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ABSTRACT  
Random-restart hill climbing is a common approach to combina-
torial optimization problems such as the traveling salesman prob-
lem (TSP). We present and evaluate an implementation of 
random-restart hill climbing with 2-opt local search applied to 
TSP. Our implementation is capable of addressing large problem 
sizes at high throughput. It is based on the key insight that the 
GPU’s hierarchical hardware parallelism is best exploited with a 
hierarchical implementation strategy, where independent climbs 
are parallelized between blocks and the 2-opt evaluations are par-
allelized across the threads within a block. We analyze the per-
formance impact of this and other optimizations on our heuristic 
TSP solver and compare its performance to existing GPU-based 
2-opt TSP solvers as well as a parallel CPU implementation. Our 
code outperforms the existing implementations by up to 3X, eval-
uating up to 60 billion 2-opt moves per second on a single K40 
GPU. It also outperforms an OpenMP implementation run on 20 
CPU cores by up to 8X. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming 

General Terms 
Algorithms, Performance 

Keywords 
program parallelization, code optimization, hill climbing, iterative 
local search, TSP, GPGPU, CUDA 

1.  INTRODUCTION 
Multi-start local search algorithms are a common technique to 
address combinatorial optimization problems (COPs). Finding the 
optimal solution to these problems is often NP-hard, and heuristic 
algorithms that find near-optimal solutions are applied instead. 
Local search algorithms generate an initial candidate solution and 
then iteratively improve the solution through successive moves to 
neighbor solutions. In iterative hill climbing (IHC), the algorithm 
moves in each step to the neighbor that maximizes the outcome 

until it reaches a locally optimal solution, i.e., one that cannot be 
further improved by a move to a neighboring solution. Because 
local search techniques such as IHC will become stuck at local 
optima, multi-start search algorithms repeatedly apply local search 
from different initial candidate solutions [17]. A simple multi-start 
algorithm is random-restart hill climbing, in which IHC is repeat-
edly performed from random initial solutions and a global best 
solution tracked across all restarts. This process of local im-
provements and random restarts continues until the solution is 
sufficiently good or a limit on computing resources is reached 
[22]. Random-restart IHC can require thousands if not millions of 
restarts to produce a good solution with high probability, making 
it a computationally expensive approach. 

The traveling salesman problem (TSP) [18] is a frequently ex-
plored COP that involves finding a minimum-distance Hamiltoni-
an tour in a complete, undirected, weighted graph in which the 
vertices represent cities and the edge weights represent the dis-
tances between cities. The tour must traverse each vertex in the 
graph exactly once and end at the starting vertex. The optimal 
TSP solution consists of the Hamiltonian tour that yields the min-
imum distance traveled. Because it is simple to explain yet finding 
its globally optimal solution is NP-hard [14], TSP is often used as 
an early exploration ground for heuristic approaches to combina-
torial optimization [15]. It is also an important problem on its 
own, with applications in domains such as logistics [11], wire 
routing [16], and genome analysis [1]. 

In the random-restart IHC approach to TSP, each iterated hill 
climb begins from a randomly-generated candidate solution, or 
tour. In each IHC step of the climb, a set of tour modifications, 
called moves, are evaluated to determine the best move (i.e., the 
move to the neighbor solution with the minimum tour length out 
of all available neighbor solutions). For instance, the tour can be 
adjusted by a heuristic such as 2-opt [6], which removes two edg-
es of the tour, thus splitting the tour into two subtours, and then 
reconnects the subtours in the other possible direction preserving 
a legal tour. For example, Figure 1 illustrates a 2-opt move that 

Figure 1.  Illustration of a 2-opt move that replaces the bolded 
edges in the tour on the left with the bolded edges in the tour 

on the right. Note that the order of the tour portion on the 
right between the swapped edges is reversed. 
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removes the tour edges (vi, vi+1) and (vj, vj+1) and adds edges (vi, 
vj) and (vi+1, vj+1). At each IHC step, all possible 2-opt moves are 
evaluated and, if a move that reduces the tour length is found, the 
tour is modified by applying the best 2-opt move. The IHC itera-
tion then continues by evaluating all possible 2-opt moves from 
the new tour; this process repeats until a local optimum is found 
(i.e., when no 2-opt moves can further improve the tour). At that 
point, the best tour and tour length are recorded and the process 
restarts from a new randomized candidate solution. After each 
climb, the local optimum is compared to the best solution thus far 
and saved if a new global minimum tour length has been found. 

Because it is computationally expensive, exhibits large amounts 
of parallelism, and requires little synchronization, random-restart 
TSP is a promising candidate for general-purpose GPU accelera-
tion. Within an individual hill climb, each IHC step depends on 
the previous step and therefore must execute serially. However, 
each of the restarts, or climbers, is independent and can be pro-
cessed in any order, including concurrently. Within each IHC 
step, the evaluation of each possible 2-opt move from a tour is 
also independent. Two previous implementations of 2-opt TSP 
solvers that run entirely on the GPU exist in the literature. Both 
parallelize the climbers, with a climber assigned per thread and 
sequential 2-opt evaluation within each climber. 

