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This chapter describes the first CUDA implementation of the classical Barnes Hut n-body algorithm
that runs entirely on the GPU. Unlike most other CUDA programs, our code builds an irregular tree-
based data structure and performs complex traversals on it. It consists of six GPU kernels. The kernels
are optimized to minimize memory accesses and thread divergence and are fully parallelized within
and across blocks. Our CUDA code takes 5.2 seconds to simulate one time step with 5,000,000 bodies
on a 1.3 GHz Quadro FX 5800 GPU with 240 cores, which is 74 times faster than an optimized serial
implementation running on a 2.53 GHz Xeon E5540 CPU.

6.1 INTRODUCTION, PROBLEM STATEMENT, AND CONTEXT
The Barnes Hut force-calculation algorithm [1] is widely used in n-body simulations such as modeling
the motion of galaxies. It hierarchically decomposes the space around the bodies into successively
smaller boxes, called cells, and computes summary information for the bodies contained in each cell,
allowing the algorithm to quickly approximate the forces (e.g., gravitational, electric, or magnetic) that
the n bodies induce upon each other. The hierarchical decomposition is recorded in an octree, which is
the three-dimensional equivalent of a binary tree. With n bodies, the precise force calculation needs to
evaluate O(n2) interactions. The Barnes Hut algorithm reduces this complexity to O(n log n) and thus
makes interesting problem sizes computationally tractable.

The Barnes Hut algorithm is challenging to implement efficiently in CUDA because (1) it repeat-
edly builds and traverses an irregular tree-based data structure, (2) it performs a lot of pointer-chasing
memory operations, and (3) it is typically expressed recursively. Recursion is not supported by current
GPUs, so we have to use iteration. Pointer-chasing codes execute many slow uncoalesced memory
accesses. Our implementation combines load instructions, uses caching, and throttles threads to dras-
tically reduce the number of main memory accesses; it also employs array-based techniques to enable
some coalescing. Because traversing irregular data structures often results in thread divergence (i.e.,
detrimental loss of parallelism), we group similar work together to minimize divergence.
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Our work shows that GPUs can be used to accelerate even irregular codes. It includes a number
of new optimizations, as well as known ones, and demonstrates how to exploit some of the unique
architectural features of GPUs in novel ways. For example, because the threads in a warp necessar-
ily run in lockstep, we can have one thread fetch data from main memory and share the data with
the other threads without the need for synchronization. Similarly, because barriers are implemented
in hardware on GPUs and are therefore very fast, we have been able to use them to reduce wasted
work and main memory accesses in a way that is impossible in current CPUs where barriers have to
communicate through memory. Moreover, we exploit GPU-specific operations such as thread-voting
functions to greatly improve performance and make use of fence instructions to implement lightweight
synchronization without atomic operations.

The rest of this chapter is organized as follows: Section 6.2 provides more detail on the Barnes Hut
algorithm and how we mapped it to GPU kernels; Section 6.3 describes the operation of each kernel
with a focus on tuning; and Section 6.4 evaluates the performance of our implementation, discusses
limitations, and draws conclusions.

6.2 CORE METHODS
This section explains the Barnes Hut algorithm. Figure 6.1 shows the high-level steps. Steps 1
through 6, that is, the body of the time step loop, are executed on the GPU. Each of these steps is
implemented as a separate kernel (a kernel is a subroutine that runs on the GPU), which is necessary
because we need a global barrier between the steps; it is also beneficial because it allows us to indi-
vidually tune the number of blocks and threads per block for each kernel. Step 4 is not necessary for
correctness, but greatly improves performance.

Figures 6.2 through 6.5 illustrate the operation of kernels 1, 2, 3, and 5. Kernel 1 computes a bound-
ing box around all bodies; this box becomes the root node of the octree (i.e., the outermost cell).
Kernel 2 hierarchically subdivides this cell until there is at most one body per innermost cell. This
is accomplished by inserting all bodies into the octree. Kernel 3 computes, for each cell, the center
of gravity and the cumulative mass of all contained bodies (Figure 6.4 shows this for the two shaded

0. Read input data and transfer to GPU
for each timestep do {

1. Compute bounding box around all bodies
2. Build hierarchical decomposition by inserting each body into octree
3. Summarize body information in each internal octree node
4. Approximately sort the bodies by spatial distance
5. Compute forces acting on each body with help of octree
6. Update body positions and velocities
}

