

 Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

GPGPU-8, February 07 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02…$15.00
http://dx.doi.org/10.1145/2716282.2716287

Rethinking the Parallelization of Random-Restart Hill Climbing
A Case Study in Optimizing a 2-Opt TSP Solver for GPU Execution

Molly A. O’Neil
Department of Computer Science

Texas State University
San Marcos, TX USA

moneil@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, TX USA

burtscher@txstate.edu

ABSTRACT
Random-restart hill climbing is a common approach to combina-
torial optimization problems such as the traveling salesman prob-
lem (TSP). We present and evaluate an implementation of
random-restart hill climbing with 2-opt local search applied to
TSP. Our implementation is capable of addressing large problem
sizes at high throughput. It is based on the key insight that the
GPU’s hierarchical hardware parallelism is best exploited with a
hierarchical implementation strategy, where independent climbs
are parallelized between blocks and the 2-opt evaluations are par-
allelized across the threads within a block. We analyze the per-
formance impact of this and other optimizations on our heuristic
TSP solver and compare its performance to existing GPU-based
2-opt TSP solvers as well as a parallel CPU implementation. Our
code outperforms the existing implementations by up to 3X, eval-
uating up to 60 billion 2-opt moves per second on a single K40
GPU. It also outperforms an OpenMP implementation run on 20
CPU cores by up to 8X.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
Algorithms, Performance

Keywords
program parallelization, code optimization, hill climbing, iterative
local search, TSP, GPGPU, CUDA

1. INTRODUCTION
Multi-start local search algorithms are a common technique to
address combinatorial optimization problems (COPs). Finding the
optimal solution to these problems is often NP-hard, and heuristic
algorithms that find near-optimal solutions are applied instead.
Local search algorithms generate an initial candidate solution and
then iteratively improve the solution through successive moves to
neighbor solutions. In iterative hill climbing (IHC), the algorithm
moves in each step to the neighbor that maximizes the outcome

until it reaches a locally optimal solution, i.e., one that cannot be
further improved by a move to a neighboring solution. Because
local search techniques such as IHC will become stuck at local
optima, multi-start search algorithms repeatedly apply local search
from different initial candidate solutions [17]. A simple multi-start
algorithm is random-restart hill climbing, in which IHC is repeat-
edly performed from random initial solutions and a global best
solution tracked across all restarts. This process of local im-
provements and random restarts continues until the solution is
sufficiently good or a limit on computing resources is reached
[22]. Random-restart IHC can require thousands if not millions of
restarts to produce a good solution with high probability, making
it a computationally expensive approach.

The traveling salesman problem (TSP) [18] is a frequently ex-
plored COP that involves finding a minimum-distance Hamiltoni-
an tour in a complete, undirected, weighted graph in which the
vertices represent cities and the edge weights represent the dis-
tances between cities. The tour must traverse each vertex in the
graph exactly once and end at the starting vertex. The optimal
TSP solution consists of the Hamiltonian tour that yields the min-
imum distance traveled. Because it is simple to explain yet finding
its globally optimal solution is NP-hard [14], TSP is often used as
an early exploration ground for heuristic approaches to combina-
torial optimization [15]. It is also an important problem on its
own, with applications in domains such as logistics [11], wire
routing [16], and genome analysis [1].

In the random-restart IHC approach to TSP, each iterated hill
climb begins from a randomly-generated candidate solution, or
tour. In each IHC step of the climb, a set of tour modifications,
called moves, are evaluated to determine the best move (i.e., the
move to the neighbor solution with the minimum tour length out
of all available neighbor solutions). For instance, the tour can be
adjusted by a heuristic such as 2-opt [6], which removes two edg-
es of the tour, thus splitting the tour into two subtours, and then
reconnects the subtours in the other possible direction preserving
a legal tour. For example, Figure 1 illustrates a 2-opt move that

Figure 1. Illustration of a 2-opt move that replaces the bolded
edges in the tour on the left with the bolded edges in the tour

on the right. Note that the order of the tour portion on the
right between the swapped edges is reversed.

i j

j+1 i+1

i j

j+1 i+1

removes the tour edges (vi, vi+1) and (vj, vj+1) and adds edges (vi,
vj) and (vi+1, vj+1). At each IHC step, all possible 2-opt moves are
evaluated and, if a move that reduces the tour length is found, the
tour is modified by applying the best 2-opt move. The IHC itera-
tion then continues by evaluating all possible 2-opt moves from
the new tour; this process repeats until a local optimum is found
(i.e., when no 2-opt moves can further improve the tour). At that
point, the best tour and tour length are recorded and the process
restarts from a new randomized candidate solution. After each
climb, the local optimum is compared to the best solution thus far
and saved if a new global minimum tour length has been found.

Because it is computationally expensive, exhibits large amounts
of parallelism, and requires little synchronization, random-restart
TSP is a promising candidate for general-purpose GPU accelera-
tion. Within an individual hill climb, each IHC step depends on
the previous step and therefore must execute serially. However,
each of the restarts, or climbers, is independent and can be pro-
cessed in any order, including concurrently. Within each IHC
step, the evaluation of each possible 2-opt move from a tour is
also independent. Two previous implementations of 2-opt TSP
solvers that run entirely on the GPU exist in the literature. Both
parallelize the climbers, with a climber assigned per thread and
sequential 2-opt evaluation within each climber.

This approach has several disadvantages. In order to fully utilize
the GPU, it requires a large number of climbers even when fewer
climbers are sufficient to obtain good solution quality. Each
climber must store its own tour order, resulting in a large memory
footprint and reduced locality. Each climber executes its hill climb
sequentially, including sequential move evaluation, which can
lead to long latency to the discovery of the first local optima.
Lastly, assigning each thread an independent climber results in
branch divergence because nearby threads execute unrelated
climbs. We present a 2-opt TSP solver that addresses these issues
by assigning independent climbers to thread blocks rather than
threads, utilizing the threads within a block to parallelize the
move evaluations. This approach minimizes divergence, allows
for more locality within each GPU core, greatly reduces the active
working set size, and can fully load the GPU with fewer climbers.

