-purpose posit compressors exist yet. We ran
each compressor with the –best flag (if there is an option to do
so). Furthermore, we generated 2 compressors with LC, one for the
IEEE inputs and one for the posit inputs, as outlined in Section 4.3.

4.2 Datasets
Table 2 provides information on the 7 datasets we use in our tests.
The data is encoded in single-precision IEEE floats and encompasses
a wide range of scientific domains. We choose 2 inputs from each
dataset at random, excluding any small files from the pool of choices
for each dataset. By choosing 2 inputs from each dataset, we avoid
weighing datasets with more files differently. Table 3 lists the 14
selected inputs and their sizes.

Posits are more accurate for values close to 1.0 due to their
variable fields and tapered accuracy, meaning some IEEE values
that are far away from 1.0 may not be representable with a given
posit configuration. Hence, when converting IEEE data to posit
data, very large and very small values may incur a loss. To test
how lossy this conversion is, we converted each posit file back to
IEEE encoding and measured how many values differed from the
original input.

When using a maximum of 3 exponent bits, the geometric mean
over all 14 inputs yields 97.1% precise values. Of the 14 inputs we
use, 8 incur no loss in the posit conversion and 4 have a very small
amount of error introduced. The AEROD input yields 90% precise

Table 2: Information about the datasets

Name Description
CESM Climate simulation
EXAALT Molecular dynamics simulation
HACC Cosmology particle simulation
ISABEL Weather simulation
NYX Cosmology N-body simulation
QMC Many-body ab initio Quantum Monte Carlo
SCALE Climate simulation

Table 3: Information about the 14 single-precision inputs

Name Dataset Size
AEROD_v_1_1800_3600.f32 CESM 25 MB
ICEFRAC_1_1800_3600.f32 CESM 25 MB
dataset1.y.f32.dat EXAALT 65 MB
dataset2.x.f32.dat EXAALT 342 MB
vx.f32 HACC 1.1 GB
xx.f32 HACC 1.1 GB
CLOUDf48.bin.f32 ISABEL 96 MB
QRAINf48.bin.f32 ISABEL 96 MB
baryon_density.f32 NYX 512 MB
velocity_x.f32 NYX 512 MB
einspline.f32 QMC 602 MB
einspline.pre.f32 QMC 602 MB
PRES-98x1200x1200.f32 SCALE 539 MB
RH-98x1200x1200.f32 SCALE 539 MB

values, and the QRAIN input yields 73% precise values. These two
files have very large and very small values, respectively, explaining
the increased percentage of inexact values.

When using a maximum of 2 exponent bits, the geometric mean
over all 14 inputs yields only 85.6% precise values. Due to this
substantially lower ratio, we use 𝑒𝑠 = 3 for our experiments rather
than the standard 2 exponent bits for 32-bit posits.

4.3 LC Framework
The LC framework is a tool that can automatically synthesize com-
pression pipelines from a library of data transformations. Each
stage in a pipeline is a single data transformation. LC has produced
some state-of-the-art compressors for floating-point data [6, 14],
highlighting that LC is capable of producing pipelines that are on
par with the other evaluated compressors. We opted to search for 3-
stage pipelines, resulting in a total of 236,196 lossless pipelines. We
ran all 236,196 pipelines on both encodings of each file. To choose a
single LC algorithm that works best for all IEEE inputs and another
single LC algorithm that works best for all posit inputs, we selected
the algorithm with the highest geometric-mean compression ratio
across all tested inputs.

The resulting LC pipeline for float data uses the following 3
stages, all of which interpret the bits of each float word as an inte-
ger word: DIFFMS, RARE, and RAZE [6]. The DIFFMS component
computes the difference sequence (also called “delta modulation”)
by subtracting the binary representation of the previous value
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Figure 3: Geometric-mean compression ratios on IEEE float
data

from the current value and outputting the resulting difference in
magnitude-sign format, which is often more compressible because
it tends to produce values with many leading zero bits. If neigh-
boring values correlate with each other, this tends to yield a more
compressible sequence. The RARE component creates a bitmap in
which each bit specifies whether the top 𝑘 bits of a word match
the top 𝑘 bits of the prior word or not, where 𝑘 is automatically
picked to be optimal. It outputs the non-repeating 𝑘-bit words, the
32 − 𝑘 remaining bits from all values, and a compressed version
of the bitmap that is repeatedly compressed with the same algo-
rithm. Lastly, the RAZE component works in the same way, except
it checks whether the top 𝑘 bits in each word are zero or not.

The LC pipeline for posit data uses the following 3 stages, all
of which interpret the bits of each posit word as an integer word:
DIFFNB, BIT, and RZE [15]. The DIFFNB component is similar to
DIFFMS but outputs the resulting difference in negabinary rather
than magnitude-sign format. The BIT component is often referred
to as “bit shuffle” or “bit transpose”. It takes the most significant
bit of each value in the input and outputs them together, then it
takes the second most significant bit of each value and outputs
them, and so on down to the least significant bit. This improves
compressibility if nearby values tend to have the same bits in certain
positions. Lastly, the RZE component is similar to RAZE, except it
operates on all bits of each word rather than only the top 𝑘 bits.

5 Results
In this section, we study the compression ratio of the evaluated com-
pressors on the selected IEEE and posit encoded inputs. First, we
compare the compression ratios provided by the evaluated compres-
sors on the float data and on the posit data. Then, we explore how
the compression ratio improves when allowing a unique per-file
LC pipeline for each input.

