

Abstract—This paper investigates the power profiles of irreg-

ular programs running on a K20 compute GPU and contrasts

them with the profiles of regular programs. The paper further

studies the effects on the power profile when changing the GPU’s

core and memory frequencies, using alternate implementations

of the same algorithm, and varying the program input. Our re-

sults show that the power behavior of irregular applications of-

ten cannot be accurately captured by a single average. Rather,

the entire profile, i.e., the power as a function of time, needs to

be considered. In addition, lowering the frequency, employing

alternate implementations, or using different inputs can drasti-

cally alter the power profile of irregular codes, meaning that

measurements using one setting may not be representative of

that program’s power characteristics under a different setting.

I. INTRODUCTION

GPU-based accelerators are widely used in high-perfor-

mance computing and are quickly spreading in PCs and even

handheld devices as they not only provide higher peak perfor-

mance but also better energy efficiency than multicore CPUs.

Nevertheless, large power consumption and the required cool-

ing due to the resulting heat dissipation are major cost factors

in HPC environments. To reach exascale computing, a 50-

fold improvement in performance per watt is needed by some

estimates [1]. Moreover, battery life is a key concern in all

types of handhelds such as tablets and smartphones.1

For these and other reasons, power-aware computing has

become an important research area. While many hardware op-

timizations for reducing power have been proposed or are al-

ready in use, software techniques are lagging behind, particu-

larly techniques that target accelerators like GPUs. However,

to be able to optimize the power and energy efficiency of GPU

code, we first need to develop a good understanding of the

power consumption behavior of such programs.

To this end, we study the power profiles of GPU codes

from different benchmark suites, in particular the profiles of

irregular programs from the LonestarGPU suite. Irregular

codes have data dependent behavior, making their power

characteristics hard to predict statically and therefore espe-

cially interesting for our study. We also investigate how dif-

ferent GPU frequencies, different algorithm implementations,

and different program inputs affect the power profiles.

By regular and irregular programs, we are referring to the

behavior of the control flow and/or memory access patterns

of the code. In regular code, control flow and memory refer-

ences are not data dependent. Matrix-vector multiplication is

a good example. Based only on the input size and the data-

structure starting addresses, but without knowing any values

1 978‐1‐4799‐6177‐1/14/$31.00 ©2014 IEEE

of the input data, we can determine the dynamic behavior of

the program on an in-order processor, i.e., the memory refer-

ence stream and the conditional branch decisions. In irregular

code, the input values determine the program’s runtime be-

havior, which therefore cannot be statically predicted and may

change for different inputs. For instance, in a binary search

tree, the values and the order in which they are processed af-

fect the shape of the tree and the order in which it is built.

In most problem domains, irregular algorithms arise from

the use of complex data structures such as trees and graphs.

In general, irregular algorithms are more difficult to parallel-

ize and more challenging to map to GPUs than regular pro-

grams. For example, in graph applications, memory-access

patterns are usually data dependent since the connectivity of

the graph and the values on nodes and edges may determine

which nodes and edges are touched by a given computation.

This information is usually not known at compile time and

may change dynamically even after the input graph is availa-

ble, leading to uncoalesced memory accesses and bank con-

flicts. Similarly, the control flow is usually irregular because

branch decisions differ for nodes with different degrees or la-

bels, leading to branch divergence and load imbalance. As a

consequence, the power draw of irregular GPU applications

can change over time in an unpredictable manner.

This paper makes the following main contributions.

1) It is the first paper to show power profiles and power

characteristics from multiple irregular GPU programs.

2) It presents the first analysis of the power behavior of ir-

regular GPU codes and how it differs from regular codes.

3) It reveals that the power profiles of irregular programs

can be quite complex and can change significantly over time.

4) It demonstrates that different frequencies, inputs, and

implementations can greatly alter the power profile.

The rest of this paper is organized as follows. Section II

discusses related work. Section III provides an overview of

the GPU we study. Section IV describes the evaluation meth-

odology. Section V presents and analyzes the results. Section

VI summarizes our findings and draws conclusions.

II. RELATED WORK

We are not aware of other studies on the power behavior of

irregular GPU programs. Only the power profile of the irreg-

ular Barnes Hut code has been described before [2], [20].