This paper makes the following main contributions.

• We present a CUDA-based 2-opt TSP solver for large prob-
lem sizes that outperforms prior implementations.

• We describe several key optimizations included in our im-
plementation and analyze their performance impact.

• We demonstrate that a hierarchical strategy for parallelizing
climbers across blocks and move evaluation between the
threads within a block may be the most effective approach
to accelerating random-restart local search on GPUs.

The rest of this paper is organized as follows. Section 2 reviews
existing work. Section 3 details our implementation and optimiza-
tions. Section 4 describes the methodology by which we measure
the performance. Section 5 summarizes the individual GPU and
CPU implementations we compare. Section 6 presents our find-
ings and compares our implementation with prior work. Section 7
summarizes and concludes.

2. BACKGROUND AND RELATED
LITERATURE
NVIDIA GPGPU architectures have a two-level compute hierar-
chy composed of multiple streaming multiprocessors (SMs), or
cores, each composed of multiple tightly coupled processing ele-
ments (PEs). CUDA programs specify the behavior of parallel
threads; these threads are grouped into blocks and the blocks are
assigned to SMs as SMs become available. The threads within a
block share a software-controlled cache (shared memory) and fast
synchronization hardware. Between blocks, synchronization and
data exchange require accesses through slower, off-core global
memory. Sets of adjacent threads (called a warp, currently 32
threads for NVIDIA GPUs) within a block must share the same
control-flow path to execute in parallel on the PEs. If they suffer
from branch divergence, their execution will be serialized into
smaller sets of threads with identical control flow. Additionally,
memory accesses from threads within the same warp must be
coalesced to the same 128B cache line or their execution will be
serialized by the hardware. In general, GPUs require large
amounts of parallelism and minimal global synchronization for
good performance.

The majority of GPU-based approaches to the traveling salesman
problem implement a variation of Ant Colony Optimization
(ACO) [9], a meta-heuristic algorithm based on the natural ability
of ants to discover, collaboratively, the shortest path between their
nest and a food source by depositing pheromones along their trav-
eled paths. ACO algorithms simulate the behavior of individual
ants, which travel independently and construct a solution based on
the pheromone trails left by other ants in previous iterations. Thus,
this algorithm is highly parallelizable [10]. Many CUDA imple-
mentations of ACO TSP solvers exist [2][4][8][27]. ACO algo-
rithms, while successful at solving many COPs, require the
storage of a pheromone matrix that becomes impractically vast at
large problem sizes [8]. There have also been a handful of GPU
implementations of genetic algorithms (GAs) applied to TSP
[5][13]. In this paper, we examine TSP as a test case for iterative
hill climbing, which has many other applications (e.g., finding a
maximal parsimony phylogenetic tree [12]). As such, we do not
directly compare our 2-opt implementation to TSP solvers based
on other algorithms.

2.1 2-Opt TSP for the GPU
Two previous publications present 2-opt TSP solvers that run
entirely on the GPU.

O’Neil et al. [19] present a CUDA TSP solver capable of solving
(with near-optimal solution quality) problem sizes up to 110 cit-
ies, achieving a speedup of 61X over a sequential CPU implemen-
tation and roughly equaling the performance of a pthreads
implementation on 32 CPUs with 8 cores each. Their implementa-
tion parallelizes 100,000 random restarts by assigning individual
climbers to threads. Initially, a single climber is assigned to each
thread; successive climbers are obtained from a global worklist
(via atomic increments) to ensure load balance between climbs,
since climbs require a variable number of IHC steps to find a local
minimum. A single critical section at the end of each climb tracks
the global best solution via atomic operations on global memory.

Each thread serially performs the steps of the IHC algorithm,
including sequential evaluation of all possible 2-opt moves at each
step. The 2-opt moves are evaluated in two nested for loops that

compute the best pair of edges to remove and reconnect in the
other direction. These loops are optimized to avoid duplication in
city pairs due to symmetry as well as to prevent the evaluation of
adjacent edges in the tour, the swapping of which can never result
in a change of the tour length. For example, for a problem with n
cities, the outer i-loop iterates from the 1st to the n-2nd city while
the inner j-loop iterates from the i+2nd to the nth city. The tour cost
is never actually computed during the move evaluation; the
change in tour cost of each move is sufficient to pick the move
that results in the greatest tour length reduction. Pseudo code for
the nested for loops that perform the move evaluation is shown in
Listing 1. Additionally, the code optimizes the loop nest by regis-
ter-caching the j-loop-invariant variables in the outer i-loop.

The code keeps an array of cities representing the tour order in
local memory for each thread, which ensures cached and coa-
lesced accesses. To allow for fast 2-opt evaluation, the distances
between cities are pre-computed and stored in a two-dimensional
distance matrix in shared memory. For a GPU with 48kB of
shared memory, this O(n2) storage requirement limits the imple-
mentation to problem sizes of 110 cities or fewer.

Rocki and Suda [24] present a modification of the above imple-
mentation that allows for problem sizes up to around 6,000 cities.
Their implementation is based on the insight that the computation-
oriented architecture of GPUs encourages recalculating data rather
than storing it in shared memory (which is very limited) or off-
chip (which has very high latency). Instead of pre-computing the
distance matrix and keeping it in shared memory, their code stores
the city coordinates in shared memory and recomputes the dis-
tances between cities as needed. This implementation underper-
forms the distance matrix implementation by up to fifty percent;
however, it has an O(n) storage requirement and can solve much
larger problem sizes.