5.1 Posit vs. Float Compression
Figures 3 and 4 show the compression ratio achieved by each com-
pressor on the float encoded data and the posit encoded data, re-
spectively. The compression ratio runs along the x-axis and the
compressors run along the y-axis. Higher ratios are better.
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Figure 4: Geometric-mean compression ratios on posit data

On the float data, XZ achieves the highest compression. LC pro-
vides the next highest compression, followed by bzip2. gzip and Zstd
provide similar compression, and lz4 yields the lowest compression.
XZ uses LZMA, a dictionary-based compression algorithm derived
from LZ77. bzip2, gzip, and Zstd also use a dictionary approach,
but XZ takes advantage of the large main memory available on
modern systems, allowing for larger dictionaries providing better
compression, explaining why bzip2, gzip, and Zstd achieve similar
compression ratios whereas XZ provides the highest compression
of the evaluated compressors. Lz4 also uses the LZ77 dictionary
approach but does not combine it with an entropy stage (e.g., Huff-
man coding) like the other compressors do, resulting in the lowest
compression ratio. However, lz4 is designed for fast compression,
and removing this additional stage hurts the compression ratio but
improves compression speed.

On the posit data, the ranking of the evaluated compressors
remain the same. XZ provides the highest compression, followed
by LC and bzip2. gzip and Zstd yield the same compression ratio,
with lz4 achieving the lowest compression. All compressors except
bzip2 and lz4 yield lower compression ratios on the posit inputs
than on the float inputs. XZ, LC, gzip, and Zstd exhibit a small 2.45,
3.62, 2.45, and 1.85% reduction in compression ratio on posit data
compared to float data, respectively. lz4 performs the same on both
sets of inputs, and bzip2 yields a 1.74% increase in compression
ratio on posit data.

Figure 5 shows the percentage of IEEE floats within each input
that have a given exponent value. The biased exponent runs along
the x-axis, and the percentage of input values runs along the y-axis.
In general, most of the values have a biased exponent of around
128, meaning that most of the absolute values are close to 1.0. The
QRAIN input, and especially the CLOUD and ICEFRAC inputs,
contain many zero or subnormal values. The QRAIN input further
contains quite a few small non-zero values. The AEROD input con-
tains many extremely large absolute values. As mentioned, posits
are particularly accurate for values close to 1.0, and the accuracy
diminishes for values that are further away. Due to this, the QRAIN,
ICEFRAC, CLOUD, and AEROD inputs are some of the only inputs
that do not have 100.0% precise values (see Section 4.2).

When looking at each individual file’s compressibility, QRAIN
is the only one of the 14 tested inputs that, when encoded in posit
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Figure 5: Percentage of IEEE floats with a given exponent
for all 14 inputs

format, achieves higher compression ratios than when encoded in
float format. Since this input has the lowest percentage of precise
values, its increase in compressibility is likely a result of the loss
in accuracy, potentially causing posit values to contain more zero
bits (or one bits) in a row. On the other inputs, the variable-length
exponents may be the cause of the reduced compression ratios.

Although the compression ratios are, in general, a little lower
with posit data than with float data, we found that converting float
to posit data does not affect the compressibility much. Dinechin et
al. argue that 8- and 16-bit posits can be cast without error to 32-bit
floats, and 32-bit posits can be cast without error to 64-bit floats [11],
due to smaller-width posits having a larger dynamic range than the
larger-width floats when using an appropriate value for 𝑒𝑠 . Hence,
storage requirements can be reduced by simply saving float data
in a smaller-width posit. However, this approach will not work for
certain float values that posits are unable to represent due to not
having enough bits for the fraction after allocating the regime bits,
thus truncating the float mantissa when converting to posit.

5.2 Per-File LC Pipeline
Figure 6 shows the compression provided by LC on both float and
posit data when allowing each file its own unique compression
pipeline. Out of the 236,196 possible pipelines, we took the highest
compressing pipeline for each file and then computed the geometric
mean over the resulting compression ratios, as opposed to using
a single pipeline as was done in the previous subsection. When
using a distinct pipeline on each file, LC delivers a 4.92% and 6.06%
increase in compression ratio on float and posit data respectively,
providing compression on par with XZ. However, XZ only runs
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Figure 6: Geometric-mean compression ratios with a unique
per-file LC pipeline

on the CPU, while LC compressors run on both the CPU and GPU,
producing bit-for-bit the same result on both types of devices.

6 Conclusion
This paper presents the first study on the compressibility of posit
data. We evaluate 5 general-purpose lossless compressors, and sev-
eral new compressors generated by our LC framework, on 14 single-
precision inputs from 7 datasets in the SDRBench suite. We create
copies of these inputs and encode them in posit format to compare
how well the compressors perform on the two formats.

We find that the XZ compressor provides the highest compres-
sion ratios on both formats.When allowing a customized LC pipeline
for each input, LC yields ratios on par with XZ. Furthermore, the
compression ratios on posit data are generally very close to and
only slightly lower than on float data. Hence, storing scientific data
in posit format is a viable option for applications that require the
accuracy benefits of posits.

In futurework, othermetrics such as compression/decompression
throughput and the compressors’ memory overhead could be stud-
ied. Moreover, our work could be extended to cover other values for
𝑒𝑠 and double-precision data as well. Once lossless and lossy special-
purpose compressors for posits have been developed, these new
compressors should be compared to special-purpose compressors
designed for IEEE formatted data.
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