
 

 

 

Abstract—This paper studies the effects on energy consump-

tion, power draw, and runtime of a modern compute GPU when 

changing the core and memory clock frequencies, enabling or 

disabling ECC, using alternate implementations, and varying 

the program inputs. We evaluate 34 applications from 5 bench-

mark suites and measure their power draw over time on a K20c 

GPU. Our results show that changing the frequency or the pro-

gram implementation can alter the energy, power, and perfor-

mance by a factor of two or more. Interestingly, some changes 

affect these three aspects very unevenly. ECC can greatly in-

crease the runtime and energy consumption, but only on 

memory-bound codes. Compute-bound codes tend to behave 

quite differently from memory-bound codes, in particular re-

garding their power draw. On irregular programs, a small 

change in frequency can result in a large change in runtime and 

energy consumption. 

 

I. INTRODUCTION 

GPU-based accelerators are widely used in high-perfor-

mance computing and are quickly spreading in PCs and even 

handheld devices as they not only provide higher peak perfor-

mance but also better energy efficiency than multicore CPUs. 

Nevertheless, large power consumption and the required cool-

ing due to the resulting heat dissipation are major cost factors 

in HPC environments. To reach exascale computing, a 50-

fold improvement in performance per watt is needed by some 

estimates [1]. Moreover, battery life is a key concern in all 

types of handhelds such as smartphones. 

For these and other reasons, energy-efficient computing 

has become an important research area. While many hardware 

optimizations for reducing power have been proposed or are 

already deployed, software techniques are lagging behind, 

particularly techniques that target accelerators like GPUs. 

However, to be able to optimize the energy efficiency of GPU 

code, we first need to develop a good understanding of how 

the power draw and performance of such programs interact. 

To this end, we investigate the energy consumption, the 

power, and the active runtime (i.e., the time the GPU is com-

puting) of a large number of codes. 

It is well known that code optimizations can improve GPU 

performance and that reducing the GPU’s frequency lowers 

power and performance. But what about energy? Some stud-

ies report a one-to-one correspondence between active 

runtime and energy. But these studies focus on regular pro-

grams and only vary the inputs, not the code itself or the GPU 

frequency. So it is unclear whether there are implementations 

or GPU configurations that help energy more than active 

runtime, how big of an impact such changes can make, and 

whether there are differences between compute- and memory-

bound or regular and irregular codes. The goal of this paper is 

to answer these and related questions to determine whether 

software has the potential to play an important role in making 

future accelerators more energy efficient. 

To perform this study, we took 34 programs from 5 

GPGPU benchmark suites. We ran each program on a Kepler-

based K20c compute GPU at 3 different clock frequencies and 

with or without using error-correcting code (ECC) in main 

memory. In addition, select programs are run with alternate 

implementations and inputs. 

This paper makes the following key contributions. 

1) It is the first paper to measure the energy and power of a 

large number of GPGPU benchmark programs. 

2) It experimentally validates some common expectations 

regarding GPU power and energy characteristics. 

3) It shows that different frequencies, hardware configura-

tions, inputs, and implementations can impact energy, power, 

and performance by different amounts, demonstrating that 

these metrics can be affected independently of each other. 

4) It analyses what frequencies, settings, implementations, 

and inputs tend to help with which aspect and why. 

5) It exposes key differences between regular and irregular 

codes as well as compute- and memory-bound codes. 

6) It makes general recommendations for selecting mean-

ingful subsets of these programs for conducting studies on 

GPGPUs using the built-in power sensor. 

The rest of this paper is organized as follows. Section II 

discusses related work. Section III provides an overview of 

the GPU we study. Section IV describes the evaluation meth-

odology. Section V presents and analyzes our most interesting 

measurements. Section VI summarizes our findings, provides 

guidelines, and draws conclusions. 

 

II. RELATED WORK 

We are not aware of other extensive measurement-based 

studies on the energy, power, and runtime of GPU programs. 

There are many papers that investigate Dynamic Voltage 

and Frequency Scaling (DVFS) on CPUs to reduce power and 

energy. For example, Kandalla et al. demonstrate the need to 

design software in a power-aware manner to minimize perfor-
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mance overheads and to balance performance and power sav-

ings on a power-aware DVFS-capable cluster system [15]. 

Furthermore, Li uses DVFS across multiple clock domains, 

such as shaders and texture domains, to increase energy effi-

ciency on GPUs [19]. Pan et al. also use DVFS-based solu-

tions and show that sometimes expending more energy does 

not result in a large performance benefit [26]. In addition to 

varying the frequency, Korthikanti and Agha explore how 

changing the number of active cores affects the energy con-

sumption and provide guidelines for the optimal core count 

and frequency for a given algorithm and input size [16]. Freeh 

et al. perform a related study on a cluster where they evaluate 

how using different frequencies and numbers of compute 

nodes affect the power and performance of MPI programs 

[10]. There are also papers that highlight the lack of a stand-

ardized power measurement methodology for energy-effi-

cient supercomputing [31] or talk about how ignoring power 

draw as a design constraint in supercomputing will result in 

higher operational costs and diminished reliability [9]. 

Several publications propose and use analytical models to 

investigate power and energy aspects. For instance, Li and 

Martinez establish an analytical model for looking at parallel 

efficiency, granularity of parallelism, and voltage/frequency 

scaling [20]. Diop et al. and Choi et al. propose clusters of 

micro-benchmarks to model time, energy, and power [5] [8]. 