This approach has several disadvantages. In order to fully utilize 
the GPU, it requires a large number of climbers even when fewer 
climbers are sufficient to obtain good solution quality. Each 
climber must store its own tour order, resulting in a large memory 
footprint and reduced locality. Each climber executes its hill climb 
sequentially, including sequential move evaluation, which can 
lead to long latency to the discovery of the first local optima. 
Lastly, assigning each thread an independent climber results in 
branch divergence because nearby threads execute unrelated 
climbs. We present a 2-opt TSP solver that addresses these issues 
by assigning independent climbers to thread blocks rather than 
threads, utilizing the threads within a block to parallelize the 
move evaluations. This approach minimizes divergence, allows 
for more locality within each GPU core, greatly reduces the active 
working set size, and can fully load the GPU with fewer climbers. 

This paper makes the following main contributions. 

• We present a CUDA-based 2-opt TSP solver for large prob-
lem sizes that outperforms prior implementations. 

• We describe several key optimizations included in our im-
plementation and analyze their performance impact. 

• We demonstrate that a hierarchical strategy for parallelizing 
climbers across blocks and move evaluation between the 
threads within a block may be the most effective approach 
to accelerating random-restart local search on GPUs. 

The rest of this paper is organized as follows. Section 2 reviews 
existing work. Section 3 details our implementation and optimiza-
tions. Section 4 describes the methodology by which we measure 
the performance. Section 5 summarizes the individual GPU and 
CPU implementations we compare. Section 6 presents our find-
ings and compares our implementation with prior work. Section 7 
summarizes and concludes. 

2.  BACKGROUND AND RELATED 
LITERATURE 
NVIDIA GPGPU architectures have a two-level compute hierar-
chy composed of multiple streaming multiprocessors (SMs), or 
cores, each composed of multiple tightly coupled processing ele-
ments (PEs). CUDA programs specify the behavior of parallel 
threads; these threads are grouped into blocks and the blocks are 
assigned to SMs as SMs become available. The threads within a 
block share a software-controlled cache (shared memory) and fast 
synchronization hardware. Between blocks, synchronization and 
data exchange require accesses through slower, off-core global 
memory. Sets of adjacent threads (called a warp, currently 32 
threads for NVIDIA GPUs) within a block must share the same 
control-flow path to execute in parallel on the PEs. If they suffer 
from branch divergence, their execution will be serialized into 
smaller sets of threads with identical control flow. Additionally, 
memory accesses from threads within the same warp must be 
coalesced to the same 128B cache line or their execution will be 
serialized by the hardware. In general, GPUs require large 
amounts of parallelism and minimal global synchronization for 
good performance. 

The majority of GPU-based approaches to the traveling salesman 
problem implement a variation of Ant Colony Optimization 
(ACO) [9], a meta-heuristic algorithm based on the natural ability 
of ants to discover, collaboratively, the shortest path between their 
nest and a food source by depositing pheromones along their trav-
eled paths. ACO algorithms simulate the behavior of individual 
ants, which travel independently and construct a solution based on 
the pheromone trails left by other ants in previous iterations. Thus, 
this algorithm is highly parallelizable [10]. Many CUDA imple-
mentations of ACO TSP solvers exist [2][4][8][27]. ACO algo-
rithms, while successful at solving many COPs, require the 
storage of a pheromone matrix that becomes impractically vast at 
large problem sizes [8]. There have also been a handful of GPU 
implementations of genetic algorithms (GAs) applied to TSP 
[5][13]. In this paper, we examine TSP as a test case for iterative 
hill climbing, which has many other applications (e.g., finding a 
maximal parsimony phylogenetic tree [12]). As such, we do not 
directly compare our 2-opt implementation to TSP solvers based 
on other algorithms. 

2.1  2-Opt TSP for the GPU 
Two previous publications present 2-opt TSP solvers that run 
entirely on the GPU. 

O’Neil et al. [19] present a CUDA TSP solver capable of solving 
(with near-optimal solution quality) problem sizes up to 110 cit-
ies, achieving a speedup of 61X over a sequential CPU implemen-
tation and roughly equaling the performance of a pthreads 
implementation on 32 CPUs with 8 cores each. Their implementa-
tion parallelizes 100,000 random restarts by assigning individual 
climbers to threads. Initially, a single climber is assigned to each 
thread; successive climbers are obtained from a global worklist 
(via atomic increments) to ensure load balance between climbs, 
since climbs require a variable number of IHC steps to find a local 
minimum. A single critical section at the end of each climb tracks 
the global best solution via atomic operations on global memory. 

Each thread serially performs the steps of the IHC algorithm, 
including sequential evaluation of all possible 2-opt moves at each 
step. The 2-opt moves are evaluated in two nested for loops that 



compute the best pair of edges to remove and reconnect in the 
other direction. These loops are optimized to avoid duplication in 
city pairs due to symmetry as well as to prevent the evaluation of 
adjacent edges in the tour, the swapping of which can never result 
in a change of the tour length. For example, for a problem with n 
cities, the outer i-loop iterates from the 1st to the n-2nd city while 
the inner j-loop iterates from the i+2nd to the nth city. The tour cost 
is never actually computed during the move evaluation; the 
change in tour cost of each move is sufficient to pick the move 
that results in the greatest tour length reduction. Pseudo code for 
the nested for loops that perform the move evaluation is shown in 
Listing 1. Additionally, the code optimizes the loop nest by regis-
ter-caching the j-loop-invariant variables in the outer i-loop. 