7. Transfer result to CPU and output

FIGURE 6.1

Pseudo code of the Barnes Hut algorithm; bold print denotes GPU code.
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FIGURE 6.2

Bounding box kernel (kernel 1).
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FIGURE 6.3

Hierarchical decomposition kernel (kernel 2); 2-D view on left, tree view on right.

cells). Kernel 4 (no figure) sorts the bodies according to an in-order traversal of the octree, which
typically places spatially close bodies close together. Kernel 5 computes the forces acting on each body.
Starting from the octree’s root, it checks whether the center of gravity is far enough away from the cur-
rent body for each encountered cell (the current body is located at the source of the arrows in Figure 6.5).
If it is not (solid arrow), the subcells are visited to perform a more accurate force calculation (the three
dotted arrows); if it is (single dashed arrow), only one force calculation with the cell’s center of gravity
and mass is performed, and the subcells and all bodies within them are not visited, thus greatly reduc-
ing the total number of force calculations. Kernel 6 (no figure) nudges all the bodies into their new
positions and updates their velocities.
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FIGURE 6.4

Center-of-gravity kernel (kernel 3).
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FIGURE 6.5

Force calculation kernel (kernel 5).

6.3 ALGORITHMS AND IMPLEMENTATIONS
This section describes our CUDA implementation of the Barnes Hut algorithm, with a focus on the
optimizations we incorporated to make it execute efficiently on a GPU. We start with the global opti-
mizations that apply to all kernels and then discuss each kernel individually. The section concludes
with a summary and general optimization patterns that may be useful for speeding up other irregular
codes.

6.3.1 Global Optimizations
Dynamic data structures such as trees are typically built from heap objects, where each heap object con-
tains multiple fields, e.g., child-pointer and data fields, and is allocated dynamically. Because dynamic
allocation of and accesses to heap objects tend to be slow, we use an array-based data structure.
Accesses to arrays cannot be coalesced if the array elements are objects with multiple fields, so we
use several aligned scalar arrays, one per field, as outlined in Figure 6.6. As a consequence, our code
uses array indexes instead of pointers to tree nodes.

In Barnes Hut, the cells, which are the internal tree nodes, and the bodies, which are the leaves of
the tree, have some common fields (e.g., the mass and the position). Other fields are only needed by
either the cells (e.g., the child pointers) or the bodies (e.g., the velocity and the acceleration). However,
to simplify and speed up the code, it is important to use the same arrays for both bodies and cells.

We allocate the bodies at the beginning and the cells at the end of the arrays, as illustrated in
Figure 6.7, and use an index of −1 as a “null pointer.” This allocation order has several advantages.
First, a simple comparison of the array index with the number of bodies determines whether the index
points to a cell or a body. Second, in some code sections, we need to find out whether an index refers
to a body or to null. Because −1 is also smaller than the number of bodies, a single integer comparison
suffices to test both conditions. Third, we can alias arrays that hold only cell information with arrays
that hold only body information to reduce the memory consumption while maintaining a one-to-one
correspondence between the indexes into the different arrays, thus simplifying the code. Figure 6.7
shows how arrays A and B are combined into array AB.
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Objects in array

Objects on heap Fields in arrays

FIGURE 6.6

Using multiple arrays (one per field) instead of an array of objects or separate heap objects.

A

0 1 2 3 4 5 6 7 8 9 t-6 t-5 t-4 t-3 t-2 t-1 t−1

B

AB

b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7

c4 c3 c2 c1 c0

c4 c3 c2 c1 c0

...

...

...

FIGURE 6.7

Array layout and element allocation order for body-only (A), cell-only (B), and combined (AB) arrays; b= body,
c= cell, t= array length.

Our implementation requires compute capability 1.2, in particular, a thread-voting function as well
as the larger number of registers, which allows launching more threads per block. The thread count
per block is maximized and rounded down to the nearest multiple of the warp size for each kernel.
All kernels use at least as many blocks as there are streaming multiprocessors in the GPU, which is
automatically detected.

Because all parameters passed to the kernels, such as the starting addresses of the various arrays,
stay the same throughout the time step loop, we copy them once into the GPU’s constant memory. This
is much faster than passing them with every kernel invocation.

Our code does not transfer any data between the CPU and the GPU except for one initial transfer
to send the input to the GPU and one final transfer to send the result back to the CPU. This approach
avoids slow data transfers over the PCI bus during the simulation and is possible because we execute
the entire algorithm on one GPU.

