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Abstract 

Parallel programming has become an essential module in computer science education. However, most 
courses and textbooks only provide limited coverage of how to parallelize modern workloads. To fill this 
gap, we created Sapphire, a suite of seven graph analytics algorithms that we parallelized using hun-
dreds of different styles. The suite includes over 2000 CUDA, OpenMP, and C++ codes as well as 
diverse inputs to elicit various behaviors from these parallel programs. Moreover, for each code, it con-
tains annotated versions with intentionally planted bugs. 

Sapphire enables educators to systematically teach how to parallelize graph algorithms, how to track 
down and eliminate common parallelization bugs, and to study the effects that different implementation 
styles and inputs have on performance. It also makes it easy to create many demos, hands-on exer-
cises, and assignments. Thus, Sapphire can help students gain a deep understanding of how to develop 
efficient parallel programs on the example of interesting and relevant workloads. 
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1 INTRODUCTION 

Multi-core hardware is now ubiquitous, including in smartphones and tablets. However, much of our 
software is still serial, meaning it cannot leverage the performance and energy-efficiency benefits of the 
hardware parallelism. This disconnect underscores the importance of teaching parallel programming. 

Many courses and textbooks on parallel programming already exist. Most of them use regular programs 
[1] with predictable memory accesses and control flow, such as dense array and matrix operations [2]–
[10]. These codes are historically important and make it easy to cover basic parallelization techniques. 
However, based on our experience, students tend to find them unengaging or even boring. Moreover, 
they may never need to parallelize such codes in practice as efficient parallel libraries exist. This is why 
we recommend teaching parallel programming on more fascinating and relevant codes in at least the 
later parts of the course (or textbook), as we have done with great success in our courses. 

For instance, graph analytics (Section 2) is a rapidly growing and already widely used domain with many 
interesting algorithms for processing social networks [11], analyzing medical data [12], building recom-
mendation systems [13], and so on. Many of these codes are irregular [1], meaning they exhibit input-
dependent and dynamically changing parallelism, control flow, and memory-access patterns. Teaching 
parallel programming on such examples is more forward looking and provides opportunities for covering 
a much wider variety of parallelization and implementation styles than is possible with regular codes. 
Learning about these styles is important as they can affect performance by orders of magnitude. 

This paper presents Sapphire, an educational tool for our parallel programming courses. It can auto-
matically apply widely-used implementation styles (Section 4) to a set of graph algorithms, yielding thou-
sands of variations. It supports CUDA, OpenMP, and C++ threading. The resulting codes are correct 
and resemble implementations that a programmer might write. Additionally, it contains special code 
versions with intentionally planted bugs, such as data races and out-of-bound memory accesses. More-
over, Sapphire comes with real-world inputs and graph generators to produce countless synthetic inputs 
for running these input-dependent codes and studying their performance. 

Our tool enables teachers to systematically explain general methods for parallelizing programs, show a 
wide range of source-code examples, discuss and measure the advantages and disadvantages of each 
style, demonstrate the effects of parallel programming bugs, and analyze how to combine styles to 
produce efficient implementations (Section 4). Sapphire also provides interesting assignments to help 
the students understand and apply this knowledge (Section 5). The Sapphire suite is open sourced 
under the name Indigo3 at https://github.com/burtscher/Indigo3Suite/. 



2 BACKGROUND 

Breadth-First Search (BFS) is perhaps the simplest graph traversal algorithm that is used in many ap-
plications. It labels all vertices with the shortest distance (in number of edges) from a given source vertex 
in the graph. Section 4 describes different parallelization styles on the example of BFS. 

2.1 Graph analytics example 

Fig. 1 shows the BFS algorithm. Using the graph from Fig. 2 as input and vertex 0 as the source, Table 
1 shows the BFS computation step by step. 

 

 

Figure 1. Algorithm for parallel BFS 

 

Figure 2. Example graph (left) and its CSR representation (right) 

Table 1. Distance values computed in each step of BFS on the example graph 

Vertex Init Iter1 Iter2 Iter3 

0 0 0 0 0 

1 ∞ 1 1 1 

2 ∞ ∞ 2 2 

3 ∞ 1 1 1 

4 ∞ ∞ 2 2 

 



The algorithm starts by initializing the distance of the source to 0 and all other distances to ∞. In the first 
iteration, every active vertex v (i.e., whose distance is not ∞) calculates a new distance (i.e., dist[v]+1). 
The new distance for vertices 1 and 3 is 1, which is smaller than their current distances, so they are 
updated, as shown in the Iter1 column of Table 1. Similarly, in the second iteration, vertices 0, 1, and 3 
calculate new distances to their neighbors and find shorter distances for vertices 2 and 4. The next 
iteration is the final iteration because no new shorter distances are found. 