Wang conducted a similar study that uses a GPU simulator to 

model the effects on energy with frequency scaling and con-

currency throttling [32]. Lorenz et al. explore compiler-gen-

erated SIMD operations and how they affect energy effi-

ciency [22]. They acknowledge the need to optimize both 

hardware and software to obtain an energy efficient system. 

Some analytical models target GPUs. For example, Chen et 

al. institute a mechanism for evaluating and understanding the 

power consumption when running GPU applications [4]. Ma 

et al. use a statistical model to estimate the best GPU config-

uration to save power [24]. One simulation-based paper on 

thermal management for GPUs discusses methods for manag-

ing power through architecture manipulation [30]. Another 

simulator includes a modified and extended version of a CPU 

power model to model the power of compute GPUs [13]. 

Similar to our study, there are several papers that report the 

energy consumption of actual GPU hardware. For instance, 

Lee and Kim measure the energy consumption of GPUs using 

a digital multimeter [18]. Gosh et al. explore some common 

HPC kernels running on a multi-GPU platform and compare 

their results against multi-core CPUs [12]. Ge et al.’s study 

evaluates the effect of DVFS on the same type of GPU we are 

using [11]. A paper by Zecena et al. measures n-body codes 

running on different GPUs and CPUs [33]. Lucas et al. meas-

ure the power and energy to verify their GPU power simulator 

[23]. Jiao et al. investigate how changing the core and 

memory frequencies affect performance and power [14]. All 

of these publications investigate just a few programs. Our 

study is the first to characterize the energy behavior of a large 

number of GPU codes, which we believe is necessary to ob-

tain general insights. 

III. GPU ARCHITECTURE 

This section provides an overview of the architectural char-

acteristics of the Kepler-based Tesla K20c GPU we use for 

our study. It includes an on-board power sensor that allows 

the direct measurement of the GPU’s power draw. 

The K20c consists of 13 streaming multiprocessors (SMs). 

Each SM contains 192 processing elements (PEs). Whereas 

each PE can run a thread of instructions, sets of 32 PEs are 

tightly coupled and must either execute the same instruction 

(operating on different data) in the same cycle or wait. This is 

tantamount to a SIMD instruction that conditionally operates 

on 32-element vectors. The corresponding sets of 32 coupled 

threads are called warps. Warps in which not all threads can 

execute the same instruction are subdivided by the hardware 

into sets of threads such that all threads in a set execute the 

same instruction. The individual sets are serially executed, 

which is called branch divergence, until they re-converge. 

Branch divergence hurts performance and energy efficiency. 

The memory subsystem is also built for warp-based pro-

cessing. If the threads in a warp simultaneously access words 

in main memory that lie in the same aligned 128-byte seg-

ment, the hardware merges the 32 reads or writes into one co-

alesced memory transaction, which is as fast as accessing a 

single word. Warps accessing multiple 128-byte segments re-

sult in correspondingly many individual memory transactions 

that are executed serially. Hence, uncoalesced accesses are 

slower and require more energy than coalesced accesses. 

The PEs within an SM share a pool of threads called thread 

block, synchronization hardware, and a software-controlled 

data cache called shared memory. A warp can simultaneously 

access 32 words in shared memory as long as all words reside 

in different banks or all accesses within a bank request the 

same word. The SMs operate largely independently and can 

only communicate through global memory (main memory in 

DRAM). Shared memory accesses are much faster and more 

energy efficient than main memory accesses. 

 

IV. METHODOLOGY 

A. Benchmarks 

We study programs from the LonestarGPU v2.0 [21], Par-

boil [27], Rodinia v3.0 [28], and SHOC v1.1.2 [29] bench-

mark suites as well as a few programs from the CUDA SDK 

v6.0 [7]. We chose which codes to evaluate based on their 

active runtimes to obtain a sufficient number of power sam-

ples. Several codes from these suites could not be used simply 

because of their short runtimes even with the largest provided 

inputs. Table 1 lists the number of global kernels each pro-

gram contains as well as the inputs we used. 

 

1) LonestarGPU 

The LonestarGPU suite is a collection of commonly used 

real-world applications that exhibit irregular behavior. 

a. Barnes-Hut n-body Simulation (BH): An algorithm that 

quickly approximates the forces between a set of bodies in 

lieu of performing precise force calculations. 



 

 

 

b. Breadth First Search (L-BFS): Computes the level of 

each node from a source node in an unweighted graph using 

a topology-driven approach. In addition to the standard BFS 

implementation (topology-driven, one node per thread), we 

also study the atomic variation (topology driven, one node per 

thread that uses atomics) and the wla variation (topology 

driven, one flag per node, one node per thread). The wlw var-

iation (data driven, one node per thread) and the wlc variation 

(data-driven, one edge-per-thread version using Merrill’s 

strategy [25]) were not used because they reduced the active 

runtime to the point that insufficient power samples could be 

recorded even with the largest available input. 

c. Delaunay Mesh Refinement (DMR): This implementa-

tion of the algorithm described by Kulkarni et al. [17] pro-

duces a guaranteed quality 2-D Delaunay mesh, which is a 

 

Table 1: Program names, number of global kernels (#K), and inputs 

 
 

Delaunay triangulation with the additional constraint that no 

angle in the mesh be less than 30 degrees. 

d. Minimum Spanning Tree (MST): This benchmark com-

putes a minimum spanning tree in a weighted undirected 

graph using Boruvka’s algorithm and is implemented by suc-

cessive edge relaxations of the minimum weight edges. 