The code keeps an array of cities representing the tour order in 
local memory for each thread, which ensures cached and coa-
lesced accesses. To allow for fast 2-opt evaluation, the distances 
between cities are pre-computed and stored in a two-dimensional 
distance matrix in shared memory. For a GPU with 48kB of 
shared memory, this O(n2) storage requirement limits the imple-
mentation to problem sizes of 110 cities or fewer. 

Rocki and Suda [24] present a modification of the above imple-
mentation that allows for problem sizes up to around 6,000 cities. 
Their implementation is based on the insight that the computation-
oriented architecture of GPUs encourages recalculating data rather 
than storing it in shared memory (which is very limited) or off-
chip (which has very high latency). Instead of pre-computing the 
distance matrix and keeping it in shared memory, their code stores 
the city coordinates in shared memory and recomputes the dis-
tances between cities as needed. This implementation underper-
forms the distance matrix implementation by up to fifty percent; 
however, it has an O(n) storage requirement and can solve much 
larger problem sizes. 

2.2  Hierarchical Parallelization 
Parallelism exists in two phases of the random-restart IHC algo-
rithm: between independent climbers, and between the evaluations 
of each 2-opt move during an IHC iteration. A handful of publica-
tions have addressed parallelizing only the local search (e.g., the 
2-opt move evaluations) on the GPU. Rocki and Suda observe that 
at least 90% of the time during iterated local search is spent on the 
local search itself. They present GPU-based 3-opt [23] and 2-opt 
[25] local search for TSP, performing the rest of the iterated local 

search (which permutes local search results to generate each next 
starting tour rather than restarting from a random tour) on the 
CPU. Their implementation assigns one 2-opt swap evaluation per 
GPU thread. The city coordinates are copied to shared memory at 
the beginning of each local search phase, and atomic operations 
on global memory are used to determine the best 2-opt move. 
Similarly to the second implementation described above, distances 
are re-calculated as needed from the coordinates. Because the 
GPU performs only the local search and tours are permuted on the 
CPU, the city coordinates can be stored in shared memory in tour 
order, avoiding scattered reads and removing the need for GPU 
storage of a separate array of cities in tour order. 

Our TSP solver is based on the key insight that the hierarchical 
structure of the GPU hardware suggests a hierarchical approach to 
parallelizing random-restart hill climbing, leveraging both paral-
lelism between independent climbers at the block level and be-
tween the outer loop of move evaluations at the thread level. 
Hierarchical parallelization is in itself not new. Hybrid paralleliza-
tion schemes for exploiting both task-level and loop-level parallel-
ism on message-passing clusters of shared-memory processors are 
common in the literature [21]. Nested data parallelism [3] is based 
on the recognition that sub-computations of a data-parallel opera-
tion may themselves exhibit data parallelism, and this idea has 
been extended to discussions of inter- vs. intra-operator parallel-
ism [20]. In the context of TSP, a prior GA-based TSP solver for 
the GPU [13] parallelized population individuals between thread 
blocks and the crossover operator and 2-opt local search between 
threads within the block. Their implementation achieves speedups 
of up to 24X over a serial CPU implementation of the same algo-
rithm. Delévacq et al. present a GPU strategy for iterative local 
search using the 3-opt heuristic that assigns a climber per block 
[7]. A single thread of the block is then in charge of applying local 
search to the solution, but the 3-opt move evaluation is parallel-
ized between the threads in the block. This is equivalent to paral-
lelizing the innermost loop of the move evaluation. Their code 
results in a 6X speedup over serial CPU code for 2048 cities. 

To our knowledge, ours is the first implementation of an iterative 
hill climbing TSP solver that runs entirely on the GPU and hierar-
chically parallelizes both the independent climbers and the outer 
loop of the move evaluation. 

3.  IMPLEMENTATION AND 
OPTIMIZATIONS 
This section discusses our 2-opt TSP solver implementation and 
several of its most important code optimizations. The individual 
performance impact of each optimization is detailed in Section 6. 
Our open-source CUDA implementation is publicly available at 
http://cs.txstate.edu/~burtscher/research/TSP_GPU/. 

Our code incorporates several optimizations from prior works. 
Listing 2 below illustrates the impact of these optimizations on the 
pseudo code for the nested move evaluation loops. Inner j-loop-
invariant variables are cached in the outer i-loop of the 2-opt 
evaluation. At each IHC step, the code avoids calculating the full 
tour length by instead tracking the net change in tour length; the 
final tour distance is calculated only at the end of each climber’s 
execution when a locally optimal change in length has been 
found. Additionally, distances between cities are recalculated 
from the city coordinates each time they are needed to avoid stor-
ing an O(n2) distance matrix. 