2.2 Hierarchical Parallelization
Parallelism exists in two phases of the random-restart IHC algo-
rithm: between independent climbers, and between the evaluations
of each 2-opt move during an IHC iteration. A handful of publica-
tions have addressed parallelizing only the local search (e.g., the
2-opt move evaluations) on the GPU. Rocki and Suda observe that
at least 90% of the time during iterated local search is spent on the
local search itself. They present GPU-based 3-opt [23] and 2-opt
[25] local search for TSP, performing the rest of the iterated local

search (which permutes local search results to generate each next
starting tour rather than restarting from a random tour) on the
CPU. Their implementation assigns one 2-opt swap evaluation per
GPU thread. The city coordinates are copied to shared memory at
the beginning of each local search phase, and atomic operations
on global memory are used to determine the best 2-opt move.
Similarly to the second implementation described above, distances
are re-calculated as needed from the coordinates. Because the
GPU performs only the local search and tours are permuted on the
CPU, the city coordinates can be stored in shared memory in tour
order, avoiding scattered reads and removing the need for GPU
storage of a separate array of cities in tour order.

Our TSP solver is based on the key insight that the hierarchical
structure of the GPU hardware suggests a hierarchical approach to
parallelizing random-restart hill climbing, leveraging both paral-
lelism between independent climbers at the block level and be-
tween the outer loop of move evaluations at the thread level.
Hierarchical parallelization is in itself not new. Hybrid paralleliza-
tion schemes for exploiting both task-level and loop-level parallel-
ism on message-passing clusters of shared-memory processors are
common in the literature [21]. Nested data parallelism [3] is based
on the recognition that sub-computations of a data-parallel opera-
tion may themselves exhibit data parallelism, and this idea has
been extended to discussions of inter- vs. intra-operator parallel-
ism [20]. In the context of TSP, a prior GA-based TSP solver for
the GPU [13] parallelized population individuals between thread
blocks and the crossover operator and 2-opt local search between
threads within the block. Their implementation achieves speedups
of up to 24X over a serial CPU implementation of the same algo-
rithm. Delévacq et al. present a GPU strategy for iterative local
search using the 3-opt heuristic that assigns a climber per block
[7]. A single thread of the block is then in charge of applying local
search to the solution, but the 3-opt move evaluation is parallel-
ized between the threads in the block. This is equivalent to paral-
lelizing the innermost loop of the move evaluation. Their code
results in a 6X speedup over serial CPU code for 2048 cities.

To our knowledge, ours is the first implementation of an iterative
hill climbing TSP solver that runs entirely on the GPU and hierar-
chically parallelizes both the independent climbers and the outer
loop of the move evaluation.

3. IMPLEMENTATION AND
OPTIMIZATIONS
This section discusses our 2-opt TSP solver implementation and
several of its most important code optimizations. The individual
performance impact of each optimization is detailed in Section 6.
Our open-source CUDA implementation is publicly available at
http://cs.txstate.edu/~burtscher/research/TSP_GPU/.

Our code incorporates several optimizations from prior works.
Listing 2 below illustrates the impact of these optimizations on the
pseudo code for the nested move evaluation loops. Inner j-loop-
invariant variables are cached in the outer i-loop of the 2-opt
evaluation. At each IHC step, the code avoids calculating the full
tour length by instead tracking the net change in tour length; the
final tour distance is calculated only at the end of each climber’s
execution when a locally optimal change in length has been
found. Additionally, distances between cities are recalculated
from the city coordinates each time they are needed to avoid stor-
ing an O(n2) distance matrix.

// city[i] is the coordinate index of ith city
// in tour order
#define dist(a,b) dmat[city[a]][city[b]]
do {
 minchange = 0
 for (i = 0; i < cities-2; i++) {
 for (j = i+2; j < cities; j++) {
 change = dist(i,j) + dist(i+1,j+1)
 - dist(i,i+1) - dist(j,j+1)
 if (minchange > change) {
 minchange = change
 mini = i, minj = j
 }
 }
 }
 if (minchange < 0)
 // apply best 2-opt move
} while (minchange < 0)

Listing 1. Pseudo code for the nested loops that evaluate the
2-opt moves

3.1 Intra-Parallelization of the Move
Evaluation
In the random-restart IHC approach to TSP, the climbers are en-
tirely independent, requiring only a single critical section at the
end to track the global best solution. Within the climbers, the
evaluation of each possible move to a neighbor (i.e., the 2-opt
swaps) is also independent. However, identifying the best 2-opt
swap out of the O(n2) possibilities at each IHC step requires a
reduction operation, which necessitates log2(thread count) steps
involving synchronization and data exchange. Our implementa-
tion exploits this hierarchical parallelism in the algorithm and
maps it to the hierarchical GPU architecture. Thus, rather than
assigning a climber to each thread as in previous implementations,
our code assigns a climber to each thread block. Because all
threads within a block share the same tour order at each IHC step
and distances are recalculated as needed from the coordinates, the
coordinate arrays can be permuted directly in tour order (rather
than requiring a separate array of ordered city indices).

Each climber initially copies the city coordinates into local
memory in parallel, accessing coordinate indices by thread index
to ensure coalescing. One thread in the block is responsible for
generating the initial random tour by randomly permuting the
coordinate arrays. This is done serially as its runtime is insignifi-
cant. The IHC process then proceeds: each climber (block) evalu-
ates all possible 2-opt moves, applies the best move, and repeats
until a local minimum is found (i.e., until no 2-opt move will im-
prove the tour length). At each IHC step, the threads within a
block evaluate the possible 2-opt moves in parallel. Each thread is
assigned one or more iterations of the outer i-loop. If there are
fewer cities than maximum threads allowed per block (i.e., 1024),
each block is launched with a thread for each city and the outer i-
loop is fully parallelized; otherwise, the blocks are launched with
1024 threads and some or all the threads are responsible for mul-
tiple iterations of the loop. Each thread executes the iterations of
the inner j-loop sequentially. Listing 3 illustrates the modification
to the pseudo code of the nested move evaluation loops.