e. Points-to Analysis (PTA): Given a set of points-to con-

straints, this code computes the points-to information for each 

pointer in a flow-insensitive, context-insensitive manner im-

plemented in a topology-driven way. 

f. Single-Source Shortest Paths (SSSP): Computes the 

shortest path from a source node to all nodes in a directed 

graph with non-negative edge weights by using a modified 

Bellman-Ford algorithm. In addition to the standard SSSP im-

plementation (topology driven, one node per thread), we also 

used the wln variation (data driven, one node per thread) and 

the wlc variation (data driven, one edge per thread using Mer-

rill’s strategy adapted to SSSP). 

g. Survey Propagation (NSP): A heuristic SAT-solver 

based on Bayesian inference. The algorithm represents the 

Boolean formula as a factor graph, which is a bipartite graph 

with variables on one side and clauses on the other. 

 

2) Parboil 

Parboil is a set of applications used to study the perfor-

mance of throughput-computing architectures and compilers. 

a. Breadth-First Search (P-BFS): Computes the shortest-

path cost from a single source to every other reachable node 

in a graph of uniform edge weights. 

b. Distance-Cutoff Coulombic Potential (CUTCP): Com-

putes the short-range component of the Coulombic potential 

at each grid point over a 3-D grid containing point charges 

representing an explicit-water biomolecular model. 

c. Saturating Histogram (HISTO): Computes a 2-D saturat-

ing histogram with a maximum bin count of 255. 

d. Lattice-Boltzmann Method Fluid Dynamics (LBM): A 

fluid dynamics simulation of an enclosed, lid-driven cavity 

using the Lattice-Boltzmann Method. 

e. Magnetic Resonance Imaging - Q (MRIQ): Computes a 

matrix Q, representing the scanner configuration for calibra-

tion, used in 3-D magnetic resonance image reconstruction al-

gorithms in non-Cartesian space. 

f. Sum of Absolute Differences (SAD): Sum of absolute 

differences kernel, used in MPEG video encoders. 

g. General Matrix Multiply (SGEMM): A register-tiled ma-

trix-matrix multiplication, with default column-major layout 

on matrix A and C, but B is transposed. 

h. 3-D Stencil Operation (STEN): An iterative Jacobi sten-

cil operation on a regular 3-D grid. 

i. Two Point Angular Correlation Function (TPACF): Sta-

tistical analysis of the distribution of astronomical bodies. 

 

3)  Rodinia 

Rodinia is designed for heterogeneous computing infra-

structures with OpenMP, OpenCL, and CUDA implementa-

tions. Our study uses the following CUDA codes. 

a. Back Propagation (BP): ML algorithm that trains the 

weights of connecting nodes on a layered neural network. 

b. Breadth-First Search (R-BFS): Another GPU implemen-

tation of the breadth-first search algorithm, which traverses 

all the connected components in a graph. 

c. Gaussian Elimination (GE): Computes results row by 

row, solving for all of the variables in a linear system. 

d. MUMmerGPU (MUM): A local sequence alignment 

program that concurrently aligns multiple query sequences 

against a single reference sequence stored as a suffix tree. 

e. Nearest Neighbor (NN): Finds the k-nearest neighbors in 

an unstructured data set. 

Program #K Inputs Program #K Inputs

EIP 2 None SGEMM 1 "small" benchmark input

EP 2 None STEN 1 "small" benchmark input

NB 1 100k, 250k, and 1m bodies TPACF 1 "small" benchmark input

SC 3 2^26 elements BP 2 2^17 elements

BH 9
bodies-timesteps; 10k-10k, 100k-10, 

1m-1
R-BFS 2

random graphs; 100k and 

1m nodes

L-BFS 5

Roadmaps of Great Lakes Region 

(2.7m nodes, 7m edges), Western 

USA (6m nodes, 15m edges), and 

entire USA (24m nodes, 58m edges)

GE 2 2048 x 2048 matrix

DMR 4 250k, 1m, and 5m node mesh files MUM 3 100bp and 25bp

MST 7

Roadmaps of Great Lakes Region 

(2.7m nodes, 7m edges), Western 

USA (6m nodes, 15m edges), and 

entire USA (24m nodes, 58m edges)

NN 1 42k data points

PTA 40
vim (small), pine (medium), tshark 

(large)
NW 2 4096 and 16384 items

SSSP 2

Roadmaps of Great Lakes Region 

(2.7m nodes, 7m edges), Western 

USA (6m nodes, 15m edges), and 

entire USA (24m nodes, 58m edges)

PF 1

row length-column 

length-pyramid height; 

100k-100-20, 200k-200-40

NSP 3
clauses-literals-literals per clause; 

16800-4000-3, 42k-10k-3, 42k-10k-5
S-BFS 9 default benchmark input

P-BFS 3
Roadmap of the San Francisco Bay 

Area (321k nodes, 800k edges)
FFT 2 default benchmark input

CUTCP 1 watbox.s1100.pqr MF 20 default benchmark input

HISTO 4
image file whose parameters are "-- 

20-4" according to documentation
MD 1 default benchmark input

LBM 1 3000 and 100 timestep inputs QTC 6 default benchmark input

MRIQ 2 64x64x64 matrix ST 5 default benchmark input

SAD 3 default input S2D 1 default benchmark input



 

 

 

f. Needleman-Wunsch (NW): A nonlinear global optimiza-

tion method for DNA sequence alignment. 

g. Pathfinder (PF): Uses dynamic programming to find a 

path on a 2-D grid with the smallest accumulated weights, 

where each step of the path moves straight or diagonally. 

