

A High-Performance Connected Components
Implementation for GPUs

 Jayadharini Jaiganesh
Department of Computer Science

Texas State University
San Marcos, TX 78666, USA

jayadharini@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, TX 78666, USA

burtscher@txstate.edu

ABSTRACT
Computing connected components is an important graph algo-
rithm that is used, for example, in medicine, image processing, and
biochemistry. This paper presents a fast connected-components
implementation for GPUs called ECL-CC. It builds upon the best
features of prior algorithms and augments them with GPU-spe-
cific optimizations. For example, it incorporates a parallelism-
friendly version of pointer jumping to speed up union-find oper-
ations and uses several compute kernels to exploit the multiple
levels of hardware parallelism. The resulting CUDA code is asyn-
chronous and lock free, employs load balancing, visits each edge
exactly once, and only processes edges in one direction. It is 1.8
times faster on average than the fastest prior GPU implementation
running on a Titan X and faster on most of the eighteen real-world
and synthetic graphs we tested.

CCS Concepts
• Computing methodologies → Concurrent algorithms; Mas-
sively parallel algorithms

Keywords
connected components; graph algorithm; union-find; parallelism;
GPU implementation

ACM Reference format:

J. Jaiganesh and M. Burtscher. 2018. A High-Performance Connected Com-
ponents Implementation for GPUs. In Proceedings of the International ACM
Symposium on High-Performance Parallel and Distributed Computing,
Tempe, Arizona USA, June 2018 (HPDC’18), 13 pages.
DOI: 10.1145/3208040.3208041

1 INTRODUCTION
A connected component of an undirected graph G = (V, E) is a
maximal subset S of its vertices that are all reachable from each
other. In other words, a, b S there exists a path between a and
b. The subset is maximal, i.e., no vertices are reachable from it that
are not in the subset. The goal of the connected-components (CC)
algorithms we study in this paper is to identify all such subsets
and label each vertex with the ID of the component to which it
belongs. A non-empty graph must have at least one connected
component and can have as many as n, where n = |V|.

For illustration purposes, assume the cities on Earth are the
vertices of a graph and the roads connecting the cities are the
edges. In this example, the road network of an island without
bridges to it forms a connected component.

Computing connected components is a fundamental graph al-
gorithm with applications in many fields. For instance, in medi-
cine, it is used for cancer and tumor detection (the malignant cells
are connected to each other) [16]. In computer vision, it is used
for object detection (the pixels of an object are typically con-
nected) [14]. In biochemistry, it is used for drug discovery and
protein genomics studies (interacting proteins are connected in
the PPI network) [39]. Fast CC implementations, in particular par-
allel implementations, are desirable to speed up these and other
important computations.

Determining CCs serially is straightforward using the follow-
ing algorithm. After marking all vertices as unvisited, visit them
in any order. If a visited vertex is still marked as unvisited, use it
as the source of a depth-first search (DFS) or breadth-first search
(BFS) during which all reached vertices are marked as visited and
their labels are set to the unique ID of the source vertex. This takes
O(n+m) time, where m = |E|, as each vertex must be visited and
each edge traversed.

Alternatively, CCs can be found with the following serial al-
gorithm. First, iterate over all vertices and place each of them in a
separate disjoint set using the vertex’s ID as the representative
(label) of the set. Then, visit each edge (u, v) and combine the set
to which vertex u belongs with the set to which vertex v belongs.
This algorithm returns a collection of sets where each set is a con-
nected component of the graph. Determining which set a vertex
belongs to and combining it with another set can be done very
efficiently using a disjoint-set data structure (aka a union-find
data structure) [9]. Asymptotically, this algorithm is only slower

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee. Re-
quest permissions from permissions@acm.org.
HPDC '18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06…$15.00
https://doi.org/10.1145/3208040.3208041

than the DFS/BFS-based algorithm by the tiny factor α(n), i.e., the
inverse of the Ackermann function.

Whereas there are efficient parallel implementations that are
based on the BFS approach, for example Ligra+ BFSCC [31], the
majority of the parallel CC algorithms are based on the following
“label propagation” approach. Each vertex has a label to hold the
component ID to which it belongs. Initially, this label is set to the
vertex ID, that is, each vertex is considered a separate component,
which can trivially be done in parallel. Then the vertices are iter-
atively processed in parallel to determine the connected compo-
nents. For instance, each vertex’s label can be updated with the
smallest label among its neighbors. This process repeats until
there are no more updates, at which point all vertices in a con-
nected component have the same label. In this example, the ID of
the minimum vertex in each component serves as the component
ID, which guarantees uniqueness. To speed up the computation,
the labels are often replaced by “parent” pointers that form a un-
ion-find data structure.

Our ECL-CC implementation described in this paper is based
on this approach. However, ECL-CC combines features and opti-
mizations in a new and unique way to yield a very fast GPU im-
plementation. The paper makes the following main contributions.

• It presents the ECL-CC algorithm for finding and labeling
the connected components of an undirected graph. Its par-
allel GPU implementation is faster than the fastest prior
CPU and GPU codes on average and on most of the eighteen
tested graphs.

• It shows that “intermediate pointer jumping”, an approach
to speed up the find operation in union-find computations,
is faster than other pointer-jumping versions and essential
to the performance of our GPU implementation.

• It describes important code optimizations for CC computa-
tions that are necessary for good performance but that have
heretofore never been combined in the way ECL-CC does.

The CUDA code is available to the research and education com-
munity at http://cs.txstate.edu/~burtscher/research/ECL-CC/.

The rest of the paper is organized as follows. Section 2 provides
background information and discusses related work. Section 3 de-
scribes the ECL-CC implementation. Section 4 explains the evalu-
ation methodology. Section 5 presents the experimental results.
Section 6 concludes the paper with a summary.

2 BACKGROUND AND RELATED WORK
A large amount of related work exists on computing connected
components. In this section, we primarily focus on the shared-
memory solutions that we compare against in the result section
as well as the work on which they are based. This paper does not
consider strongly connected components as they are of interest in
directed graphs.

Hopcroft and Tarjan’s article is one of the first to describe a
serial connected-components algorithm [15]. However, they men-
tion that the algorithm was already well known. It has linear time
complexity as it visits each vertex once. Many later CC algorithms
are based on this work. Various graph-processing libraries such
as Boost [32], Galois [19], igraph [5], and Lemon [6] include serial
code to compute connected components.

Fig. 1 illustrates the parallel label-propagation approach out-
lined in the introduction, where the labels are propagated through
neighboring vertices until all vertices in the same component are
labelled with the same ID. First, the labels (small digits) are initial-
ized with the unique vertex IDs (large digits) as shown in panel
(a). Next, each vertex’s label is updated in parallel with the lowest
label among the neighboring vertices and itself (b). This step is
iterated until all labels in the component have the same value (c).

 (a) (b) (c)

Fig. 1. Example of label propagation (large digits are unique ver-
tex IDs, small digits are label values): (a) initial state, (b) interme-
diate state, (c) final state

For performance reasons, the labels are typically not propa-
gated in this manner. Instead, they are indirectly represented by a
parent pointer in each vertex that, together, form a union-find
data structure. Starting from any vertex, we can follow the parent
pointers until we reach a vertex that points to itself. This final
vertex is the “representative”. Every vertex’s implicit label is the
ID of its representative and, as before, all vertices with the same
label (aka representative) belong to the same component. Thus,
making the representative u point to v indirectly changes the la-
bels of all vertices whose representative used to be u. This makes
union operations very fast. A chain of parent pointers leading to a
representative is called a “path”. To also make the traversals of
these paths, i.e., the find operations, very fast, the paths are spo-
radically shortened by making earlier elements skip over some el-
ements and point directly to later elements. This process is re-
ferred to as “path compression”.

 (a) (b)

Fig. 2. Example of hooking operation: (a) before hooking, (b) after
hooking

Shiloach and Vishkin proposed one of the first parallel CC al-
gorithms [28]. It is based on the union-find approach and employs
two key operations called “hooking” and “pointer jumping”.
Hooking, which is the union operation, works on edges and ex-
ploits the fact that the vertices on either end of an edge must be-
long to the same component. For a given edge (u, v), the hooking
operation checks if both vertices have the same parent. If not, the
parents’ vertex IDs are compared. If the parent with the higher ID
is a representative, it is made to point to the other parent with the

lower ID. Fig. 2 shows a graph where vertices 6 and 8 have differ-
ent parents that are representatives, namely 3 and 7. Here, the ar-
rows indicate the parent pointers and the dashed line denotes the
undirected edge from the original graph that is being “hooked”.
After hooking, vertices 6 and 8 have the same representative be-
cause vertex 7’s parent pointer was updated to point to vertex 3.
However, vertices 6 and 8 do not yet have the same parents, which
is where the pointer jumping comes in.