Because our code operates on octrees in which nodes can have up to eight children, it contains many
loops with a trip count of eight. We use pragmas to unroll these loops, though the compiler does this by
default in most cases.

6.3.2 Kernel 1 Optimizations
The first kernel computes a bounding box around all bodies, i.e., the root of the octree. To do that, it has
to find the minimum and maximum coordinates in the three spatial dimensions. First, the kernel breaks
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up the data into equal sized chunks and assigns one chunk to each block. Each block then performs
a reduction operation that follows the example outlined in Section B.5 of the CUDA Programming
Guide [5]. All the relevant data in main memory are read only once and in a fully coalesced manner.
The reduction is performed in shared memory in a way that avoids bank conflicts and minimizes thread
divergence [6]. The only thread divergence occurs at the very end when there are fewer than 32 elements
left to process per block. Our implementation uses the built-in min and max functions to perform the
reduction operations, since these are faster than if statements. The final result from each block is written
to main memory. The last block, as is determined by a global atomicInc operation, combines these
results and generates the root node.

6.3.3 Kernel 2 Optimizations
The second kernel implements an iterative tree-building algorithm that uses lightweight locks, only
locks child pointers of leaf cells, and deliberately slows down unsuccessful threads to reduce the mem-
ory pressure. The bodies are assigned to the blocks and threads within a block in round-robin fashion.
Each thread inserts its bodies one after the other by traversing the tree from the root to the desired
last-level cell and then attempts to lock the appropriate child pointer (an array index) by writing an
otherwise unused value (−2) to it using an atomic operation, as illustrated in Figures 6.8 and 6.9. If the
locking succeeds, the thread inserts the new body, thereby overwriting the lock value, which releases
the lock. If a body is already stored at this location, the thread first creates a new cell by atomically
requesting the next unused array index, inserts the original and the new body into this new cell, exe-
cutes a memory fence ( threadfence) to ensure the new subtree is visible to the rest of the cores, and
then attaches the new cell to the tree, thereby releasing the lock.

The threads that fail to acquire a lock have to retry until they succeed. Allowing them to do so
right away would swamp the main memory with requests and slow down the progress of the suc-
cessful threads, especially in the beginning when the tree is small. As long as at least one thread per
warp (a warp is a group of threads that execute together) succeeds in acquiring a lock, thread diver-
gence temporarily disables all the threads in the warp that did not manage to acquire a lock until the
successful threads have completed their insertions and released their locks. This process greatly reduces

*

FIGURE 6.8

Locking the dashed child “pointer” of the starred cell to insert a body.
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// initialize
cell = find insertion point(body); // nothing is locked, cell cached for retries
child = get insertion index(cell, body);
if (child != locked) {

if (child == atomicCAS(&cell[child], child, lock)) {
if (child == null) {

cell[child] = body; // insert body and release lock
} else {

new cell =...; // atomically get the next unused cell
// insert the existing and new body into new cell

threadfence(); // make sure new cell subtree is visible
cell[child] = new cell; // insert new cell and release lock
}

success = true; // flag indicating that insertion succeeded
}

}

syncthreads(); // wait for other warps to finish insertion

FIGURE 6.9

Pseudo code for inserting a body.

the number of retries (i.e., memory accesses), most of which would be useless because they would find
the lock to still be unavailable. To also prevent warps in which all threads fail to acquire a lock from
flooding the memory with lock-polling requests, we inserted an artificial barrier ( syncthreads) into
this kernel (the last line in the pseudo code in Figure 6.9) that is not necessary for correctness. This
barrier throttles warps that would otherwise most likely not be able to make progress but would slow
down the memory accesses of the successful threads. The code shown in Figure 6.9 executes inside of
a loop that moves on to the next body assigned to a thread whenever the success flag is true.

In summary, this kernel employs the following optimizations. It caches the root’s data in the register
file. It employs a barrier to throttle threads that fail to acquire a lock. It minimizes the number of locks
by only locking child pointers of leaf cells. It employs lightweight locks that require a single atomic
operation to lock and a memory fence followed by a store operation to release the lock. The common
case, that is, adding a body without the need to generate a new cell (typically, about one cell is created
per three bodies), uses an even faster unlock mechanism that requires only a store operation, but no
memory fence.