Many papers investigate Dynamic Voltage and Frequency

Scaling (DVFS) on CPUs. For example, Kandalla et al.

demonstrate the need to design software in a power-aware

Power Characteristics of Irregular GPGPU Programs

Martin Burtscher
Department of Computer Science

Texas State University

burtscher@txstate.edu

Jared Coplin
Department of Computer Science

Texas State University

coplin@txstate.edu

manner and to balance performance and power savings on a

power-aware DVFS-capable cluster system [8]. Pan et al. also

use DVFS and show that sometimes expending more energy

does not result in a large performance benefit [16]. In addition

to varying the frequency, Korthikanti and Agha explore how

changing the number of active cores affects the energy con-

sumption [9]. Freeh et al. perform a related study on a cluster

that evaluates how different frequencies and numbers of com-

pute nodes affect the power and performance of MPI pro-

grams [5]. There are also papers that highlight the lack of a

standardized power measurement methodology for energy-ef-

ficient supercomputing [19] or talk about how ignoring power

consumption as a design constraint in supercomputing will re-

sult in higher operational costs and diminished reliability [4].

Several publications propose and use analytical models to

investigate power and energy aspects. For instance, Li and

Martinez establish an analytical model for looking at parallel

efficiency, granularity of parallelism, and voltage/frequency

scaling [11]. Lorenz et al. explore compiler-generated SIMD

operations and how they affect energy efficiency [13]. Some

analytical models target GPUs. For example, Chen et al. in-

stitute a mechanism for evaluating and understanding the

power consumption when running GPU applications [3]. Ma

et al. use a statistical model to estimate the best GPU config-

uration to save power [14]. One simulation-based paper on

thermal management for GPUs discusses methods for manag-

ing power through architecture manipulation [18].

There are several papers that measure energy consumption

on actual GPU hardware. For instance, Gosh et al. explore

some common HPC kernels running on a multi-GPU platform

and compare their results against multi-core CPUs [7]. Ge et

al. investigate the effect of DVFS on the same type of GPU

that we are using [6]. A paper by Zecena et al. measures n-

body codes running on different GPUs and CPUs [20].

All of these publications primarily or exclusively study reg-

ular codes. Moreover, most of them only consider the average

or maximum power consumption. Our study is the first to

evaluate the power profiles of multiple irregular GPU codes.

III. GPU ARCHITECTURE

This section provides an overview of the architectural char-

acteristics of the Kepler-based Tesla K20c GPU we use for

our study. It includes an on-board power sensor that allows

the direct measurement of the GPU’s power draw.

The K20c consists of 13 streaming multiprocessors (SMs).

Each SM contains 192 processing elements (PEs). Whereas

each PE can run a thread of instructions, sets of 32 PEs are

tightly coupled and must either execute the same instruction

(operating on different data) in the same cycle or wait. This is

tantamount to a SIMD instruction that conditionally operates

on 32-element vectors. The corresponding sets of 32 coupled

threads are called warps. Warps in which not all threads can

execute the same instruction are subdivided by the hardware

into sets of threads such that all threads in a set execute the

same instruction. The individual sets are serially executed,

which is called branch divergence, until they re-converge.

Branch divergence hurts performance and energy efficiency.

The memory subsystem is also built for warp-based pro-

cessing. If the threads in a warp simultaneously access words

in main memory that lie in the same aligned 128-byte seg-

ment, the hardware merges the 32 reads or writes into one co-

alesced memory transaction, which is as fast as accessing a

single word. Warps accessing multiple 128-byte segments re-

sult in correspondingly many individual memory transactions

that are executed serially. Hence, uncoalesced accesses are

slower and require more energy than coalesced accesses.

The PEs within an SM share a pool of threads called thread

block or simply block, synchronization hardware, and a soft-

ware-controlled data cache called shared memory. A warp can

simultaneously access 32 words in shared memory as long as

all words reside in different banks or all accesses within a

bank request the same word. The SMs operate largely inde-

pendently and can only communicate through global memory

(main memory in DRAM). Shared memory accesses are much

faster and more energy efficient than global memory accesses.

IV. METHODOLOGY

A. Benchmark programs

We study the irregular programs from the LonestarGPU

benchmark suite [12] and contrast them with some regular

programs from the Parboil suite [17]. We chose which codes,

implementations, settings, and inputs to evaluate based on the

resulting active runtime to obtain sufficiently many power

samples. Table 1 lists the number of global kernels each pro-

gram contains as well as the inputs we used.

