

Abstract—This paper studies the effects on energy consump-

tion, power draw, and runtime of a modern compute GPU when

changing the core and memory clock frequencies, enabling or

disabling ECC, using alternate implementations, and varying

the program inputs. We evaluate 34 applications from 5 bench-

mark suites and measure their power draw over time on a K20c

GPU. Our results show that changing the frequency or the pro-

gram implementation can alter the energy, power, and perfor-

mance by a factor of two or more. Interestingly, some changes

affect these three aspects very unevenly. ECC can greatly in-

crease the runtime and energy consumption, but only on

memory-bound codes. Compute-bound codes tend to behave

quite differently from memory-bound codes, in particular re-

garding their power draw. On irregular programs, a small

change in frequency can result in a large change in runtime and

energy consumption.

I. INTRODUCTION

GPU-based accelerators are widely used in high-perfor-

mance computing and are quickly spreading in PCs and even

handheld devices as they not only provide higher peak perfor-

mance but also better energy efficiency than multicore CPUs.

Nevertheless, large power consumption and the required cool-

ing due to the resulting heat dissipation are major cost factors

in HPC environments. To reach exascale computing, a 50-

fold improvement in performance per watt is needed by some

estimates [1]. Moreover, battery life is a key concern in all

types of handhelds such as smartphones.

For these and other reasons, energy-efficient computing

has become an important research area. While many hardware

optimizations for reducing power have been proposed or are

already deployed, software techniques are lagging behind,

particularly techniques that target accelerators like GPUs.

However, to be able to optimize the energy efficiency of GPU

code, we first need to develop a good understanding of how

the power draw and performance of such programs interact.

To this end, we investigate the energy consumption, the

power, and the active runtime (i.e., the time the GPU is com-

puting) of a large number of codes.

It is well known that code optimizations can improve GPU

performance and that reducing the GPU’s frequency lowers

power and performance. But what about energy? Some stud-

ies report a one-to-one correspondence between active

runtime and energy. But these studies focus on regular pro-

grams and only vary the inputs, not the code itself or the GPU

frequency. So it is unclear whether there are implementations

or GPU configurations that help energy more than active

runtime, how big of an impact such changes can make, and

whether there are differences between compute- and memory-

bound or regular and irregular codes. The goal of this paper is

to answer these and related questions to determine whether

software has the potential to play an important role in making

future accelerators more energy efficient.

To perform this study, we took 34 programs from 5

GPGPU benchmark suites. We ran each program on a Kepler-

based K20c compute GPU at 3 different clock frequencies and

with or without using error-correcting code (ECC) in main

memory. In addition, select programs are run with alternate

implementations and inputs.

This paper makes the following key contributions.

1) It is the first paper to measure the energy and power of a

large number of GPGPU benchmark programs.

2) It experimentally validates some common expectations

regarding GPU power and energy characteristics.

3) It shows that different frequencies, hardware configura-

tions, inputs, and implementations can impact energy, power,

and performance by different amounts, demonstrating that

these metrics can be affected independently of each other.

4) It analyses what frequencies, settings, implementations,

and inputs tend to help with which aspect and why.

5) It exposes key differences between regular and irregular

codes as well as compute- and memory-bound codes.

6) It makes general recommendations for selecting mean-

ingful subsets of these programs for conducting studies on

GPGPUs using the built-in power sensor.

The rest of this paper is organized as follows. Section II

discusses related work. Section III provides an overview of

the GPU we study. Section IV describes the evaluation meth-

odology. Section V presents and analyzes our most interesting

measurements. Section VI summarizes our findings, provides

guidelines, and draws conclusions.

II. RELATED WORK

We are not aware of other extensive measurement-based

studies on the energy, power, and runtime of GPU programs.

There are many papers that investigate Dynamic Voltage

and Frequency Scaling (DVFS) on CPUs to reduce power and

energy. For example, Kandalla et al. demonstrate the need to

design software in a power-aware manner to minimize perfor-

Energy, Power, and Performance Characterization

of GPGPU Benchmark Programs

Jared Coplin
Department of Computer Science

Texas State University

coplin@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University

burtscher@txstate.edu

mance overheads and to balance performance and power sav-

ings on a power-aware DVFS-capable cluster system [15].

Furthermore, Li uses DVFS across multiple clock domains,

such as shaders and texture domains, to increase energy effi-

ciency on GPUs [19]. Pan et al. also use DVFS-based solu-

tions and show that sometimes expending more energy does

not result in a large performance benefit [26]. In addition to

varying the frequency, Korthikanti and Agha explore how

changing the number of active cores affects the energy con-

sumption and provide guidelines for the optimal core count

and frequency for a given algorithm and input size [16]. Freeh

et al. perform a related study on a cluster where they evaluate

how using different frequencies and numbers of compute

nodes affect the power and performance of MPI programs

[10]. There are also papers that highlight the lack of a stand-

ardized power measurement methodology for energy-effi-

cient supercomputing [31] or talk about how ignoring power

draw as a design constraint in supercomputing will result in

higher operational costs and diminished reliability [9].

Several publications propose and use analytical models to

investigate power and energy aspects. For instance, Li and

Martinez establish an analytical model for looking at parallel

efficiency, granularity of parallelism, and voltage/frequency

scaling [20]. Diop et al. and Choi et al. propose clusters of

micro-benchmarks to model time, energy, and power [5] [8].

Wang conducted a similar study that uses a GPU simulator to

model the effects on energy with frequency scaling and con-

currency throttling [32]. Lorenz et al. explore compiler-gen-

erated SIMD operations and how they affect energy effi-

ciency [22]. They acknowledge the need to optimize both

hardware and software to obtain an energy efficient system.

Some analytical models target GPUs. For example, Chen et

al. institute a mechanism for evaluating and understanding the

power consumption when running GPU applications [4]. Ma

et al. use a statistical model to estimate the best GPU config-

uration to save power [24]. One simulation-based paper on

thermal management for GPUs discusses methods for manag-

ing power through architecture manipulation [30]. Another

simulator includes a modified and extended version of a CPU

power model to model the power of compute GPUs [13].