// city[i] is the coordinate index of ith city 
// in tour order 
#define dist(a,b) dmat[city[a]][city[b]] 
do { 
  minchange = 0 
  for (i = 0; i < cities-2; i++) { 
    for (j = i+2; j < cities; j++) { 
      change = dist(i,j) + dist(i+1,j+1) 
               - dist(i,i+1) - dist(j,j+1) 
      if (minchange > change) { 
        minchange = change 
        mini = i, minj = j 
      } 
    } 
  } 
  if (minchange < 0) 
    // apply best 2-opt move 
} while (minchange < 0) 

Listing 1.  Pseudo code for the nested loops that evaluate the 
2-opt moves 



3.1  Intra-Parallelization of the Move 
Evaluation 
In the random-restart IHC approach to TSP, the climbers are en-
tirely independent, requiring only a single critical section at the 
end to track the global best solution. Within the climbers, the 
evaluation of each possible move to a neighbor (i.e., the 2-opt 
swaps) is also independent. However, identifying the best 2-opt 
swap out of the O(n2) possibilities at each IHC step requires a 
reduction operation, which necessitates log2(thread count) steps 
involving synchronization and data exchange. Our implementa-
tion exploits this hierarchical parallelism in the algorithm and 
maps it to the hierarchical GPU architecture. Thus, rather than 
assigning a climber to each thread as in previous implementations, 
our code assigns a climber to each thread block. Because all 
threads within a block share the same tour order at each IHC step 
and distances are recalculated as needed from the coordinates, the 
coordinate arrays can be permuted directly in tour order (rather 
than requiring a separate array of ordered city indices). 

Each climber initially copies the city coordinates into local 
memory in parallel, accessing coordinate indices by thread index 
to ensure coalescing. One thread in the block is responsible for 
generating the initial random tour by randomly permuting the 
coordinate arrays. This is done serially as its runtime is insignifi-
cant. The IHC process then proceeds: each climber (block) evalu-
ates all possible 2-opt moves, applies the best move, and repeats 
until a local minimum is found (i.e., until no 2-opt move will im-
prove the tour length). At each IHC step, the threads within a 
block evaluate the possible 2-opt moves in parallel. Each thread is 
assigned one or more iterations of the outer i-loop. If there are 
fewer cities than maximum threads allowed per block (i.e., 1024), 
each block is launched with a thread for each city and the outer i-
loop is fully parallelized; otherwise, the blocks are launched with 
1024 threads and some or all the threads are responsible for mul-
tiple iterations of the loop. Each thread executes the iterations of 
the inner j-loop sequentially. Listing 3 illustrates the modification 
to the pseudo code of the nested move evaluation loops. 

After all possible 2-opt moves have been evaluated, a reduction is 
performed between the threads in the block to determine the over-
all best 2-opt move from among the threads’ individual best 
moves. This reduction requires several steps of synchronization; 
however, because each block executes an independent climber, 
this synchronization is limited to intra-block synchronization bar-
riers. At the end of the reduction, each thread checks if its best 
tour modification was the best overall (i.e., if its best calculated 
change in tour length matches the result of the reduction). If so, 
the thread stores the pair of cities associated with the best 2-opt 
move to a buffer. Multiple threads may find 2-opt moves that 
yield an identical change in tour length. In case of ties, it is not 
necessary for the winning 2-opt move to be deterministic; howev-
er, the two city indices of the move must be stored as a single 
atomic transaction. In order to avoid requiring a lock, the code 
stores the two city indices in the upper and lower halves of a sin-
gle integer value. 

After another synchronization barrier to ensure that all threads 
have access to the best 2-opt move, the threads within the block 
apply the tour modification in parallel. A 2-opt swap between 
cities i and j results in a reversing of the segment of the tour be-
tween (and inclusive of) i+1 and j. Threads with indices within the 
first half of this range participate in the reordering, each swapping 
their assigned coordinate with the proper offset in the second half 
of the segment. A final synchronization barrier ends the IHC step. 

When a local minimum is found by a climber, a final parallel 
prefix scan sums the distances between adjacent tour cities to 
compute the length of the locally minimal tour. The first thread in 
the block executes an atomicMin() to replace the global best solu-
tion if a new global minimum tour length has been found. 

3.2  Shared Memory Tiling 
Since each climber (block) maintains a tour that is shared by all 
threads within the block, the city coordinates as well as the buffer 
used for the parallel reductions should ideally reside in shared 
memory. However, storage of all city coordinates in the small 

// x[i] and y[i] are the coordinates of ith 
// city in tour order 
#define dist(a,b) sqrtf( 
          (x[a] - x[b]) * (x[a] – x[b]) 
         + (y[a] – y[b]) * (y[a] – y[b]) ) 
do { 
  minchange = 0 
  for (i = 0; i < cities-2; i++) { 
    minchange += dist(i,i+1) 
    for (j = i+2; j < cities; j++) { 
      change = dist(i,j) + dist(i+1,j+1) 
               - dist(j,j+1) 
      if (minchange > change) { 
        minchange = change 
        mini = i, minj = j 
      } 
    } 
    minchange -= dist(i,i+1) 
  } 
  if (minchange < 0) 
    // apply best 2-opt move 
} while (minchange < 0) 