 

4) SHOC 

The Scalable HeterOgeneous Computing benchmark suite 

is a collection of programs that are designed to test the perfor-

mance of heterogeneous systems with multicore processors, 

graphics processors, reconfigurable processors, etc. 

a. Breadth-First Search (S-BFS): Measures the runtime of 

breadth-first search on an undirected random k-way graph. 

b. Fast Fourier Transform (FFT): Measures the speed of a 

single- and double-precision fast Fourier transform that com-

putes the discrete Fourier transform and its inverse. 

c. MaxFlops (MF): Measures the maximum throughput for 

combinations of different floating-point operations. 

d. Molecular Dynamics (MD): Measures the performance 

of an n-body computation (the Lennard-Jones potential from 

molecular dynamics). The test problem is n atoms distributed 

at random over a 3-D domain. 

e. Quality Threshold Clustering (QTC): Measures the per-

formance of an algorithm designed to be an alternative 

method for data partitioning. 

f. Sort (ST): Measures the performance of a radix sort on 

unsigned integer key/value pairs. 

g. Stencil2D (S2D): Measures the performance of a 2-D, 9-

point single-precision stencil computation. 

 

5) CUDA-SDK 

The NVIDIA GPU Computing SDK includes dozens of 

sample codes. We use the following programs in our study. 

a. MC_EstimatePiInlineP (EIP): Monte Carlo simulation 

for the estimation of Pi using a Pseudo-Random Number Gen-

erator (PRNG). The inline implementation allows use inside 

GPU functions/kernels as well as in the host code. 

b. MC_EstimatePiP (EP): Monte Carlo simulation for the 

estimation of Pi using a PRNG. This implementation gener-

ates batches of random numbers. 

c. N-body (NB): All-pairs n-body simulation. 

d. Scan (SC): Demonstrates an efficient implementation of 

a parallel prefix sum, also known as “scan”. 

 

B. Evaluation test bed 

We measured the GPU’s active runtime and energy con-

sumption with the K20Power tool [3], which makes use of the 

K20’s internal power sensor. We chose this approach over us-

ing an external sensor because we want our results to be di-

rectly applicable to anyone interested in performing 

power/energy-related GPU experiments and not just to those 

people with access to an external power sensor. We per-

formed initial experiments on K20c, K20m, K20x, and K40 

GPUs, all of which resulted in the same findings after appro-

priately scaling the absolute measurements, which is why we 

decided to only discuss the K20c results in this paper. 

Our Tesla K20c GPU has 5 GB of global memory and 13 

streaming multiprocessors with a total of 2,496 processing el-

ements. It supports six clock frequency settings, of which we 

evaluate the following three: the “default” configuration, 

which uses a 705 MHz core speed and a 2.6 GHz memory 

speed. We found this to be the fastest speed at which the GPU 

could run long enough for our purposes without throttling it-

self down to prevent overheating. The “614” configuration, 

which uses a 614 MHz core speed and a 2.6 GHz memory 

speed, is the slowest available compute speed at the default 

memory speed. The “324” configuration uses a 324 MHz core 

and memory speed. We chose the 324 setting because it is the 

slowest available frequency configuration. The GPU further 

supports enabling and disabling ECC protection of the main 

memory. The “ECC” configuration combines ECC protection 

with the default clock frequency. All other tested configura-

tions have ECC disabled. Thus, our four configurations are: 

1) default, 2) 614, 3) 324, and 4) ECC. Note that we use the 

same K20c GPU for all measurements. 

We repeated some of our measurements on a second K20c 

GPU to ensure that we obtain the same results, which we did. 

We were able to record accurate and reliable results from all 

of our selected programs with the default, 614, and ECC con-

figurations, but we were unable to obtain the same consistency 

with the 324 configuration. This is because on such a low-

frequency setting, the power draw rarely reaches a sufficient 

level for the GPUʼs power sensor to switch from the idle 1 Hz 

to the active 10 Hz sampling rate, which results in too few 

samples to draw conclusions from. Hence, those results are 

not reported here. The programs excluded from the 324 results 

are inline_p, p, P-BFS, cutcp, histo, mri-q, sad, stencil, tpacf-

small, backprop, R-BFS, gaussian, mummergpu-25bp, nnlist, 

nw, pathfinder, S-BFS, fft, maxflops, md, and sort. 

We performed each experiment three times and report the 

median active runtime, energy, and average power. Table 2 

shows the maximum and average difference we observed be-

tween the highest and the lowest of any set of three measure-

ments for each benchmark suite. We found the variability to 

be reasonable. Furthermore, while temperature swings can 

have a noticeable effect on power/energy results, our experi-

ments were performed on a server that is constantly running 

under full load and is located in a climate-controlled room. 

Hence, we do not believe that temperature swings introduced 

any significant perturbations in our measurements. All 

benchmark codes were compiled with CUDA version 6.0.1 

using the default switches prescribed by their authors. 