Similar to our study, there are several papers that report the

energy consumption of actual GPU hardware. For instance,

Lee and Kim measure the energy consumption of GPUs using

a digital multimeter [18]. Gosh et al. explore some common

HPC kernels running on a multi-GPU platform and compare

their results against multi-core CPUs [12]. Ge et al.’s study

evaluates the effect of DVFS on the same type of GPU we are

using [11]. A paper by Zecena et al. measures n-body codes

running on different GPUs and CPUs [33]. Lucas et al. meas-

ure the power and energy to verify their GPU power simulator

[23]. Jiao et al. investigate how changing the core and

memory frequencies affect performance and power [14]. All

of these publications investigate just a few programs. Our

study is the first to characterize the energy behavior of a large

number of GPU codes, which we believe is necessary to ob-

tain general insights.

III. GPU ARCHITECTURE

This section provides an overview of the architectural char-

acteristics of the Kepler-based Tesla K20c GPU we use for

our study. It includes an on-board power sensor that allows

the direct measurement of the GPU’s power draw.

The K20c consists of 13 streaming multiprocessors (SMs).

Each SM contains 192 processing elements (PEs). Whereas

each PE can run a thread of instructions, sets of 32 PEs are

tightly coupled and must either execute the same instruction

(operating on different data) in the same cycle or wait. This is

tantamount to a SIMD instruction that conditionally operates

on 32-element vectors. The corresponding sets of 32 coupled

threads are called warps. Warps in which not all threads can

execute the same instruction are subdivided by the hardware

into sets of threads such that all threads in a set execute the

same instruction. The individual sets are serially executed,

which is called branch divergence, until they re-converge.

Branch divergence hurts performance and energy efficiency.

The memory subsystem is also built for warp-based pro-

cessing. If the threads in a warp simultaneously access words

in main memory that lie in the same aligned 128-byte seg-

ment, the hardware merges the 32 reads or writes into one co-

alesced memory transaction, which is as fast as accessing a

single word. Warps accessing multiple 128-byte segments re-

sult in correspondingly many individual memory transactions

that are executed serially. Hence, uncoalesced accesses are

slower and require more energy than coalesced accesses.

The PEs within an SM share a pool of threads called thread

block, synchronization hardware, and a software-controlled

data cache called shared memory. A warp can simultaneously

access 32 words in shared memory as long as all words reside

in different banks or all accesses within a bank request the

same word. The SMs operate largely independently and can

only communicate through global memory (main memory in

DRAM). Shared memory accesses are much faster and more

energy efficient than main memory accesses.

IV. METHODOLOGY

A. Benchmarks

We study programs from the LonestarGPU v2.0 [21], Par-

boil [27], Rodinia v3.0 [28], and SHOC v1.1.2 [29] bench-

mark suites as well as a few programs from the CUDA SDK

v6.0 [7]. We chose which codes to evaluate based on their

active runtimes to obtain a sufficient number of power sam-

ples. Several codes from these suites could not be used simply

because of their short runtimes even with the largest provided

inputs. Table 1 lists the number of global kernels each pro-

gram contains as well as the inputs we used.

1) LonestarGPU

The LonestarGPU suite is a collection of commonly used

real-world applications that exhibit irregular behavior.

a. Barnes-Hut n-body Simulation (BH): An algorithm that

quickly approximates the forces between a set of bodies in

lieu of performing precise force calculations.

b. Breadth First Search (L-BFS): Computes the level of

each node from a source node in an unweighted graph using

a topology-driven approach. In addition to the standard BFS

implementation (topology-driven, one node per thread), we

also study the atomic variation (topology driven, one node per

thread that uses atomics) and the wla variation (topology

driven, one flag per node, one node per thread). The wlw var-

iation (data driven, one node per thread) and the wlc variation

(data-driven, one edge-per-thread version using Merrill’s

strategy [25]) were not used because they reduced the active

runtime to the point that insufficient power samples could be

recorded even with the largest available input.

c. Delaunay Mesh Refinement (DMR): This implementa-

tion of the algorithm described by Kulkarni et al. [17] pro-

duces a guaranteed quality 2-D Delaunay mesh, which is a

Table 1: Program names, number of global kernels (#K), and inputs

Delaunay triangulation with the additional constraint that no

angle in the mesh be less than 30 degrees.

d. Minimum Spanning Tree (MST): This benchmark com-

putes a minimum spanning tree in a weighted undirected

graph using Boruvka’s algorithm and is implemented by suc-

cessive edge relaxations of the minimum weight edges.

e. Points-to Analysis (PTA): Given a set of points-to con-

straints, this code computes the points-to information for each

pointer in a flow-insensitive, context-insensitive manner im-

plemented in a topology-driven way.

f. Single-Source Shortest Paths (SSSP): Computes the

shortest path from a source node to all nodes in a directed

graph with non-negative edge weights by using a modified

Bellman-Ford algorithm. In addition to the standard SSSP im-

plementation (topology driven, one node per thread), we also

used the wln variation (data driven, one node per thread) and

the wlc variation (data driven, one edge per thread using Mer-

rill’s strategy adapted to SSSP).

g. Survey Propagation (NSP): A heuristic SAT-solver

based on Bayesian inference. The algorithm represents the

Boolean formula as a factor graph, which is a bipartite graph

with variables on one side and clauses on the other.