Listing 2.  Pseudo code for 2-opt evaluation loops after 
caching j-loop invariant variables at outer loop and 

re-calculating distances as needed 

do { 
  for (i = thdID; i < cities; i += blkDim) 
    buf[i] = -dist(i,i+1) 
  __syncthreads() 
 
  minchange = 0 
  // outer i-loop parallelized within block 
  for (i = thdID; i < cities-2; i += blkDim){ 
    minchange -= buf[i]  // +dist(i,i+1) 
 
    // inner j-loop sequential 
    for (j = i+2; j < cities; j++) { 
      change = buf[j] + dist(i,j) 
               + dist(i+1,j+1) 
      if (minchange > change) { 
        minchange = change 
        mini = i, minj = j 
      } 
    } 
    minchange += buf[i]  // -dist(i,i+1) 
  } 
  __syncthreads() 
 
  // reduction to identify + apply best move 
} while (minchange < 0) 

Listing 3.  Pseudo code for the intra-parallelized version of 
the 2-opt move evaluation loops 



shared memory would limit the problem size. Thus, our TSP code 
breaks (i.e., strip mines) the inner j-loop move evaluations into 
chunks whose coordinates can fit into shared memory. The outer 
i-loop is parallelized between the threads of the block, so each 
thread reads its city[i] coordinates from global memory only once. 
It then executes the inner j-loop in segments, transferring the 
city[j] coordinates accessed by each segment into shared memory 
before evaluating that segment’s 2-opt moves. 

For shared memory tiling to work, the threads within the block 
must access only data falling within the same tile during the same 
segment of execution. The original inner j-loop of the 2-opt eval-
uations began its iteration at index i+2, which will vary for each 
thread (each of which has been assigned a different iteration of the 
outer i-loop). However, reversing the iteration order of the inner j-
loop results in all threads beginning their loop iteration at the last 
city of the tour. Thus, our code executes the inner j-loop in reverse 
order, in segments beginning with the last city in the tour. Before 
each segment, the threads cooperate to load both the city coordi-
nates and the loop-invariant city distances (i.e., the distance be-
tween city[i] and city[i+1] for each thread) for the segment into 
shared memory. After a synchronization barrier to ensure that the 
shared memory contains the entire tile, each thread evaluates the 
2-opt moves for its assigned iteration of the i-loop and all j-loop 
values that fall within the tile, in decrementing order from the last 
city of the tour. Listing 4 illustrates in pseudo code the basic 
structure of the 2-opt evaluation loops with shared memory tiling. 
This process of tiling, synchronization, and move evaluation re-
peats until all segments of the inner j-loop have been evaluated. 
As individual threads reach the lower bound of their j-loop, which 
is dependent on the thread’s assigned i-loop index, they drop out 

of the move evaluations. However, all threads continue participat-
ing in the parallel loading of tiles into shared memory. 

After the move evaluation phase of the IHC step, the parallel re-
duction to determine the overall best 2-opt move is performed in 
shared memory. Once a climber finds a local minimum tour, a 
shared memory buffer is also used for the prefix sum that com-
putes the tour length of the minimum. Whenever possible, the 
code reuses the same shared-memory buffer for different tasks. 

3.3  Launch Configuration Tuning 
Lastly, our implementation tunes the thread count per block to 
optimize the launch configuration based on the number of cities in 
the input, their shared memory usage, the maximum threads per 
block, the maximum threads per SM, the maximum blocks per 
SM, and the number of registers per SM of the target GPU. 

This calculation requires only a few lines of code before the ker-
nel launch and ensures that the hardware is maximally occupied. 
For many input sizes it significantly improves performance over a 
statically selected launch configuration (cf. Section 6). 

4.  EXPERIMENTAL METHODOLOGY 
We evaluated our CUDA implementations on an NVIDIA K40 
GPU, which has 15 SMs and a total of 2880 PEs. The codes were 
compiled with nvcc version 5.5 using the ‘-O3 -arch=sm_35  
-use_fast_math’ flags. 

We measured throughput in billions of 2-opt moves evaluated per 
second. All codes were instrumented to collect the total number of 
IHC steps executed between all climbers. The number of 2-opt 

#define shmem_dist(a,b) sqrtf( (shmem_x[a] - shmem_x[b]) * (shmem_x[a] - shmem_x[b]) 
                               + (shmem_y[a] - shmem_y[b]) * (shmem_y[a] - shmem_y[b]) ) 
do { 
  for (i = threadID; i < cities; i += blockDim) 
    buf[i] = -dist(i,i+1) 
    __syncthreads() 
 
  minchange = 0 
  for (i = threadID; i < cities-2; i += blockDim) { 
    minchange -= buf[i] 
 