2.2 Programming models 

Sapphire currently supports three parallel programming models, namely CUDA, OpenMP, and C++ 
threads. CUDA supports multiple levels (e.g., thread, warp, and block) of parallelism. It provides built-in 
variables for accessing the thread and block indices as well as the block and grid dimensions. A unique 
global index for assigning work to each thread can be calculated by these values. We use “gidx” (e.g., 
in Fig. 3) to indicate this index. OpenMP is based on compiler directives, which are expressed by prag-
mas that may contain optional clauses. These clauses can specify various options. For instance, in Fig. 
3, Examples 9a and 9b select different scheduling strategies. C++11 introduced built-in classes and 
functions in the standard library to support multithreading. These classes and functions can be used for 
threading, atomics, mutual exclusion, and more. For instance, std::this_thread::get_id() returns the 
unique thread ID. As shown in Examples 10a and 10b in Fig 4, the variable “tid” refers to the thread ID, 
enabling the implementation of different schedules. 

2.3 Compressed sparse row graph format 

The Compressed Sparse Row (CSR) format is one of the most widely used graph representations [14]. 
It is based on two dense arrays: an edge array and an index array. The edge array holds the concate-
nated adjacency lists of all vertices. The index array holds the starting position (index) of each adjacency 
list plus an extra element indicating the end of the last list. Fig. 2 shows an example graph and its CSR 
representation. All Sapphire codes are based on CSR, enabling users to provide their own inputs. 

3 RELATED WORK 

3.1 Existing textbooks 

Textbooks on parallel programming generally focus on regular programs. In fact, most either do not 
include any irregular programs [4], [9] or only briefly introduce them by providing simple examples (e.g., 
tree traversal) [3], [5]–[7], [10]. Only a few textbooks [2], [8], [15] include chapters that illustrate how to 
parallelize graph algorithms, but none of them discuss different implementation styles. Moreover, sur-
prisingly few parallel-programming textbooks cover debugging. 

3.2 Parallel benchmark suites 

Many suites with parallel codes exist. They target a variety of algorithms, application domains, program-
ming languages, etc. For example, PARSEC [16], Rodinia [17], SHOC [18], Parboil [19], and Chai [20] 
consist of mostly regular parallel codes. Lonestar [21], Pannotia [22], GraphBIG [23], GAPBS [24], GAR-
DENIA [25], and GBBS [26] contain irregular graph algorithms similar to those in Sapphire. However, 
none of these suites are particularly suitable for teaching purposes as they only contain a few codes 
and inputs, few or no labeled variations, no buggy codes, and the codes tend to be quite long. In con-
trast, Sapphire consists of short codes, where the main computation fits on a slide, and comprises many 
inputs and labeled variations of each base algorithm (including buggy implementations) to perform sys-
tematic studies. It contains 2276 bug-free codes and tens of thousands of buggy codes. 

DataRaceBench [27], RMARaceBench [28], and Indigo [29] include buggy kernels. Among these three 
suites, only Indigo contains a large number of codes. However, they are all microbenchmarks, that is, 
code patterns that do not compute anything useful. In contrast, Sapphire includes full-fledged graph 
algorithms that are more useful for teaching and cover more bug types. 

3.3 Automatic code generation 

The source code annotation and variation in CREST [30], DLBENCH [31], and Indigo2 [32] inspired the 
code generation process in our suite. Sapphire is a superset of Indigo2 as it includes more graph 



algorithms, covers more parallelization approaches, and contains buggy codes. These labelled buggy 
codes enable the teaching of how to find and eliminate parallelism bugs. 

4 PARALLELIZATION AND IMPLEMENTATION STYLES 

This section explains the various styles. Figs. 3 and 4 illustrate how each style affects the BFS code. 
The key differences are highlighted in red. The various styles exist because they have different pros and 
cons. Which style is preferable depends on the situation. 