2) Parboil

Parboil is a set of applications used to study the perfor-

mance of throughput-computing architectures and compilers.

a. Breadth-First Search (P-BFS): Computes the shortest-

path cost from a single source to every other reachable node

in a graph of uniform edge weights.

b. Distance-Cutoff Coulombic Potential (CUTCP): Com-

putes the short-range component of the Coulombic potential

at each grid point over a 3-D grid containing point charges

representing an explicit-water biomolecular model.

c. Saturating Histogram (HISTO): Computes a 2-D saturat-

ing histogram with a maximum bin count of 255.

d. Lattice-Boltzmann Method Fluid Dynamics (LBM): A

fluid dynamics simulation of an enclosed, lid-driven cavity

using the Lattice-Boltzmann Method.

e. Magnetic Resonance Imaging - Q (MRIQ): Computes a

matrix Q, representing the scanner configuration for calibra-

tion, used in 3-D magnetic resonance image reconstruction al-

gorithms in non-Cartesian space.

f. Sum of Absolute Differences (SAD): Sum of absolute

differences kernel, used in MPEG video encoders.

g. General Matrix Multiply (SGEMM): A register-tiled ma-

trix-matrix multiplication, with default column-major layout

on matrix A and C, but B is transposed.

h. 3-D Stencil Operation (STEN): An iterative Jacobi sten-

cil operation on a regular 3-D grid.

i. Two Point Angular Correlation Function (TPACF): Sta-

tistical analysis of the distribution of astronomical bodies.

3) Rodinia

Rodinia is designed for heterogeneous computing infra-

structures with OpenMP, OpenCL, and CUDA implementa-

tions. Our study uses the following CUDA codes.

a. Back Propagation (BP): ML algorithm that trains the

weights of connecting nodes on a layered neural network.

b. Breadth-First Search (R-BFS): Another GPU implemen-

tation of the breadth-first search algorithm, which traverses

all the connected components in a graph.

c. Gaussian Elimination (GE): Computes results row by

row, solving for all of the variables in a linear system.

d. MUMmerGPU (MUM): A local sequence alignment

program that concurrently aligns multiple query sequences

against a single reference sequence stored as a suffix tree.

e. Nearest Neighbor (NN): Finds the k-nearest neighbors in

an unstructured data set.

Program #K Inputs Program #K Inputs

EIP 2 None SGEMM 1 "small" benchmark input

EP 2 None STEN 1 "small" benchmark input

NB 1 100k, 250k, and 1m bodies TPACF 1 "small" benchmark input

SC 3 2^26 elements BP 2 2^17 elements

BH 9
bodies-timesteps; 10k-10k, 100k-10,

1m-1
R-BFS 2

random graphs; 100k and

1m nodes

L-BFS 5

Roadmaps of Great Lakes Region

(2.7m nodes, 7m edges), Western

USA (6m nodes, 15m edges), and

entire USA (24m nodes, 58m edges)

GE 2 2048 x 2048 matrix

DMR 4 250k, 1m, and 5m node mesh files MUM 3 100bp and 25bp

MST 7

Roadmaps of Great Lakes Region

(2.7m nodes, 7m edges), Western

USA (6m nodes, 15m edges), and

entire USA (24m nodes, 58m edges)

NN 1 42k data points

PTA 40
vim (small), pine (medium), tshark

(large)
NW 2 4096 and 16384 items

SSSP 2

Roadmaps of Great Lakes Region

(2.7m nodes, 7m edges), Western

USA (6m nodes, 15m edges), and

entire USA (24m nodes, 58m edges)

PF 1

row length-column

length-pyramid height;

100k-100-20, 200k-200-40

NSP 3
clauses-literals-literals per clause;

16800-4000-3, 42k-10k-3, 42k-10k-5
S-BFS 9 default benchmark input

P-BFS 3
Roadmap of the San Francisco Bay

Area (321k nodes, 800k edges)
FFT 2 default benchmark input

CUTCP 1 watbox.s1100.pqr MF 20 default benchmark input

HISTO 4
image file whose parameters are "--

20-4" according to documentation
MD 1 default benchmark input

LBM 1 3000 and 100 timestep inputs QTC 6 default benchmark input

MRIQ 2 64x64x64 matrix ST 5 default benchmark input

SAD 3 default input S2D 1 default benchmark input

f. Needleman-Wunsch (NW): A nonlinear global optimiza-

tion method for DNA sequence alignment.

g. Pathfinder (PF): Uses dynamic programming to find a

path on a 2-D grid with the smallest accumulated weights,

where each step of the path moves straight or diagonally.

4) SHOC

The Scalable HeterOgeneous Computing benchmark suite

is a collection of programs that are designed to test the perfor-

mance of heterogeneous systems with multicore processors,

graphics processors, reconfigurable processors, etc.

a. Breadth-First Search (S-BFS): Measures the runtime of

breadth-first search on an undirected random k-way graph.

b. Fast Fourier Transform (FFT): Measures the speed of a

single- and double-precision fast Fourier transform that com-

putes the discrete Fourier transform and its inverse.

c. MaxFlops (MF): Measures the maximum throughput for

combinations of different floating-point operations.

d. Molecular Dynamics (MD): Measures the performance

of an n-body computation (the Lennard-Jones potential from

molecular dynamics). The test problem is n atoms distributed

at random over a 3-D domain.

e. Quality Threshold Clustering (QTC): Measures the per-

formance of an algorithm designed to be an alternative

method for data partitioning.

f. Sort (ST): Measures the performance of a radix sort on

unsigned integer key/value pairs.

g. Stencil2D (S2D): Measures the performance of a 2-D, 9-

point single-precision stencil computation.

5) CUDA-SDK

The NVIDIA GPU Computing SDK includes dozens of

sample codes. We use the following programs in our study.

a. MC_EstimatePiInlineP (EIP): Monte Carlo simulation

for the estimation of Pi using a Pseudo-Random Number Gen-

erator (PRNG). The inline implementation allows use inside

GPU functions/kernels as well as in the host code.

b. MC_EstimatePiP (EP): Monte Carlo simulation for the

estimation of Pi using a PRNG. This implementation gener-

ates batches of random numbers.

c. N-body (NB): All-pairs n-body simulation.

d. Scan (SC): Demonstrates an efficient implementation of

a parallel prefix sum, also known as “scan”.

B. Evaluation test bed

We measured the GPU’s active runtime and energy con-

sumption with the K20Power tool [3], which makes use of the

K20’s internal power sensor. We chose this approach over us-

ing an external sensor because we want our results to be di-

rectly applicable to anyone interested in performing

power/energy-related GPU experiments and not just to those

people with access to an external power sensor. We per-

formed initial experiments on K20c, K20m, K20x, and K40

GPUs, all of which resulted in the same findings after appro-

priately scaling the absolute measurements, which is why we

decided to only discuss the K20c results in this paper.