After all possible 2-opt moves have been evaluated, a reduction is
performed between the threads in the block to determine the over-
all best 2-opt move from among the threads’ individual best
moves. This reduction requires several steps of synchronization;
however, because each block executes an independent climber,
this synchronization is limited to intra-block synchronization bar-
riers. At the end of the reduction, each thread checks if its best
tour modification was the best overall (i.e., if its best calculated
change in tour length matches the result of the reduction). If so,
the thread stores the pair of cities associated with the best 2-opt
move to a buffer. Multiple threads may find 2-opt moves that
yield an identical change in tour length. In case of ties, it is not
necessary for the winning 2-opt move to be deterministic; howev-
er, the two city indices of the move must be stored as a single
atomic transaction. In order to avoid requiring a lock, the code
stores the two city indices in the upper and lower halves of a sin-
gle integer value.

After another synchronization barrier to ensure that all threads
have access to the best 2-opt move, the threads within the block
apply the tour modification in parallel. A 2-opt swap between
cities i and j results in a reversing of the segment of the tour be-
tween (and inclusive of) i+1 and j. Threads with indices within the
first half of this range participate in the reordering, each swapping
their assigned coordinate with the proper offset in the second half
of the segment. A final synchronization barrier ends the IHC step.

When a local minimum is found by a climber, a final parallel
prefix scan sums the distances between adjacent tour cities to
compute the length of the locally minimal tour. The first thread in
the block executes an atomicMin() to replace the global best solu-
tion if a new global minimum tour length has been found.

3.2 Shared Memory Tiling
Since each climber (block) maintains a tour that is shared by all
threads within the block, the city coordinates as well as the buffer
used for the parallel reductions should ideally reside in shared
memory. However, storage of all city coordinates in the small

// x[i] and y[i] are the coordinates of ith
// city in tour order
#define dist(a,b) sqrtf(
 (x[a] - x[b]) * (x[a] – x[b])
 + (y[a] – y[b]) * (y[a] – y[b]))
do {
 minchange = 0
 for (i = 0; i < cities-2; i++) {
 minchange += dist(i,i+1)
 for (j = i+2; j < cities; j++) {
 change = dist(i,j) + dist(i+1,j+1)
 - dist(j,j+1)
 if (minchange > change) {
 minchange = change
 mini = i, minj = j
 }
 }
 minchange -= dist(i,i+1)
 }
 if (minchange < 0)
 // apply best 2-opt move
} while (minchange < 0)

Listing 2. Pseudo code for 2-opt evaluation loops after
caching j-loop invariant variables at outer loop and

re-calculating distances as needed

do {
 for (i = thdID; i < cities; i += blkDim)
 buf[i] = -dist(i,i+1)
 __syncthreads()

 minchange = 0
 // outer i-loop parallelized within block
 for (i = thdID; i < cities-2; i += blkDim){
 minchange -= buf[i] // +dist(i,i+1)

 // inner j-loop sequential
 for (j = i+2; j < cities; j++) {
 change = buf[j] + dist(i,j)
 + dist(i+1,j+1)
 if (minchange > change) {
 minchange = change
 mini = i, minj = j
 }
 }
 minchange += buf[i] // -dist(i,i+1)
 }
 __syncthreads()

 // reduction to identify + apply best move
} while (minchange < 0)

Listing 3. Pseudo code for the intra-parallelized version of
the 2-opt move evaluation loops

shared memory would limit the problem size. Thus, our TSP code
breaks (i.e., strip mines) the inner j-loop move evaluations into
chunks whose coordinates can fit into shared memory. The outer
i-loop is parallelized between the threads of the block, so each
thread reads its city[i] coordinates from global memory only once.
It then executes the inner j-loop in segments, transferring the
city[j] coordinates accessed by each segment into shared memory
before evaluating that segment’s 2-opt moves.

For shared memory tiling to work, the threads within the block
must access only data falling within the same tile during the same
segment of execution. The original inner j-loop of the 2-opt eval-
uations began its iteration at index i+2, which will vary for each
thread (each of which has been assigned a different iteration of the
outer i-loop). However, reversing the iteration order of the inner j-
loop results in all threads beginning their loop iteration at the last
city of the tour. Thus, our code executes the inner j-loop in reverse
order, in segments beginning with the last city in the tour. Before
each segment, the threads cooperate to load both the city coordi-
nates and the loop-invariant city distances (i.e., the distance be-
tween city[i] and city[i+1] for each thread) for the segment into
shared memory. After a synchronization barrier to ensure that the
shared memory contains the entire tile, each thread evaluates the
2-opt moves for its assigned iteration of the i-loop and all j-loop
values that fall within the tile, in decrementing order from the last
city of the tour. Listing 4 illustrates in pseudo code the basic
structure of the 2-opt evaluation loops with shared memory tiling.
This process of tiling, synchronization, and move evaluation re-
peats until all segments of the inner j-loop have been evaluated.
As individual threads reach the lower bound of their j-loop, which
is dependent on the thread’s assigned i-loop index, they drop out

of the move evaluations. However, all threads continue participat-
ing in the parallel loading of tiles into shared memory.

After the move evaluation phase of the IHC step, the parallel re-
duction to determine the overall best 2-opt move is performed in
shared memory. Once a climber finds a local minimum tour, a
shared memory buffer is also used for the prefix sum that com-
putes the tour length of the minimum. Whenever possible, the
code reuses the same shared-memory buffer for different tasks.

3.3 Launch Configuration Tuning
Lastly, our implementation tunes the thread count per block to
optimize the launch configuration based on the number of cities in
the input, their shared memory usage, the maximum threads per
block, the maximum threads per SM, the maximum blocks per
SM, and the number of registers per SM of the target GPU.

This calculation requires only a few lines of code before the ker-
nel launch and ensures that the hardware is maximally occupied.
For many input sizes it significantly improves performance over a
statically selected launch configuration (cf. Section 6).

4. EXPERIMENTAL METHODOLOGY
We evaluated our CUDA implementations on an NVIDIA K40
GPU, which has 15 SMs and a total of 2880 PEs. The codes were
compiled with nvcc version 5.5 using the ‘-O3 -arch=sm_35
-use_fast_math’ flags.