 

 

Figure 3. BFS example codes using various general and specific styles 

4.1 General styles 

Vertex-based vs. edge-based. Graphs can be processed by iterating over their vertices or their edges 
[33]. Example 1a in Fig. 3 shows that every thread processes a different vertex v based on the unique 
global thread index (gidx) and iterates over all neighbors. Example 1b shows edge-based code that 
assigns a different edge to each thread. 

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

e = gidx;
if (e < edges) {
    v = src_list[e];
    n = dst_list[e];
    if (dist[n] > dist[v] + 1) {
        dist[n] = dist[v] + 1;
        go_again = true;
}  }

1a Vertex-based 1b Edge-based

idx = gidx;
if (idx < wl1size) {
    v = wl1[idx];
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            wl2[atomicAdd(wl2size, 1)] = n;
}  }  }

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

2a Topology-driven 2b Data-driven

idx = gidx;
if (idx < wl1size) {
    v = wl1[idx];
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            wl2[atomicAdd(wl2size, 1)] = n;
}  }  }

3a Duplicates in worklist

idx = gidx;
if (idx < wl1size) {
    v = wl1[idx];
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            if (atomicMax(stat[v], iter) != iter) {
                wl2[atomicAdd(wl2size, 1)] = n;
}  }  }  }

3b No duplicates in worklist

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

4a Push

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[v] > dist[n] + 1) {
            dist[v] = dist[n] + 1;
            go_again = true;
}  }  }

4b Pull

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

5a Read-write

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (atomicMin(dist[v], newd) > newd) {
            go_again = true;
}  }  }

5b Read-modify-write

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

6a Non-deterministic

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist_new[n] = dist[v] + 1;
            go_again = true;
}  }  }

6b Deterministic

#pragma omp parallel for
for (v = 0; v < nodes; v++) { … }

9a Default scheduling

#pragma omp parallel for \ 
schedule (dynamic)
for (v = 0; v < nodes; v++) { … }
9b Dynamic scheduling

beg = tid * nodes / threads;
end =  (tid + 1) * nodes / threads;
for (v = beg; v < end; v++) { … }

10a Blocked scheduling

for (int v = tid; v < nodes; v += threads) {…}

10b Cyclic scheduling

threads = blockDim.x * gridDim.x;
for (v = gidx; v < nodes; v += threads) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

7a Persistent

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        if (dist[n] > dist[v] + 1) {
            dist[n] = dist[v] + 1;
            go_again = true;
}  }  }

7b Non-persistent

int dist[nodes];
v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (atomicMin(dist[v], newd) > newd) {
            go_again = true;
}  }  }

8a Atomic

cuda::atomic<int> dist[nodes];
v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (dist[v].fetch_min(newd) > newd) {
            go_again = true;
}  }  }

8a CudaAtomic



Topology-driven vs. data-driven. The topology-driven [34] approach in Example 2a simply processes all 
elements. In contrast, the data-driven approach in Example 2b only processes the elements that likely 
need to be updated, which are stored in a worklist (wl). 

Duplicates in worklist vs. no duplicates in worklist. Data-driven implementations can choose whether or 
not to allow duplicate elements on the worklist [35]. In Example 3a, each thread can push a vertex onto 
the worklist regardless of whether the worklist already contains it. In Example 3b, where duplicates are 
not allowed, the threads only add a vertex to the worklist if it is not already present. 

Push vs. pull. The data flow in programs that update vertex data can be either push-based, where data 
is pushed from a vertex to its neighbors, or pull-based, where data is pulled from the neighbors to the 
vertex [36]. In push-style BFS, illustrated in Example 4a, a thread reads the vertex distance, adds 1, and 
updates the neighbor if the new distance is shorter. In pull-style BFS, shown in Example 4b, the thread 
reads the distance of the neighbor, adds 1, and updates the vertex distance if it is shorter. 

Read-write vs. read-modify-write. Many graph algorithms conditionally update vertex data, where a 
thread reads the current value, performs a computation, and writes a new value. For example, in the 
BFS algorithm, the vertex distance is only updated if the new distance is shorter. This read-write ap-
proach works in certain situations, such as in Example 5a, because the updates are monotonic and the 
algorithm is resilient to temporary priority inversions. The read-modify-write style shown in Example 5b 
is more general but requires an atomic operation that may be slower and lowers parallelism. 