Our Tesla K20c GPU has 5 GB of global memory and 13

streaming multiprocessors with a total of 2,496 processing el-

ements. It supports six clock frequency settings, of which we

evaluate the following three: the “default” configuration,

which uses a 705 MHz core speed and a 2.6 GHz memory

speed. We found this to be the fastest speed at which the GPU

could run long enough for our purposes without throttling it-

self down to prevent overheating. The “614” configuration,

which uses a 614 MHz core speed and a 2.6 GHz memory

speed, is the slowest available compute speed at the default

memory speed. The “324” configuration uses a 324 MHz core

and memory speed. We chose the 324 setting because it is the

slowest available frequency configuration. The GPU further

supports enabling and disabling ECC protection of the main

memory. The “ECC” configuration combines ECC protection

with the default clock frequency. All other tested configura-

tions have ECC disabled. Thus, our four configurations are:

1) default, 2) 614, 3) 324, and 4) ECC. Note that we use the

same K20c GPU for all measurements.

We repeated some of our measurements on a second K20c

GPU to ensure that we obtain the same results, which we did.

We were able to record accurate and reliable results from all

of our selected programs with the default, 614, and ECC con-

figurations, but we were unable to obtain the same consistency

with the 324 configuration. This is because on such a low-

frequency setting, the power draw rarely reaches a sufficient

level for the GPUʼs power sensor to switch from the idle 1 Hz

to the active 10 Hz sampling rate, which results in too few

samples to draw conclusions from. Hence, those results are

not reported here. The programs excluded from the 324 results

are inline_p, p, P-BFS, cutcp, histo, mri-q, sad, stencil, tpacf-

small, backprop, R-BFS, gaussian, mummergpu-25bp, nnlist,

nw, pathfinder, S-BFS, fft, maxflops, md, and sort.

We performed each experiment three times and report the

median active runtime, energy, and average power. Table 2

shows the maximum and average difference we observed be-

tween the highest and the lowest of any set of three measure-

ments for each benchmark suite. We found the variability to

be reasonable. Furthermore, while temperature swings can

have a noticeable effect on power/energy results, our experi-

ments were performed on a server that is constantly running

under full load and is located in a climate-controlled room.

Hence, we do not believe that temperature swings introduced

any significant perturbations in our measurements. All

benchmark codes were compiled with CUDA version 6.0.1

using the default switches prescribed by their authors.

Table 2: Maximum and average measurement variability

max time max energy avg time avg energy

CUDA SDK 7.1% 7.2% 1.1% 2.3%

LonestarGPU 8.7% 7.1% 0.9% 1.2%

Parboil 3.3% 5.5% 2.0% 2.3%

Rodinia 7.0% 4.5% 1.8% 2.0%

SHOC 7.0% 6.2% 1.4% 2.1%

Overall 8.7% 7.2% 1.4% 2.0%

C. Active runtime

Throughout this paper, we refer to the “active runtime”,

which is not the total application runtime but rather the time

during which the GPU is actively computing, that is, running

kernel code. For most of the studied programs, this is a com-

bination of multiple GPU kernels. The K20Power tool defines

active runtime as the amount of time the GPU is drawing

power above the idle level. Figure 1 illustrates this.

Because of how the GPU draws power and how the built-

in power sensor samples, only readings above a certain

threshold (the dashed line at 55 W in this example) reflect

when the GPU is actually executing kernel code [2]. Measure-

ments below the threshold are either the idle power (less than

about 26 W) or the “tail power” due to the driver keeping the

GPU active for a while (in case another kernel call is made)

before powering it down. Using the active runtime ignores any

execution time that may take place on the host CPU, as we are

only interested in the energy consumption and power draw of

the GPU while it executes. The power threshold is dynami-

cally adjusted for each execution of a particular program to

maximize accuracy for different GPU configurations. For ex-

ample, lower frequency settings require a lower threshold.

Figure 1: Sample power profile

V. EXPERIMENTAL RESULTS

The following subsections discuss different aspects of our

measurements. In each case, we present and analyze the gen-

eral trends and highlight notable outliers. The most important

findings and insights are summarized in Section VI. Detailed

results for each individual program are given elsewhere [6].

A. Effects of lowering GPU frequency and enabling ECC

1) Default to 614

Figure 2 shows the relative change in active runtime, en-

ergy, and power when switching from default to 614. Values

above 1.0 indicate an increase over the default. In the figure,

the bars represent the medians, the boxes above and below the

bars extend to the first and third quartiles, and the whiskers

indicate the maximum and minimum of each suite.

The 614 configuration has a core speed that is about 15%

lower than the default, so one might expect to see roughly

the same increase in active runtime. However, only a couple

of the benchmark medians (CUDA SDK and LonestarGPU)

and a few individual codes slow down anywhere near 15%.

This is because going from default to 614 only lowers the

core frequency but not the memory frequency. Hence, pro-

grams showing little to no change are memory bound, in-

cluding many codes in the Parboil, Rodinia, and SHOC

suites. In contrast, most of the tested SDK programs are

compute bound. There are also a few codes that show a

slight speedup, but many of them are within the margin of

error (i.e., the average variability of our measurements).

Figure 2: Range of effects on runtime, energy, and power with the

614 configuration relative to the default configuration

Switching to 614 affects the LonestarGPU suite the most.

In fact, this suite includes both the worst increase and the best

decrease in active runtime as well as the highest median in-

crease. At first glance, this may appear surprising as Lonestar-

GPU only contains programs with irregular memory accesses,

which tend to be memory bound, particularly on GPUs where

they result in many uncoalesced memory accesses [2]. Hence,

lowering the core frequency while keeping the memory fre-

quency constant should not affect the runtime much. How-

ever, irregular programs, by definition, exhibit data-depend-

ent runtime behavior, i.e., the amount of parallel work and the

load balance can change dynamically. Data-dependent behav-

ior may lead to timing-dependent behavior because it matters

when the values are calculated that dependent computations

are waiting for. As a consequence, small changes in timing,

e.g., due to lowering the core frequency, can have a large ef-

fect on the runtime. This is why the active runtime of some

LonestarGPU programs changes by more than the clock fre-

quency. Note that this effect can be positive or negative,

which explains why LonestarGPU exhibits the widest range

in runtime change and includes both the code that is helped

the most and the code that is hurt the most by going to 614.