Pointer jumping shortens the path by making the current ver-
tex’s parent pointer point directly to the representative. For ex-
ample, panel (a) in Fig. 3 shows the paths before and panel (b) after
applying pointer jumping to vertex 8. Note that this one pointer-
jumping operation not only directly connects vertex 8 to its rep-
resentative but also compresses the path from vertex 9 to the rep-
resentative.

 (a) (b)

Fig. 3. Example of pointer jumping operation on vertex 8: (a) be-
fore, (b) after

Initially, Shiloach and Vishkin’s algorithm considers each ver-
tex as a separate component labelled by its own ID. Then, it re-
peatedly performs parallel hooking followed by parallel pointer
jumping. These two steps are iterated until all vertices of a com-
ponent have been connected and all paths have been reduced to a
length of one. At this point, each vertex points directly to its rep-
resentative, which serves as the component ID.

Greiner wrote one of the earliest papers on optimizing parallel
CC codes [11], including Shiloach and Vishkin’s. Most of the de-
scribed optimizations are directly or indirectly present in more re-
cent implementations, including in some of the following.

 (a) (b)

Fig. 4. Example of multiple pointer jumping: (a) before, (b) after

Soman et al. present one of the first GPU implementations of
CC [36]. Their algorithm improves upon Shiloach and Vishkin’s
as follows. First, instead of operating on the parents of the end-
points of an edge during hooking, they operate on the represent-
atives of the endpoints. Second, they only iterate over the hooking
until all vertices in the same component are connected. To make
this step faster, they mark edges that no longer need to be pro-
cessed and can be skipped in later iterations. Third, they introduce
“multiple pointer jumping”, which is executed only once after the

hooking is done. In multiple pointer jumping, all parent pointers
along the path leading to the representative are updated to di-
rectly point to the representative. In other words, the lengths of
the paths are reduced to one, as illustrated in Fig. 4. Note that this
requires two traversals, one to find the representative and the
other to update the parent pointers.

Ben-Nun et al. present Groute, which includes the probably
fastest GPU implementation of CC in the current literature [1].
Their algorithm is based on and improves upon Soman’s work as
follows. Groute splits the edge list of the graph into 2m/n seg-
ments and separately performs hooking followed by multiple
pointer jumping on each segment. As a result, the hooking and
multiple pointer jumping are somewhat interleaved. Moreover,
they use atomic hooking, i.e., they lock the representatives of the
two endpoints of the edge being hooked, which eliminates the
need for repeated iteration.

Wang et al. present the Gunrock library, which also includes a
GPU implementation of CC [38]. Their algorithm is again a vari-
ant of Soman’s approach. However, instead of processing all ver-
tices and edges in each iteration, Gunrock employs a filter opera-
tor. After hooking, the filter removes all edges from further con-
sideration where both end vertices have the same representative.
Similarly, after multiple pointer jumping, it removes all vertices
that are representatives. In this way, Gunrock reduces the work-
load after each iteration.

The final GPU implementation of CC we compare to in the re-
sult section is IrGL’s, which is interesting because it is automati-
cally generated and optimized from a high-level specification [26].
The algorithm it employs is Soman’s approach.

Ligra is a graph processing framework for shared-memory
CPU systems [29]. It provides two implementations for CC, which
we call “Comp” and “BFSCC”, the latter of which is one of the
fastest multicore CPU implementations of CC in the current liter-
ature. The Comp version implements the label-propagation algo-
rithm but maintains a copy of the previous label value in each ver-
tex. This allows it to reduce the workload by only processing ver-
tices whose label has changed in the prior iteration. In contrast,
the BFSCC version is based on Ligra’s parallel breadth-first search
implementation. It iterates over the vertices, performs parallel BFS
on each unprocessed vertex, and marks all reached vertices as be-
longing to the same component. Ligra+ is an optimized variant of
Ligra that internally uses a compressed graph representation,
making it possible to fit larger graphs into the available memory
[31]. It is otherwise identical to Ligra and contains the same CC
implementations. However, Ligra+ is generally faster than Ligra
when using its fast compression scheme, which is why we com-
pare to Ligra+.

CRONO is a benchmark suite of graph algorithms for shared-
memory multicore machines [1]. Its CC algorithm implements
Shiloach and Vishkin’s approach. CRONO’s code is based on 2D
matrices of size n dmax, where dmax is the graph’s maximum de-
gree. As a consequence, it tends to run out of memory for graphs
with high-degree vertices, including some of our graphs.

The Multistep approach was primarily designed to quickly
compute strongly connected components in parallel, but it also in-
cludes a modified implementation for computing CCs [33]. It

starts out by running a single parallel BFS rooted in the vertex
with the largest degree, then performs parallel label propagation
on the remaining subgraph, and finishes the work serially if only
a few vertices are left. The BFS is level synchronous. To minimize
overheads, each thread uses a local worklist, which are merged at
the end of each iteration.

The work-efficient ndHybrid code is probably the most sophis-
ticated parallel CPU algorithm for CC that we compare to in the
result section [30]. It runs multiple concurrent BFSs to generate
low-diameter partitions of the graph. Then it contracts each par-
tition into a single vertex, relabels the vertices and edges between
partitions, and recursively performs the same operations on the
resulting graph.

The final parallel CPU implementation we compare to is from
the Galois system, which automatically executes “galoized” serial
C++ code in parallel on shared-memory machines [19]. Galois in-
cludes three approaches to compute connected components. We
only show results for the asynchronous version as we found the
other versions to be slower on all tested inputs. This algorithm
visits each edge of the graph exactly once and adds it to a concur-
rent union-find data structure. To reduce the workload, only one
of the two opposing directed edges (that represent a single undi-
rected edge) is processed. To run asynchronously and perform un-
ion and find operations concurrently, the code uses a restricted
form of pointer jumping.

3 THE ECL-CC IMPLEMENTATION
The connected components implementation we describe in this
paper is called ECL-CC. It combines the strengths of some of the
best algorithms from the literature and augments them with sev-
eral GPU-specific optimizations. Like Shiloach’s and later ap-
proaches, it is based on the union-find technique, keeps a parent
pointer in each vertex, and uses a form of hooking and pointer
jumping. Like Soman’s and later work, it operates on the repre-
sentatives of each vertex’s endpoints, skips vertices that do not
need processing, and employs an improved version of pointer
jumping. Like Groute, it does not require iteration and interleaves
hooking and pointer jumping. Like Galois, it is completely asyn-
chronous and lock-free, visits each edge exactly once, only pro-
cesses edges in one direction, and fully interleaves hooking and
pointer jumping. Finally, it incorporates the intermediate pointer-
jumping approach by Patwary et al. [27].

The ECL-CC code comprises three phases: initialization, com-
putation, and finalization. Unlike some of the other codes, it is not
based on BFS (or DFS) and therefore does not need to find root
vertices and does not operate level-by-level. It is recursion free
and all phases are fully parallel. It does not have to mark or re-
move edges. The CPU implementation requires no auxiliary data
structure (the GPU implementation uses a double-sided worklist).

The preexisting union-find-based connected-components al-
gorithms initially consider each vertex a separate component la-
belled by its own ID. This makes the initialization very fast as it
requires no computation or memory accesses to determine the in-
itial parent values. However, these values are not particularly
good starting points and cause more work in the later computa-
tion phase, which can hurt overall performance. As a remedy,

ECL-CC’s initialization phase uses the ID of the first neighbor in
the adjacency list that has a smaller ID than the vertex. The ver-
tex’s own ID is only employed if no neighbor with a smaller ID
exists. It uses the first neighbor with a smaller ID rather than the
neighbor with the lowest ID because the latter requires too many
memory accesses to be worthwhile.

ECL-CC makes use of a different type of pointer jumping in
the computation phase than any of the GPU implementations de-
scribed above. Since it is somewhere between (single) pointer
jumping and multiple pointer jumping, we call it “intermediate
pointer jumping”. Multiple pointer jumping makes all parent
pointers encountered during the traversal of a path point directly
to the end of the path, i.e., to the representative. In other words, it
shortens the path length to one element for all encountered ele-
ments. In contrast, single pointer jumping only makes the first
parent point to the end of the path. Hence, it compresses the path
to one element for the first element but does not shorten the path
for any of the later elements. Whereas multiple pointer jumping
speeds up future find operations more than single pointer jump-
ing, it requires two passes over the path, one to find the repre-
sentative and the other to update the elements on the path. Inter-
mediate pointer jumping only requires a single traversal while
still compressing the path of all elements encountered along the
way, albeit not by as much as multiple pointer jumping. It accom-
plishes this by making every element skip over the next element,
thus halving the path length in each traversal. This is why Pat-
wary et al. call it “path-halving technique” [27]. The code to find
the representative of vertex v while performing intermediate
pointer jumping is shown in Fig. 5. Since this code does not nec-
essarily reduce all path lengths to one, ECL-CC includes a finali-
zation phase that makes every vertex’s parent point directly to the
representative.