 

Table 2: Maximum and average measurement variability 

 

 

max time max energy avg time avg energy

CUDA SDK 7.1% 7.2% 1.1% 2.3%

LonestarGPU 8.7% 7.1% 0.9% 1.2%

Parboil 3.3% 5.5% 2.0% 2.3%

Rodinia 7.0% 4.5% 1.8% 2.0%

SHOC 7.0% 6.2% 1.4% 2.1%

Overall 8.7% 7.2% 1.4% 2.0%



 

 

 

C. Active runtime 

Throughout this paper, we refer to the “active runtime”, 

which is not the total application runtime but rather the time 

during which the GPU is actively computing, that is, running 

kernel code. For most of the studied programs, this is a com-

bination of multiple GPU kernels. The K20Power tool defines 

active runtime as the amount of time the GPU is drawing 

power above the idle level. Figure 1 illustrates this. 

Because of how the GPU draws power and how the built- 

in power sensor samples, only readings above a certain 

threshold (the dashed line at 55 W in this example) reflect 

when the GPU is actually executing kernel code [2]. Measure-

ments below the threshold are either the idle power (less than 

about 26 W) or the “tail power” due to the driver keeping the 

GPU active for a while (in case another kernel call is made) 

before powering it down. Using the active runtime ignores any 

execution time that may take place on the host CPU, as we are 

only interested in the energy consumption and power draw of 

the GPU while it executes. The power threshold is dynami-

cally adjusted for each execution of a particular program to 

maximize accuracy for different GPU configurations. For ex-

ample, lower frequency settings require a lower threshold. 

 

 
Figure 1: Sample power profile 

 

V. EXPERIMENTAL RESULTS 

The following subsections discuss different aspects of our 

measurements. In each case, we present and analyze the gen-

eral trends and highlight notable outliers. The most important 

findings and insights are summarized in Section VI. Detailed 

results for each individual program are given elsewhere [6]. 

 

A. Effects of lowering GPU frequency and enabling ECC 

1) Default to 614 

Figure 2 shows the relative change in active runtime, en-

ergy, and power when switching from default to 614. Values 

above 1.0 indicate an increase over the default. In the figure, 

the bars represent the medians, the boxes above and below the 

bars extend to the first and third quartiles, and the whiskers 

indicate the maximum and minimum of each suite. 

The 614 configuration has a core speed that is about 15% 

lower than the default, so one might expect to see roughly 

the same increase in active runtime. However, only a couple 

of the benchmark medians (CUDA SDK and LonestarGPU) 

and a few individual codes slow down anywhere near 15%. 

This is because going from default to 614 only lowers the 

core frequency but not the memory frequency. Hence, pro-

grams showing little to no change are memory bound, in-

cluding many codes in the Parboil, Rodinia, and SHOC 

suites. In contrast, most of the tested SDK programs are 

compute bound. There are also a few codes that show a 

slight speedup, but many of them are within the margin of 

error (i.e., the average variability of our measurements). 

 

 
Figure 2: Range of effects on runtime, energy, and power with the 

614 configuration relative to the default configuration 

 

Switching to 614 affects the LonestarGPU suite the most. 

In fact, this suite includes both the worst increase and the best 

decrease in active runtime as well as the highest median in-

crease. At first glance, this may appear surprising as Lonestar-

GPU only contains programs with irregular memory accesses, 

which tend to be memory bound, particularly on GPUs where 

they result in many uncoalesced memory accesses [2]. Hence, 

lowering the core frequency while keeping the memory fre-

quency constant should not affect the runtime much. How-

ever, irregular programs, by definition, exhibit data-depend-

ent runtime behavior, i.e., the amount of parallel work and the 

load balance can change dynamically. Data-dependent behav-

ior may lead to timing-dependent behavior because it matters 

when the values are calculated that dependent computations 

are waiting for. As a consequence, small changes in timing, 

e.g., due to lowering the core frequency, can have a large ef-

fect on the runtime. This is why the active runtime of some 

LonestarGPU programs changes by more than the clock fre-

quency. Note that this effect can be positive or negative, 

which explains why LonestarGPU exhibits the widest range 

in runtime change and includes both the code that is helped 

the most and the code that is hurt the most by going to 614. 

Interestingly, going from default to 614 results in a small 

beneficial effect on energy for most codes. Even though the 

programs tend to run longer, the amount of energy the GPU 

consumes decreases slightly in almost all cases except for 

LonestarGPU, where the energy consumption is mostly unaf-

fected. Even in the worst cases, the energy does not increase 

by nearly as much as the active runtime. 

This general decrease in energy is the result of a significant 

reduction in the power draw when switching to 614, which 



 

 

 

outweighs the increase in runtime on every program we stud-

ied. Even in the worst cases, the power decreases slightly or 

stays roughly constant, and the median power decrease is be-

tween 3% and 10% depending on the benchmark suite. Note 

that two of the compute-bound CUDA SDK programs expe-

rience a power reduction of over 15%, that is, more than the 

reduction in core frequency. We surmise that this is because, 

in addition to the frequency, the voltage is also reduced as is 

commonly done in DVFS. Since power is proportional to the 

voltage squared, superlinear power reductions are possible. 

NB from the CUDA SDK sees the greatest savings in 

power (22%) for the reasons stated above. It also has one of 

the largest increases in active runtime (15%) as it is highly 

compute bound, resulting in a middling decrease in energy 

(7%). Interestingly, just behind NB for decrease in power is 

the irregular MST from the LonestarGPU suite. It has the 

highest increase in active runtime of all the programs across 

all the benchmarks (25%) and the third highest increase in en-

ergy (8%) and saves 16% in power. SHOC’s MF boasts the 

greatest savings in energy (14.3%) and one of the lowest in-

creases in active runtime (1%). It saves 15% in power, making 

it the third best in terms of power reduction. 