Non-deterministic vs. deterministic. The unpredictable timing of threads can introduce internal non-de-
terminism in parallel codes [37]. Consider Example 6a, where multiple threads may write an element of 
the dist array that is read by another thread. Depending on which thread performs the last write before 
the read, a different value may be read, leading to a different computation of a new distance. Any non-
final distance value will be overwritten in subsequent iterations, meaning the final result is deterministic, 
but the number of iterations may differ from run to run. To make the code also internally deterministic, 
Example 6b uses two arrays, one that is only read (dist) and another that is updated (dist new). 

4.2 Styles for specific programming models 

This subsection describes styles that are applicable to specific programming models. 

Persistent vs. non-persistent. This style only applies to GPU codes. The persistent style, shown in Ex-
ample 7a in Fig. 3, uses as many threads as the GPU can concurrently schedule on its SMs [38], mean-
ing a thread may need to process multiple vertices. In contrast, the non-persistent style in Example 7b 
launches as many threads as the input has vertices and assigns no more than 1 vertex to each thread. 

Atomic vs. CudaAtomic. CUDA provides atomic functions to avoid data races. For instance, Example 
8a uses atomicMin() to update a memory location. However, such functions cannot be employed in the 
host code running on the CPU. To address this limitation, CUDA recently introduced libcu++, a C++ 
Standard Library that can be used in both CPU and GPU code [39]. The corresponding “CudaAtomic” 
solution shown in Example 8b requires a special data type with an optional memory-ordering and scope 
specification, which was not available for atomic operations before. 

Default scheduling vs. dynamic scheduling. OpenMP provides a convenient way to parallelize certain 
“for” loops using a “parallel for” directive. By default, as shown in Example 9a, this directive statically 
assigns each thread a contiguous chunk of loop iterations. In contrast, the dynamic schedule in Example 
9b assigns iterations at runtime whenever a thread is ready to execute another iteration. 

Blocked vs. cyclic. When parallelizing “for” loops, a blocked schedule assigns contiguous iterations to 
each thread, as shown in Example 10a. The cyclic schedule in Example 10b assigns the iterations in a 
round-robin fashion to the threads. 

Thread vs. warp vs. block. This variation refers to the granularity at which a GPU program processes 
the vertices. Threads, warps, and blocks are the three hardware-supported granularities. In thread-
based BFS, each thread processes all neighbors of a vertex as shown in Example 11a of Fig. 4. In warp- 
or block-based BFS, the entire warp or block processes the neighbors of a single vertex, respectively, 
as shown in Examples 11b and 11c. 

Global-add vs. block-add vs. reduction-add. Reductions are widely used in parallel computing to com-
bine multiple values into a single value using a binary associative operator [40]. Three different imple-
mentations are common in GPU codes. The first approach directly updates a shared global variable 
using atomic operations, as shown in Example 12a. The second approach in Example 12b takes 



advantage of faster block-level atomics. The third approach uses warp-level primitives and a shared-
memory buffer for the local results to perform the reduction, as presented in Example 12c. 

Atomic-reduction vs. critical-reduction vs. clause-reduction. CPU codes also employ different reduction 
styles. OpenMP and C++ provide atomic operations, enabling each thread to update a shared variable 
atomically, as shown in Example 13a. Mutexes are also supported, allowing the programmer to update 
shared variables in critical sections, as shown in Example 13b. Additionally, OpenMP provides a reduc-
tion clause, as shown in Example 13c. 

 

 

Figure 4. BFS example codes for styles with three alternatives 

5 USING SAPPHIRE IN THE CLASSROOM 

The following subsections describe ways in which we used or are planning on using Sapphire. 

5.1 Presenting code examples 

To enhance the students’ understanding of each parallelization/ implementation style and the associated 
tradeoffs, instructors can use excerpts of the Sapphire codes, as illustrated in Figs. 3 and 4. Such code 
snippets can serve as examples for introducing various programming styles and for highlighting the 
differences between them. 