    // reversed j-loop order 
    for (jj = cities-1; jj >= i+2; jj -= tileSize) { 
      parallel_load_tile(x_shmem[], x[]) 
      parallel_load_tile(y_shmem[], y[]) 
      parallel_load_tile(buf_shmem[], buf[]) 
      __syncthreads() 
 
      for(j = jj; j >= tileLowerBound; j--) { 
        change = buf_shmem[j] + shmem_dist(i,j) + shmem_dist(i+1,j+1) 
        if (minchange > change) { 
          minchange = change 
          mini = i, minj = j 
        } 
      } 
      __syncthreads() 
    } 
 
    minchange += buf[i] 
  } 
  __syncthreads() 
  // reduction to identify + apply best move 
} while (minchange < 0) 
 

Listing 4.  Pseudo code for the intra-parallelized 2-opt loops with the addition of shared memory tiling 



evaluations per IHC step can be calculated directly from the num-
ber of cities. We measured the runtime of the entire kernel execu-
tion, exclusive of all CPU initialization code. 

The throughput measurements were collected on the first n points 
of the ‘d18512.tsp’ input from TSPLIB [26]. For each implemen-
tation and city count, we ran a sufficient number of random inde-
pendent climbers to fully load the target GPU and to result in at 
least one second of kernel runtime. Each measurement was per-
formed 3 times for each input size and implementation and the 
best of the 3 runs was recorded. In addition to the throughput 
measurements, we also examined solution quality using several 
other TSPLIB inputs. 

In addition to comparing between several CUDA implementa-
tions, we compared our 2-opt TSP solver to a parallel CPU solver 
based on the same IHC algorithm. Our OpenMP implementation 
is also hand optimized. We evaluated the OpenMP code on a sin-
gle node of the TACC Maverick system, consisting of two 2.8 
GHz Intel Xeon E5-2680 v2 Ivy Bridge processors with 10 cores 
each and 256 GB of memory. The CPU code was compiled with 
icc version 14.0.1 using the ‘-xhost -O3 -openmp’ flags. For each 
input size, we ran the same number of independent CPU climbers 
as for the GPU implementation to which we compare the through-
put, rounded up to the number of OpenMP threads. 

5.  INVESTIGATED CODE VERSIONS 
We implemented several CUDA versions of our hierarchically 
parallelized TSP solver (a version with all of the optimizations 
described in Section 3 as well as intermediate versions to quantify 
the impact of individual optimizations), four CUDA codes based 
on the two existing GPU 2-opt TSP solvers, and an OpenMP ver-
sion. This section describes each implementation evaluated in 
Section 6. 

5.1  Distance Matrix—Shared (matr_s) 
The matr_s code is an implementation of the O’Neil et al. [19] 
climber-per-thread approach that stores a distance matrix in 
shared memory and is limited to problem sizes of 110 or fewer 
cities. The distance matrix is calculated in parallel at the begin-
ning of kernel execution. Each climber stores its tour order in a 
separate array of cities in local memory. This code includes all 
optimizations described in Section 2.1. The original O’Neil et al. 
code uses persistent thread blocks and requires a worklist of 
climbers to ensure load balance. Our re-implementation instead 
allows the launch of many more thread blocks than there are SMs, 
which enables the GPU to automatically load balance climbers via 
block-to-SM assignment. This simplifies the code and results in 
performance similar to that of the original implementation. 

5.2  Distance Matrix—Global (matr_g) 
The matr_g code is a naïve re-implementation of the O’Neil et al. 
algorithm that can solve larger problems. It stores the distance 
matrix in global memory and does not use shared memory at all. It 
is limited to problem sizes where the O(n2) distance matrix fits in 
global memory. 

5.3  Distance Matrix—Global Read-Only Path 
(matr_g_ro) 
The matr_g_ro code is identical to the matr_g code except that it 
accesses the distance matrix in global memory via the __ldg() 

intrinsic, which forces the read to occur through the read-only 
data cache (texture cache) path and allows the GPU to cache the 
data on the SMs. 

5.4  Distance Re-Calculation (calc) 
The calc code incorporates two of the main ideas presented in 
Rocki and Suda’s works. It recalculates the distances between 
cities as they are needed rather than reading them from a pre-
calculated distance matrix [24]. It also directly permutes the coor-
dinate array to represent the tour order, rather than storing and 
reading from a separate array of cities [25]. Our implementation 
stores the city coordinates in local memory and does not use 
shared memory. Because each climber is assigned to an individual 
thread, permuting the city coordinates requires each thread to have 
its own copy of the coordinate arrays. This would not be possible 
in the limited amount of available shared memory. This imple-
mentation can solve problem sizes up to around 4000 cities, lim-
ited by the local memory size. 

5.5  Intra-Parallelization—Global (intra) 
The intra code is an implementation of the approach described in 
Section 3.1. Instead of assigning a climber to a thread, it assigns 
climbers to blocks and parallelizes the outer loop of the 2-opt 
move evaluations between threads. This implementation also does 
not use shared memory. 

5.6  Intra-Parallelization + Shared Memory 
Tiling (tile) 
The tile code parallelizes climbers between blocks and move 
evaluations between threads as in the intra code. As described in 
Section 3.2, it reverses the inner j-loop order and tiles city coordi-
nate data into shared memory during inner loop execution. 