Table 1: Programs, number of global kernels (#K), and inputs

1) LonestarGPU benchmarks

The LonestarGPU suite v2.0 is a collection of commonly

used real-world applications that exhibit irregular behavior.

a. Barnes-Hut n-body Simulation (BH): An algorithm that

quickly approximates the forces in a system of bodies in lieu

of performing precise force calculations.

b. Breadth First Search (BFS): Computes the distance of

each node from a source node in an unweighted graph using

a topology-driven approach. In addition to the standard BFS

implementation (topology-driven, one node per thread), we

also study the atomic variation (topology driven, one node per

Program #K Inputs

BFS 5
Roadmap of the entire USA (24M nodes,

58M edges)

BH 9 bodies-timesteps: 10k-10k and 100k-100

DMR 4 5M node mesh file

LBM 1 3000 timesteps

MST 7
Roadmap of the entire USA (24M nodes,

58M edges)

NSP 3 clauses-literals-literals/clause: 42k-10k-5

PTA 40 tshark, vim, and pine

SPMV 2 "large" benchmark input

SSSP 2
Roadmap of the entire USA (24M nodes,

58M edges)

TPACF 1 "large" benchmark input

thread that uses atomics), the wla variation (one flag per node,

one node per thread), the wlw variation (data driven, one node

per thread) and the wlc variation (data-driven, one edge-per-

thread version using Merrill’s strategy [15]).

c. Delaunay Mesh Refinement (DMR): This implementa-

tion of the algorithm described by Kulkarni et al. [10] pro-

duces a guaranteed quality 2D Delaunay mesh, which is a De-

launay triangulation with the additional constraint that no an-

gle in the mesh be less than 30 degrees.

d. Minimum Spanning Tree (MST): This benchmark com-

putes a minimum spanning tree in a weighted undirected

graph using Boruvka’s algorithm and is implemented by suc-

cessive edge relaxations of the minimum weight edges.

e. Points-to Analysis (PTA): Given a set of points-to con-

straints, this code computes the points-to information for each

pointer in a flow-insensitive, context-insensitive manner im-

plemented in a topology-driven way.

f. Single-Source Shortest Paths (SSSP): Computes the

shortest path from a source node to all nodes in a directed

graph with non-negative edge weights by using a modified

Bellman-Ford algorithm.

g. Survey Propagation (NSP): A heuristic SAT-solver

based on Bayesian inference. The algorithm represents the

Boolean formula as a factor graph, which is a bipartite graph

with variables on one side and clauses on the other.

2) Parboil benchmarks

Parboil is a set of applications used to study the perfor-

mance of throughput-computing architectures and compilers.

We investigate the following regular codes from this suite.

a. Lattice-Boltzmann Method Fluid Dynamics (LBM): A

fluid dynamics simulation of an enclosed, lid-driven cavity

using the Lattice-Boltzmann Method.

b. Sparse Matrix Vector (SPMV): An implementation of

sparse matrix vector multiplication. The input file is a com-

pressed matrix in Jagged Diagonal Storage (JDS) sparse ma-

trix format. The output is a vector.

c. Two-Point Angular Correlation Function (TPACF):

Used to statistically analyze the spatial distribution of ob-

served astronomical bodies.

B. Evaluation test bed

We measured the GPU-kernel active runtime and energy

consumption with the K20Power tool [2]. Our Tesla K20c

GPU has 5 GB of global memory and 13 streaming multipro-

cessors with a total of 2,496 processing elements. It supports

six clock frequency settings, of which we evaluate three: the

“default” configuration, which uses a 705 MHz core speed

and a 2.6 GHz memory speed, the “614” configuration, which

uses a 614 MHz core speed and a 2.6 GHz memory speed, i.e.,

the slowest available compute speed at the normal memory

speed, and the “324” configuration, which uses a 324 MHz

core and memory speed, i.e., the slowest available frequency.

Thus, our configurations are 1) default, 2) 614, and 3) 324.

We performed each experiment three times and report the

results in form of power profiles. We only show one of the

three profiles as we found the variability between them to be

small. For example, the energy consumption varied by 1.9%

on average between the three experiments. All codes were

compiled using the default configurations set by their authors.

C. Active runtime

Throughout this paper, we refer to the “active runtime”,

which is not the total application runtime but rather the time

during which the GPU is actively computing. The K20Power

tool defines this as the amount of time the GPU is drawing

power above the idle level. Figure 1 illustrates this.