We measured throughput in billions of 2-opt moves evaluated per
second. All codes were instrumented to collect the total number of
IHC steps executed between all climbers. The number of 2-opt

#define shmem_dist(a,b) sqrtf((shmem_x[a] - shmem_x[b]) * (shmem_x[a] - shmem_x[b])
 + (shmem_y[a] - shmem_y[b]) * (shmem_y[a] - shmem_y[b]))
do {
 for (i = threadID; i < cities; i += blockDim)
 buf[i] = -dist(i,i+1)
 __syncthreads()

 minchange = 0
 for (i = threadID; i < cities-2; i += blockDim) {
 minchange -= buf[i]

 // reversed j-loop order
 for (jj = cities-1; jj >= i+2; jj -= tileSize) {
 parallel_load_tile(x_shmem[], x[])
 parallel_load_tile(y_shmem[], y[])
 parallel_load_tile(buf_shmem[], buf[])
 __syncthreads()

 for(j = jj; j >= tileLowerBound; j--) {
 change = buf_shmem[j] + shmem_dist(i,j) + shmem_dist(i+1,j+1)
 if (minchange > change) {
 minchange = change
 mini = i, minj = j
 }
 }
 __syncthreads()
 }

 minchange += buf[i]
 }
 __syncthreads()
 // reduction to identify + apply best move
} while (minchange < 0)

Listing 4. Pseudo code for the intra-parallelized 2-opt loops with the addition of shared memory tiling

evaluations per IHC step can be calculated directly from the num-
ber of cities. We measured the runtime of the entire kernel execu-
tion, exclusive of all CPU initialization code.

The throughput measurements were collected on the first n points
of the ‘d18512.tsp’ input from TSPLIB [26]. For each implemen-
tation and city count, we ran a sufficient number of random inde-
pendent climbers to fully load the target GPU and to result in at
least one second of kernel runtime. Each measurement was per-
formed 3 times for each input size and implementation and the
best of the 3 runs was recorded. In addition to the throughput
measurements, we also examined solution quality using several
other TSPLIB inputs.

In addition to comparing between several CUDA implementa-
tions, we compared our 2-opt TSP solver to a parallel CPU solver
based on the same IHC algorithm. Our OpenMP implementation
is also hand optimized. We evaluated the OpenMP code on a sin-
gle node of the TACC Maverick system, consisting of two 2.8
GHz Intel Xeon E5-2680 v2 Ivy Bridge processors with 10 cores
each and 256 GB of memory. The CPU code was compiled with
icc version 14.0.1 using the ‘-xhost -O3 -openmp’ flags. For each
input size, we ran the same number of independent CPU climbers
as for the GPU implementation to which we compare the through-
put, rounded up to the number of OpenMP threads.

5. INVESTIGATED CODE VERSIONS
We implemented several CUDA versions of our hierarchically
parallelized TSP solver (a version with all of the optimizations
described in Section 3 as well as intermediate versions to quantify
the impact of individual optimizations), four CUDA codes based
on the two existing GPU 2-opt TSP solvers, and an OpenMP ver-
sion. This section describes each implementation evaluated in
Section 6.

5.1 Distance Matrix—Shared (matr_s)
The matr_s code is an implementation of the O’Neil et al. [19]
climber-per-thread approach that stores a distance matrix in
shared memory and is limited to problem sizes of 110 or fewer
cities. The distance matrix is calculated in parallel at the begin-
ning of kernel execution. Each climber stores its tour order in a
separate array of cities in local memory. This code includes all
optimizations described in Section 2.1. The original O’Neil et al.
code uses persistent thread blocks and requires a worklist of
climbers to ensure load balance. Our re-implementation instead
allows the launch of many more thread blocks than there are SMs,
which enables the GPU to automatically load balance climbers via
block-to-SM assignment. This simplifies the code and results in
performance similar to that of the original implementation.

5.2 Distance Matrix—Global (matr_g)
The matr_g code is a naïve re-implementation of the O’Neil et al.
algorithm that can solve larger problems. It stores the distance
matrix in global memory and does not use shared memory at all. It
is limited to problem sizes where the O(n2) distance matrix fits in
global memory.

5.3 Distance Matrix—Global Read-Only Path
(matr_g_ro)
The matr_g_ro code is identical to the matr_g code except that it
accesses the distance matrix in global memory via the __ldg()

intrinsic, which forces the read to occur through the read-only
data cache (texture cache) path and allows the GPU to cache the
data on the SMs.

5.4 Distance Re-Calculation (calc)
The calc code incorporates two of the main ideas presented in
Rocki and Suda’s works. It recalculates the distances between
cities as they are needed rather than reading them from a pre-
calculated distance matrix [24]. It also directly permutes the coor-
dinate array to represent the tour order, rather than storing and
reading from a separate array of cities [25]. Our implementation
stores the city coordinates in local memory and does not use
shared memory. Because each climber is assigned to an individual
thread, permuting the city coordinates requires each thread to have
its own copy of the coordinate arrays. This would not be possible
in the limited amount of available shared memory. This imple-
mentation can solve problem sizes up to around 4000 cities, lim-
ited by the local memory size.

5.5 Intra-Parallelization—Global (intra)
The intra code is an implementation of the approach described in
Section 3.1. Instead of assigning a climber to a thread, it assigns
climbers to blocks and parallelizes the outer loop of the 2-opt
move evaluations between threads. This implementation also does
not use shared memory.

5.6 Intra-Parallelization + Shared Memory
Tiling (tile)
The tile code parallelizes climbers between blocks and move
evaluations between threads as in the intra code. As described in
Section 3.2, it reverses the inner j-loop order and tiles city coordi-
nate data into shared memory during inner loop execution.

5.7 Intra-Parallelization + Tiling + Tuned
Launch Configuration (tuned)
The tuned code’s kernel is identical to that of the tile code. How-
ever, this implementation adds a small section of CPU initializa-
tion code to dynamically tune the grid configuration for the given
problem size and target GPU, as described in Section 3.3.

