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ABSTRACT
With the availability of sophisticated profiling tools for GPUs such
as NVIDIA’s Nsight Compute and Nsight Systems, programmers
tend to overlook the level of insight that can be gained from simple
profiling techniques. For instance, the basic profiling approach of
manually adding counters to source code is able to expose impor-
tant application-specific behavior that general-purpose profilers
cannot capture. Analyzing global or thread-local counts of certain
events can help developers better reason about program behaviors
that are crucial for detecting performance bottlenecks, validating
key assumptions, and guiding effective optimizations. In this pa-
per, we demonstrate on the example of 5 high-performance GPU
graph-analytics codes how we used this profiling approach to un-
cover interesting application behaviors and to develop performance
optimizations based on some of them.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms; • Software
and its engineering→ Software performance.
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1 INTRODUCTION
Graphics Processing Units (GPUs) are widely used to accelerate
regular codes—applications with predictable memory access pat-
terns and control flow [23]. Many regular codes operate on highly
data-parallel workloads, allowing the same operation to be applied
across many data elements with minimal synchronization [25]. For
example, in image processing, fixed-size arrays enable threads to
independently compute their share in parallel. This predictability
in data access and execution flow makes regular codes well-suited
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for GPUs, often delivering significant speedups over multicore
CPUs [14]. Due to the widespread use of regular codes, profilers
for GPUs have been built primarily with such programs in mind.

Irregular codes, in contrast, have less predictable data access
patterns and control flow. They are characterized by the use of
irregular data structures such as graphs, trees, and hash tables.
Graphs, for instance, may have an arbitrary number of vertices and
edges. Since different vertices can have widely differing degrees,
some require substantially more computation than others, making
efficient load balancing a challenge [21]. The behavior of irregular
programs is thus dynamic and can vary significantly between inputs.
Moreover, the irregularity in the data processing pattern leads to
unpredictable control flow [13]. Due to this unpredictability, it is
often challenging to exploit parallelism in irregular codes [32].

Nevertheless, irregular codes are becoming prevalent in problem
domains like scientific simulations [8, 29], prediction and forecast-
ing [35], data mining [37], social network analysis [20], compiler
design [2], system modeling [31], and so on. Irregular data struc-
tures can more efficiently represent the underlying problem in these
domains. However, high-performance parallel implementations of
irregular codes generally require program-specific optimization
and parallelization, necessitating a thorough understanding of the
program behavior. Profiling is crucial in this context. Unfortunately,
existing profiling tools focus on general performance information
that tends to have less relevance for irregular codes.

Profilers assess the performance of a program by collecting infor-
mation related to its execution, like function and kernel runtimes,
memory allocations and deallocations, data transfer rates, register
usage, etc. With these tools, the behavior of regular codes can often
be easily understood as their execution typically remains consistent
across, for example, the execution of a loop or a function. However,
the same cannot be said for irregular codes, whose behavior can
vary significantly even within a single loop. Moreover, standard
profilers are limited in their ability to provide application-specific
information. For instance, the number of times a particular com-
putation step conflicts with another is information that standard
profilers do not capture. Yet, such information can help program-
mers gain key insight into the operation of critical code sections
and hence find clues to better parallelize or optimize them.

We investigate the merits of profiling irregular CUDA codes by
manually inserting counters into each of the five graph analytics
codes from the ECL suite [26, 27]: Connected Components (CC) [22],
Graph Coloring (GC) [3], Maximal Independent Set (MIS) [12], Min-
imum Spanning Tree (MST) [17], and Strongly Connected Compo-
nents (SCC) [4]. We selected this suite because it contains irregu-
lar codes that deliver state-of-the-art performance on GPUs. It is
important to note that these implementations are already highly
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optimized, guided by sophisticated profiling tools, and therefore
leave little opportunity for further improvement.