 

2) 614 to 324 

Figure 3 is similar to Figure 2 except it shows the relative 

change in active runtime, energy, and power when switching 

from 614 to 324. Note, however, that the two figures should 

not be compared directly as a number of programs did not 

yield sufficient power samples with the 324 configuration. 

Hence, Figure 3 is based on fewer programs. 

 

 
Figure 3: Range of effects on runtime, energy, and power with the 

324 configuration relative to the 614 configuration 

 

Switching from the 614 to the 324 configuration not only 

involves a 1.9x decrease in core frequency but, much more 

importantly, also an 8x decrease in memory frequency. The 

cumulative effect is an average increase in active runtime of 

over 110% across the studied benchmark programs. Except 

for some irregular programs, where the change in timing af-

fects the load balance and the amount of parallelism, all in-

vestigated programs are slowed down by at least a factor of 

1.9 as expected. 

Going from 614 to 324 increases the energy of two-thirds 

of the programs, in one case by over 200%. Even in the best 

case, the energy savings do not exceed 30% and, on average, 

going from 614 to 324 results in an increase in energy. 

This increase in energy can be attributed to the increase in 

active runtime, which more than outweighs the decrease in 

power draw. In contrast, on the 614 configuration evaluated 

in the previous subsection, the active runtime increases less 

than or roughly in proportion to the decrease in power draw, 

so the energy consumption decreases or stays roughly the 

same. This difference in behavior is due to the fact that the 

614 configuration only lowers the core frequency whereas the 

324 configuration lowers both the core and, in particular, the 

memory frequency. 

According to Figure 3, the Parboil suite experiences by far 

the largest increase in active runtime and energy. This is mis-

leading, though, as only one of the Parboil programs (LBM) 

yielded usable results on the 324 configuration. In fact, the 

two LBM inputs resulted in the two highest increases in 

runtime and energy out of all the programs we studied. This 

is a good example of how big an impact altering the memory 

frequency of the GPU can have on a memory-bound code. 

The power decreases quite uniformly to about half the 614 

values. Also, it is worthwhile pointing out that the range by 

which the power changes is much narrower than the range of 

the energy and in particular the active-runtime changes. 

Looking at the individual codes, PTA from the Lonestar-

GPU suite sees the smallest decrease in active runtime and the 

largest decrease in energy when going from 614 to 324, but 

because of the small drop in active runtime compared to the 

other programs, it also has one of the smallest savings in 

power. LBM from the Parboil suite sees the largest increase 

in active runtime (7.75x) and energy (2x). 

Overall, lowering the core and memory frequencies in-

creases the active runtime of programs and tends to increase 

the energy. However, it consistently yields lower power levels 

across all the benchmark programs we have studied. 

 

3) Enabling ECC 

 
Figure 4: Range of effects on runtime, energy, and power relative 

to the default configuration when turning on ECC 

 

Figure 4 shows how enabling ECC affects the active 

runtime, energy, and power relative to the default configura-



 

 

 

tion. Some programs exhibit a very small speedup when turn-

ing on ECC, but these speedups are within the margin of error 

and we therefore do not believe them to be significant. 

For all suites, the median active runtimes are the same with 

and without ECC. However, there are a few programs, most 

notably in Rodinia, where the active runtime increases drasti-

cally. These codes are heavily memory bound. After all, ECC 

only affects main memory accesses. On our GPU, enabling 

ECC reduces the available main memory by 12.5% to set 

aside storage for the ECC information. While we do not know 

how ECC is implemented (NVIDIA does not publish hard-

ware details about their GPUs), we expect the change in 

runtime to be within 12.5%, which it is for almost all of the 

studied programs. 

As expected, ECC has a negative effect on the energy con-

sumption. However, since the increase in energy scales 

closely with the increase in active runtime, ECC primarily in-

creases energy consumption because it slows down main 

memory accesses and not because the actual ECC operations 

performed by the hardware consume much energy. Thus, the 

power is largely the same whether ECC is used or not. 

LonestarGPU is the only suite where the energy increase is 

substantially higher than the increase in active runtime. This 

is likely a consequence of the many uncoalesced memory ac-

cesses, which probably exercise the ECC machinery more 

than coalesced accesses. As a result, the power also increases. 

ECC has a large effect on three of the Rodinia and one of 

the Parboil programs. As we have no information on how 

ECC is implemented on our GPU, we can only surmise that it 

may affect the cache performance, if the ECC bits are copied 

into the cache, or the memory-controller performance by in-

terrupting otherwise efficient memory access patterns due to 

intermittent accesses to ECC information. 

Looking at individual programs, we find NB from the 

CUDA SDK to behave unexpectedly. Not only does its active 

runtime not appear to be affected by ECC much, but it also 

sees a significant decrease in energy and, consequently, in 

power. NB is highly regular and compute bound with excel-

lent caching in shared memory, so we did not expect ECC to 

matter, but to have a positive effect that exceeds the margin 

of error is surprising. Note that NB’s power and energy sav-

ings are less pronounced with larger inputs, which result in a 

higher computation-to-memory-access ratio. 

Since ECC protects main memory, its cost is entirely de-

pendent upon how many main memory accesses a program 

makes. Our results show that using ECC with even slightly 

memory-bound programs not only results in a slowdown but 

also in a concomitant increase in energy consumption. How-

ever, compute-bound codes are largely unaffected by ECC, as 

one might expect. 