1: vertex find_repres(vertex v, vertex parent[]) {
2: vertex par = parent[v];
3: if (par != v) {
4: vertex next, prev = v;
5: while (par > (next = parent[par])) {
6: parent[prev] = next;
7: prev = par;
8: par = next;
9: }
10: }
11: return par;
12: }

Fig. 5. Intermediate pointer jumping code

Note that the find_repres code is re-entrant and synchroniza-
tion free even though concurrent execution may cause data races
on the parent array. However, these races are guaranteed to be
benign for the following reasons. First, the only write to shared
data is in line 6. This write updates a single aligned machine word
and is therefore atomic. Moreover, it overwrites a valid entry with
another valid entry. Hence, it does not matter if other threads see
the old or the new value as either value will allow them to even-
tually reach the representative. Similarly, all the reads of the par-
ent array will either fetch the old or new value, but both values
are acceptable. The only problem that can occur is that two
threads try to update the same parent pointer at the same time. In

this case, one of the updates is lost. This reduces the code’s per-
formance as duplicate work is performed and the path is not
shortened by as much as it could have been, but it does not result
in incorrect paths. On average, the savings of not having to per-
form synchronization far outweighs this small cost. Lastly, it
should be noted that the rest of the code either accesses the parent
array via calls to the find_repres function or changes the parent
pointer of a representative vertex but never of a vertex that is in
the middle of a path. If the find_repres code already sees the new
representative, it will return it. Otherwise, it will return the old
representative. Either return value is handled correctly.

The GPU version of ECL-CC employs optimizations to reduce
load imbalance and to exploit the three levels of hardware paral-
lelism exposed in CUDA. The first level is the threads. The second
level is the warps, which are sets of 32 threads that execute in
lockstep. The third level is the thread blocks, which hold 256
threads in our implementation. To keep thread divergence and
other forms of load imbalance at a minimum, the computation
phase of the GPU code is split over three kernels (GPU functions).
The first computation kernel operates at thread granularity and
only processes vertices up to a degree of 16. Any larger vertices it
encounters are placed in a worklist. The second kernel operates at
warp granularity and processes vertices with a degree of between
17 and 352, i.e., the processing of the edges of a single vertex is
parallelized across a warp. Similarly, the third kernel operates at
thread-block granularity and processes vertices with more than
352 edges. These thresholds were determined experimentally.
Varying them by quite a bit does not significantly affect the per-
formance. Note that, to save memory space, ECL-CC utilizes a
double-sided worklist of size n, which the first kernel populates
on one side with the vertices for the second kernel and on the
other side with the vertices for the third kernel. This load balanc-
ing mechanism is similar to that of Enterprise [23], except we do
not need a “small” worklist since we process the low-degree ver-
tices immediately, and our two larger worklists share a single,
double-sided worklist.

The core of the edge-processing code, i.e., the hooking opera-
tion, is identical in all three computation kernels and shown in
Fig. 6. Here, u and v are the two endpoints of the edge and the
representative of v is assumed to already be stored in v_rep.

Line 1 ensures that edges are only processed in one direction.
Line 6 checks if the representatives of the two endpoints of the
edge are the same. If so, nothing needs to be done. If not, the par-
ent of the larger of the two representatives is updated to point to
the smaller representative using an atomic CAS operation (either
in line 9 or 14 depending on which representative is smaller). The
atomicCAS is required because the representative may have been
changed by another thread between the call to find_repres and the
call to the CAS. If it has been changed, u_rep or v_rep is updated
with the latest value and the do-while loop repeats the computa-
tion until it succeeds, i.e., until there is no data race on the parent.
The complete CUDA code is available at http://cs.txstate.edu/
~burtscher/research/ECL-CC/.

Note that it is sufficient to successfully hook each edge once
because, after hooking, both endpoints have the same representa-
tive. Any later changes to the parent array by any thread either

shorten some path, which never changes the representative of any
vertex, or an existing representative’s parent is made to point to a
new representative, which changes the representative of both
endpoints to the same new representative. Hence, a previously
hooked edge never has to be revisited. The finalization kernel will,
ultimately, make all parents point directly to the representative.

1: if (v > u) {
2: vertex u_rep = find_repres(u, parent);
3: bool repeat;
4: do {

5: repeat = false;
6: if (v_rep != u_rep) {
7: vertex ret;
8: if (v_rep < u_rep) {

9: if ((ret = atomicCAS(&parent[u_rep],
 u_rep, v_rep)) != u_rep) {

10: u_rep = ret;
11: repeat = true;
12: }
13: } else {
14: if ((ret = atomicCAS(&parent[v_rep],

 v_rep, u_rep)) != v_rep) {

15: v_rep = ret;

16: repeat = true;
17: }
18: }
19: }

20: } while (repeat);
21: }

Fig. 6. Core code of the hooking (union) computation

For comparison purposes, we also wrote a parallel CPU imple-
mentation of ECL-CC that uses the same general code structure.
In particular, it has the same three phases and employs interme-
diate pointer jumping as well as the improved initialization ap-
proach. However, it does not include the GPU-specific optimiza-
tions, i.e., it only has a single computation function and requires
no worklist. The code is parallelized using OpenMP. In each of the
three functions implementing the three phases, the outermost
loop going over the vertices is parallelized with a guided schedule.
It uses the find_repres and hooking code shown in Fig. 5 and Fig.
6, except the atomicCAS is replaced by the gcc intrinsic
__sync_val_compare_and_swap.

Finally, we also wrote serial CPU code, which is similar to the
parallel code but does not contain OpenMP pragmas or atomics.
Since there are no calls to atomicCAS that could fail, the do-while
loop and its associated variables shown in Fig. 6 are also absent.
The serial code still employs intermediate pointer jumping.

4 EXPERIMENTAL METHODOLOGY
We evaluate the connected-components programs listed in Table
1. Where needed, we changed the code that reads in the input
graph or wrote graph converters such that all programs could be
run with the same inputs. Galois includes three approaches to
compute CC. We only show results for the asynchronous version
as we found the other versions to be slower on the tested inputs.
Similarly, ndHybrid supports OpenMP and Cilk Plus. We only
present results for the on average faster Cilk Plus version. More-
over, ndHybrid includes three approaches. We only show results

for the non-deterministic hybrid code, which is faster than the
non-hybrid deterministic and non-deterministic versions.

Table 1. The connected-components codes we evaluate

Device Ser/Par Name Version Source

GPU parallel

ECL-CC 1.0 [8]
Groute [12]
Gunrock [13]
IrGL [18]
Soman [35]

CPU parallel

CRONO 0.9 [4]
ECL-CCOMP 1.0
Galois 2.3.0 [10]
Ligra+ BFSCC [21]
Ligra+ Comp [22]
Multistep [24]
ndHybrid [25]

CPU serial

Boost 1.62.0 [3]
ECL-CCSER 1.0
Galois 2.3.0 [10]
igraph [17]
Lemon 1.3.1 [20]

In all investigated implementations, we measured the runtime
of the CC computation, excluding the time it takes to read in the
graphs. In the GPU codes, we also exclude the time it takes to
transfer the graph to the GPU or to transfer the result back. In
other words, we assume the graph to already be on the GPU from
a prior processing step and the result of the CC computation to be
needed on the GPU by a later processing step. We repeated each
experiment three times and report the median computation time.
All ECL-CC implementations verify the solution at the end of the
run by comparing it to the solution of the serial code. The verifi-
cation time is not included in the measured runtime. For all codes,
we made sure that the number of CCs is correct.