5.8 OpenMP (cpu)
The cpu code assigns independent climbers to OpenMP threads
similarly to the matr_s, matr_g(_ro), and calc codes. At each IHC
step, all possible 2-opt moves are evaluated sequentially. Similar-
ly to the CUDA code, the OpenMP code optimizes the loop nest
by caching loop invariant variables in registers. The distances
between cities are calculated in parallel at the beginning and
stored in a distance matrix. The code stores the tour order in a
separate array of city indices. A critical section at the end of a
climb determines whether a new global optimum has been found.

6. RESULTS
This section presents and analyzes our experimental results. We
examine throughput in billions of 2-opt moves (hereafter referred
to as gigamoves) per second. We compare our TSP solver to the
other GPU versions described above, and we also compare our
best GPU version to our OpenMP implementation of the 2-opt
solver. Lastly, we discuss solution quality.

6.1 GPU Codes
Figure 2 displays the throughput of the existing GPU implementa-
tions: matr_s, which is limited to problem sizes of 110 or fewer
cities due to its O(n2) shared memory requirements; matr_g,
which instead stores the distance matrix in global memory;
matr_g_ro, which loads the distance matrix via the read-only data
cache path; and calc, which re-calculates distances directly from
the coordinates (stored in local memory in tour order).

At 110 cities or fewer, matr_s is the winner. Matr_g performs
terribly, as expected from a naïve implementation that stores all
data in global memory. Reading the global memory distance ma-
trix via the read-only path (matr_g_ro), which allows the data to
be cached in the read-only data cache, rivals the performance of
the shared memory version at very small problem sizes. However,
the performance tails off quickly as the city count grows, with a
large drop in throughput at around 60 cities when the distance
matrix exceeds the size of the read-only data cache and another at
around 600 cities when the L2 capacity is exceeded.

At larger input sizes, calc achieves over 75% of the throughput of
the matr_s code even though it does not use shared memory. Un-
like the matr_s version, calc is capable of solving relatively large
problem sizes (up to around 4000 cities, which is why calc’s
throughput drops to zero at the right side of Figure 2). Clearly,
smart utilization of the memory hierarchy and the GPU’s compu-
tation throughput can sometimes allow good performance even in
the absence of shared memory use.

Figure 3 shows the performance of our hierarchically parallelized
implementation, intra, which parallelizes climbers between blocks
and each climber’s move evaluations between the threads in the
block. Like calc, this code does not use shared memory. For small
problem sizes, matr_s remains the best performing strategy. The
intra code’s throughput rivals that of calc at larger problem sizes.
Unlike calc, which is limited to problems of up to around 4000
cities due to its need to store each thread’s coordinates in tour
order in local memory, the intra code can solve much larger prob-
lems. However, calc slightly outperforms intra for problem sizes
supported by both codes due to intra’s multi-level parallelization
strategy, which incurs a small runtime overhead.

Figure 4 illustrates the performance improvement of each of our
two additional optimizations over the intra-parallelized version,
once again compared to matr_s and calc. The tile code tiles city
coordinates (in tour order) into shared memory. For the most part,
at small problem sizes matr_s remains the winning implementa-

tion. However, at the one examined problem size over 100 cities
that is supported by both codes, tile slightly outperforms matr_s.
(This is because the matr_s code suffers from a significant num-
ber of shared memory bank conflicts, whereas the tile code is
entirely bank conflict-free. We confirmed this behavior via the
nvprof tool, which on the K40 counts shared bank conflicts via the
shared_load_replay and shared_store_replay hardware perfor-
mance counters. For example, for 100 cities and 100,000 climb-
ers, the matr_s code results in about 1.3×1010 shared load replays
compared to zero replays for the tile code). At larger problem
sizes, tile significantly exceeds the maximum throughput achieved
by the matr_s code on any input. It also significantly outperforms
calc, achieving nearly 2.5X the throughput of calc on their largest
shared input size.

The tile code suffers from some throughput variance due to
suboptimal grid configurations. For example, with 555 cities, it
runs 3 thread blocks per SM with 553 threads per block (one for
each of the outer i-loop iterations), which results in poor occupan-
cy. Our final optimized version, tuned, adds a small section of
CPU code before the kernel launch to quickly compute the best
grid launch configuration for the specific target hardware and
problem size. In the 555-city case, it chooses 128-thread blocks
and assigns multiple cities to each thread. Tuned achieves up to a
3X speedup over calc, reaches throughputs of over 60 billion 2-
opt moves evaluated per second, and can run all problem sizes
whose coordinate arrays fit in GPU memory, i.e., those with up to
hundreds of millions of cities.

0

5

10

15

20

25

30

30 36 43 52 62 75 90 10
7

12
9

15
5

18
6

22
3

26
7

32
1

38
5

46
2

55
5

66
6

79
9

95
8

11
50

13
80

16
56

19
87

23
85

28
62

34
34

41
21

49
45

59
34

71
21

85
46

10
25

5
12

30
6

14
76

7

Th
ro
ug
hp

ut
(G
ig
am

ov
es
/s
ec
)

Number	
 of	
 cities

matr_s calc intra

Figure 3. Throughput (in billions of 2-opt moves evaluated per second) for our intra-parallelization code

0

5

10

15

20

25

30

Th
ro
ug
hp

ut
	
 (G

ig
am

ov
es
/s
ec
)

Number	
 of	
 cities

matr_s matr_g
matr_g_ro calc

Figure 2. Throughput (in billions of 2-opt moves evaluated
per second) for the existing implementations

6.2 Comparison to CPU Code
We instrumented our OpenMP implementation, cpu, to measure
its throughput in gigamoves/second identically to how it is done in
the GPU code. As we evaluated our OpenMP implementation on
20 Xeon cores, we first examine performance scaling with in-
creasing numbers of threads on the 150-city ‘kroA150.tsp’ input
from TSPLIB. Figure 5 displays the runtime at each thread count
up to the number of CPU cores, with all runtimes normalized to
that of the sequential CPU code. Figure 5 also includes the nor-
malized GPU (tuned) runtime on the same input.