5.7  Intra-Parallelization + Tiling + Tuned 
Launch Configuration (tuned) 
The tuned code’s kernel is identical to that of the tile code. How-
ever, this implementation adds a small section of CPU initializa-
tion code to dynamically tune the grid configuration for the given 
problem size and target GPU, as described in Section 3.3. 

5.8  OpenMP (cpu) 
The cpu code assigns independent climbers to OpenMP threads 
similarly to the matr_s, matr_g(_ro), and calc codes. At each IHC 
step, all possible 2-opt moves are evaluated sequentially. Similar-
ly to the CUDA code, the OpenMP code optimizes the loop nest 
by caching loop invariant variables in registers. The distances 
between cities are calculated in parallel at the beginning and 
stored in a distance matrix. The code stores the tour order in a 
separate array of city indices. A critical section at the end of a 
climb determines whether a new global optimum has been found. 

6.  RESULTS 
This section presents and analyzes our experimental results. We 
examine throughput in billions of 2-opt moves (hereafter referred 
to as gigamoves) per second. We compare our TSP solver to the 
other GPU versions described above, and we also compare our 
best GPU version to our OpenMP implementation of the 2-opt 
solver. Lastly, we discuss solution quality. 



6.1  GPU Codes 
Figure 2 displays the throughput of the existing GPU implementa-
tions: matr_s, which is limited to problem sizes of 110 or fewer 
cities due to its O(n2) shared memory requirements; matr_g, 
which instead stores the distance matrix in global memory; 
matr_g_ro, which loads the distance matrix via the read-only data 
cache path; and calc, which re-calculates distances directly from 
the coordinates (stored in local memory in tour order). 

At 110 cities or fewer, matr_s is the winner. Matr_g performs 
terribly, as expected from a naïve implementation that stores all 
data in global memory. Reading the global memory distance ma-
trix via the read-only path (matr_g_ro), which allows the data to 
be cached in the read-only data cache, rivals the performance of 
the shared memory version at very small problem sizes. However, 
the performance tails off quickly as the city count grows, with a 
large drop in throughput at around 60 cities when the distance 
matrix exceeds the size of the read-only data cache and another at 
around 600 cities when the L2 capacity is exceeded. 

At larger input sizes, calc achieves over 75% of the throughput of 
the matr_s code even though it does not use shared memory. Un-
like the matr_s version, calc is capable of solving relatively large 
problem sizes (up to around 4000 cities, which is why calc’s 
throughput drops to zero at the right side of Figure 2). Clearly, 
smart utilization of the memory hierarchy and the GPU’s compu-
tation throughput can sometimes allow good performance even in 
the absence of shared memory use. 

Figure 3 shows the performance of our hierarchically parallelized 
implementation, intra, which parallelizes climbers between blocks 
and each climber’s move evaluations between the threads in the 
block. Like calc, this code does not use shared memory. For small 
problem sizes, matr_s remains the best performing strategy. The 
intra code’s throughput rivals that of calc at larger problem sizes. 
Unlike calc, which is limited to problems of up to around 4000 
cities due to its need to store each thread’s coordinates in tour 
order in local memory, the intra code can solve much larger prob-
lems. However, calc slightly outperforms intra for problem sizes 
supported by both codes due to intra’s multi-level parallelization 
strategy, which incurs a small runtime overhead. 

Figure 4 illustrates the performance improvement of each of our 
two additional optimizations over the intra-parallelized version, 
once again compared to matr_s and calc. The tile code tiles city 
coordinates (in tour order) into shared memory. For the most part, 
at small problem sizes matr_s remains the winning implementa-

tion. However, at the one examined problem size over 100 cities 
that is supported by both codes, tile slightly outperforms matr_s. 
(This is because the matr_s code suffers from a significant num-
ber of shared memory bank conflicts, whereas the tile code is 
entirely bank conflict-free. We confirmed this behavior via the 
nvprof tool, which on the K40 counts shared bank conflicts via the 
shared_load_replay and shared_store_replay hardware perfor-
mance counters. For example, for 100 cities and 100,000 climb-
ers, the matr_s code results in about 1.3×1010 shared load replays 
compared to zero replays for the tile code). At larger problem 
sizes, tile significantly exceeds the maximum throughput achieved 
by the matr_s code on any input. It also significantly outperforms 
calc, achieving nearly 2.5X the throughput of calc on their largest 
shared input size. 