We present results from two different GPUs. The first GPU is
a GeForce GTX Titan X, which is based on the Maxwell architec-
ture. The second GPU is a Tesla K40c, which is based on the older
Kepler architecture. The Titan X has 3072 processing elements
distributed over 24 multiprocessors that can hold the contexts of
49,152 threads. Each multiprocessor has 48 kB of L1 data cache.
The 24 multiprocessors share a 2 MB L2 cache as well as 12 GB of
global memory with a peak bandwidth of 336 GB/s. We use the
default clock frequencies of 1.1 GHz for the processing elements
and 3.5 GHz for the GDDR5 memory. The K40 has 2880 processing
elements distributed over 15 multiprocessors that can hold the
contexts of 30,720 threads. Each multiprocessor is configured to
have 48 kB of L1 data cache. The 15 multiprocessors share a 1.5
MB L2 cache as well as 12 GB of global memory with a peak band-
width of 288 GB/s. We disabled ECC protection of the main
memory and use the default clock frequencies of 745 MHz for the
processing elements and 3 GHz for the GDDR5 memory. Both
GPUs are plugged into 16x PCIe 3.0 slots in the same system. The
CUDA driver is 375.26.

For reference, we further show results from two different
CPUs. The first system, which hosts the GPUs, has dual 10-core
Xeon E5-2687W v3 CPUs running at 3.1 GHz. Hyperthreading is
enabled, i.e., the twenty cores can simultaneously run forty
threads. Each core has separate 32 kB L1 caches, a unified 256 kB
L2 cache, and the cores on a socket share a 25 MB L3 cache. The
host memory size is 128 GB and has a peak bandwidth of 68 GB/s.

The operating system is Fedora 23. The second, older CPU system
has dual 6-core Xeon X5690 CPUs running at 3.47 GHz. There is
no hyperthreading, i.e., the cores can simultaneously run 12
threads. Each core has separate 32 kB L1 caches, a unified 256 kB
L2 cache, and the cores on a socket share a 12 MB L3 cache. The
host memory size is 24 GB and has a peak bandwidth of 32 GB/s.
The operating system is also Fedora 23.

We compiled all GPU codes with nvcc 8.0 using the “-O3
-arch=sm_52” flags for the Titan X and “-O3 -arch=sm_35” for the
K40. The CPU codes were compiled with gcc/g++ 5.3.1 using the
“-O3 -march=native” flags.

Table 2. Information about the input graphs

Graph name Type Origin Vertices Edges* dmin davg dmax CCs
2d-2e20.sym grid Galois 1,048,576 4,190,208 2 4.0 4 1
amazon0601 co-purchases SNAP 403,394 4,886,816 1 12.1 2,752 7
as-skitter Int. topology SNAP 1,696,415 22,190,596 1 13.1 35,455 756
citationCiteseer pub. citations SMC 268,495 2,313,294 1 8.6 1,318 1
cit-Patents pat. citations SMC 3,774,768 33,037,894 1 8.8 793 3,627
coPapersDBLP pub. citations SMC 540,486 30,491,458 1 56.4 3,299 1
delaunay_n24 triangulation SMC 16,777,216 100,663,202 3 6.0 26 1
europe_osm road map SMC 50,912,018 108,109,320 1 2.1 13 1
in-2004 web links SMC 1,382,908 27,182,946 0 19.7 21,869 134
internet Int. topology SMC 124,651 387,240 1 3.1 151 1
kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 0 86.8 213,904 553,159
r4-2e23.sym random Galois 8,388,608 67,108,846 2 8.0 26 1
rmat16.sym RMAT Galois 65,536 967,866 0 14.8 569 3,900
rmat22.sym RMAT Galois 4,194,304 65,660,814 0 15.7 3,687 428,640
soc-LiveJournal1 j. community SNAP 4,847,571 85,702,474 0 17.7 20,333 1,876
uk-2002 web links SMC 18,520,486 523,574,516 0 28.3 194,955 38,359
USA-road-d.NY road map Dimacs 264,346 730,100 1 2.8 8 1
USA-road-d.USA road map Dimacs 23,947,347 57,708,624 1 2.4 9 1

We used the eighteen graphs listed in Table 2 as inputs. They
were obtained from the Center for Discrete Mathematics and The-
oretical Computer Science at the University of Rome (Dimacs) [7],
the Galois framework (Galois) [10], the Stanford Network Analy-
sis Platform (SNAP) [34], and the Sparse Matrix Collection (SMC)
[37]. Where necessary, we modified the graphs to eliminate loops
and multiple edges between the same two vertices. We added any
missing back edges to make the graphs undirected. For each
graph, Table 2 provides the name, type, origin, number of vertices,
number of edges, minimum degree, average degree, maximum de-
gree, and number of CCs. Since the graphs are stored in CSR for-
mat, each undirected edge is represented by two directed edges*.

While it may or may not be useful to compute connected com-
ponents on some of these graphs, we selected this wide variety of
inputs to evaluate the tested codes on a broad range of graphs that
vary substantially in type and size. The number of vertices differs
by up to a factor of 777, the number of edges by up to a factor of
1352, the average degree by up to a factor of 41, and the maximum
degree by up to a factor of 53,476.

5 EXPERIMENTAL RESULTS

The following subsections analyze the design of ECL-CC and com-
pare its runtime to that of leading codes from the literature. The
main results are normalized to ECL-CC to make them easier to
compare as the large disparity in graph sizes yields highly varying
runtimes. Values above 1.0 indicate a longer runtime, i.e., all
charts show higher-is-worse results. For reference, we also list the
absolute runtimes in select cases. All averages refer to the geo-
metric mean of the normalized runtimes.

5.1 ECL-CC Internals
This subsection studies different versions of the three phases of
ECL-CC. All results pertain to the Titan X GPU. We report and
compare the sum of the runtimes of all kernels, i.e., the total
runtime, since changes in one kernel can also affect the amount
of work and therefore the runtime of the other kernels.

Fig. 7 shows the normalized runtime of ECL-CC for three dif-
ferent versions of the initialization kernel. The objective of this
kernel is to assign a starting value to the label of each vertex. Init1
uses the vertex’s own ID. This is what many implementations
from the literature do. Init2 uses the smallest ID of all the vertex’s
neighbors. If no neighbor with a smaller ID exists, the vertex’s
own ID is used. Init3, which is employed in ECL-CC and repre-
sented by the horizontal line at 1.0, uses the ID of the first neigh-
bor in the adjacency list that has a smaller ID than the vertex. If
no neighbor with a smaller ID exists, the vertex’s own ID is used.

Fig. 7. Relative runtime with different initialization kernels on
the Titan X

Init1 can be quite fast in some cases (e.g., 33% faster on rmat16)
and requires the fewest operations to determine the initial label
value. In other cases, its initialization values are not particularly
good starting points and cause more work in later kernels, which
is why Init1 can also be rather slow (e.g., over a factor of 2 on
europe_osm). On average, it is 4% slower than Init3.

Init2 requires the most operations to determine the initializa-
tion value as all neighbors of each vertex must be checked. Con-
sequently, Init2 is never faster than Init3 even though, in some
sense, it produces the highest-quality initial values. On average, it
is 1.4 times slower.

Init3 is the fastest of the three initialization approaches. It
tends to assign better label values than Init1. At the same time, it
avoids accessing most neighbors as it stops at the first smaller
neighbor. This reduces the number of operations relative to Init2.
Whereas Init3 is not much faster than Init1, we chose it for ECL-
CC because its worst-case behavior is better (33% slower versus a
factor of 2 faster).

Fig. 8 shows the relative runtime of ECL-CC for four different
versions of pointer jumping. Jump1 employs multiple pointer
jumping, i.e., it makes all elements found along the path point di-
rectly to the end of the path. Jump2 uses single pointer jumping,
i.e., it only makes the current parent pointer point to the end of

the path. Jump3 does not shorten the path at all but only returns
a pointer to the end of the path (i.e., the representative). Jump4,
which is used in ECL-CC and represented by the horizontal line
at 1.0, implements intermediate pointer jumping, i.e., each ele-
ment in the path is made to skip the next element, thus halving
the path length in each traversal.

Fig. 8. Relative runtime with different pointer-jumping versions
on the Titan X (the cut-off bar extends to 254)

Jump1 (multiple pointer jumping), while yielding the shortest
path lengths, is expensive because the paths must be traversed
twice, once to find the last element and then a second time to
make all the elements point to the last element. On our inputs, it
is never faster than Jump4 and, on average, 1.6 times slower.

Jump2 (single pointer jumping) does not require a second tra-
versal but only shortens the path by one element per traversal. In
all cases, this results in a lower runtime than Jump1. On eu-
rope_osm, it even outperforms Jump4 by 18%. However, on aver-
age, Jump2 is 1.26 times slower than Jump4.

As expected, Jump3 (no pointer jumping) performs the worst
since it does not shorten the paths. This demonstrates the im-
portance of path compression, even on GPUs where such irregular
code can result in significant thread divergence. On average,
Jump3 is 3.7 times slower than Jump4.