6.3.4 Kernel 3 Optimizations
The third kernel traverses the unbalanced octree from the bottom up to compute the center of gravity
and the sum of the masses of each cell’s children. Figure 6.10 shows the octree nodes in the global
arrays (bottom) and the corresponding tree representation (top). In this kernel, the cells are assigned to
the blocks and to the threads within a block in round-robin fashion. Note that the leftmost cell is not
necessarily mapped to the first thread in the first block. Rather, it is mapped to the thread that yields the
correct alignment to enable coalescing of memory accesses.

Initially, all cells have negative masses, indicating that their true masses still need to be computed.
Because the majority of the cells in the octree have only bodies as children, the corresponding threads
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FIGURE 6.10

Allocation of bodies (the shaded nodes) and cells (the white nodes) in the global arrays and corresponding tree
representation; the numbers represent thread IDs.

can immediately compute the cell data. In fact, this can be done using coalesced accesses to store the
mass and position information until the threads in a warp start processing cells whose children are not
yet ready — this step forces threads to wait different amounts of time.

Because the allocation order ensures that a cell’s children have lower array indexes than the cell
does, it is not possible that a thread will ever attempt to process a cell before it has processed all tree
successors of this cell that are assigned to this thread. For example, threads 3 and 4 both have two cells
on the same path assigned to them in Figure 6.10, but they are guaranteed to first process the lower-level
cell. If this were not the case, the code could deadlock.

As the pseudo code in Figure 6.11 shows, the computed center of gravity is stored first, then a
memory fence is executed, and finally the computed mass is stored to indicate that the cell’s data
are now ready. The memory fence ensures that no other thread in the GPU can see the updated mass
before it sees the updated center of gravity. This way, no locks or atomic operations are necessary, and
preexisting memory locations (the mass fields) serve as ready flags. Unsuccessful threads have to poll
until the “ready flag” is set. Note that the code shown in Figure 6.11 executes inside of a loop that
moves on to the next cell assigned to the thread whenever the success flag is set to true.

For performance reasons, the kernel caches all the child pointers of the current cell in shared mem-
ory that point to not-ready children. This way, the thread polls only the missing children, which reduces
main memory accesses. Moreover, if a child is found to still be unready, thread divergence (due to
exiting the do-while loop in Figure 6.11) deliberately forces the thread to wait for a while before trying
again to throttle polling requests.

Kernel 3 performs two more functions (not included in Figure 6.11) that piggyback on its bottom-up
traversal and therefore incur little additional runtime. The first extra operation is to count the bodies
in all subtrees and store this information in the cells. These counts make kernel 4 much faster. The
second additional operation is to move all non-null child pointers to the front. In the earlier kernels, the
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// initialize
if (missing == 0) {

// initialize center of gravity
for (/∗iterate over existing children∗/) {

if (/∗child is ready∗/) {
// add its contribution to center of gravity
} else {

// cache child index
missing++;

} } }

if (missing != 0) {
do {

if (/∗last cached child is now ready∗/) {
// remove from cache and add its contribution to center of gravity
missing−−;
}

} while (/∗missing changed∗/ && (missing != 0));
}

if (missing == 0) {
// store center of gravity

threadfence(); // make sure center of gravity is visible
// store cumulative mass
success = true; // local flag indicating that computation for cell is done
}

FIGURE 6.11

Pseudo code for computing a cell’s center of gravity.

position of each child is essential for correct operation, but the later kernels just need to be able to visit
all children. Hence, we can move the existing children to the front of the eight-element child array in
each cell and move all the nulls to the end. This makes kernel 5 faster.

In summary, this kernel includes the following optimizations: It maps cells to threads in a way
that results in good load balance, avoids deadlocks, allows some coalescing, and enables bottom-up
traversals without explicit parent pointers. It does not require any locks or atomic operations, uses a
data field in the cells as a ready flag, and sets the flags with a memory fence followed by a simple write
operation. It throttles unsuccessful threads, caches data, and polls only missing data to minimize the
number of main memory accesses. Finally, it moves the children in each cell to the front and records
the number of bodies in all subtrees to accelerate later kernels.