We embed counters, either per-thread or cumulative depending
on need, into the source code to analyze kernel-specific operations.
The intent is to verify that each kernel behaves as expected for the
given input. In cases where the collected metrics reveal unexpected
statistics, we investigate the underlying cause and, where meaning-
ful, devise optimizations based on our findings. We then implement
these optimizations and evaluate their impact. Although analyzing
code using manually inserted counters is a well-established prac-
tice, we demonstrate that this simple approach remains effective
for uncovering additional insights, even in highly optimized codes.

The counters expose interesting behavior not captured by stan-
dard profilers in all five programs as highlighted in the result section.
For three of the programs, they helped us devise optimizations to
improve the performance even though the codes in the ECL suite are
already highly optimized. Our modifications to the MST code only
yields an average improvement of 0.14%. The SCC code shows both
performance gains and losses, with speedups as well as slowdowns
of up to 27%, depending on the input. Finally, the CC code exhibits
runtime improvements ranging from 0% to 16%, illustrating that
simple manual profiling can reveal otherwise missed information.

A key point to note is that, while manual profiling may not
always translate into actionable optimizations, it consistently pro-
vides useful insight into the behavior of irregular programs. These
insights lead to tangible performance improvements in some codes
and shed light on the inner workings of others. That said, this work
makes the following main contributions.

• We manually instrument the CUDA source codes of five
graph analytics programs with counters to study application-
specific behavior that general-purpose profilers cannot catch.

• We statistically and visually analyze the code-specificmetrics
to reveal interesting and unexpected behavior of irregular
programs that has never before been described.

• We draw conclusions from our analysis and discuss useful
insights regarding program performance.

• We devise optimizations based on these insights that yield
speedups even for state-of-the-art codes.

The rest of the paper is organized as follows. Section 2 reviews
the five irregular codes we study. Section 3 describes the code-
specific events we profile and the metrics we use to evaluate them.
Section 4 summarizes related work. Section 5 presents the exper-
imental methodology. Section 6 analyzes the program behavior
based on the profiling results and discusses optimizations. Section 7
summarizes our findings and draws conclusions.

2 CODES INSTRUMENTED
This section reviews the five irregular CUDA codes from the base-
line ECL suite that we profiled for this study.

2.1 Connected Components (CC)
The CC algorithm identifies CCs in an undirected graph, where a
CC is a maximal set of vertices such that there exists a path between
any two vertices in the set. ECL-CC is a high-performance GPU

implementation for computing CCs. It uses a union-find data struc-
ture to efficiently manage and merge components. The algorithm
has three main stages: initialization, computation, and finalization.

In the initialization stage, each vertex is initialized with the ID
of the first neighbor in its adjacency list that has a smaller ID; if
no such neighbor exists, it keeps its own ID. This heuristic leads to
less work in the next phase compared to just using the vertex ID.

The main computation stage runs asynchronously and consists
of 3 CUDA kernels that are customized for different vertex degrees
(low, medium, and high) to balance the load across the threads. Each
kernel performs union-find operations using intermediate pointer
jumping. It interleaves hooking (union) and pointer jumping and
uses atomicCAS to update parent pointers without locking.

The finalization stage applies a final pointer-jumping pass to
ensure each vertex points directly to its component representative.

2.2 Graph Coloring (GC)
Graph coloring is the process of assigning colors to the vertices
of an undirected graph so that no two adjacent vertices share the
same color and a minimal number of colors is used. ECL-GC is a
fast GPU-based graph-coloring algorithm that increases parallelism
using shortcut techniques without compromising coloring quality.
It has two main stages of operation: initialization and coloring.

The initialization stage prepares the input graph by imposing a
vertex ordering based on the Largest-Degree-First (LDF) heuristic.
This converts the undirected graph into a Directed Acyclic Graph
(DAG), where edges point from higher-priority (higher-degree)
to lower-priority vertices. Each vertex is assigned a bitmap rep-
resenting its possible colors, with the number of possible colors
initialized based on its in-degree. This setup defines the partial
ordering needed for the Jones-Plassmann (JP) coloring strategy.

