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Abstract. Large message latencies often lead to poor performance of parallel applications. 
In this paper, we investigate a latency-tolerating technique that immediately releases all block-
ing receives, even when the message has not yet (completely) arrived, and enforces execution 
correctness through page protection. This approach eliminates false message data dependencies 
on incoming messages and allows the computation to proceed as early as possible. We imple-
ment and evaluate our early-release technique in the context of an MPI runtime library. The re-
sults show that the execution speed of MPI applications improves by up to 60% when early re-
lease is enabled. Our approach also enables faster and easier parallel programming as it frees 
programmers from adopting more complex nonblocking receives and from tuning message 
sizes to explicitly reduce false message data dependencies. 

1   Introduction 

Clusters of workstations can provide low-cost parallel computing platforms that 
achieve reasonable performance on a wide range of applications reaching from data-
bases to scientific algorithms. To enable parallel application portability between vari-
ous cluster architectures, several message-passing libraries have been designed. The 
Message Passing Interface (MPI) standard [10] is perhaps the most widely used of 
these libraries. MPI provides a rich set of interfaces for operations such as point-to-
point communication, collective communication, and synchronization. 

Sending and receiving messages is the basic MPI communication mechanism. The 
simplest receive operation has the following syntax: MPI_Recv(buf, count, dtype, 
source, tag, comm, status). It specifies that a message of count elements of data type 
dtype with a tag of (tag, comm) should be received from the source process and stored 
in the buffer buf. The status returns a success or error code as well as the source and 
tag of the received message if the receiver specifies a wildcard source/tag. The 
MPI_Recv call blocks until the message has been completely received. The MPI stan-
dard also defines a non-blocking receive operation, which basically splits MPI_Recv 
into two calls, MPI_Irecv and MPI_Wait. The MPI_Irecv call returns right away 
whether or not the message has been received, and the MPI_Wait call blocks until the 
entire message is present. This allows application writers to insert useful computation 



 

between the MPI_Irecv and MPI_Wait calls to hide part of the message latency by 
overlapping the communication with necessary computation. 

In both cases, the computation cannot proceed past the blocking call (MPI_Recv or 
MPI_Wait). In our library, we immediately release (unblock) all blocked calls 
(MPI_Recv and MPI_Wait) even when the corresponding message has not yet been 
completely received, and prevent the application from reading the unfinished part of 
the message data through page protection. Our early-release technique automatically 
delays the blocking for as long as possible, i.e., until the message data is actually 
used by the application, and eliminates the false message data dependency implied by 
the blocking calls. As such, it provides the following benefits: 

• It allows the computation to continue on the partially received message data 
instead of waiting for the full message to complete, thus overlapping the 
communication with the computation. 

• All blocking receives are automatically made non-blocking. The message 
blocking is delayed as much as possible, benefiting even nonblocking re-
ceives with sub-optimally placed MPI_Wait calls. 

• Programmers no longer need to worry about when and how to use the non-
blocking MPI calls, nor do they need to intentionally dissect a large message 
into multiple smaller messages. This reduces the development time of paral-
lel applications. In addition, the resulting code is more intuitive and easier to 
understand and maintain, while at the same time providing or exceeding the 
performance of more complex code. 

We implemented the early-release technique in our erMPI runtime library. Appli-
cations linked with our library instantly benefit from early release without any modi-
fication. erMPI currently supports the forty most commonly-used MPI functions, 
which is enough to cover the vast majority of MPI applications. 

There has been much work on improving the performance of MPI runtime librar-
ies. TMPI [12], TOMPI [1] and Tern [6] provide fast messaging between processes 
co-located on the same node via shared memory semantics that are hidden from the 
application writer. Tern [6] dynamically maps computation threads to processors ac-
cording to custom thread migration policies to improve load balancing and to mini-
mize inter-node communication for SMP clusters. Some implementations [9, 11] take 
advantage of user-level networks such as VIA [2] or InfiniBand [4] to drastically re-
duce the messaging overhead, thus reducing small-message latency. Other researchers 
have investigated ways to improve the performance of collective communication op-
erations in MPI [5, 13]. Prior work by the authors has explored using message com-
pression to increase the effective message bandwidth [7] and message prefetching to 
hide the communication time [8]. 