 

B. Effects of varying program implementation and input 

1) Changing the implementation 

Table 3 shows how the alternate implementations of L-BFS 

and SSSP included in the LonestarGPU suite perform when 

compared to the active runtime, energy, and power of the de-

fault implementation of L-BFS. Values below 1.0 indicate 

that the alternate implementation is better than the default. 

The atomic version of L-BFS shows an over 2x reduction 

in active runtime and energy in all cases. Because the reduc-

tions in active runtime and energy scale relatively closely, the 

power is less affected but still sees a modest decrease (11%-

20%), meaning that the atomic version results in improved 

energy and power efficiency in addition to speedup. 

 

Table 3: Effects of different implementations of L-BFS and SSSP 

on active runtime [s], energy [J], and power [W] 

 
 

The wla version of BFS also yields a decrease in active 

runtime, though not as much as the atomic version. The en-

ergy in the wla version, however, decreases far more than the 

active runtime. This translates into a much higher power re-

duction than the atomic version. Thus, wla is the better choice 

for users concerned with power whereas atomic is better for 

performance and energy consumption. Hence, different im-

plementations of the same algorithm can benefit energy, 

power, and performance differently. 

We cannot show results for the data-driven wlc version of 

L-BFS, which uses one edge per thread, nor the data-driven 

wlw version, which uses one node per thread, because these 

implementations are so fast that, even on the largest input, the 

power sensor does not log enough samples to accurately ana-

lyze the code’s energy and power consumption. 

For SSSP, the wlc version shows good improvements in 

performance, ranging from 42% to an over 2x decrease in ac-

tive runtime. The energy also improves and scales almost per-

fectly with the decrease in active runtime, which is why the 

power is basically flat or decreases slightly. Interestingly, the 

wln version of SSSP is worse than the default by roughly a 

factor of two in terms of both active runtime and energy and 

exhibits only small improvements in power if any, making it 

an uninteresting implementation. 

Again, these results demonstrate that it is possible for dif-

ferent implementations of the same program to not only affect 

the energy consumption, power draw, and performance but to 

affect them in different ways. In other words, it is possible to 

optimize code for these three aspects and the optimizations 

might differ depending on which aspect is most important. 

Table 4 shows the per-vertex and per-edge computation 

L-BFS

time en pwr time en pwr

default USA 0.31 0.27 0.85 0.66 0.36 0.55

324 USA 0.29 0.26 0.89 0.39 0.27 0.68

614 USA 0.32 0.27 0.86 0.55 0.33 0.60

ECC USA 0.32 0.27 0.85 0.68 0.36 0.54

SSSP

time en pwr time en pwr

default USA 0.56 0.54 0.97 2.38 2.16 0.91

324 USA 0.70 0.67 0.95 1.92 1.83 0.95

614 USA 0.55 0.54 0.99 2.38 2.21 0.93

ECC USA 0.58 0.57 0.99 2.36 2.18 0.92

atomic/default wla/default

wlc/default wln/default



 

 

 

costs on the largest input of each of the BFS implementations 

from the different benchmark suites on the default configura-

tion. We use this metric because the same or similar inputs 

could not be used across all implementations and still produce 

usable results. For example, the smallest input for L-BFS that 

would produce sufficient power samples is larger than any of 

the other implementation’s largest inputs. 

 

Table 4: Cross-benchmark BFS comparison, performance per 100k 

processed vertices (top) and per 100k processed edges (bottom) 

 
 

LonestarGPU’s default BFS implementation (L-BFS) is 

faster and more energy efficient than the other suite’s BFS 

implementations, taking almost 7x less time and over 3x less 

energy per edge than the next best implementation (R-BFS). 

In contrast, S-BFS consumes by far the most energy and 

runtime, both per vertex and per edge. These results again 

show that different implementations can yield very different 

energy and performance behaviors. More importantly, they il-

lustrate that changes in the implementation may help one as-

pect more than another. For instance, going from R-BFS to L-

BFS saves twice as much runtime as it saves energy. 

 

2) Changing the program input 

Figure 5 shows how the power draw changes when going 

from one program input to another on the default configura-

tion. Since the active runtime and energy depend on the input, 

we chose power as the metric for comparison between differ-

ent inputs. Most of these programs were run using three in-

puts, but a few were run with just two. Programs from suites 

that only include one input each are not included in the figure. 

Values above 1.0 indicate the power draw got higher. 

The results show that power tends to increase when going 

to larger inputs. The only exceptions are some of the irregular 

codes, where a change in input can greatly change the pro-

gram’s behavior as discussed earlier. BH, LBM, MUM, NB, 

NW, NSP, and PTA all see a power increase of over 20% 

when going from a smaller to a larger input. It is probable that 

these larger inputs exercise the hardware more, e.g., by ac-

cessing more memory locations or utilizing more of the 

GPU’s processing elements, thus raising the power draw. 

 

C. Power efficiency 

Figure 6 shows the range of the average power draw of each 

benchmark suite for different GPU configurations. Note that 

this figure displays absolute values, not ratios. 

There is a relatively large differential between the best and 

worst cases (~60% to over 3x) in each suite, highlighting that 

some codes are more power intensive than others. Surpris-

ingly, many of the Parboil, Rodinia, and SHOC programs do 

not exceed 52 W with any GPU configuration. We believe this 

is because these programs spend most of their runtime waiting 

for memory accesses or do not fully occupy the GPU. In con-

trast, the highly regular and compute-bound SDK codes draw 

about 100W on average and peak at over 160W. 