Figure 1: Sample power profile

Because of how the GPU draws power and how the built-

in power sensor samples, only readings above a certain

threshold (the dashed line at 55 W in this case) reflect when

the GPU is actually executing the program [2]. Measurements

below the threshold are either the idle power (less than about

26 W) or the “tail power” due to the driver keeping the GPU

active for a while before powering it down. Using the active

runtime ignores any execution time that may take place on the

CPU. The power threshold is dynamically adjusted to maxim-

ize accuracy for different GPU settings.

V. EXPERIMENTAL RESULTS

A. Regular vs. irregular GPU codes

1) Idealized profile

Figure 2 illustrates the shape of an idealized power profile

from a regular kernel. At point 1, the GPU receives work and

begins executing, which increases the power draw. The power

remains stable throughout execution (2). All cores finish at

point 3, thus returning the GPU to its idle power (about 17 W

in the example), which completes the idealized rectangular

profile. This profile’s shape can be fully captured with just

two values: the active runtime and the average power draw.

2) Regular codes

Figure 3 shows the actual power profiles of the three regu-

lar programs we study. Even though the power does not go up

and down instantaneously and the active power is not quite

constant, the profiles basically follow the idealized rectangu-

lar shape. In particular, the power ramps up quickly when the

code is launched, stays level during execution, and then drops

off. Note that the power peaks at different levels depending

on the program that is run and how much it exercises the GPU.

It looks like TPACF gradually runs out of work towards the

end of its execution, presumably due to load imbalance, and

SPMV exhibits a small amount of irregularity due to varia-

tions in the sparseness of its input.

Figure 2: Idealized power profile

Figure 3: Power profiles of three regular codes

As previously reported [2], once a kernel finishes running,

the power does not return to idle immediately. Rather, the

GPU driver steps down the power in a delayed manner as it

first waits for a while in case another kernel is launched. Note

that the GPU samples the power less frequently at lower

power levels. Since the power sensor’s primary purpose is to

prevent the GPU from damaging itself by drawing too much

power, we surmise that the driver automatically reduces the

sampling frequency when the power draw is low as there is

little chance of damage to the GPU.

3) Irregular codes

Figure 4 shows the power profiles of the seven irregular

LonestarGPU programs. Interestingly, the profiles of BFS and

SSSP (the two dashed profiles in the top panel) are similar to

the profiles of the regular codes shown in the previous sub-

section. This is because both implementations are topology

driven, meaning that all vertices are visited in each iteration,

regardless of whether there is new work to be done or not. A

topology-driven approach is easy to implement as it essen-

tially “regularizes” the code but may result in many useless

computations being executed. Hence, BFS and SSSP behave

like regular codes and have corresponding power profiles.

Though harder to see (lower panel), NSP belongs to the same

category as it also processes all vertices in each iteration.

In contrast, the profiles of DMR, MST, and PTA exhibit

many spikes, which reflect the irregular nature of these pro-

grams. Due to dynamically changing data dependencies and

parallelism amounts, their power draw fluctuates widely and

rapidly. Clearly, the profiles of these three codes are very dif-

ferent from those of regular programs. Moreover, they are dif-

ferent from each other’s profiles, highlighting that there is no

such thing as a standard profile for irregular codes.

Figure 4: Power profiles of seven irregular codes (split over two

panels to improve readability)

BH is more subtle in its irregularity. Its profile appears rel-

atively regular except the active power wobbles constantly. In

each time step, this program calls a series of kernels with dif-

ferent degrees of irregularity. Since the BH profile shown in

Figure 4 was obtained with 10,000 time steps (and 10,000

bodies), the true irregularity is largely masked by the short

runtimes of each kernel. Figure 5 shows the profile of the

same BH code but with 100,000 bodies and only 100 time

steps, which makes the repeated invocation of the different

kernels much more evident. The power draw fluctuates by

about 15 W while the program is executing. However, the ir-

regularity within each kernel is still not visible. Note that the

active power is over 100 W in most cases in Figure 5 whereas

it only reaches about 80 W in Figure 4. This is because run-

ning BH with 10,000 bodies does not fully load the GPU and

the 10,000 time steps result in a large number of brief pauses

between kernel calls, which lowers the GPU power draw.