This paper is organized as follows. Section 2 introduces our erMPI library and de-
scribes the early-release implementation of blocked receives. Section 3 presents the 
experimental evaluation methodology. Section 4 discusses results obtained on two su-
percomputers. Section 5 presents conclusions and avenues for future work. 



 

  

2   Implementation 

2.1   The erMPI Library 

We have implemented a commonly used subset of forty MPI functions in our erMPI 
library, covering most point-to-point communications, collective communications, 
and communicator creation APIs in the MPI specification [10]. The library is written 
in C and provides an interface for linking with FORTRAN applications. erMPI util-
izes TCP as the underlying network protocol and creates one TCP connection be-
tween every two communicating MPI processes. Each process has one application 
thread as well as one message thread to handle sending to and receiving from all 
communication channels. 

2.2   Early-Release Mechanism 

The messaging thread creates an alias page block for each message receive buffer 
posted via an MPI_Recv or MPI_Irecv call and stores incoming message data via 
these alias pages. The application thread making the call to MPI_Recv or MPI_Wait 
never blocks when calling these routines, which is a slight departure from the spirit of 
these calls. However, if the message has not arrived or is only partially complete, the 
application thread protects the unfinished pages of the message receive buffer and 
immediately returns from the MPI_Recv or MPI_Wait call that would otherwise have 
blocked. Thus, computation can continue until the application thread touches a pro-
tected page, which causes an access exception, and the application is then blocked un-
til the data for that page is available. 
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Fig. 1. Receive page examples 

Figure 1 (a) shows an example of a receive buffer consisting of three pages. The 
virtual pages Pi and Pi

’ (i ∈ {1,2,3}) are mapped to the same physical page. The in-
coming message data is stored into the receive buffer through the alias pages Pi

’, 
which are created from the original buffer pages passed to MPI_Recv and are never 
protected. When the application thread calls MPI_Recv or MPI_Wait in this example, 
it will notice that P1 is completely filled and therefore protects only P2 and P3, which 
will be granted ReadWrite access again by the messaging thread as soon as those 
pages are filled. The application thread returns from the MPI_Recv or MPI_Wait call 
without waiting for the completion of P2 and P3. 



 

2.3   Implementation Issues 

Shared Receive Pages. Figure 1 (b) depicts three outstanding receives, R1, R2 and R3. 
All three receive buffers include part of page P2. To handle such cases, we maintain a 
page protection count for shared receive pages to enforce the correct protection ac-
tion. A page’s protection count is incremented for each early-release protection. Note 
that a page only needs to actually be protected when the page protection count is in-
creased from zero to one. If all three receives are released early, P2’s page protection 
count will be three. The count is decreased by one as soon as one of the receives 
completes the page. Once the count reaches zero, the page is unprotected. 

There are at most two shared pages for each receive operation, one at the head of 
and the other at the tail of the receive buffer. For efficiency reasons, we log the page 
protection counts of all head and tail pages in a hash table. 

Alias Page Creation. Most modern operating systems allow multiple virtual pages to 
be mapped to the same physical page and expose this function via system calls such 
as mmap in Unix and MapViewOfFile in Windows NT. 

Creating an alias page is an expensive operation. To facilitate alias page reuse, we 
store the alias page description in a hash table. Each entry in the hash table records the 
starting addresses of both the original and the alias page blocks and the page block 
length. We hash the starting address of the original page block to index the hash table. 
A new alias page block is created if there is no hit or if the existing alias block is too 
small; otherwise a preexisting block is reused. Alias page blocks are allocated at a 16-
page granularity. The page size is 4 kB in our system. 

Send Operation. It is important that the protected pages be accessed only by the ap-
plication thread running in user mode. If these pages are touched by a kernel or sub-
system thread or in kernel mode, it may be impossible to catch and handle the access 
exceptions gracefully. This can happen when a send buffer shares a page with a re-
ceive buffer and the send buffer is passed to the operating system. To prevent this 
scenario, we also use alias page blocks for sends. 