6.3.5 Kernel 4 Optimizations
This kernel sorts the bodies in parallel using a top-down traversal. It employs the same array-based
traversal technique as the previous kernel except that the processing order is reversed; i.e., each thread
starts with the highest array index assigned to it and works its way down. It also uses a data field
as a ready flag. Based on the number of bodies in each subtree, which was computed in kernel 3, it
concurrently places the bodies into an array such that the bodies appear in the same order in the array
as they would during an in-order traversal of the octree. This sorting groups spatially close bodies
together, and these grouped bodies are crucial to speed up kernel 5.



84 CHAPTER 6 Tree-Based Barnes Hut n-Body Algorithm

FIGURE 6.12

Tree prefixes that need to be visited for the two marked bodies.

6.3.6 Kernel 5 Optimizations
The fifth kernel requires the vast majority of the runtime and is therefore the most important to optimize.
It assigns all bodies to the blocks and threads within a block in round-robin fashion. For each body, the
corresponding thread traverses some prefix of the octree to compute the force acting upon this body, as
illustrated in Figure 6.12. These prefixes are similar for spatially close bodies, but different for spatially
distant bodies. Because threads belonging to the same warp execute in lockstep, every warp in this
kernel effectively has to traverse the union of the tree prefixes of all the threads in the warp. In other
words, whenever a warp traverses a part of the tree that some of the threads do not need, those threads
are disabled due to thread divergence, but they still have to wait for this part to be traversed. As a
consequence, it is paramount to group spatially nearby bodies together so that the threads in a warp
have to traverse similar tree prefixes, that is, to make the union of the prefixes as small as possible. This
is why the sorting in kernel 4 is so important. It eliminates most of the thread divergence and accelerates
kernel 5 by an order of magnitude. In fact, we opted to eliminate this kind of thread divergence entirely
because it is pointless to make some threads wait when they can, without incurring additional runtime,
improve the accuracy of their computation by expanding their tree prefix to encompass the entire union.
Determining the union’s border can be done extremely quickly using the all thread-voting function,
as illustrated in Figure 6.13.

Having eliminated thread divergence and reduced the amount of work each warp has to do by
minimizing the size of the union of the prefixes, we note that main memory accesses still pose a major
performance hurdle because this kernel contains very little computation with which to hide them. More-
over, the threads in a warp always access the same tree node at the same time; that is, they always read
from the same location in main memory. Unfortunately, multiple reads of the same address are not
coalesced by older GPU hardware, but instead result in multiple separate accesses. To remedy this situ-
ation, we allow only one thread per warp to read the pertinent data, and then that thread makes the data
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// precompute and cache info
// determine first thread in each warp
for (/∗sorted body indexes assigned to me∗/) {

// cache body data
// initialize iteration stack
depth = 0;
while (depth >= 0) {

while (/∗there are more nodes to visit∗/) {
if (/∗I’m the first thread in the warp∗/) {

// move on to next node
// read node data and put in shared memory
}

threadfence block();
if (/∗node is not null∗/) {

// get node data from shared memory
// compute distance to node
if ((/∗node is a body∗/) || all(/∗distance >= cutoff∗/)) {

// compute interaction force contribution
} else {

depth++; // descend to next tree level
if (/∗I’m the first thread in the warp∗/) {

// push node’s children onto iteration stack
}

threadfence block();
}

} else {
depth = max(0, depth-1); // early out because remaining nodes are also null
}

}

depth−−;
}

// update body data
}

FIGURE 6.13

Pseudo code of the force calculation kernel.

available to the other threads in the same warp by caching the data in shared memory. This introduces
brief periods of thread divergence but reduces the number of main memory accesses by a factor of 32,
resulting in a substantial speedup of this memory-bound kernel. The code needs a block-local memory
fence ( threadfence block()) to prevent data reordering so that the threads in a warp can safely retrieve
the data from shared memory. Note that the shared memory allows all threads to simultaneously read
the same location without bank conflict.

In addition to these two major optimizations (i.e., minimizing the amount of work per warp and
minimizing the number of main memory accesses), kernel 5 incorporates the following optimizations,
some of which are illustrated in Figure 6.13. It does not write to the octree and therefore requires no
locks or ready flags. It caches information that depends only on the tree-depth of a node in shared
memory, it uses the built-in rsqrtf function to quickly compute “one over square root,” it uses only
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FIGURE 6.14

Fully coalesced streaming updates of the body positions and velocities.

one thread per warp to control the iteration stack (which is necessary to avoid recursion) to reduce
the memory footprint enough to make it fit into shared memory, and it takes advantage of the children
having been moved to the front in kernel 3 by stopping the processing of a cell’s children as soon as
the first null entry is encountered. This early termination reduces thread divergence because it makes it
likely that all threads in a warp find their first few children to be non-null and their last few children to be
null. This is another example of grouping similar work together to minimize divergence and maximize
performance.