Next we compare the performance of the CPU code (using the
best thread count, i.e., 20 threads) to the GPU (tuned) code by
comparing throughputs on increasing problem sizes. Figure 6
shows the throughput of the tuned and cpu codes on input sizes up
to 8,546 cities. (Our experimental platform has a runtime limit of
12 hours. At problem sizes above 8,546 cities, the OpenMP code
timed out before completion). Our tuned GPU code on a single
K40 outperforms two Xeon E5-2680 v2 processors with twenty
cores by up to 8X. The GPU implementation scales well to larger
problem sizes, maintaining throughputs of over 60 billion 2-opt
moves per second even at thousands of cities. The cpu implemen-
tation, on the other hand, achieves its maximum throughput
around 1600 cities and then begins to lose throughput for larger
city counts, presumably due to increased data cache misses. How-
ever, it does outperform tuned on the smallest tested input.

6.3 Solution Quality
Figure 7 displays the mean percentage error (i.e., the relative dif-
ference in tour length between the best found and the optimal
tours) as a function of the problem size for 100,000 independent
climbers. The error measurements were collected using the tuned
code on the first 63 inputs of TSPLIB [26]. Random-restart hill
climbing is one of many techniques that can be applied to TSP,
and we do not claim that it is the most suitable. However, multi-
start search algorithms such as IHC are applicable to broad classes
of combinatorial optimization problems, and our results suggest
the potential for GPUs to greatly accelerate these strategies.

Note that we have previously compared implementation perfor-
mance measured as throughput in billions of 2-opt move

Figure 7. Solution quality (mean percentage error from
optimal solution) for ranges of problem sizes

0%

2%

4%

6%

8%

1-­‐250 251-­‐500 501-­‐1000 1001-­‐1500 1501-­‐2000M
ea
n	

Pe

rc
en

ta
ge
	
 E
rr
or

Problem	
 Size	
 (#	
 of	
 cities)

0

10

20

30

40

50

60

Th
ro
ug
hp

ut
	
 (G

iga
m
ov
es
/s
ec
)

Number	
 of	
 cities

tuned cpu

Figure 6. Throughput (in billions of 2-opt moves evaluated
per second) for our best GPU implementation compared to

the OpenMP code with 20 threads

Figure 5. Runtime scaling for each tested OpenMP thread
count, normalized to the runtime of the sequential CPU code

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
G
PU

Ru
nt
im

e
(n
or
m
al
iz
ed

	
 to
	
 se

qu
en

tia
l	
 C
PU

)

Number	
 of	
 OpenMP	
 threads

0

10

20

30

40

50

60

30 36 43 52 62 75 90 10
7

12
9

15
5

18
6

22
3

26
7

32
1

38
5

46
2

55
5

66
6

79
9

95
8

11
50

13
80

16
56

19
87

23
85

28
62

34
34

41
21

49
45

59
34

71
21

85
46

10
25

5
12

30
6

14
76

7

Th
ro
ug
hp

ut
	
 (G

ig
am

ov
es
/s
ec
)

Number	
 of	
 cities

matr_s calc
tile tuned

Figure 4. Throughput (in billions of 2-opt moves evaluated per second) for the shared memory tiling versions of our code

evaluations per second, but that the number of climbers launched
differed between the matr/calc implementations and our proposed
tuned implementation due to the change in the parallelization
approach (from climber-per-thread to climber-per-block). Figure 8
displays the speedup of the tuned code relative to the calc code in
climbers per second rather than 2-opt moves per second, collected
for each implementation using the same initial tour and the same
total climber count (chosen to be the minimum number of climb-
ers required to fully load calc). Within the bounds of some inde-
terminacy for equal-length tours, both codes will yield the same
solution given these matched initial conditions. The tuned code’s
much higher throughput results in a significantly higher climb-
ers/second throughput as well, and tuned can therefore run more
climbers in a fixed amount time. In general, solution quality im-
proves as climber count increases.

7. CONCLUSION
This paper presents a CUDA version of a heuristic TSP solver
based on random-restart hill climbing using 2-opt for local search.
Our implementation includes several optimizations over existing
work, including a hierarchical parallelism strategy that exploits
the hierarchical nature of the GPU hardware to parallelize both
independent climbers and the local search within each climb. It
leverages shared memory without limiting the solvable problem
size by reversing the inner loop of the move evaluation to allow
for shared data tiling. It dynamically computes the best kernel
launch configuration based on the input size and the underlying
GPU’s parameters to ensure that the hardware is maximally occu-
pied. Our open-source CUDA implementation is publicly availa-
ble at http://cs.txstate.edu/~burtscher/research/TSP_GPU/.

We present our implementation, analyze the performance impact
of each of our optimizations, and compare our code’s performance
to that of existing approaches as well as to a parallel CPU version.
Our code on a single GPU evaluates over 60 billion 2-opt moves
per second, outperforming other GPU versions by 3X and an
OpenMP version run on two 10-core Xeon CPUs by 8X.

Random-restart hill climbing is a common approach to address
TSP and other combinatorial optimization problems. Our results
suggest that a hierarchical strategy based on parallelizing both
independent climbs and the local search may be the most effective
technique to accelerate this algorithm on GPUs. The hierarchical
climbers-to-blocks and move-evaluations-to-threads paralleliza-
tion strategy described in this paper is likely also applicable to
other iterated local search algorithms, e.g., those where previous
local solutions are permuted to seed new climbs, which may im-
prove solution quality.

8. ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Founda-
tion Graduate Research Fellowship Program under grant 1144466,
as well as by NSF grants 1141022, 1217231, 1406304, and
1438963, a REP grant from Texas State University, and grants
and gifts from NVIDIA Corporation. The authors acknowledge
the Texas Advanced Computing Center for providing the HPC
resources used in this study.

9. REFERENCES
[1] Agarwala, R., Applegate, D.L., Maglott, D., Schuler, G.D., Schaffer,

A.A. 2000. A Fast and Scalable Radiation Hybrid Map Construction
and Integration Strategy. Genome Res. 10, 3 (Mar. 2000), 350-364.