Jump4 (intermediate pointer jumping), which is used in ECL-
CC, is the fastest of the four evaluated approaches on average and
in all but one case (europe_osm). It works well because it only
traverses the path once while still improving every element along
the path and substantially shortening the path length. Moreover,
updating nearby neighbors during the traversal has the following
two additional benefits. First, and as described in the next para-
graphs, it yields good locality because it only updates memory lo-
cations that have just been read. Second, it results in the shortest
time window between reading and updating the elements on the
path, which reduces the chance of the benign data races discussed
in Section 3. Since Jump4 has the smallest time window between
reading and updating the path elements, the probability for such
data races happening is smaller.

To evaluate the locality of the different pointer-jumping ap-
proaches, we profiled the whole-application L2-cache accesses on
the Titan X. Table 3 lists the relative number of read and write
accesses. The results are normalized to ECL-CC (Jump4). Values

0.5

1.0

2.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C

Init1 Init2 Init3 (ECL-CC)

0.5

1.0

2.0

4.0

8.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C

Jump1 Jump2 Jump3 Jump4 (ECL-CC)

above 1.0 indicate more accesses whereas values below 1.0 indi-
cate fewer accesses than ECL-CC. On average, Jump1 (multiple
pointer jumping) performs 3.02, Jump2 (single pointer jumping)
performs 2.78, Jump3 (no pointer jumping) performs 42.5, and
Jump4 (intermediate pointer jumping) performs 8.82 times as
many L2 reads as L2 writes.

Table 3. L2 cache read and write accesses relative to Jump4

 L2 read accesses L2 write accesses
Graph name Jump1 Jump2 Jump3 Jump1 Jump2 Jump3

2d-2e20.sym 1.43 1.18 2.18 2.36 1.44 0.25
amazon0601 1.39 1.01 4.73 7.07 6.08 0.48
as-skitter 1.42 0.99 1.40 10.01 9.48 0.38
citationCiteseer 1.45 1.04 2.70 4.96 4.16 0.52
cit-Patents 1.42 1.02 2.22 4.11 3.57 0.56
coPapersDBLP 1.47 1.04 2.52 6.98 6.61 0.40
delaunay_n24 1.23 1.05 1.49 1.82 1.37 0.36
europe_osm 1.96 1.76 9.29 0.83 0.50 0.31
in-2004 1.28 1.00 1.66 2.69 2.37 0.49
internet 1.31 1.14 1.65 1.59 1.20 0.56
kron_g500-logn21 1.71 1.00 2.50 43.38 42.78 0.57
r4-2e23.sym 1.38 1.01 1.81 12.34 9.95 3.35
rmat16.sym 1.50 1.12 3.26 4.00 3.90 1.00
rmat22.sym 1.54 1.00 2.88 9.29 8.53 0.50
soc-LiveJournal1 1.53 1.00 2.68 11.53 10.74 0.44
uk-2002 1.32 1.01 2.33 2.95 2.60 0.45
USA-road-d.NY 1.35 1.30 2.76 0.93 0.75 0.42
USA-road-d.USA 1.31 1.12 1.49 1.64 1.04 0.35
Geometric Mean 1.44 1.09 2.43 4.19 3.45 0.50

These results show that the execution times of the various
pointer-jumping approaches correlate with the number of L2 ac-
cesses, in particular the more frequent reads. Except for Jump2 on
as-skitter, Jump4 always results in the fewest L2 read accesses.
Hence, Jump4 must perform fewer reads or have a better L1 hit
ratio (i.e., better locality) or both. Furthermore, both multiple
pointer jumping and single pointer jumping result in many more
L2 write accesses than intermediate pointer jumping. This is in-
teresting because intermediate pointer jumping generally exe-
cutes more path-compression writes than the other two ap-
proaches since it updates pointers in the middle of a path multiple
times. Therefore, its L1 write hit ratio must be much higher. Over-
all, these results indicate that multiple pointer jumping is worse
than single pointer jumping on GPUs, which in turn is worse than
intermediate pointer jumping, at least for ECL-CC.

For reference, Table 4 lists the average and maximum path
lengths during the CC computation. These results need to be
taken with a grain of salt, though, as the instrumentation added
to obtain them affected the runtimes a little, which likely altered
the relative timing among the threads and therefore the path
lengths. After all, the path lengths depend on the order in which
the vertices and edges are processed and on the possible manifes-
tation of the benign data races.

As the table shows, the paths tend to be very short on average.
This is, of course, expected in the presence of any kind of pointer
jumping, i.e., path compression. Even the longest observed paths
tend to be quite short. The most notable exception is europe_osm.
Its average and maximum path lengths are substantially longer
than those of the other graphs. Evidently, the processing of this
graph happens in a peculiar order that yields abnormally long

paths. Indeed, additional experiments (results not shown) revealed
that this input is particularly sensitive to the order in which the
vertices are processed.

Table 4. Information about the observed path lengths

Graph name Average path length Maximum path length
2d-2e20.sym 1.35 9
amazon0601 1.28 8
as-skitter 1.02 17
citationCiteseer 1.13 11
cit-Patents 1.08 9
coPapersDBLP 1.02 8
delaunay_n24 1.35 13
europe_osm 4.26 122
in-2004 1.14 31
internet 1.49 10
kron_g500-logn21 1.01 6
r4-2e23.sym 1.34 29
rmat16.sym 1.25 10
rmat22.sym 1.05 8
soc-LiveJournal1 1.04 7
uk-2002 1.15 91
USA-road-d.NY 2.62 43
USA-road-d.USA 1.63 27

Fig. 9 shows the relative runtime of ECL-CC for three different
versions of the finalization kernel. Since ECL-CC’s computation
kernel does not utilize multiple pointer jumping, some parent
pointers may end up not directly pointing to the representative.
Fini1 employs intermediate pointer jumping to determine the final
label values and to compress the paths. Fini2 utilizes multiple
pointer jumping. Fini3, which is used in ECL-CC and represented
by the horizontal line at 1.0, performs single pointer jumping.

Fig. 9. Relative runtime of different finalizations on the Titan X

On average, there is little difference between Fini1 and Fini3.
Whereas Fini1 is never faster, it is also never more than 4% slower
on our inputs. On average, it is 0.5% slower. However, Fini2 is sig-
nificantly slower in several cases as it requires two path travers-
als. This is especially problematic on delaunay_n24, where it is
over 1.9 times slower than Fini3. On average, it is 14% slower. We
use Fini3 as it is a little faster and simpler to implement than Fini1.

1.0

2.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C

Fini1 Fini2 Fini3 (ECL-CC)

Fig. 10. ECL-CC runtime distribution among the five CUDA ker-
nels on the Titan X

Fig. 10 shows the runtime breakdown of the initialization, the
three compute, and the finalization kernels. On average, finaliza-
tion takes 5.7% of the total runtime, initialization takes 9.8%, com-
pute kernel 3 for the high-degree vertices takes 10.9%, compute
kernel 2 for the medium-degree vertices takes 26.5%, and compute
kernel 1 for the low-degree vertices takes 47.1%. Overall, 84.5% of
the total runtime is spent in the computation phase, making the
use of intermediate pointer jumping to speed up the three compu-
tation kernels particularly important.

5.2 GPU Runtime Comparison

Fig. 11 shows the relative runtimes on the Titan X GPU with re-
spect to ECL-CC, which is represented by the horizontal line at
1.0. The corresponding absolute runtimes are listed in Table 5.
ECL-CC is faster than Gunrock, IrGL, and Soman on all tested in-
puts. It is also faster than Groute on 15 of the 18 inputs and tied
on amazon0601. Groute is 1.25 times faster on as-skitter and 1.34
times faster on europe_osm. On average, ECL-CC is 1.8 times
faster than Groute, 4.0 times faster than Soman, 6.4 times faster
than IrGL, and 8.4 times faster than Gunrock.

Fig. 11. Titan X runtime relative to ECL-CC
Fig. 12 shows similar results but for the older K40 GPU. As be-

fore, ECL-CC is represented by the horizontal line at 1.0. The ab-
solute runtimes are listed in Table 6. Again, ECL-CC is faster than
Gunrock, IrGL, and Soman on all tested inputs. It outperforms

Groute on 13 inputs and is tied on USA-NY. Groute is 8% to 32%
faster on the remaining four inputs. On average, ECL-CC is 1.6
times faster than Groute, 4.3 times faster than Soman, 5.8 times
faster than IrGL, and 11.2 times faster than Gunrock.

Fig. 12. K40 runtime relative to ECL-CC

Comparing the runtimes listed in Tables 5 and 6, we find that
the newer, more parallel, and faster Titan X almost always out-
performs the K40. There are only two instances, citationCiteseer
and rmat22.sym, where Groute runs faster on the older GPU.