6.3.7 Kernel 6 Optimizations
The sixth kernel updates the velocity and position of each body based on the computed force. It is
a straightforward, fully coalesced, nondivergent streaming kernel, as illustrated in Figure 6.14. As in
the other kernels, the bodies are assigned to the blocks and threads within a block in round-robin
fashion.

6.3.8 Optimization Summary
This subsection summarizes the optimizations described above and highlights general principles we
believe may be useful for tuning CUDA implementations of other irregular pointer-chasing codes.
Table 6.1 combines the optimizations from the various Barnes Hut kernels and groups them by category.

In implementing the Barnes Hut algorithm in CUDA and tuning it, we found the following general
optimization principles to be important.

Maximizing parallelism and load balance. To hide latencies, particularly memory latencies, it is
important to run a large number of threads and blocks in parallel. By parallelizing every step of our algo-
rithm across threads and blocks as well as by using array elements instead of heap objects to represent
tree nodes, we were able to assign balanced amounts of work to any number of threads and blocks.

Minimizing thread divergence. To maintain maximum parallelism, it is important for the threads in
a warp to follow the same control flow. We found that grouping similar work together can drastically
reduce thread divergence, especially in irregular code.

Minimizing main memory accesses. Probably the most important optimization for memory-bound
code is to reduce main memory accesses as much as possible, for example, by caching data and by
throttling warps that are likely to issue memory accesses that do not contribute to the overall progress.
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Table 6.1 Optimizations by category.

MAIN MEMORY

Minimize Accesses
• Let one thread read common data and distribute data to other threads via shared memory
• When waiting for multiple data items to be computed, record which items are ready and only poll the

missing items
• Cache data in registers or shared memory
• Use thread throttling (see control-flow section)

Maximize Coalescing
• Use multiple aligned arrays, one per field, instead of arrays of structs or structs on heap
• Use a good allocation order for data items in arrays

Reduce Data Size
• Share arrays or elements that are known not to be used at the same time

Minimize CPU/GPU Data Transfer
• Keep data on GPU between kernel calls
• Pass kernel parameters through constant memory

CONTROL FLOW

Minimize Thread Divergence
• Group similar work together in the same warp

Combine Operations
• Perform as much work as possible per traversal, i.e., fuse similar traversals

Throttle Threads
• Insert barriers to prevent threads from executing likely useless work

Minimize Control Flow
• Use compiler pragma to unroll loops

LOCKING

Minimize Locks
• Lock as little as possible (e.g., only a child pointer instead of entire node, only last node instead of entire

path to node)

Use Lightweight Locks
• Use flags (barrier/store and load) where possible
• Use atomic operation to lock but barrier/store or just store to unlock

Reuse Fields
• Use existing data field instead of separate lock field

HARDWARE

Exploit Special Instructions
• Use min, max, threadfence, threadfence block, syncthreads, all, rsqft, etc. operations

Maximize Thread Count
• Parallelize code across threads
• Limit shared memory and register usage to maximize thread count

(Continued)
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Table 6.1 (Continued)

HARDWARE

Avoid Bank Conflicts
• Control the accesses to shared memory to avoid bank conflicts

Use All Multiprocessors
• Parallelize code across blocks
• Make the block count at least as large as the number of streaming multiprocessors

By grouping similar work together in the same warp, we managed to greatly increase sharing and thus
reduce main memory accesses. By throttling warps in which all threads failed to acquire a lock and by
allowing threads to poll only as-yet unready data, we were able to further reduce the amount of main
memory traffic.

Using lightweight locks. If locking is necessary, as few items as possible should be locked and for as
short a time as possible. For example, we never lock nodes, only last-level child pointers. The locking
is done with an atomic operation, and the unlocking is done with an even faster memory fence and
store operation. For maximum speed and minimum space overhead, we use existing data fields instead
of separate locks and utilize otherwise unused values to lock them. Writing to these fields releases the
lock. In some cases, no atomic operations are needed at all because a fence and store operation suffices
to achieve the necessary functionality.