Figure 5: Power profile of BH with 100k bodies and 100 time steps

4) Comparing idealized, regular, and irregular profiles

Figure 6 shows the idealized power profile overlaid with a

regular (LBM) and an irregular (PTA) profile of roughly the

same active time. While the idealized and regular profiles

have a similar shape, the irregular power profile clearly does

not. Whether because of load imbalance, irregular memory

access patterns, or unpredictable control flow, the irregular

code’s power draw fluctuates wildly. The active power of the

PTA code averages 82 W but reaches as high as 93 W and as

low as 57 W, which is a variation of over 60%. This is why

the power behavior of irregular programs cannot accurately

be captured by averages. Instead, the entire profile, i.e., the

power as a function of time, needs to be considered.

Figure 6: Comparison of idealized, regular, and irregular profile

B. Changing implementations, clock frequencies, and inputs

1) Changing the implementation

Changing the implementation of certain irregular algo-

rithms can have a profound impact on both the active runtime

and the power draw. Figure 7 illustrates this on the example

of BFS, for which the LonestarGPU suite includes multiple

versions. We profiled each version on the same input.

As discussed before, the default BFS implementation is to-

pology-driven and therefore quite regular in its behavior but

inefficient. BFS-WLA, the next faster version, is still topol-

ogy-driven but includes an optimization to skip vertices

where no re-computation is needed. This results in a shorter

runtime but also substantial load imbalance, which is why the

active power is so low. BFS-ATOMIC uses a different opti-

mizations strategy involving atomic operations, making it

even faster but resulting in a somewhat irregular power pro-

file. The remaining implementations are data-driven and

therefore work efficient, i.e., they do not perform unnecessary

computations. This is why they are much faster. Both BFS-

WLW’s and the improved BFS-WLC’s profile exhibits irreg-

ular wobbles, but they are too short to be visible in Figure 7.

Clearly, the shape of the power profile is not necessarily sim-

ilar for different implementations of the same algorithm.

Figure 7: Power profile of different implementations of BFS

Figure 8: Power profile of SSSP for different clock frequencies

2) Changing the clock frequency

Figure 8 shows the effects on SSSP’s power profile when

the GPU frequency is changed. The 614 configuration has a

core speed that is about 15% slower than the default, which

results in a reduction of the power draw by a little over 10 W

and an increase in the active runtime by almost 25 seconds.

Hence, the total energy consumption remains about the same

but the power draw is markedly lower.

The 324 configuration has a core speed that is less than half

that of the default, and its power draw is also a little less than

half. Since the runtime is about 2.5 times higher than the de-

fault, the energy consumption goes up. Note that the 324 con-

figuration has a memory speed that is eight times slower than

the default, so the more memory-bound a program is the

greater the increase in runtime will be. It should also be noted

that on low-frequency settings, the power rarely reaches a suf-

ficient level for the GPU to switch from the 1 Hz to the 10 Hz

sampling rate, so obtaining enough power samples to study

the power profiles at such low frequencies can be difficult.

3) Changing the input

Figure 9 shows how using different inputs affects the power

profile of the irregular PTA code. In fact, each tested input

yields a rather distinct profile. For example, pine results in an

over 15 W higher power draw on average than vim, and tshark

yields a profile in which the power ramps up after an initial

spike whereas the other two inputs result in more spikes and

a slight decrease in power consumption over time. Since a

change in input can have such a drastic effect on the power

profile of irregular programs, it may not be possible to use

information from one type of input to accurately characterize

the behavior for a different input. In fact, the early behavior

of a running program may not even be indicative of its later

behavior during the same program run, as tshark illustrates.

Figure 9: Power profile of PTA for different program inputs

VI. SUMMARY AND CONCLUSIONS

This paper studies the dynamic power characteristics of

three regular and seven irregular GPGPU programs. We find

that the power profiles of regular codes are typically similar

to the idealized “rectangular” power profile but the profiles of

irregular codes often are not. In fact, there is no such thing as

a standard power profile for irregular codes. Rather, each pro-

gram potentially yields a dissimilarly shaped profile. Moreo-

ver, changing the implementation or using a different input

can drastically alter the power profile. In fact, even for a fixed

implementation and input, the early execution behavior of an

irregular code may not be indicative of the later behavior due

to dynamically changing data dependencies and parallelism

amounts. Hence, the power behavior of irregular programs

cannot accurately be captured by averages. Instead, the power

as a function of time must be considered and may have to be

re-evaluated for each input and after each code modification.