2.4   Portability and MPI Standard Relaxation 

Even though we evaluate our early-release technique on Windows with TCP as the 
underlying network protocol, it can be similarly implemented on other systems, as 
long as the following requirements are met: 

• The OS supports page protection calls and access violation handling. 
• The network protocol can access the protected receive buffer. This is possible 

if the network subsystem has direct access to the physical pages or if alias 
pages can be used to interface with the communication protocol.  

• The MPI library can be notified when a partial message arrives. This allows 
the protected pages to be unprotected as early as possible. 

MPI_Recv returns the receive completion status in the status structure. It usually 
includes the matching send’s source and tag and indicates whether the receive is a 
success. If a wild card source or tag is specified and the call is early released, the 
matching send’s source or tag is typically not known. In such a case, we delay the 



 

  

early release until this information is available. We always return a receive success in 
the status field and force the program to terminate should an error occur. 

2.5   Other Issues 

Message Unpacking. In our sample applications, messages are received into the des-
tination buffers directly, allowing the computation to proceed past the receive opera-
tion and to work on the partially received message data. For applications that first re-
ceive messages into an intermediate buffer and then unpack the message data once 
they have been fully received, the early-released application thread would cause an 
access exception and halt the execution right away due to the message unpacking 
step, limiting the potential of overlapping useful computation with communication. 

Since unpacking adds an extra copy operation and increases the messaging latency, 
it should be avoided whenever possible. More advanced scatter receive operations 
provide better alternatives for advanced programmers and parallelizing compilers. 
Another possible solution is to unpack the message as needed in the computation 
phase instead of unpacking the whole message right after the message receive. 

Correctness. To guarantee execution correctness, an early-released application thread 
is not allowed to affect any other application thread before all early-released receives 
are at least partially completed. This means that new messages are not allowed to 
leave an MPI process if there exists unresolved early-released receives. Otherwise, a 
causality loop could be formed where an early-released application thread sends a 
message to another MPI process, which in turn sends a message that matches the 
early-released receive. 

3   Evaluation Methods 

3.1   Systems 

We performed all measurements on the Velocity + (Vplus) and the Velocity II (V2) 
clusters at the Cornell Theory Center [3]. Both clusters run Microsoft Windows 2000 
Advanced Server. The cluster configurations are listed below. 

• Vplus consists of 64 dual-processor nodes with 733 MHz Intel Pentium III 
processors, 256 kB L2 cache per processor and 2 GB RAM per node. The 
network is 100Mbps Ethernet, interconnected by 3Com 3300 24-port switches. 

• V2 consists of 128 dual-processor nodes with 2.4 GHz Intel Pentium 4 proces-
sors, 512 kB L2 cache per processor and 2 GB RAM per node. The network is 
Force10 Gigabit Ethernet interconnected by a Force10 E1200 switch. 

3.2   Applications 

We evaluate the performance of early release on three representative scientific appli-
cations: PES, N-body, and M3. In general, we see small performance improvements 
on benchmark applications due to the message unpacking effects. 



 

PES is an iterative 2-D Poisson solver. Each process is assigned an equal number 
of contiguous rows. In each iteration, every process updates its assigned rows, sends 
the first and last row to its top and bottom neighbors, respectively, and receives from 
them two ghost rows that are needed for updating the first and last row in the next it-
eration. We fix the two corner elements (0,0), (N-1, N-1) to 1.0 and the other two cor-
ner elements (0, N-1), (N-1, 0) to 0.0 as boundary conditions. 

N-Body simulates the movement of particles under pair-wise forces between them. 
All particles are evenly distributed among the available processes for the force com-
putations and the position updates. After updating the states of all assigned particles, 
each process sends its updated particle information to all other processes for the force 
computation in the next time step. 

M3 is a matrix-matrix-multiplication application. In each iteration, a master proc-
ess generates a random matrix Ai (emulating a data collection process), distributes 
slices of the matrix to slave processes for computation, and then gathers the results 
from all slave processes. Each slave process stores a transposed transform matrix B, 
which is broadcast once from the master process to all slaves when the computation 
starts. Each slave process first receives matrix Aip, which is part of matrix Ai, then 
computes matrix Cip = Aip*B and sends Cip to the master. Note that this parallelization 
scheme is by no means the most efficient algorithm for multiplying matrices.  