[2] Bai, H., OuYang, D., Li, X., He, L., and Yu, H. 2009. MAX-MIN
Ant System on GPU with CUDA. Proceedings of the Fourth Inter-
national Conference on Innovative Computing, Information and
Control (Dec. 2009), 801-804.

[3] Blelloch, G. E. 1996. Programming Parallel Algorithms. Communi-
cations of the ACM. 39, 3 (Mar. 1996), 85–97.

[4] Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., and Ujaldón, M.
2013. Enhancing Data Parallelism for Ant Colony Optimization on
GPUs. J. Parallel Distrib. Comput. 73, 1 (Jan. 2013), 42-51.

[5] Chen, S., Davis, S., Jiang, H., and Novobilski, A. 2011. CUDA-
Based Genetic Algorithm on Traveling Salesman Problem. Comput-
er and Information Science 2011, R. Lee, Ed. Springer Berlin, Hei-
delberg, 241-252.

[6] Croes, G.A. 1958. A Method for Solving Traveling-Salesman Prob-
lems. Oper. Res. 6, 791-812.

[7] Delévacq, A., Delisle, P., and Krajecki, M. 2012. Parallel GPU Im-
plementation of Iterated Local Search for the Travelling Salesman
Problem. Proceedings of the Sixth International Conference on
Learning and Intelligent Optimization (Jan. 2012), 372-377.

[8] Delévacq, A., Delisle, P., Gravel, M., and Krajecki, M. 2013. Paral-
lel Ant Colony Optimization on Graphics Processing Units. J. Paral-
lel Distrib. Comput. 73, 1 (Jan. 2013), 52-61.

[9] Dorigo, M. 1992. Optimization, Learning and Natural Algorithms,
Ph.D. thesis, Politecnico di Milano, Italy, 1992.

[10] Dorigo, M. and Gambardella, L.M. 1997. Ant Colony System: A
Cooperative Learning Approach to the Traveling Salesman Problem.
IEEE Transactions on Evolutionary Computation 1, 1 (Apr. 1997),
53-66.

[11] Exnar, F., Machač, O. 2011. The Travelling Salesman Problem and
its Application in Logistic Practice. WSEAS Transactions on Busi-
ness and Economics 8, 4 (Oct. 2011), 163–173.

[12] Felsenstein, J. 1995. PHYLIP (Phylogeny Inference Package). Dis-
tributed by the author, Department of Genetics, University of Wash-
ington, http://evolution.genetics.washington.edu/phylip.html.

[13] Fujimoto, N. and Tsutsui, S. 2010. A Highly-Parallel TSP Solver for
a GPU Computing Platform. Proceedings of the Seventh Interna-
tional Conference on Numerical Methods and Applications (Aug.
2010), 264-271.

[14] Garey, M.R. and Johnson, D.S. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman.

[15] Johnson, D. and McGeoch, L. 1997. The Traveling Salesman Prob-
lem: A Case Study in Local Optimization. Local Search in Combina-
torial Optimization, E. Aarts and J. Lenstra, Eds. John Wiley and
Sons, 215-310.

0

0.5

1

1.5

2

2.5

3

Sp
ee
du

p	

of
	
 tu

ne
d
ov
er
	
 ca

lc
co
de

	
 (c
lim

be
rs
/s
ec
)

Number	
 of	
 cities
Figure 8. Speedup in climbers/second throughput of tuned

over calc, measured using the same climber count and initial
tour

[16] Lenstra, J.K. and Rinnooy Kan, A.H.G. 1975. Some Simple Applica-
tions of the Travelling Salesman Problem. Oper. Res. 26, 4 (Nov.
1975), 717-733.

[17] Marti, R. 2003. Multi-Start Methods. Handbook of Metaheuristics,
F. Glover and G.A. Kochenberger, Eds. Springer US, 355-368.

[18] Menger, K. 1932. Das botenproblem. Ergebnisse eines Mathe-
matischen Kolloquiums 2. Teubner, Leipzig, 11-23.

[19] O’Neil, M.A., Tamir, D., and Burtscher, M. 2011. A Parallel GPU
Version of the Traveling Salesman Problem. Proceedings of the
2011 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (Jul. 2011), 348-353.

[20] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan,
M.A., Kaleem, R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-
Lojo, M., Prountzos, D., and Sui, X. 2011. The Tao of Parallelism in
Algorithms. Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (Jun. 2011),
12-25.

[21] Rabenseifner, R., Hager, G., and Jost, G. 2009. Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP
Nodes. Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (Feb. 2009),
427-436.

[22] Rego, C. and Glover, F. 2002. Local Search and Metaheuristics.
Traveling Salesman Problem and its Variations, G. Gutin and A.P.
Punnen, Eds. Kluwer Academic Publishers, Dordrecht, 309-368.

[23] Rocki, K. and Suda, R. 2012. Accelerating 2-opt and 3-opt Local
Search Using GPU in the Travelling Salesman Problem. Proceedings
of the 2012 International Conference on High Performance Compu-
ting and Simulation (Jul. 2012), 489-495.

[24] Rocki, K. and Suda, R. 2012. An Efficient GPU Implementation of a
Multi-Start TSP Solver for Large Problem Instances. Proceedings of
the Fourteenth Annual Conference Companion on Genetic and Evo-
lutionary Computation (Jul. 2012), 1441-1442.

[25] Rocki, K. and Suda, R. 2013. High Performance GPU Accelerated
Local Optimization in TSP. Proceedings of the IEEE Seventh Inter-
national Parallel and Distributed Processing Symposium Workshops
& PhD Forum (May 2013), 1788-1796.

[26] TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/soft-
ware/TSPLIB95/.

[27] Uchida, A., Ito, Y., and Nakano, K. 2012. An Efficient GPU Imple-
mentation of Ant Colony Optimization for the Traveling Salesman
Problem. In Proceedings of the Third International Conference on
Networking and Computing (Dec. 2012), 94-102.