The tile code suffers from some throughput variance due to 
suboptimal grid configurations. For example, with 555 cities, it 
runs 3 thread blocks per SM with 553 threads per block (one for 
each of the outer i-loop iterations), which results in poor occupan-
cy. Our final optimized version, tuned, adds a small section of 
CPU code before the kernel launch to quickly compute the best 
grid launch configuration for the specific target hardware and 
problem size. In the 555-city case, it chooses 128-thread blocks 
and assigns multiple cities to each thread. Tuned achieves up to a 
3X speedup over calc, reaches throughputs of over 60 billion 2-
opt moves evaluated per second, and can run all problem sizes 
whose coordinate arrays fit in GPU memory, i.e., those with up to 
hundreds of millions of cities. 
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Figure 3.  Throughput (in billions of 2-opt moves evaluated per second) for our intra-parallelization code 
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Figure 2.  Throughput (in billions of 2-opt moves evaluated 
per second) for the existing implementations 



6.2  Comparison to CPU Code 
We instrumented our OpenMP implementation, cpu, to measure 
its throughput in gigamoves/second identically to how it is done in 
the GPU code. As we evaluated our OpenMP implementation on 
20 Xeon cores, we first examine performance scaling with in-
creasing numbers of threads on the 150-city ‘kroA150.tsp’ input 
from TSPLIB. Figure 5 displays the runtime at each thread count 
up to the number of CPU cores, with all runtimes normalized to 
that of the sequential CPU code. Figure 5 also includes the nor-
malized GPU (tuned) runtime on the same input. 

Next we compare the performance of the CPU code (using the 
best thread count, i.e., 20 threads) to the GPU (tuned) code by 
comparing throughputs on increasing problem sizes. Figure 6 
shows the throughput of the tuned and cpu codes on input sizes up 
to 8,546 cities. (Our experimental platform has a runtime limit of 
12 hours. At problem sizes above 8,546 cities, the OpenMP code 
timed out before completion). Our tuned GPU code on a single 
K40 outperforms two Xeon E5-2680 v2 processors with twenty 
cores by up to 8X. The GPU implementation scales well to larger 
problem sizes, maintaining throughputs of over 60 billion 2-opt 
moves per second even at thousands of cities. The cpu implemen-
tation, on the other hand, achieves its maximum throughput 
around 1600 cities and then begins to lose throughput for larger 
city counts, presumably due to increased data cache misses. How-
ever, it does outperform tuned on the smallest tested input. 

6.3  Solution Quality 
Figure 7 displays the mean percentage error (i.e., the relative dif-
ference in tour length between the best found and the optimal 
tours) as a function of the problem size for 100,000 independent 
climbers. The error measurements were collected using the tuned 
code on the first 63 inputs of TSPLIB [26]. Random-restart hill 
climbing is one of many techniques that can be applied to TSP, 
and we do not claim that it is the most suitable. However, multi-
start search algorithms such as IHC are applicable to broad classes 
of combinatorial optimization problems, and our results suggest 
the potential for GPUs to greatly accelerate these strategies. 

Note that we have previously compared implementation perfor-
mance measured as throughput in billions of 2-opt move 

Figure 7.  Solution quality (mean percentage error from 
optimal solution) for ranges of problem sizes 
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Figure 5.  Runtime scaling for each tested OpenMP thread 
count, normalized to the runtime of the sequential CPU code 
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Figure 4.  Throughput (in billions of 2-opt moves evaluated per second) for the shared memory tiling versions of our code 



evaluations per second, but that the number of climbers launched 
differed between the matr/calc implementations and our proposed 
tuned implementation due to the change in the parallelization 
approach (from climber-per-thread to climber-per-block). Figure 8 
displays the speedup of the tuned code relative to the calc code in 
climbers per second rather than 2-opt moves per second, collected 
for each implementation using the same initial tour and the same 
total climber count (chosen to be the minimum number of climb-
ers required to fully load calc). Within the bounds of some inde-
terminacy for equal-length tours, both codes will yield the same 
solution given these matched initial conditions. The tuned code’s 
much higher throughput results in a significantly higher climb-
ers/second throughput as well, and tuned can therefore run more 
climbers in a fixed amount time. In general, solution quality im-
proves as climber count increases. 

7.  CONCLUSION 
This paper presents a CUDA version of a heuristic TSP solver 
based on random-restart hill climbing using 2-opt for local search. 
Our implementation includes several optimizations over existing 
work, including a hierarchical parallelism strategy that exploits 
the hierarchical nature of the GPU hardware to parallelize both 
independent climbers and the local search within each climb. It 
leverages shared memory without limiting the solvable problem 
size by reversing the inner loop of the move evaluation to allow 
for shared data tiling. It dynamically computes the best kernel 
launch configuration based on the input size and the underlying 
GPU’s parameters to ensure that the hardware is maximally occu-
pied. Our open-source CUDA implementation is publicly availa-
ble at http://cs.txstate.edu/~burtscher/research/TSP_GPU/. 

We present our implementation, analyze the performance impact 
of each of our optimizations, and compare our code’s performance 
to that of existing approaches as well as to a parallel CPU version. 
Our code on a single GPU evaluates over 60 billion 2-opt moves 
per second, outperforming other GPU versions by 3X and an 
OpenMP version run on two 10-core Xeon CPUs by 8X. 

Random-restart hill climbing is a common approach to address 
TSP and other combinatorial optimization problems. Our results 
suggest that a hierarchical strategy based on parallelizing both 
independent climbs and the local search may be the most effective 
technique to accelerate this algorithm on GPUs. The hierarchical 
climbers-to-blocks and move-evaluations-to-threads paralleliza-
tion strategy described in this paper is likely also applicable to 
other iterated local search algorithms, e.g., those where previous 
local solutions are permuted to seed new climbs, which may im-
prove solution quality. 
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