In the coloring stage, the algorithm colors the vertices in parallel
while using two optimizations called shortcuts. These shortcuts
safely relax the strict dependency on higher-priority neighbors
by using the bitmaps’ contents to infer when it is safe to color a
vertex earlier than normally allowed. Shortcut 1 allows coloring
a vertex if its best possible color is no longer under consideration
by any higher-priority neighbor. Shortcut 2 removes dependency
edges when the sets of possible colors for two connected vertices
no longer overlap, further increasing parallelism.

2.3 Maximal Independent Set (MIS)
The MIS of a graph is a set of non-adjacent vertices that cannot be
extended by including any other vertex. The ECL-MIS code com-
bines aspects of Luby’s random-selection and random-permutation
algorithms and adds optimizations to achieve high performance.

The ECL-MIS implementation operates in two stages: initializa-
tion and selection. In the initialization stage, each vertex is assigned
a compact, one-byte value encoding both its status and priority. The
priority is based on a function that favors low-degree vertices and
uses vertex IDs to break ties. This setup creates a deterministic par-
tial permutation that boosts the MIS size while minimizing memory
usage and avoiding the need for separate status and priority arrays.

In the selection stage, threads asynchronously process undecided
vertices. If a vertex has the highest priority among its neighbors, it
is marked “in” and its neighbors are set to “out.” The algorithm uses
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short-circuit checks to reducework and requires no synchronization
as status updates are monotonic. The threads continue until all of
their assigned vertices are decided.

2.4 Minimum Spanning Tree (MST)
AnMST is a subset of the edges in a weighted, connected graph that
connects all vertices with the smallest possible total edge weight
and without cycles. The ECL-MST implementation operates in two
main stages: initialization and iterative MST construction.

During initialization, each vertex is assigned to its own set, edges
are marked as unused, and the worklist is populated with all unique
edges. This enables fast union-find operations using disjoint sets.

In the MST construction stage, the algorithm iteratively pro-
cesses edges to identify and merge disjoint sets via their lightest
connecting edges. It uses atomic operations to track the lightest
edge for each set and includes only those in the MST that are the
lightest for at least one endpoint. This continues until no more
merges are possible. For denser graphs, a filtering step removes
redundant edges early. Through edge-centric processing, implicit
path compression, and hybrid parallelism, ECL-MST achieves high
performance across diverse graph types.

2.5 Strongly Connected Components (SCC)
An SCC of a directed graph is a maximal subset of vertices such
that every vertex in the subset is reachable from every other vertex
in the subset. ECL-SCC is a GPU code that computes the SCCs
present in a given directed graph using a new parallel algorithm. It
progresses through three main stages in each iteration: signature
initialization, maximum-value propagation, and edge removal.

In the initialization stage, each vertex is assigned two signature
values, 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 , both set to its own unique ID. These values are
used to track the highest-reachable vertex IDs through incoming
and outgoing paths, respectively. This setup enables all vertices to
concurrently act as “pivots”, ensuring high initial parallelism.

The second stage involves maximum-value propagation, where
the kernel propagates the maximum 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 values along the
edges. For each edge, it updates the 𝑣𝑜𝑢𝑡 of the source with the
maximum of its current value and the 𝑣𝑜𝑢𝑡 of the destination, and
similarly updates the 𝑣𝑖𝑛 of the destination with that of the source.
This continues iteratively until a fixed point is reached.

In the edge removal stage, edges between vertices with differing
signatures are removed, as they cannot belong to the same SCC.
These three stages repeat on the pruned graph until all vertices
have matching 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 values, at which point each vertex’s
signature uniquely identifies the SCC to which it belongs.

3 APPROACH
We instrument the discussed programs by augmenting their CUDA
sources in a manner that does not affect overall functionality. Specif-
ically, we add counter variables to track the number of times im-
portant events happen, which are either thread-local or global,
depending on the granularity we need. The thread-local counters
show the number of times a specific event occurred for each thread,
whereas a global counter shows the total number of times an event
occurred across all threads.