Combining operations. Because pointer-chasing operations are particularly expensive on GPUs, it is
probably worthwhile to combine tasks to avoid additional traversals. For example, our code computes
the mass and center of gravity, counts the bodies in the subtrees, and moves the non-null children to the
front in a single traversal.

Maximizing coalescing. Coalesced memory accesses are difficult to achieve in irregular pointer-
chasing codes. Nevertheless, by carefully allocating the node data and spreading the fields over multiple
scalar arrays, we have managed to attain some coalescing in several kernels.

Avoiding GPU/CPU transfers. Copying data to or from the GPU is a relatively slow operation. However,
data can be left on the GPU between kernels. By implementing the entire algorithm on the GPU, we
were able to eliminate almost all data transfers between the host and the device. Moreover, we used
the constant memory to transfer kernel parameters — a process that is significantly faster and avoids
retransmitting unchanged values.

6.4 EVALUATION AND VALIDATION OF RESULTS, TOTAL BENEFITS,
AND LIMITATIONS

6.4.1 Evaluation Methodology
Implementations. In addition to our parallel CUDA version of the Barnes Hut algorithm, we wrote two
more implementations for comparison purposes: (1) a serial C version of the Barnes Hut algorithm and
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(2) a parallel CUDA version of the O(n2) algorithm. The three implementations use single precision.
The O(n2) algorithm computes all pair-wise forces and is therefore more precise than the approximate
Barnes Hut algorithm. The Barnes Hut implementations are run with a tolerance factor of 0.5. The C and
CUDA versions include many of the same optimizations, but also CPU and GPU specific optimizations,
respectively.

Inputs. We generated five inputs with 5000, 50,000, 500,000, 5,000,000, and 50,000,000 galaxies (bod-
ies). The galaxies’ positions and velocities are initialized according to the empirical Plummer model [2],
which mimics the density distribution of globular clusters.

System. We evaluated the performance of our CUDA implementation on a 1.3 GHz Quadro FX 5800
GPU with 30 streaming multiprocessors (240 cores) and 4 GB of main memory. For performance
comparison purposes and as host device, we used a 2.53 GHz Xeon E5540 CPU with 48 GB of main
memory.

Compilers. We compiled the CUDA codes with nvcc v3.0 and the “-O3 -arch=sm 13” flags. For the
C code, we used icc v11.1 and the “-O2” flag because it generates a faster executable than nvcc’s
underlying C compiler does.

Metric. We reported the best runtime of three identical experiments. There is typically little difference
between the best and the worst runtimes. We measured only the time step loop; that is, generating the
input and writing the output is not included in the reported runtimes.

Validation. We compared the output of the three codes to verify that they are computing the same
result. Note, however, that the outputs are not entirely identical because the O(n2) algorithm is more
accurate than the Barnes Hut algorithm and because the CPU’s floating-point arithmetic is more precise
than the GPU’s.

6.4.2 Results
Figure 6.15 plots the runtime per time step versus the problem size on a log-log scale for the three
implementations (lower numbers are better). With increasing input size, the parallel CUDA Barnes
Hut code is 5, 35, 66, 74, and 53 times faster than the serial C code. So even on this irregular code,
the GPU has an over 50x performance advantage over a single CPU core for large enough problem
sizes. The benefit is lower with small inputs primarily because the amount of parallelism is lower. Our
kernels launch between 7680 and 23,040 threads, meaning that many threads receive no work with our
smallest input. We are not sure why the performance advantage with the largest input is lower than
with the second-largest input. It takes the GPU just over 5 seconds per time step to simulate 5,000,000
bodies and 88 seconds for 50,000,000 bodies.

For problem sizes below about 10,000 bodies, the O(n2) CUDA implementation is the fastest. On
the evaluated input sizes, the Barnes Hut CUDA code is 0.2, 3.3, 35, and 314 times faster than the O(n2)

CUDA code. We did not run the largest problem size with the O(n2) algorithm as it would have taken
almost two days to complete one time step. Because the Barnes Hut algorithm requires only O(n logn)

operations, its benefit over the O(n2) algorithm increases rapidly with larger problem sizes.
Table 6.2 lists the running times of each kernel and compares them with the corresponding running

times on the CPU. The CPU/GPU ratio roughly approximates the number of CPU cores needed to
match the GPU performance. Kernel 5 (force calculation) is by far the slowest, followed by kernel 2
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Runtime per simulated time step in milliseconds.