ACKNOWLEDGMENTS

The work reported in this paper is supported by the U.S.

National Science Foundation under Grants DUE-1141022,

CNS-1217231, CNS-1406304, and CCF-1438963, a REP

grant from Texas State University as well as grants and equip-

ment donations from NVIDIA Corporation.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-

neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,

R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,

R. S. Williams, and K. Yelick. “ExaScale Computing Study: Technol-

ogy Challenges in Achieving Exascale Systems.” Peter Kogge, 2008.

[2] M. Burtscher, I. Zecena, and Z. Zong. “Measuring GPU Power with the

K20 Built-in Sensor.” Seventh Workshop on General Purpose Pro-

cessing on Graphics Processing Units. March 2014.

[3] J. Chen, B. Li, Y. Zhang, L. Peng, and J. Peir. “Statistical GPU power

analysis using tree-based methods.” 2011 International Green Compu-

ting Conference and Workshops. July 2011.

[4] W. Feng, X. Feng, and R. Ge. “Green Supercomputing Comes of Age.”

IT Professional. February 2008.

[5] V. Freeh, F. Pan, N. Kappiah, D. Lowenthal, and R. Springer. “Explor-

ing the Energy-Time Tradeoff in MPI Programs on a Power-Scalable

Cluster.” 19th IEEE Int’l Par. and Distributed Processing Symp. 2005.

[6] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong.

“Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU.”

2nd Workshop on Power-aware Algorithms, Systems, and Arch. 2013.

[7] S. Ghosh, S. Chandrasekaran, and B. Chapman. “Energy Analysis of

Parallel Scientific Kernels on Multiple GPUs.” 2012 Symposium on Ap-

plication Accelerators in High Performance Computing. July 2012.

[8] K. Kandalla, E.P. Mancini, S. Sur, and D.K. Panda. “Designing Power-

Aware Collective Communication Algorithms for InfiniBand Clus-

ters.” 39th International Conference on Parallel Processing. 2010.

[9] V. Korthikanti and G. Agha. “Towards optimizing energy costs of al-

gorithms for shared memory architectures.” 22nd Annual ACM Sympo-

sium on Parallelism in Algorithms and Architectures. June 2010.

[10] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-

manarayanan, Kavita Bala and L. Paul Chew. “Optimistic Parallelism

Requires Abstractions.” ACM Conference on Programming Languages

Design and Implementation, 211-222, June 2007.

[11] J. Li and J. Martínez. “Power-performance considerations of parallel

computing on chip multiprocessors.” ACM Transactions on Architec-

ture and Code Optimization. December 2005

[12] LonestarGPU: http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

[13] M. Lorenz, P. Marwedel, T. Dräger, G. Fettweis, and R. Leupers.

“Compiler based exploration of DSP energy savings by SIMD opera-

tions.” Asia and South Pacific Design Automation Conference. 2004.

[14] X. Ma, M. Rincon, and Z. Deng. “Improving Energy Efficiency of GPU

based General-Purpose Scientific Computing through Automated Se-

lection of near Optimal Configurations.” TR UH-CS. August 2011.

[15] Duane Merrill, Michael Garland, and Andrew Grimshaw. “Scalable

GPU graph traversal.” 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. 117-128. 2012.

[16] F. Pan, V. Freeh, and D.M. Smith. “Exploring the energy-time tradeoff

in high-performance computing.” Par. and Distr. Proc. Symp. 2005.

[17] Parboil: http://impact.crhc.illinois.edu/Parboil/parboil.aspx

[18] J. Sheaffer, K. Skadron, and D.P. Luebke. “Studying Thermal Manage-

ment for Graphics-Processor Architectures.” IEEE International Sym-

posium on Performance Analysis of Systems and Software. March 2005.

[19] B. Subramaniam and W. Feng. “Understanding Power Measurement

Implications in the Green500 List.” Green Computing and Communi-

cations, 2010 IEEE/ACM Int’l Conference on & Int’l Conference on

Cyber, Physical, and Social Computing. December 2010.

[20] I. Zecena, M. Burtscher, J. Tongdan, and Z. Ziliang. “Evaluating the

performance and energy efficiency of n-body codes on multi-core CPUs

and GPUs.” 2013 IEEE 32nd Int’l Perf. Comp. and Comm. Conf. 2013.