As with virtually all profiling tools, our approach introduces
overhead and, hence, affects the execution time of the application.
However, all programs we study are deterministic, producing iden-
tical outputs for identical inputs regardless of whether profiling is
enabled. It is worth noting that some codes (e.g., ECL-MIS) are deter-
ministic in their final results but exhibit internal non-determinism,
meaning certain intermediate results depend on thread timing and
may differ between runs. Adding counters can alter the timing but
does not affect the overall non-determinism of these codes.

Subsections 3.1 and 3.2 list general and application-specific met-
rics that wemeasure inmultiple codes. To the best of our knowledge,
no general-purpose profiler tracks these metrics. We measure them
to capture application-specific events that standard instrumenta-
tion tools cannot expose. A direct comparison between these tools
and our approach is, therefore, not possible.

3.1 General Metrics
3.1.1 Load balance. This metric shows how well the workload is
distributed across threads. It is embedded in each kernel to see how
much of the overall work is being handled by each thread.

3.1.2 Iterations. This metric tracks the number of iterations per-
formed by the threads in cases where individual threads repeat the
same set of instructions until a given condition is met. How we
define an iteration is application dependent, but it typically refers to
an iteration of the outermost loop in the main computation kernel.

3.1.3 Idle threads. This metric tracks the number of threads that
are not actively participating in the computation. Threads can end
up idle in two ways. When launching as many thread blocks as
needed to run a thread per vertex or edge, some of the threads in
the last block may not have any work assigned to them. The second
way is when a particular vertex or edge does not fulfill a given
condition, the assigned thread may not have to do anything.

3.1.4 Active threads. This metric measures the number of threads
that actively compute. It is the counterpart to the number of idle
threads. We use this metric to study resource utilization.

3.1.5 Atomic updates. This metric tracks the outcome of atomic
operations. There are two distinct types of atomic instructions.
Specialized CUDA atomics like atomicMin and atomicMax always
execute successfully and guarantee completion without retries, but
they may not update the target value if it is already the minimum
(or maximum) of the two compared values. In contrast, the generic
atomicCAS may fail if the target value does not match the expected
value, often requiring a retry loop. AtomicCAS is essential for more
complex synchronization tasks. Learning about the outcomes of
atomic operations (e.g., whether they updated the target or not) is
critical for finding bottlenecks related to parallel updates of shared
memory locations as well as thread contention.

3.2 Algorithm-specific Metrics
General metrics like the ones discussed above account for only
some of the events we track. We also use algorithm-specific metrics
to measure computations that are specialized to the given code. For
instance, in ECL-CC, the current representative (the smallest vertex
ID reachable) of a vertex is captured by calling a function. The
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number of times the function is called, and the number of times the
return value is smaller (or greater) than the old representative, is
information that is specific to this code. We embed such algorithm-
specific counters in all tested codes.

4 RELATEDWORK
Profiling and performance analysis of GPU programs have been
studied extensively, with numerous tools and frameworks devel-
oped to support performance characterization, optimization, and
architectural modeling. The majority of existing approaches focus
on IR-level or ISA-level instrumentation and do not support the
metrics we are interested in.

General-purpose profiling and modeling tools such as TAU [34]
and HPCToolkit [1] provide runtime analysis and statistical sum-
maries for parallel programs. TAU supports a wide range of archi-
tectures and offers event-based profiling and tracing but is primarily
CPU-focused and does not expose low-level GPU kernel execution
behavior. NVIDIA’s CUDA Profiling Tools Interface CUPTI [30]
is widely used by tools like Nsight Systems and Visual Profiler
to collect detailed kernel execution metrics. It exposes hardware
performance counters such as instruction throughput, memory
bandwidth, occupancy, and warp execution efficiency. These coun-
ters are valuable for understanding overall GPU utilization patterns.
However, CUPTI operates primarily at the level of whole kernels
and aggregated statistics per warp or SM, and it lacks instrumen-
tation capabilities to capture thread-level event counts specific to
algorithmic behavior of irregular workloads.