In addition to BFS, Sapphire includes six more graph algorithms. They are single-source-shortest-path, 
connected components, maximal independent set, PageRank, triangle counting, and minimum spanning 
tree. In fact, Sapphire includes a separate version of each algorithm for each style and for all meaningful 
combinations of styles, that is, hundreds of runnable versions of each algorithm. The filename indicates 
the used styles. This extensive collection of codes enables instructors not only to comprehensively ex-
plain every style but also to do so within the context of their preferred algorithm. Moreover, it allows 
instructors to re-emphasize the learned material on additional examples, demonstrates how the styles 
can be combined, and offers the flexibility to introduce different examples when teaching the course the 
next time. 

5.2 Executing performance studies 

All codes in Sapphire are executable and compatible with graphs in CSR format (Section 2.3). This 
enables users to experiment with their own inputs, promoting hands-on learning. Sapphire accommo-
dates various devices and encompasses graphs spanning diverse domains, allowing comprehensive 
performance experiments. Such experiments can illustrate several critical points. 

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg; i < end; i++) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (atomicMin(dist[v], newd) > newd) {
            go_again = true;
}  }  }

11a Thread

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg + lane; i < end; i+= WarpSize) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (atomicMin(dist[v], newd) > newd) {
            go_again = true;
}  }  }

11b Warp

v = gidx;
if (v < nodes) {
    beg = nbr_idx[v];
    end = nbr_idx[v + 1];
    for (i = beg + tid; i < end; i+= blockDim) {
        n = nbr_list[i];
        newd = dist[v] + 1;
        if (atomicMin(dist[v], newd) > newd) {
            go_again = true;
}  }  }

11c Block

atomicAdd(result, value);

12a Global-add

atomicAdd_blk(block_result, value);
__syncthreads();
if (tid == 0) 
    atomicAdd(&result, block_result);

12b Block-add

warp_result = warp_reduce(value);
__syncthreads();
block_result = blk_reduce(warp_result);
__syncthreads();
if (tid == 0) 
    atomicAdd(result, block_result);

12c Reduction-add

#pragma omp parallel for
for (i = beg; i < end; i++) {
    #pragma omp atomic
    sum += value;
}

13a Atomic reduction

#pragma omp parallel for
for (i = beg; i < end; i++_ {
    #pragma omp critical
    sum += value;
}

13b Critical reduction

#pragma omp parallel for reduction(+: sum)
for (i = beg; i < end; i++) {
    sum += value;
}

13c Clause reduction



• How the selected style or combination of styles impacts execution time 

• How different algorithms prefer different styles 

• How CPU and GPU implementations of the same algorithm may benefit from different styles 

• How the graph properties affect which styles yield higher performance 

For example, the topology-driven, push-style, deterministic, read-modify-write, thread-based, atomic 
BFS implementation is 113× faster than the corresponding version that uses default CudaAtomic. 
Teachers can easily change the scope and/or memory order in the CudaAtomic type declaration to 
demonstrate how the performance improves. Another example is the pull, persistent, block, globalAdd 
implementation of PageRank, which is 249× faster on our GPU than the corresponding push version. 

5.3 Demonstrating common bugs 

Sapphire includes common bugs, which are clearly labeled in the file name and using comments in the 
source code. This allows instructors to take students through a hands-on journey of exploring different 
bugs. They can execute the buggy codes to illustrate how the various bugs impact the program behavior. 
For instance, a program with data races may produce different output from run to run, and a livelock 
bug causes the program to run forever. Furthermore, the instructor can compare the buggy code with 
its bug-free version, allowing students to easily see the problems that cause the bug. Such practical 
demonstrations can help deepen students’ understanding of potential coding pitfalls. 

5.4 Applying styles to other codes 

Since the styles we discuss in this paper are broadly applicable, they can also be used on other graph 
algorithms that the students may be interested in. For example, an instructor may select an important 
graph analytics problem, collaborate with the students to create a baseline implementation, and subse-
quently explore each style in detail. This process involves discussing which styles apply to the problem 
at hand and demonstrating how to add the chosen style to the code. In case clarification is needed, the 
Sapphire codes can serve as a valuable reference, offering plenty of examples to better understand the 
applicability of each style. 

6 USING SAPPHIRE FOR ASSIGNMENTS 

Hands-on exercises and assignments are essential to solidify the learned material as they allow the 
students to experiment with and apply the new knowledge to gain a deeper understanding of the paral-
lelization and implementation styles. Sapphire supports a wealth of such exercises and assignments, 
as we outline in the following subsections. 