Table 6.2 CPU (single core) and GPU kernel runtimes in milliseconds for one
time step with 5,000,000 bodies.

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6

CPU runtime 50.0 2,160.0 430.0 310.0 382,840.0 990.0
GPU runtime 0.8 868.0 100.3 38.6 4,202.8 4.1
CPU/GPU 62.5 2.5 4.3 8.0 91.1 241.5

(tree building). The remaining four kernels represent less than 3% of the total running time on the GPU
and 0.5% on the CPU. The GPU is faster than a single CPU core on each kernel by a substantial margin.
Kernels 2, 3, and 4 are under 10 times faster, whereas the remaining kernels are over 60 times faster. The
most important kernel, kernel 5, is over 90 times faster. These results indicate that a hybrid approach,
where some of the work is performed on the CPU, is unlikely to result in much benefit, even if the CPU
code is parallelized across multiple cores and there is no penalty for transferring data between the CPU
and the GPU.

Table 6.3 compares the two CUDA versions in terms of their runtime, floating-point operations per
second, and bytes accessed in main memory per second for an input of 5,000,000 bodies. The results are
for all kernels combined and show that the very regular O(n2) code utilizes the GPU hardware at almost
maximum effectively, whereas the irregular Barnes Hut code does not. Nevertheless, the Barnes Hut
implementation reaches a respectable 75 Gflop/s. Its main memory throughput is low in part because of
uncoalesced accesses and in part because we allow only one of the 32 threads in a warp to access main
memory on behalf of all threads. The remaining threads operate almost exclusively on data in shared
memory.
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Table 6.3 Floating-point operations per second
(in billions), bytes accessed in main memory per
second (in billions), and runtime (in seconds) on
the GPU for one time step with 5,000,000 bodies.

Gflop/s Gbytes/s Runtime [s]

Barnes Hut algo. 75.8 2.9 5.2
O(n2) algorithm 304.9 0.9 1639.9

6.4.3 Limitations
Other than O(n2) CUDA implementations [3], there are no implementations of an entire n-body algo-
rithm on the GPU that we are aware of. Our approach of running the entire Barnes Hut algorithm on
the GPU avoids slow data transfers between the CPU and the GPU, but it also limits the maximum
problem size to just over 50,000,000 bodies on our hardware. Other approaches that execute part of
the work on the CPU may be more suitable for larger problem sizes. For example, a recent imple-
mentation by Hamada et al. [4] uses the CPU to construct the tree, traverse the tree, perform the time
integration, and send interaction lists to the GPU. The GPU then computes the forces between the
bodies in the interaction lists in a streaming fashion that is not limited by the amount of memory on
the GPU.

Our implementation is based on the classical Barnes Hut algorithm [1] instead of the newer method
by Barnes [7]. The classical method allows only one body per leaf node in the tree, whereas the newer
approach allows multiple bodies per node and therefore requires a substantially smaller tree. As a
result, the traversal time is much reduced, making the new algorithm a better candidate for a GPU
implementation [4]. We opted to use the classical algorithm because we are interested in finding general
ways to make tree codes efficient on GPUs as opposed to focusing exclusively on the Barnes Hut
algorithm.

6.4.4 Conclusions
The main conclusion of our work is that GPUs can be used to accelerate irregular codes, not just
regular codes. However, a great deal of programming effort is required to achieve good performance.
We estimate that it took us two person months to port our preexisting C implementation to CUDA
and optimize it. In particular, we had to completely redesign the main data structure, convert all the
recursive code into iterative code, explicitly manage the cache (shared memory), and parallelize the
implementation both within and across thread blocks. The biggest performance win, though, came from
turning some of the unique architectural features of GPUs, which are often regarded as performance
hurdles for irregular codes, into assets. For example, because the threads in a warp necessarily run in
lockstep, we can have one thread fetch data from main memory and share them with the other threads
without the need for synchronization. Similarly, because barriers are implemented in hardware on GPUs
and are extremely fast, we have been able to use them to reduce wasted work and main memory accesses
in a way and to an extent that is impossible in current CPUs because barrier implementations in CPUs
have to communicate through memory.
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6.5 FUTURE DIRECTIONS
We are actively working on writing high-performing CUDA implementations for other irregular algo-
rithms. The goal of this work is to identify common structures and optimization techniques that can be
generalized so that they are ultimately useful for speeding up entire classes of irregular programs.
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