 

(a) PES (b) N-Body (c) M3  

Fig. 2. Communication patterns 

The communication patterns of these three applications for four-process runs are 
shown in Figure 2. The circles represent processes and the lines represent the com-
munication between processes; each PES process only communicates with at most 
two neighboring processes; each N-Body process communicates with every other 
process; and each M3 slave process communicates with the master process. The mes-
saging calls used are MPI_Send, MPI_Irecv, MPI_Wait and MPI_Waitall. 

Table 1. Problem size and message size information 

Size A Size B Size C Size A Size B Size C
PES 5120X5120, 2000 10240X10240, 1000 20480X20480, 500 40 kB 80 kB 160 kB
N-Body 10240, 200 20480, 100 40960, 50 9 kB 18 kB 35 kB
M3 1024X1024, 400 2048X2048, 40 4096X4096, 20 128 kB 512 kB 2 MB

Problem Size Message Size (64-process run)Program

 

Table 1 lists the three problem sizes we used for each application. Size A is the 
smallest and Size C is the largest. In the “Problem Size” columns, the number before 
the comma is the matrix size for PES and M3 and the number of particles for N-Body; 
the number after the comma is the number of iterations or simulation time steps. We 
have adjusted the number of iterations so that the runtimes are reasonable. We run 
these applications with 16, 32, 64 and 128 processes and two processes per node. The 



 

  

resulting message sizes for 64-process runs are shown in the “Message Size” col-
umns. We obtained the runtimes with three MPI libraries. MPI-Pro is the default MPI 
library on both clusters. The erMPI-B is the baseline version of our erMPI library, in 
which the early release of receives is disabled. erMPI-ER is the same library but with 
early release turned on. 
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(c) N-Body on Vplus (d) N-Body on V2 
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Fig. 3. Scaling comparisons 



 

4   Results 

4.1   Scaling Comparison 

Figure 3 (a - f) plots the scaling with problem size B of PES, N-Body and M3. Each 
application has two subgraphs, the left one shows Vplus and the right one V2 results. 
Each subgraph plots the execution speeds of the three MPI libraries against the num-
ber of processes used. The execution speeds are normalized to the 16-process run of 
the erMPI baseline library. 

For a fixed problem size, the communication-to-computation ratio increases as the 
problem is partitioned among an increasing number of processors, which leads to 
worsening of parallel efficiency and scalability. 

For PES (Figure 3 (a, b)), the erMPI early-release library scales the best among the 
three MPI libraries. The erMPI baseline library also scales better than MPI-Pro. PES 
scales better on the Vplus cluster than on V2. It appears that the higher processing 
power of V2 leads to a higher communication-to-computation time ratio and hence 
worse scalability. 

N-Body is a communication intensive application. The communication dominates 
the computation as the number of processes increases. Figure 3 (c, d) shows that the 
MPI-Pro speedups start to saturate at around 32 processes and degrade at 128 proc-
esses. V2 has a higher network throughput and thus performs better than Vplus. Our 
erMPI library scales, with and without early release, to 64 processes. 

In Figure 3 (e, f), MPI-Pro performs better than the erMPI baseline for 32 and 64 
processes on Vplus, but worse than the erMPI baseline for 128 processes on V2. The 
speedups in the remaining cases are roughly equal. erMPI with early release performs 
significantly better than both the baseline and MPI-Pro, especially for 64- and 128-
process runs.  

4.2   Early-Release Speedup 

The scaling results from the previous section show that our baseline is comparable 
(superior in most cases) to MPI-Pro. In this section, we focus on the performance im-
provement of the early-release technique over the baseline. The speedups over the 
baseline erMPI library are plotted in Figure 4 (a - c) for the three applications. The la-
bels along the x-axis indicate both the cluster and the problem size. Each group of 
bars shows results for runs with 16, 32, 64 and 128 processes. For the few non-
scalable runs that take longer than the runs with fewer processes, the performance im-
provement over the baseline is meaningless and is left out of the figure. 