Table 5. Absolute runtimes (in milliseconds) on the Titan X

Graph name ECL-CC Groute Gunrock IrGL Soman
2d-2e20.sym 1.2 1.9 12.2 11.6 6.9
amazon0601 0.9 0.9 3.1 6.5 1.5
as-skitter 2.5 2.0 8.1 5.4 3.7
citationCiteseer 0.6 4.2 4.4 6.9 2.1
cit-Patents 14.6 58.6 104.6 70.9 67.6
coPapersDBLP 2.5 2.8 20.1 11.9 7.3
delaunay_n24 14.6 22.1 170.6 62.2 66.7
europe_osm 29.0 21.7 256.9 99.5 116.8
in-2004 2.6 7.3 75.7 15.4 12.1
internet 0.2 0.3 2.6 5.2 1.6
kron_g500-logn21 20.9 24.6 191.8 141.0 134.5
r4-2e23.sym 21.6 23.8 67.6 54.6 53.8
rmat16.sym 0.3 1.7 1.8 4.1 1.1
rmat22.sym 20.5 126.1 129.9 109.5 102.4
soc-LiveJournal1 12.7 14.0 60.4 43.1 41.3
uk-2002 45.8 108.5 1,389.1 243.8 229.7
USA-road-d.NY 0.2 0.3 2.7 7.6 1.6
USA-road-d.USA 14.1 15.3 168.0 60.4 67.1

5.3 Parallel CPU Runtimes

Fig. 13 shows the relative parallel runtimes on the dual 10-core
Xeon CPU system. The absolute runtimes are listed in Table 7.
ECL-CCOMP, which is represented by the horizontal line at 1.0, as
well as Ligra+ BFSCC and ndHybrid are each fastest on five in-
puts, Ligra+ Comp on two inputs, and Galois on one input. Inter-
estingly, ECL-CCOMP is fastest on the largest inputs, ndHybrid on
the medium inputs, and Ligra+ BFSCC on some of the smallest
inputs. Except for Multistep, all evaluated codes are faster than
ECL-CCOMP on at least one input by between 1.1 and 21 times.
However, ECL-CCOMP outperforms each of the other codes by be-
tween 8 and 369 times on at least one graph. On average, it is 2%
slower than ndHybrid, 1.5 times faster than Ligra+ BFSCC, 2.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

initialization compute 1 compute 2 compute 3 finalization

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C

Groute Gunrock IrGL Soman ECL-CC

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C

Groute Gunrock IrGL Soman ECL-CC

times faster than Ligra+ Comp, 3.5 times faster than CRONO (on
the inputs that CRONO supports), 3.6 times faster than Multistep,
and 4.7 times faster than Galois.

Table 6. Absolute runtimes (in milliseconds) on the K40

Graph name ECL-CC Groute Gunrock IrGL Soman
2d-2e20.sym 2.2 4.0 23.7 16.0 12.5
amazon0601 1.1 1.2 6.6 7.2 2.8
as-skitter 4.1 3.1 17.6 7.9 7.0
citationCiteseer 0.9 3.2 8.3 7.3 3.9
cit-Patents 19.4 64.7 215.0 90.4 84.8
coPapersDBLP 4.5 4.0 48.4 18.3 14.1
delaunay_n24 21.0 32.4 402.6 121.0 123.0
europe_osm 44.2 34.9 584.6 164.5 213.4
in-2004 4.6 12.3 233.9 22.2 19.2
internet 0.3 0.4 5.3 5.6 2.2
kron_g500-logn21 40.1 43.6 351.1 245.2 221.6
r4-2e23.sym 29.8 37.5 93.1 66.7 67.2
rmat16.sym 0.4 1.8 2.9 4.4 1.9
rmat22.sym 27.0 112.2 214.1 150.5 145.7
soc-LiveJournal1 20.1 18.6 113.4 69.8 67.8
uk-2002 83.5 212.9 5,869.2 480.1 466.8
USA-road-d.NY 0.4 0.4 4.6 9.6 2.4
USA-road-d.USA 23.8 27.5 362.4 111.1 132.8

Fig. 13. Parallel E5-2687W runtime relative to ECL-CCOMP

Fig. 14 shows the relative parallel runtimes on the dual 6-core
Xeon CPU system. The absolute runtimes are listed in Table 8.
ECL-CCOMP, which is represented by the horizontal line at 1.0, is
fastest on ten inputs, Ligra+ BFSCC on six inputs, and Ligra+
Comp and Multistep on one input each. Ligra+ BFSCC is faster
than ECL-CCOMP by up to 3.4 times, Ligra+ Comp and ndHybrid
by up to 1.9 times, and Multistep by up to 1.2 times. However,
ECL-CCOMP outperforms each of the other codes by between 16
and 558 times on at least one input. On average, it is 1.7 times
faster than Ligra+ BFSCC, 1.9 times faster than ndHybrid, 2.7
times faster than Multistep, 6.8 times faster than CRONO (on the
inputs that CRONO supports), 7.2 times faster than Ligra+ Comp,
and 22.9 times faster than Galois.

Even though ECL-CC was designed to be a fast CC implemen-
tation for GPUs, porting it to OpenMP also yielded a parallel CPU
implementation that performs well. On average, it is as fast or
faster than the other tested codes. However, there are many inputs
on which it is outperformed, especially on the E5-2687W system.

Fig. 14. Parallel X5690 runtime relative to ECL-CCOMP

Table 7. Absolute parallel runtimes (in ms) on the E5-2687W

Graph name ECL BFSCC Comp CRON Hybrid Multi Galois
2d-2e20.sym 48.9 88.8 262.8 160.7 37.4 278.4 139.5
amazon0601 47.7 5.3 11.6 110.0 12.8 174.9 51.8

as-skitter 63.7 75.6 112.6 n/a 30.8 224.3 641.6
citationCiteseer 55.0 2.6 6.4 109.7 7.6 180.8 36.9

cit-Patents 110.8 333.4 319.1 483.9 83.5 238.3 1,061.0
coPapersDBLP 73.1 6.2 47.1 175.2 11.9 206.8 204.5
delaunay_n24 137.3 202.1 3,883.0 1,532.3 286.0 501.2 1,738.2

europe_osm 178.7 7,046.0 26,540.0 1,574.2 2,130.0 1,438.4 2,753.8
in-2004 52.5 46.5 41.0 n/a 74.3 286.6 181.5
internet 37.7 2.4 3.0 43.1 14.1 81.1 8.7

kron_g500-logn21 117.3 6,117.0 228.0 n/a 111.0 362.6 2,980.2
r4-2e23.sym 119.8 59.0 211.3 363.1 186.0 257.5 2,467.9
rmat16.sym 38.7 51.2 1.8 34.1 14.6 110.4 14.1
rmat22.sym 83.0 6,352.0 274.5 599.2 132.0 250.6 2,212.7

soc-LiveJournal1 89.0 123.1 511.0 n/a 83.9 260.2 1,531.1
uk-2002 165.5 754.5 727.5 n/a 346.0 939.9 3,918.0

USA-road-d.NY 27.8 29.2 81.2 74.1 52.2 87.5 12.8
USA-road-d.USA 117.0 695.7 43,160.0 1,437.4 1,050.0 697.8 1,656.1

Table 8. Absolute parallel runtimes (in millisec.) on the X5690
Graph name ECL BFSCC Comp CRON Hybrid Multi Galois

2d-2e20.sym 27.0 57.6 680.0 199.3 44.8 57.8 505.3
amazon0601 16.1 8.8 34.9 78.0 13.3 60.2 166.7

as-skitter 29.4 52.9 141.0 n/a 31.6 52.6 1,493.5
citationCiteseer 14.3 4.3 27.7 101.5 9.4 24.1 107.4

cit-Patents 110.1 216.0 813.0 593.4 147.0 91.1 3,427.1
coPapersDBLP 32.8 11.7 59.7 126.2 17.5 88.9 720.3
delaunay_n24 168.8 226.0 4,410.0 1,177.6 422.0 371.2 4,934.5

europe_osm 222.6 926.0 30,800.0 2,087.6 3,930.0 1,039.8 8,127.0
in-2004 24.7 44.2 82.6 n/a 61.9 67.5 677.1
internet 5.1 2.6 6.7 67.6 4.0 68.5 24.3

kron_g500-logn21 114.9 2,230.0 492.0 n/a 206.0 292.5 9,611.0
r4-2e23.sym 182.7 131.0 546.0 420.7 237.0 157.2 6,325.2
rmat16.sym 8.8 19.4 4.7 45.1 6.7 47.9 39.4
rmat22.sym 136.7 2,110.0 779.0 n/a 200.0 140.4 6,507.3

soc-LiveJournal1 123.8 107.0 972.0 n/a 161.0 152.2 4,790.1
uk-2002 207.1 527.0 1,410.0 n/a 516.0 713.0 12,035.9