 

 

Figure 5: Effects on power when varying the program inputs (val-

ues below 1.0 indicate a decrease in power draw) 

Most of the irregular LonestarGPU programs draw sub-

stantially more power than the regular memory-bound codes. 

It appears that the irregularity of these programs exercises 

power-hungry hardware components more, thus increasing 

the activity per instruction and therefore the power draw. 

In all cases, the power consumption decreases when lower-

ing the GPU frequency. In particular the 324 configuration is 

very effective at reducing power. ECC is generally similar to 

the default, but in the CUDA SDK and especially the 

LonestarGPU suite, the range of ECC is smaller than the 

range with the default configuration. 

time energy power

L-BFS 0.13 13.61 3.78

P-BFS 1.97 95.78 15.65

R-BFS 3.40 171.35 50.42

S-BFS 341.09 16785.53 4921.14

time energy power

L-BFS 0.05 5.25 1.46

P-BFS 0.76 37.11 6.07

R-BFS 0.34 17.14 5.04

S-BFS 341.43 16802.33 4926.07

per 100k vertices

per 100k edges



 

 

 

 
Figure 6: Range of power consumption 

 

VI. SUMMARY AND CONCLUSIONS 

This paper studies the energy consumption, power draw, 

and runtime of 34 programs from 5 GPGPU benchmark 

suites. Each program was run at 3 different GPU core frequen-

cies, 2 different GPU memory frequencies, and with ECC en-

abled or disabled. Where available, the programs were run 

with alternate implementations and inputs. The goal of this 

study is to gain general insight into the energy and power be-

havior of code running on a compute GPU, which can only be 

achieved by studying a large number of distinct programs. 

One important question is whether software has the poten-

tial to play an important role in making future accelerators 

more power and energy efficient. Based on our results, the 

answer is affirmative. Our measurements demonstrate that 

changes in the implementation of GPU code can not only 

drastically improve the performance, as is well known, but 

also make the energy consumption several times better and 

reduce the power consumption by over a factor of two. More 

importantly, different implementations and GPU configura-

tions affect the energy, power, and runtime by different 

amounts. Hence, there are code transformations that primarily 

target one aspect and other code transformations that primar-

ily target a different aspect. In other words, it is possible to 

optimize code and the hardware configuration for energy ef-

ficiency and these optimizations may be different from opti-

mizations for performance or power. Of course, some pro-

gram implementations and GPU configurations are strictly in-

ferior to others and should be avoided. 

We made the following main observations when changing 

the GPU’s core and memory frequencies. 1) Different fre-

quencies can impact performance, energy, and power by dif-

ferent amounts. 2) When lowering the core frequency, the en-

ergy does not increase significantly to scale with the increase 

in active runtime. 3) On highly compute-bound codes, power 

reductions that exceed the reduction in core frequency are 

possible. 4) Altering the memory frequency of the GPU can 

have a drastic impact on the runtime and energy of memory-

bound code but does not affect compute-bound code by nearly 

as much. 5) The range by which the power changes is gener-

ally smaller than the range by which the energy and active 

runtime change. 6) Lowering the clock frequency consistently 

results in lower power levels. 

Enabling ECC protection of the main memory has the fol-

lowing effects. 1) Using ECC with even slightly memory- 

bound programs not only results in a slowdown but also in a 

concomitant increase in energy consumption. 2) ECC’s cost 

is entirely dependent upon how many main-memory accesses 

a program makes, so code optimizations that reduce the num-

ber of memory accesses are especially useful when ECC is ac-

tive. Compute-bound codes are mostly unaffected by ECC in 

terms of energy consumption, power draw, and performance. 

Regarding regular and irregular codes, we observed the fol-

lowing. 1) Small changes in timing, e.g., due to a change in 

frequency, can have a large effect on the runtime of irregular 

codes, whose behavior is data- and timing-dependent, but not 

on regular codes. 2) Power tends to increase when going to 

larger inputs except on some irregular codes where any 

change in input can greatly alter the program’s behavior. 

In conclusion, we make the following recommendations for 

selecting meaningful subsets of GPGPU benchmark programs 

for anyone interested in performing power and energy studies 

on GPUs using the built-in power sensor. 1) Use program in-

puts that result in long runtimes to obtain enough power sam-

ples to accurately analyze the energy and power behavior. 

However, avoid poor implementations that run slowly. 2) 

Measure a broad spectrum of codes, including memory- and 

compute-bound programs as well as regular and irregular 

codes since they exhibit different behaviors. However, avoid 

topology-driven implementations of irregular graph-traversal 

codes, as these tend to hide irregularity by doing many unnec-

essary computations (e.g., L-BFS, SSSP, and NSP). 3) As 

none of the studied benchmark suites include all of these types 

of applications, use programs from multiple suites for con-

ducting power and energy studies. Having said that, the codes 

from Rodinia, Parboil, and SHOC exhibit relatively similar 

behavior. 4) To make the results comparable, especially with 

irregular codes or different implementations of the same al-

gorithm, employ metrics like power or energy per processed 

item. 5) Run irregular codes such as PTA that show input-

dependent behavior across several inputs to fully profile the 

behavior of the code. 6) Repeat experiments at different fre-

quency settings if desired as the findings might change. This 

is particularly true when lowering the memory frequency of 

memory-bound codes. 
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