Interestingly, going from default to 614 results in a small

beneficial effect on energy for most codes. Even though the

programs tend to run longer, the amount of energy the GPU

consumes decreases slightly in almost all cases except for

LonestarGPU, where the energy consumption is mostly unaf-

fected. Even in the worst cases, the energy does not increase

by nearly as much as the active runtime.

This general decrease in energy is the result of a significant

reduction in the power draw when switching to 614, which

outweighs the increase in runtime on every program we stud-

ied. Even in the worst cases, the power decreases slightly or

stays roughly constant, and the median power decrease is be-

tween 3% and 10% depending on the benchmark suite. Note

that two of the compute-bound CUDA SDK programs expe-

rience a power reduction of over 15%, that is, more than the

reduction in core frequency. We surmise that this is because,

in addition to the frequency, the voltage is also reduced as is

commonly done in DVFS. Since power is proportional to the

voltage squared, superlinear power reductions are possible.

NB from the CUDA SDK sees the greatest savings in

power (22%) for the reasons stated above. It also has one of

the largest increases in active runtime (15%) as it is highly

compute bound, resulting in a middling decrease in energy

(7%). Interestingly, just behind NB for decrease in power is

the irregular MST from the LonestarGPU suite. It has the

highest increase in active runtime of all the programs across

all the benchmarks (25%) and the third highest increase in en-

ergy (8%) and saves 16% in power. SHOC’s MF boasts the

greatest savings in energy (14.3%) and one of the lowest in-

creases in active runtime (1%). It saves 15% in power, making

it the third best in terms of power reduction.

2) 614 to 324

Figure 3 is similar to Figure 2 except it shows the relative

change in active runtime, energy, and power when switching

from 614 to 324. Note, however, that the two figures should

not be compared directly as a number of programs did not

yield sufficient power samples with the 324 configuration.

Hence, Figure 3 is based on fewer programs.

Figure 3: Range of effects on runtime, energy, and power with the

324 configuration relative to the 614 configuration

Switching from the 614 to the 324 configuration not only

involves a 1.9x decrease in core frequency but, much more

importantly, also an 8x decrease in memory frequency. The

cumulative effect is an average increase in active runtime of

over 110% across the studied benchmark programs. Except

for some irregular programs, where the change in timing af-

fects the load balance and the amount of parallelism, all in-

vestigated programs are slowed down by at least a factor of

1.9 as expected.

Going from 614 to 324 increases the energy of two-thirds

of the programs, in one case by over 200%. Even in the best

case, the energy savings do not exceed 30% and, on average,

going from 614 to 324 results in an increase in energy.

This increase in energy can be attributed to the increase in

active runtime, which more than outweighs the decrease in

power draw. In contrast, on the 614 configuration evaluated

in the previous subsection, the active runtime increases less

than or roughly in proportion to the decrease in power draw,

so the energy consumption decreases or stays roughly the

same. This difference in behavior is due to the fact that the

614 configuration only lowers the core frequency whereas the

324 configuration lowers both the core and, in particular, the

memory frequency.

According to Figure 3, the Parboil suite experiences by far

the largest increase in active runtime and energy. This is mis-

leading, though, as only one of the Parboil programs (LBM)

yielded usable results on the 324 configuration. In fact, the

two LBM inputs resulted in the two highest increases in

runtime and energy out of all the programs we studied. This

is a good example of how big an impact altering the memory

frequency of the GPU can have on a memory-bound code.

The power decreases quite uniformly to about half the 614

values. Also, it is worthwhile pointing out that the range by

which the power changes is much narrower than the range of

the energy and in particular the active-runtime changes.

Looking at the individual codes, PTA from the Lonestar-

GPU suite sees the smallest decrease in active runtime and the

largest decrease in energy when going from 614 to 324, but

because of the small drop in active runtime compared to the

other programs, it also has one of the smallest savings in

power. LBM from the Parboil suite sees the largest increase

in active runtime (7.75x) and energy (2x).

Overall, lowering the core and memory frequencies in-

creases the active runtime of programs and tends to increase

the energy. However, it consistently yields lower power levels

across all the benchmark programs we have studied.

3) Enabling ECC

Figure 4: Range of effects on runtime, energy, and power relative

to the default configuration when turning on ECC

Figure 4 shows how enabling ECC affects the active

runtime, energy, and power relative to the default configura-

tion. Some programs exhibit a very small speedup when turn-

ing on ECC, but these speedups are within the margin of error

and we therefore do not believe them to be significant.

For all suites, the median active runtimes are the same with

and without ECC. However, there are a few programs, most

notably in Rodinia, where the active runtime increases drasti-

cally. These codes are heavily memory bound. After all, ECC

only affects main memory accesses. On our GPU, enabling

ECC reduces the available main memory by 12.5% to set

aside storage for the ECC information. While we do not know

how ECC is implemented (NVIDIA does not publish hard-

ware details about their GPUs), we expect the change in

runtime to be within 12.5%, which it is for almost all of the

studied programs.

As expected, ECC has a negative effect on the energy con-

sumption. However, since the increase in energy scales

closely with the increase in active runtime, ECC primarily in-

creases energy consumption because it slows down main

memory accesses and not because the actual ECC operations

performed by the hardware consume much energy. Thus, the

power is largely the same whether ECC is used or not.

LonestarGPU is the only suite where the energy increase is

substantially higher than the increase in active runtime. This

is likely a consequence of the many uncoalesced memory ac-

cesses, which probably exercise the ECC machinery more

than coalesced accesses. As a result, the power also increases.