USA-road-d.NY 5.7 14.1 112.0 93.2 48.1 110.4 43.3
USA-road-d.USA 125.8 398.0 70,200.0 1,316.6 1,950.0 389.3 4,938.2

Comparing the absolute runtimes listed in Tables 7 and 8
yields some unexpected results. Whereas Ligra+ Comp and Galois
consistently run faster on the more parallel system, on the remain-
ing codes a third to almost all inputs result in shorter runtimes on
the dual 6-core system than on the dual 10-core system. This hap-
pens predominantly on the smallest inputs, where the runtime
may be too short to overcome the dynamic parallelization over-

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C
O

M
P

Ligra+ BFSCC Ligra+ Comp CRONO ndHybrid Multistep Galois ECL-CComp

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C
O

M
P

Ligra+ BFSCC Ligra+ Comp CRONO ndHybrid Multistep Galois ECL-CComp

head (thread creation and worklist maintenance). Indeed, addi-
tional ECL-CCOMP experiments with 20 and 10 instead of 40
threads revealed that 10 threads result in the lowest runtime on
the smallest inputs and 20 threads yield the best runtime on most
of the medium inputs on the hyperthreaded dual 10-core system.
Clearly, some of our inputs are simply too small to scale to 40
OpenMP threads.

5.4 Serial CPU Runtimes
Fig. 15 shows the relative serial runtimes on the E5-2687W CPU.
ECL-CCSER is represented by the horizontal line at 1.0. The abso-
lute runtimes are listed in Table 9. ECL-CCSER is the fastest on 16
inputs and Galois on the remaining two, where it is 72% faster on
internet and 62% faster on USA-NY. Lemon is also faster than
ECL-CCSER on internet but slower than Galois. ECL-CCSER outper-
forms each of the other codes by between 9.1 and 40 times on at
least one input. On average, it is 2.6 times faster than Galois, 5.2
times faster than Boost, 6.7 times faster than igraph, and 9.1 times
faster than Lemon.

Fig. 15. Serial E5-2687W runtime relative to ECL-CCSER

Fig. 16. Serial X5690 runtime relative to ECL-CCSER

Fig. 16 shows the relative serial runtimes on the X5690 CPU.
ECL-CCSER is represented by the horizontal line at 1.0. The abso-
lute runtimes are listed in Table 10. ECL-CCSER is fastest on all 18
inputs by at least a factor of 3.1. It outperforms the other codes by
between 7.7 and 27 times on at least one input. On average, ECL-

CCSER is 5.3 times faster than Boost, 7.9 times faster than igraph,
8.1 times faster than Galois, and 11 times faster than Lemon.

These results surprised us because ECL-CC was designed for
GPUs. Having said that, its good serial performance shows that its
unique combination of the best features from various prior CC
codes is also useful for creating a fast serial implementation.

Table 9. Absolute serial runtimes (in millisec.) on the E5-2687W

Graph name ECL-CCSER Galois Boost Lemon igraph
2d-2e20.sym 42.7 117.9 281.3 268.7 319.2
amazon0601 17.5 46.9 154.6 351.7 174.1
as-skitter 56.2 604.8 511.6 1,487.3 484.9
citationCiteseer 24.4 31.5 79.5 172.2 104.0
cit-Patents 268.8 963.9 1,961.1 3,735.3 2,344.9
coPapersDBLP 66.6 202.5 359.5 1,243.8 488.0
delaunay_n24 510.0 1,464.6 2,913.7 2,545.2 3,516.1
europe_osm 889.8 2,060.1 5,868.5 6,757.3 10,872.6
in-2004 81.8 167.5 261.0 642.6 392.4
internet 9.8 5.7 15.5 8.7 14.0
kron_g500-logn21 447.2 2,911.9 2,486.5 17,998.4 6,458.5
r4-2e23.sym 513.6 2,323.2 3,491.1 8,390.9 5,916.6
rmat16.sym 7.2 12.0 24.1 38.5 24.3
rmat22.sym 458.5 2,072.9 2,835.7 7,976.1 3,721.7
soc-LiveJournal1 405.0 1,453.1 2,458.9 8,361.1 3,655.7
uk-2002 1,004.0 3,773.1 5,732.4 15,731.2 13,728.8
USA-road-d.NY 13.3 8.2 42.2 17.6 30.3
USA-road-d.USA 599.3 1,249.9 3,823.8 2,452.0 3,715.4

Table 10. Absolute serial runtimes (in milliseconds) on the X5690

Graph name ECL-CCSER Galois Boost Lemon igraph
2d-2e20.sym 83.7 485.2 340.1 360.8 383.3
amazon0601 26.3 159.7 165.0 438.0 222.2
as-skitter 96.0 1,507.2 576.5 1,845.8 641.9
citationCiteseer 13.2 103.0 98.3 237.2 134.8
cit-Patents 502.1 3,316.0 2,189.8 4,404.1 2,992.1
coPapersDBLP 76.8 747.6 394.7 1,496.8 651.0
delaunay_n24 630.1 4,730.9 3,226.6 4,314.5 5,278.1
europe_osm 1,229.1 7,590.5 6,056.5 7,471.5 12,768.6
in-2004 69.2 677.3 297.5 815.2 514.4
internet 4.1 22.6 19.9 12.7 20.5
kron_g500-logn21 894.1 10,075.9 2,966.6 24,168.4 8,876.0
r4-2e23.sym 720.3 5,945.5 3,499.1 10,906.3 8,195.9
rmat16.sym 3.6 38.2 27.7 77.2 39.1
rmat22.sym 729.9 6,277.4 3,185.2 10,148.0 5,134.9
soc-LiveJournal1 469.1 4,672.9 2,798.9 10,568.1 4,779.0
uk-2002 1,258.6 12,106.1 n/a 19,654.2 10,672.1
USA-road-d.NY 6.1 41.1 44.3 27.5 44.6
USA-road-d.USA 742.5 4,610.9 4,231.1 3,382.5 4,762.3

Comparing the absolute runtimes in Tables 9 and 10, we find
that the serial codes generally run faster on the newer system.
There are a few exceptions, though, where the older X5690 system
is faster. This predominantly happens for the smallest inputs with
ECL-CCSER, where the smaller L3 cache size does not matter and
the higher clock speed gives the older system an advantage.

5.5 Runtime Comparison across Devices
Fig. 17 compares the geometric-mean Titan X GPU runtimes with
the parallel and serial E5-2687W CPU runtimes, all normalized to
ECL-CC’s runtime on the Titan X, which is represented by the
horizontal line at 1.0. These results show that the GPU codes are
substantially faster than the CPU codes. Interestingly, the two
slowest parallel CPU codes are a little slower than the fastest serial

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L -
C

C
SE

R

Galois Boost Lemon igraph ECL-CCser

1

2

4

8

16

32

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L-
C

C
SE

R

Galois Boost Lemon igraph ECL-CCser

CPU code. This is known in case of Galois. In case of CRONO, it
is an artifact of the averaging because CRONO does not support
all inputs. ECL-CC running on the GPU is almost 19 times faster
than ndHybrid, the fastest tested parallel CPU code, and 77 times
faster than Galois, the fastest tested serial CPU code (not counting
ECL-CCSER). Other CPU/GPU pairings would, of course, result in
different performance ratios.

Fig. 17. Geometric-mean runtime across devices relative to ECL-
CC running on the Titan X

6 SUMMARY AND CONCLUSIONS

The connected components of an undirected graph are maximal
subsets of its vertices such that all vertices in a subset can reach
each other by traversing graph edges. Determining the connected
components is an important algorithm with applications, e.g., in
medicine, computing vision, and biochemistry.

In this paper, we present a new connected-components imple-
mentation for GPUs that is faster on average and on most of the
eighteen tested graphs than the fastest preexisting CPU and GPU
codes. Our approach, called ECL-CC, builds upon the best algo-
rithms from the literature and incorporates several GPU-specific
optimizations. It is fully asynchronous and lock-free, processes
each undirected edge exactly once, includes a union-find data
structure, directly operates on the vertices’ representatives, uses
enhanced initialization, employs intermediate pointer jumping,
allows benign data races to avoid synchronization, and utilizes a
double-sided worklist and three compute kernels to minimize
thread divergence and load imbalance. The complete CUDA code
is available at http://cs.txstate.edu/ ~burtscher/research/ECL-CC/.