Dynamic instrumentation and compilation frameworks like
Ocelot [16], Lynx [18], and NVBit [9] aim to improve profiling flexi-
bility. Ocelot enables dynamic binary translation of PTX to multiple
backends, allowing runtime performance tuning and architectural
exploration without source recompilation. Lynx provides trans-
parent, low-overhead injection of profiling routines into GPGPU
applications at the PTX level, making it suitable for examining
memory access patterns and control divergence in data-parallel
workloads. NVBit, developed by NVIDIA, provides a lightweight,
low-overhead binary instrumentation framework for dynamically
inserting custom analysis code at the SASS instruction level. It sup-
ports runtime inspection and transformation of GPU instructions
and is compatible with all CUDA applications without requiring
recompilation. All three frameworks offer more flexibility than
fixed-function profilers, but they do not have access to high-level
program semantics nor were they designed for irregular codes.

Instrumentation for CPUs has also influenced GPU tooling.
Pin [28], a dynamic instrumentation framework for x86 binaries,
enables detailed runtime analysis via user-defined instrumentation
functions. While not GPU-specific, Pin’s architecture has inspired
similar GPU-level tools. For instance, Barra [15] provides functional
simulation at the PTX level, supporting flexible introspection into
memory access and thread execution behavior. It facilitates studying
kernel internals independent of the hardware, but it incurs high
overhead and lacks support for newer GPU features.

Analytical and predictive GPU performance models offer a dif-
ferent approach. The adaptive performance modeling tool for GPU
architectures [6] estimates GPU kernel execution time by consider-
ing control divergence, shared memory bank conflicts, and memory

coalescing. This model is validated against a variety of workloads
and shows good accuracy, though it assumes a regular execution
flow. The quantitative performance analysis model for GPU archi-
tectures [38] presents a microbenchmark-driven model for GPU
pipeline behavior, mapping the effects of memory latency, band-
width, and computation intensity to performance outcomes. These
models help developers understand performance bottlenecks but
are limited when applied to irregular codes.

Simulator-integrated visualization tools [5] provide time-series
views of warp scheduling, memory traffic, and pipeline usage us-
ing GPGPU-Sim as a backend. This enables fine-grained tracing of
control divergence and bottlenecks over time, offering insight into
low-level architectural dynamics. Similarly, detailed kernel anal-
ysis through simulation [7] captures occupancy, divergence, and
throughput patterns in a variety of CUDA workloads to facilitate
kernel classification based on performance behavior. However, both
techniques are limited by simulation speed and scalability issues.

Custom instrumentation frameworks extend profiling capabil-
ities with greater flexibility. CUDA Flux [10] allows developers
to rewrite PTX code to insert instrumentation for collecting run-
time metrics such as warp divergence and memory coalescing. It
avoids reliance on hardware counters and works across architec-
tures. CUDAAdvisor [33] is an LLVM-based framework that per-
forms static analysis on CUDA programs to infer control flow, reuse
distances, and divergence across basic blocks. It enables hardware-
independent profiling and feedback across CUDA versions. Simi-
larly, SASSI [36] is a profiling system that supports fine-grained
metric collection per thread or warp and allows developer-defined
metrics to be embedded directly in the code. These tools enable
profiling that is both flexible and accurate, but they still typically
lack semantic awareness of algorithm-level behavior.

Many of the profilers and instrumentation frameworks discussed
above are highly sophisticated and can greatly aid with and sim-
plify the assessment of GPU application performance. Tools like
Nsight Systems and Nsight Compute provide intuitive visualiza-
tions and timeline views that help identify kernel bottlenecks and
resource underutilization. CUPTI enables access to hardware coun-
ters for low-level performance analysis. Dynamic instrumentation
frameworks such as NVBit, Lynx, and Ocelot allow runtime code
modification and targeted inspection without recompilation, while
static analysis tools like CUDAAdvisor enable compiler-level rea-
soning about control flow and memory usage. Simulator-based
approaches, including GPGPU-Sim and Barra, offer fine-grained
introspection into kernel behavior and pipeline activity, and ana-
lytical models help estimate performance based on architectural
parameters. Together, these tools form a powerful suite for diag-
nosing inefficiencies and optimizing data-parallel GPU workloads.