We see that the speedups of a given problem size and cluster usually increase as 
the number of processes increases, as is the case for Vplus.B and Vplus.C with PES; 
for Vplus.C and V2.C with N-Body; and for Vplus.C, V2.A and V2.B with M3. The 
same trend holds in the other cases except for the last one or two bars. This is due to 
the increasing communication-to-computation ratio as the number of processes in-
creases. Early release has little potential for performance improvement in cases where 
the communication time is minimal. On the other hand, when the communication-to-
computation ratio becomes too large, the speedup decreases in some cases. There are 



 

  

two reasons for this behavior. First, when receives are released early, application 
threads that proceed past the receive operations may send more data into the commu-
nication network, which worsens the network resource contention in communication-
intensive cases. Second, as the communication-to-computation ratios increase past a 
certain level, the remaining computation is small enough that overlapping it with 
communication provides little performance benefit. 
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Fig. 4. Speedups due to early release 

The same reasoning explains the speedup trends for varying problem sizes and 
clusters. As the problem size decreases, the communication-to-computation ratios in-
crease and lead to higher early-release speedups. This behavior can be seen in the PES 
16-process runs on Vplus, the N-Body 16- and 32-process runs on Vplus and 16-
process runs on V2, and the M3 16-, 32- and 64-process runs on both Vplus and V2. 
The V2 cluster has a relative faster network (bandwidth) than Vplus and hence the po-
tential for speedups due to early release is smaller. Indeed, V2 demonstrates a smaller 
performance improvement in most cases, except for N-Body sizes B and C, where the 
two negative effects start to impact the early-release speedups. 

Four cases of PES show early-release speedups of over 10%. N-Body exhibits 
speedups of up to 32%, with four cases being over 20%. M3 reaches over 30% 
speedup in six cases, with a maximum speedup of 60%. 



 

4.3   Early-Release Overhead and Benefit 

The early-release overhead includes the creation of the alias page blocks and the page 
protection for unfinished messages. Since the alias page blocks are reused in our im-
plementation, the overhead is amortized over multiple iterations and is negligible. Ta-
ble 2 compares the page protection plus unprotection time on V2 with the raw transfer 
time over a 1 Gbps network. The cost of page protection is much smaller than the 
message communication latency. Most importantly, there is little penalty to the run 
time since the application thread would have been blocked waiting for the incoming 
message to complete anyway. 

Table 2. Page protection overhead 

Message Size 4 kB 16 kB 64 kB 256 kB
Protection Cost 3.0 µs 3.0 µs 3.3 µs 4.5 µs
1 Gbps Transfer Time 33 µs 131 µs 0.5 ms 2.1 ms  

Parallel applications frequently consist of a loop with a communication phase and a 
computation phase. When a process receives multiple messages from multiple senders 
in the communication phase, often the computation following the communication 
need not access some of the received messages for a while. For example, the PES 
process receives two messages in the communication phase, one from the process 
“above” and the other from the process “below” it. The message data from the lower 
neighbor is accessed only at the end of computation phase, thus blocking for its com-
pletion at the end of the communication phase is not necessary. The same is true for 
N-Body as each process receives messages from multiple processes in the communi-
cation phase. Our early-release technique eliminates this false message data depend-
ency and delays the blocking until the message data is indeed accessed. The reduced 
blocking time is most pronounced in the presence of load imbalance or processes run-
ning out of lock-step. 

Each M3 slave process receives only one message in the communication phase, so 
the above effect does not appear. Nevertheless a similar false data dependency is 
eliminated by the early-release technique; the computation can start on the partially 
finished message data, maximally overlapping the communication with computation. 

5   Conclusions and Future Work 

In this paper, we present and evaluate a technique to release blocked message receives 
early. Our early-release approach automatically delays the blocking of message re-
ceives as long as possible to maximize the degree of overlapping of communication 
with computation, effectively hiding a portion of the message latency. The perform-
ance improvement depends on the communication-to-computation ratio and the extent 
of false message data dependencies of each application. Measurements with our 
erMPI library show an average early-release speedup of 11% on two supercomputing 
clusters for three applications with different communication patterns. 



 

  

In future work, we plan to eliminate the message unpacking step for some bench-
mark applications and study the early-release performance on these highly tuned ap-
plications. Future research may also explore the usage of a finer early-release granu-
larity to further improve the performance. 
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