We evaluated ECL-CC on two GPUs and two CPUs from dif-
ferent generations. On the newer devices, our CUDA code is on
average 1.8 times faster than Groute, 4.0 times faster than Soman,
6.4 times faster than IrGL, and 8.4 times faster than Gunrock. On
average, our OpenMP C++ version performs on par with
ndHybrid and is 1.5 times faster than Ligra+ BFSCC, 2.2 times
faster than Ligra+ Comp, 3.5 times faster than CRONO, 3.6 times
faster than Multistep, and 4.7 times faster than Galois. Our serial
C++ code is 2.6 times faster than Galois, 5.2 times faster than
Boost, 6.7 times faster than igraph, and 9.1 times faster than
Lemon. Whereas there are several cases where other codes out-
perform ours, those cases typically involve some of the smallest

inputs. In fact, on the largest graph we tested (uk-2002), our GPU
and CPU codes yield the lowest runtimes in all instances. On av-
erage, our GPU code is 19 times faster than the fastest evaluated
parallel CPU code and 77 times faster than the fastest serial code.

Intermediate pointer jumping, a parallelism-friendly technique
with good locality to perform path compression in union-find data
structures, is probably the most important feature in ECL-CC. It
should be able to accelerate other GPU algorithms that are based
on union find, such as Kruskal’s algorithm for finding the mini-
mum spanning tree of a graph. In conclusion, we hope our work
will accelerate important computations that are based on union-
find or connected-components algorithms, thus leading to faster
tumor detection, drug discovery, and so on.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback and Sahar
Azimi for performing several of the experiments. This work was
supported in part by the National Science Foundation under
award #1406304 and by equipment donations from Nvidia.

REFERENCES
[1] Ahmad, M., F. Hijaz, Q. Shi, and O. Khan. “CRONO: A Benchmark

Suite for Multithreaded Graph Algorithms Executing on Futuristic
Multicores.” 2015 IEEE International Symposium on Workload
Characterization, pp. 44-55, 2015.

[2] Ben-Nun, T., M. Sutton, S. Pai, and K. Pingali. “Groute: An
Asynchronous Multi-GPU Programming Model for Irregular
Computations.” 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 235-248, 2017.

[3] Boost, http://www.boost.org/doc/libs/1_62_0/boost/graph/con-
nected_components.hpp, last accessed on 1/23/2018.

[4] CRONO, https://github.com/masabahmad/CRONO, last accessed on
8/2/2016.

[5] Csardi G. and T. Nepusz. “The igraph Software Package for Complex
Network Research.” InterJournal, Complex Systems 1695, 2006.

[6] Dezső, B., A. Jüttner, and P. Kovács. “LEMON - An Open Source C++
Graph Template Library.” Electronic Notes in Theoretical Computer
Science, 264(5):23-45, 2011.

[7] DIMACS, http://www.dis.uniroma1.it/challenge9/download.shtml,
last accessed on 1/23/2018.

[8] ECL-CC, http://cs.txstate.edu/~burtscher/research/ECL-CC/, last ac-
cessed on 1/23/2018.

[9] Galler, B.A. and M.J. Fischer. “An Improved Equivalence Algorithm.”
Communications of the ACM, 7:301–303, 1964.

[10] Galois, http://iss.ices.utexas.edu/projects/galois/downloads/Galois-
2.3.0.tar.bz2, last accessed on 1/23/2018.

[11] Greiner, J. “A Comparison of Parallel Algorithms for Connected
Components.” Sixth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 16-25, 1994.

[12] Groute, https://github.com/groute/groute/tree/master/samples/cc,
last accessed on 1/23/2018.

[13] Gunrock, https://github.com/gunrock/gunrock/blob/mas-
ter/tests/cc/test_cc.cu, last accessed on 1/23/2018.

[14] He, L., X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao. “The Connected-
Component Labeling Problem: A Review of State-of-the-Art Algo-
rithms.” Pattern Recognition, 70:25-43, 2017.

[15] Hopcroft, J. and R. Tarjan. “Algorithm 447: Efficient Algorithms for
Graph Manipulation.” Communications of the ACM, 16(6):372–378,
1973.

[16] Hossam, M.M., A.E. Hassanien, and M. Shoman. “3D Brain Tumor

1.8

4.0

6.4
8.4

18.7

28.0

42.7

68.4
87.6 89.6 77.2

152.4
198.2

267.1

1

2

4

8

16

32

64

128

256

512

R
u

n
ti

m
e

re
la

ti
ve

 t
o

 E
C

L -
C

C

GPU Codes

Serial CPU Codes

Parallel CPU Codes

Segmentation Scheme using K-Mean Clustering and Connected
Component Labeling Algorithms.” 10th International Conference on
Intelligent Systems Design and Applications, pp. 320-324, 2010.

[17] igraph, https://github.com/igraph/igraph/blob/master/src/compo-
nents.c, last accessed on 1/23/2018.

[18] IrGL, code obtained from Sreepathi Pai.

[19] Kulkarni, M., K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L.P. Chew. “Optimistic Parallelism Requires Abstractions.” 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pp. 211-222, 2007.

[20] Lemon, http://lemon.cs.elte.hu/trac/lemon/wiki/Downloads, last ac-
cessed on 1/23/2018.

[21] Ligra+ BFSCC, https://github.com/jshun/ligra/blob/mas-
ter/apps/BFSCC.C, last accessed on 1/23/2018.

[22] Ligra+ Comp, https://github.com/jshun/ligra/blob/mas-
ter/apps/Components.C, last accessed on 1/23/2018.

[23] Liu, H. and H. H. Huang. “Enterprise: Breadth-First Graph Traversal
on GPUs.” International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-12, 2015.

[24] Multistep, https://github.com/HPCGraphAnalysis/Connectivity, last
accessed on 5/8/2018.

[25] ndHybrid, https://people.csail.mit.edu/jshun/connectedCompo-
nents.tar, last accessed on 5/8/2018.

[26] Pai, S. and K. Pingali. “A Compiler for Throughput Optimization of
Graph Algorithms on GPUs.” 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 1-19, 2016.

[27] Patwary, M. M. A., P. Refsnes, and F. Manne. “Multi-core Spanning
Forest Algorithms using the Disjoint-set Data Structure.” IEEE 26th
International Parallel and Distributed Processing Symposium, pp. 827-
835, 2012.

[28] Shiloach, Y., and U. Vishkin. “An O(log n) Parallel Connectivity Al-
gorithm.” Journal of Algorithms, 3(1):57-67, 1982.

[29] Shun, J. and G.E. Blelloch. “Ligra: A Lightweight Graph Processing
Framework for Shared Memory.” 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 135-146, 2013.

[30] Shun, J., L. Dhulipala, and G.E. Blelloch. “A Simple and Practical Lin-
ear-Work Parallel Algorithm for Connectivity.” 26th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pp. 143-153,
2014.

[31] Shun, J., L. Dhulipala, and G.E. Blelloch. “Smaller and Faster: Parallel
Processing of Compressed Graphs with Ligra+.” 2015 Data Compres-
sion Conference, pp. 403-412, 2015.

[32] Siek, J.G., L.-Q. Lee, and A. Lumsdaine. “The Boost Graph Library:
User Guide and Reference Manual.” Addison-Wesley, 2001. ISBN 978-
0-201-72914-6.

[33] Slota, G.M., S. Rajamanickam, and K. Madduri. “BFS and Coloring-
Based Parallel Algorithms for Strongly Connected Components and
Related Problems.” 28th IEEE International Parallel and Distributed
Processing Symposium, pp. 550-559, 2014.

[34] SNAP, https://snap.stanford.edu/data/, last accessed on 1/23/2018.

[35] Soman, https://github.com/jyosoman/GpuConnectedCompo-
nents/blob/master/conn.cu, last accessed on 1/23/2018.

[36] Soman, J., K. Kishore, and P. J. Narayanan. “A Fast GPU Algorithm
for Graph Connectivity.” 2010 IEEE International Symposium on Par-
allel & Distributed Processing, Workshops and Ph.D. Forum
(IPDPSW), pp. 1-8, 2010.

[37] Sparse Matrix Collection, https://sparse.tamu.edu/, last accessed on
1/23/2018.

[38] Wang, Y., A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J.D. Owens.
“Gunrock: A High-performance Graph Processing Library on the
GPU.” 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Article 11, 12 pages, 2016.

[39] Wu, M., X. Li, C.K. Kwoh, and S. K. Ng. “A Core-Attachment-Based
Method to Detect Protein Complexes in PPI Networks.” BMC Bioin-
formatics, 10(1):169, 2009.