ECC has a large effect on three of the Rodinia and one of

the Parboil programs. As we have no information on how

ECC is implemented on our GPU, we can only surmise that it

may affect the cache performance, if the ECC bits are copied

into the cache, or the memory-controller performance by in-

terrupting otherwise efficient memory access patterns due to

intermittent accesses to ECC information.

Looking at individual programs, we find NB from the

CUDA SDK to behave unexpectedly. Not only does its active

runtime not appear to be affected by ECC much, but it also

sees a significant decrease in energy and, consequently, in

power. NB is highly regular and compute bound with excel-

lent caching in shared memory, so we did not expect ECC to

matter, but to have a positive effect that exceeds the margin

of error is surprising. Note that NB’s power and energy sav-

ings are less pronounced with larger inputs, which result in a

higher computation-to-memory-access ratio.

Since ECC protects main memory, its cost is entirely de-

pendent upon how many main memory accesses a program

makes. Our results show that using ECC with even slightly

memory-bound programs not only results in a slowdown but

also in a concomitant increase in energy consumption. How-

ever, compute-bound codes are largely unaffected by ECC, as

one might expect.

B. Effects of varying program implementation and input

1) Changing the implementation

Table 3 shows how the alternate implementations of L-BFS

and SSSP included in the LonestarGPU suite perform when

compared to the active runtime, energy, and power of the de-

fault implementation of L-BFS. Values below 1.0 indicate

that the alternate implementation is better than the default.

The atomic version of L-BFS shows an over 2x reduction

in active runtime and energy in all cases. Because the reduc-

tions in active runtime and energy scale relatively closely, the

power is less affected but still sees a modest decrease (11%-

20%), meaning that the atomic version results in improved

energy and power efficiency in addition to speedup.

Table 3: Effects of different implementations of L-BFS and SSSP

on active runtime [s], energy [J], and power [W]

The wla version of BFS also yields a decrease in active

runtime, though not as much as the atomic version. The en-

ergy in the wla version, however, decreases far more than the

active runtime. This translates into a much higher power re-

duction than the atomic version. Thus, wla is the better choice

for users concerned with power whereas atomic is better for

performance and energy consumption. Hence, different im-

plementations of the same algorithm can benefit energy,

power, and performance differently.

We cannot show results for the data-driven wlc version of

L-BFS, which uses one edge per thread, nor the data-driven

wlw version, which uses one node per thread, because these

implementations are so fast that, even on the largest input, the

power sensor does not log enough samples to accurately ana-

lyze the code’s energy and power consumption.

For SSSP, the wlc version shows good improvements in

performance, ranging from 42% to an over 2x decrease in ac-

tive runtime. The energy also improves and scales almost per-

fectly with the decrease in active runtime, which is why the

power is basically flat or decreases slightly. Interestingly, the

wln version of SSSP is worse than the default by roughly a

factor of two in terms of both active runtime and energy and

exhibits only small improvements in power if any, making it

an uninteresting implementation.

Again, these results demonstrate that it is possible for dif-

ferent implementations of the same program to not only affect

the energy consumption, power draw, and performance but to

affect them in different ways. In other words, it is possible to

optimize code for these three aspects and the optimizations

might differ depending on which aspect is most important.

Table 4 shows the per-vertex and per-edge computation

L-BFS

time en pwr time en pwr

default USA 0.31 0.27 0.85 0.66 0.36 0.55

324 USA 0.29 0.26 0.89 0.39 0.27 0.68

614 USA 0.32 0.27 0.86 0.55 0.33 0.60

ECC USA 0.32 0.27 0.85 0.68 0.36 0.54

SSSP

time en pwr time en pwr

default USA 0.56 0.54 0.97 2.38 2.16 0.91

324 USA 0.70 0.67 0.95 1.92 1.83 0.95

614 USA 0.55 0.54 0.99 2.38 2.21 0.93

ECC USA 0.58 0.57 0.99 2.36 2.18 0.92

atomic/default wla/default

wlc/default wln/default

costs on the largest input of each of the BFS implementations

from the different benchmark suites on the default configura-

tion. We use this metric because the same or similar inputs

could not be used across all implementations and still produce

usable results. For example, the smallest input for L-BFS that

would produce sufficient power samples is larger than any of

the other implementation’s largest inputs.

Table 4: Cross-benchmark BFS comparison, performance per 100k

processed vertices (top) and per 100k processed edges (bottom)

LonestarGPU’s default BFS implementation (L-BFS) is

faster and more energy efficient than the other suite’s BFS

implementations, taking almost 7x less time and over 3x less

energy per edge than the next best implementation (R-BFS).

In contrast, S-BFS consumes by far the most energy and

runtime, both per vertex and per edge. These results again

show that different implementations can yield very different

energy and performance behaviors. More importantly, they il-

lustrate that changes in the implementation may help one as-

pect more than another. For instance, going from R-BFS to L-

BFS saves twice as much runtime as it saves energy.

2) Changing the program input

Figure 5 shows how the power draw changes when going

from one program input to another on the default configura-

tion. Since the active runtime and energy depend on the input,

we chose power as the metric for comparison between differ-

ent inputs. Most of these programs were run using three in-

puts, but a few were run with just two. Programs from suites

that only include one input each are not included in the figure.

Values above 1.0 indicate the power draw got higher.

The results show that power tends to increase when going

to larger inputs. The only exceptions are some of the irregular

codes, where a change in input can greatly change the pro-

gram’s behavior as discussed earlier. BH, LBM, MUM, NB,

NW, NSP, and PTA all see a power increase of over 20%

when going from a smaller to a larger input. It is probable that

these larger inputs exercise the hardware more, e.g., by ac-

cessing more memory locations or utilizing more of the

GPU’s processing elements, thus raising the power draw.

C. Power efficiency

Figure 6 shows the range of the average power draw of each

benchmark suite for different GPU configurations. Note that

this figure displays absolute values, not ratios.