6.1 Identify the style 

With seven different graph problems to choose from and thousands of codes in total, Sapphire provides 
hundreds of examples of each style and multiple examples of each meaningful combination of styles. 
This enables instructors to select one or more files, anonymize them by changing the file name, and 
have the students analyze the C++, OpenMP, or CUDA code to identify which style(s) it employs. The 
difficulty of such exercises can be adjusted by choosing codes that combine fewer or more styles. Al-
ternatively, the teacher can provide multiple anonymized source files and ask the students to find match-
ing pairs that use the same set of styles. 

6.2 Complete the code skeleton 

To further solidify the learned material, teachers can ask their students to write part of the code them-
selves. Rather than requiring the implementation of an entire algorithm using a specific style, the in-
structor can take a few codes from Sapphire, remove some of the statements, and ask the students to 
fill in the missing parts. This makes it easy to adjust the level of difficulty, to focus on the aspects that 
the students struggle with the most, and to vary the assignments from semester to semester. 

For example, a teacher can remove the red statements from the push and pull BFS codes in Fig. 3 and 
ask the students to recreate them. This hands-on exercise is likely to help students better understand 
how the two styles work and how they differ. By measuring the execution time of the resulting codes, 
the students can further learn about the performance implications of each style. 



6.3 Fix the bugs 

Instead of removing statements, instructors can also modify the Sapphire codes to introduce bugs that 
the students must track down and fix. Certain parallelization bugs, such as data races, can be difficult 
to find because they are thread-timing dependent and may not lead to wrong results every time the code 
is executed. Introducing such software defects allows the teacher to not only drive home how a style is 
correctly implemented but also how to debug parallel programs. Based on our experience, students tend 
to struggle particularly with debugging, yet this aspect is not typically covered in detail in current text-
books on parallel programming. 

Inserting realistic software defects that trigger interesting behaviors is surprisingly challenging. To aid 
instructors in this endeavor, Sapphire includes a special directory with versions of its codes that already 
contain intentionally planted bugs. The filename indicates which specific bugs are present and what the 
corresponding bug-free code is (for reference). Sapphire covers a range of bugs, including data races, 
deadlocks, atomicity violations, threading mistakes, and incorrectly mixing synchronization. It also in-
cludes bugs that are not related to parallelism (e.g., overflow, out-of-bounds memory accesses, operator 
precedence errors, and using uninitialized data) as well as codes with multiple bugs. This variety enables 
teachers to select the kind of bug(s) they want to focus on, to change assignments between course 
offerings, and to control the difficulty of the exercise. 

7 CONCLUSION 

Teaching parallel programming has been part of the ACM Curricular Guidelines since 2013 and is now 
a requirement for ABET accreditation in the USA in computer science. This paper describes Sapphire, 
an educational tool to assist in teaching parallel programming. It offers a wide range of parallel graph 
codes, which are widely used in real-world applications but can be challenging to implement. Sapphire 
supports 13 distinct sets of parallelization and implementation styles for graph analytics codes. Each set 
encompasses 2 or 3 alternative styles, allowing for the creation of many unique combinations. In total, 
Sapphire contains 2276 codes that are based on 7 graph analytics problems. It further contains 10,000s 
of annotated versions of these codes with planted bugs, providing a comprehensive collection of exam-
ples of each style and bug. Sapphire can be used both in the classroom and for assignments. Using the 
code examples in class can help the teacher explain each style and show how to combine them. Each 
style has its pros and cons, allowing students to gain insights into the tradeoffs involved. Sapphire also 
enables instructors to run experiments that demonstrate how the implementation style and program 
input affect performance. Additionally, it can serve as a reference since the styles are general and can 
be used on other graph algorithms. By exploring the various styles, students can learn how to select 
efficient implementation styles for a given algorithm and input type. 

The exercises and assignments supported by Sapphire are interesting and practical, enabling students 
to apply the learned material to graph analytics codes. For example, the instructor can select one or 
more codes and ask students to identify the styles. Similarly, the teacher can ask the students to write 
part of the code to complete a code skeleton. Moreover, since Sapphire includes a set of buggy codes, 
the instructor can design exercises and assignments for finding and fixing bugs. Through these hands-
on activities, students can acquire a deeper understanding and become better programmers. We hope 
our work will enable instructors to teach parallel programming in a new and engaging way. 
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