There is a relatively large differential between the best and

worst cases (~60% to over 3x) in each suite, highlighting that

some codes are more power intensive than others. Surpris-

ingly, many of the Parboil, Rodinia, and SHOC programs do

not exceed 52 W with any GPU configuration. We believe this

is because these programs spend most of their runtime waiting

for memory accesses or do not fully occupy the GPU. In con-

trast, the highly regular and compute-bound SDK codes draw

about 100W on average and peak at over 160W.

Figure 5: Effects on power when varying the program inputs (val-

ues below 1.0 indicate a decrease in power draw)

Most of the irregular LonestarGPU programs draw sub-

stantially more power than the regular memory-bound codes.

It appears that the irregularity of these programs exercises

power-hungry hardware components more, thus increasing

the activity per instruction and therefore the power draw.

In all cases, the power consumption decreases when lower-

ing the GPU frequency. In particular the 324 configuration is

very effective at reducing power. ECC is generally similar to

the default, but in the CUDA SDK and especially the

LonestarGPU suite, the range of ECC is smaller than the

range with the default configuration.

time energy power

L-BFS 0.13 13.61 3.78

P-BFS 1.97 95.78 15.65

R-BFS 3.40 171.35 50.42

S-BFS 341.09 16785.53 4921.14

time energy power

L-BFS 0.05 5.25 1.46

P-BFS 0.76 37.11 6.07

R-BFS 0.34 17.14 5.04

S-BFS 341.43 16802.33 4926.07

per 100k vertices

per 100k edges

Figure 6: Range of power consumption

VI. SUMMARY AND CONCLUSIONS

This paper studies the energy consumption, power draw,

and runtime of 34 programs from 5 GPGPU benchmark

suites. Each program was run at 3 different GPU core frequen-

cies, 2 different GPU memory frequencies, and with ECC en-

abled or disabled. Where available, the programs were run

with alternate implementations and inputs. The goal of this

study is to gain general insight into the energy and power be-

havior of code running on a compute GPU, which can only be

achieved by studying a large number of distinct programs.

One important question is whether software has the poten-

tial to play an important role in making future accelerators

more power and energy efficient. Based on our results, the

answer is affirmative. Our measurements demonstrate that

changes in the implementation of GPU code can not only

drastically improve the performance, as is well known, but

also make the energy consumption several times better and

reduce the power consumption by over a factor of two. More

importantly, different implementations and GPU configura-

tions affect the energy, power, and runtime by different

amounts. Hence, there are code transformations that primarily

target one aspect and other code transformations that primar-

ily target a different aspect. In other words, it is possible to

optimize code and the hardware configuration for energy ef-

ficiency and these optimizations may be different from opti-

mizations for performance or power. Of course, some pro-

gram implementations and GPU configurations are strictly in-

ferior to others and should be avoided.

We made the following main observations when changing

the GPU’s core and memory frequencies. 1) Different fre-

quencies can impact performance, energy, and power by dif-

ferent amounts. 2) When lowering the core frequency, the en-

ergy does not increase significantly to scale with the increase

in active runtime. 3) On highly compute-bound codes, power

reductions that exceed the reduction in core frequency are

possible. 4) Altering the memory frequency of the GPU can

have a drastic impact on the runtime and energy of memory-

bound code but does not affect compute-bound code by nearly

as much. 5) The range by which the power changes is gener-

ally smaller than the range by which the energy and active

runtime change. 6) Lowering the clock frequency consistently

results in lower power levels.

Enabling ECC protection of the main memory has the fol-

lowing effects. 1) Using ECC with even slightly memory-

bound programs not only results in a slowdown but also in a

concomitant increase in energy consumption. 2) ECC’s cost

is entirely dependent upon how many main-memory accesses

a program makes, so code optimizations that reduce the num-

ber of memory accesses are especially useful when ECC is ac-

tive. Compute-bound codes are mostly unaffected by ECC in

terms of energy consumption, power draw, and performance.

Regarding regular and irregular codes, we observed the fol-

lowing. 1) Small changes in timing, e.g., due to a change in

frequency, can have a large effect on the runtime of irregular

codes, whose behavior is data- and timing-dependent, but not

on regular codes. 2) Power tends to increase when going to

larger inputs except on some irregular codes where any

change in input can greatly alter the program’s behavior.

In conclusion, we make the following recommendations for

selecting meaningful subsets of GPGPU benchmark programs

for anyone interested in performing power and energy studies

on GPUs using the built-in power sensor. 1) Use program in-

puts that result in long runtimes to obtain enough power sam-

ples to accurately analyze the energy and power behavior.

However, avoid poor implementations that run slowly. 2)

Measure a broad spectrum of codes, including memory- and

compute-bound programs as well as regular and irregular

codes since they exhibit different behaviors. However, avoid

topology-driven implementations of irregular graph-traversal

codes, as these tend to hide irregularity by doing many unnec-

essary computations (e.g., L-BFS, SSSP, and NSP). 3) As

none of the studied benchmark suites include all of these types

of applications, use programs from multiple suites for con-

ducting power and energy studies. Having said that, the codes

from Rodinia, Parboil, and SHOC exhibit relatively similar

behavior. 4) To make the results comparable, especially with

irregular codes or different implementations of the same al-

gorithm, employ metrics like power or energy per processed

item. 5) Run irregular codes such as PTA that show input-

dependent behavior across several inputs to fully profile the

behavior of the code. 6) Repeat experiments at different fre-

quency settings if desired as the findings might change. This

is particularly true when lowering the memory frequency of

memory-bound codes.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science

Foundation under grants 1217231, 1406304, and 1438963, a

REP grant from Texas State University, and grants and hard-

ware donations from NVIDIA Corporation. The authors

acknowledge the Texas Advanced Computing Center for

providing some of the HPC resources used in this study.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-

neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,

R. S. Williams, and K. Yelick. “ExaScale Computing Study: Technol-

ogy Challenges in Achieving Exascale Systems.” Editor and Study

Lead Peter Kogge, 2008.

[2] M. Burtscher, R. Nasre, and K. Pingali. “A Quantitative Study of Irreg-

ular Programs on GPUs.” 2012 IEEE International Symposium on
Workload Characterization, pp. 141-151. November 2012.

[3] M. Burtscher, I. Zecena, and Z. Zong. “Measuring GPU Power with the

K20 Built-in Sensor.” Seventh Workshop on General Purpose Pro-
cessing on Graphics Processing Units. March 2014.

[4] J. Chen, B. Li, Y. Zhang, L. Peng, and J. Peir. “Statistical GPU power

analysis using tree-based methods.” 2011 International Green Compu-
ting Conference and Workshops. July 2011.

[5] J. Choi, M. Dukhan, X. Liu, and R. Vuduc. “Algorithmic Time, Energy,

and Power on Candidate HPC Compute Building Blocks.” Parallel and
Distributed Processing Symposium. May 2014

[6] J. Coplin and M. Burtscher. “Energy, Power, and Performance Charac-

terization of GPGPU Benchmark Programs.” Technical Report

TXSTATE-CS-ECL-2016-1. March 2016. http://cs.txstate.edu/

~burtscher/papers/tr1ecl16.pdf

[7] CUDA SDK: https://developer.nvidia.com/cuda-toolkit
[8] T. Diop, N. Jerger, and J. Anderson. “Power Modeling for Heterogene-

ous Processors.” Seventh Workshop on General Purpose Processing

Using GPUs. March 2014.
[9] W. Feng, X. Feng, and R. Ge. “Green Supercomputing Comes of Age.”

IT Professional. February 2008.

[10] V. Freeh, F. Pan, N. Kappiah, D. Lowenthal, and R. Springer. “Explor-
ing the Energy-Time Tradeoff in MPI Programs on a Power-Scalable

Cluster.” 19th IEEE International Parallel and Distributed Processing
Symposium. March 2005.

[11] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong.

“Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU.”
2nd International Workshop on Power-aware Algorithms, Systems, and

Architectures. October 2013.

[12] S. Ghosh, S. Chandrasekaran, and B. Chapman. “Energy Analysis of
Parallel Scientific Kernels on Multiple GPUs.” 2012 Symposium on Ap-

plication Accelerators in High Performance Computing. July 2012.

[13] GPUWattch Energy Model Manual: http://www.gpgpu-sim.org/gpu-
wattch/

[14] Y. Jiao, H. Lin, and W. Feng. “Characterizing Performance and Power

of GPU Applications with DVFS.” IEEE/ACM International Confer-
ence on Green Computing and Communications. December 2010.

[15] K. Kandalla, E.P. Mancini, S. Sur, and D.K. Panda. “Designing Power-

Aware Collective Communication Algorithms for InfiniBand Clus-
ters.” 39th International Conference on Parallel Processing. Septem-

ber 2010.

[16] V. Korthikanti and G. Agha. “Towards optimizing energy costs of al-
gorithms for shared memory architectures.” 22nd annual ACM sympo-

sium on Parallelism in algorithms and architectures. June 2010.

[17] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-

manarayanan, Kavita Bala and L. Paul Chew. “Optimistic Parallelism

Requires Abstractions.” ACM Conference on Programming Languages

Design and Implementation, 211 - 222, June 2007.

[18] Y. Lee and S. Kim. “Empirical Characterization of Power Efficiency

for Large Scale Data Processing.” 2015 International Conference on

Advanced Computing Technology. July 2015.
[19] J. Li. “Application-Directed DVFS using Multiple clock domains on

Graphics Hardware.” MS Thesis, Worcester Polytechnic Institute.

2008.
[20] J. Li and J. Martínez. “Power-Performance Considerations of Parallel

Computing On Chip Multiprocessors.” ACM Transactions on Architec-

ture and Code Optimization. December 2005
[21] LonestarGPU: http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

[22] M. Lorenz, P. Marwedel, T. Dräger, G. Fettweis, and R. Leupers.

“Compiler based exploration of DSP energy savings by SIMD opera-
tions.” 2004 Asia and South Pacific Design Automation Conference.

January 2004.

[23] Lucas, J., Lal, S., Andersch, M., Alvarez-Mesa, M., Juurlink, B. “How

a Single Chip Causes Massive Power Bills GPUSimPow: A GPGPU

Power Simulator”. IEEE International Symposium on Performance

Analysis of Systems and Software. 2013.
[24] X. Ma, M. Rincon, and Z. Deng. “Improving Energy Efficiency of GPU

based General-Purpose Scientific Computing through Automated Se-

lection of near Optimal Configurations.” Technical report UH-CS. Au-
gust 2011.

[25] Duane Merrill, Michael Garland, and Andrew Grimshaw. “Scalable

GPU Graph Traversal.” 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. pp. 117-128. 2012.

[26] F. Pan, V. Freeh, and D.M. Smith. “Exploring the Energy-Time
Tradeoff in High-Performance Computing.” Parallel and Distributed

Processing Symposium. April 2005.

[27] Parboil: http://impact.crhc.illinois.edu/Parboil/parboil.aspx
[28] Rodinia: http://www.cs.virginia.edu/~skadron/wiki/rodinia/in-

dex.php/Main_Page

[29] SHOC: https://github.com/vetter/shoc/wiki
[30] J. Sheaffer, K. Skadron, and D.P. Luebke. “Studying Thermal Manage-

ment for Graphics-Processor Architectures.” IEEE International Sym-

posium on Performance Analysis of Systems and Software. March 2005.
[31] B. Subramaniam and W. Feng. “Understanding Power Measurement

Implications in the Green500 List.” Green Computing and Communi-

cations, 2010 IEEE/ACM Int’l Conference on & Int’l Conference on
Cyber, Physical, and Social Computing. December 2010.

[32] Wang, G. “Power Analysis and Optimizations for GPU Architecture

Using a Power Simulator.” 3rd International Conference on Advanced
Computer Theory and Engineering. 2010.

[33] I. Zecena, M. Burtscher, J. Tongdan, and Z. Ziliang. “Evaluating the

Performance and Energy Efficiency of N-Body Codes on Multi-Core
CPUs and GPUs.” 2013 IEEE 32nd International Performance Com-

puting and Communications Conference. December 2013