However, they inevitably leave small but important gaps, par-
ticularly when applied to irregular programs, as they typically
operate at the level of compiled code or hardware instructions
and are not designed to look into high-level or algorithm-specific
behavior. For instance, information related to program semantics
(e.g., the number of label updates of a vertex) could be insightful
when assessing the performance of graph analytics codes. However,
general-purpose tools cannot measure such metrics because they
do not know what is important in a specific program. Moreover,
they do not provide certain low-level information (e.g., the failure
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rate of atomics) even though such metrics could probably be sup-
ported. Hence, we recommend that programmers not forget about
the simple approach of manually adding counters to CUDA code,
like we have done, to complement existing profilers by capturing
additional information, in particular application-specific metrics.

5 EXPERIMENTAL METHODOLOGY
5.1 Hardware and Software
We ran the instrumented ECL suite codes on an NVIDIA GeForce
RTX 4090 GPU. This GPU is based on the Ada Lovelace architecture
and includes 16,384 CUDA cores organized into 128 streaming
multiprocessors (SMs). Each SM includes 128 kB of L1 cache/shared
memory, and the entire GPU has 72 MB of L2 cache. The card is
equipped with 24 GB of GDDR6X memory that has a peak memory
bandwidth of 1008 GB/s. We used the nvcc compiler with the -O3
flag to enable optimizations and the -arch=compute_89 flag to
target the 8.9 compute capability of the GPU.

The host system runs Fedora Linux 41 with kernel version 6.12.8
and is powered by an AMD Ryzen Threadripper 2950X CPU, with
16 cores and 32 hardware threads. It includes 48 GB of DDR4 main
memory. We used CUDA Toolkit version 12.6 and NVIDIA driver
version 545.29 and compiled the codes with nvcc version 12.6.85.

5.2 Benchmarks
We evaluated the 5 graph codes on the inputs listed in Table 1 [11].
The inputs vary significantly in size, type, and degree. They are
the same as Liu et al. used for their work that introduces the ECL
suite [27]. Four of the codes—MIS, CC, GC, and MST—operate on
undirected graphs, the MST code uses weighted graphs, and SCC
processes directed graphs. The upper block of Table 1 lists the
inputs for MIS, CC, MST, and GC, and the lower block for SCC.

We only use mesh graphs for ECL-SCC because it was developed
for meshes [4]. All input graphs are stored in compressed-sparse-
row (CSR) format [19]. We run each code nine times per input and
report results from the run yielding the median runtime.

6 RESULTS
6.1 Program Behavior Analysis
In this section, we present our profiling results, analyze the observed
behavior, and derive insights. Note that we only show a small
portion of the data gathered and only highlight the most important
characteristics of each code.

6.1.1 ECL-MIS. Table 2 lists per-thread statistics of 3 aspects of
the main kernel in ECL-MIS: the number of vertices assigned, the
number of iterations, and the number of vertices finalized. Each
metric is measured separately for every thread and averaged across
all threads (196,608 on the RTX 4090) and all iterations. On the
europe_osm graph, each thread, on average, processes around 259
vertices and finalizes just over 28 vertices in about 2 iterations.

Vertices are assigned to threads in a round-robin fashion to
balance the workload. Hence, all threads get the same number of
vertices ±1, which is why we only show the average in the table. We
list this number as a point of reference for the other two metrics.

The number of iterations reflects the kernel’s asynchronous
nature: each thread repeatedly processes its vertices until all of

Table 1: Input graphs. Abbreviations: InTopo = Internet Topol-
ogy, PubCit = Publication Citation, PatCit = Patent Citation

Graph Name Edges Vertices Type d-avg d-max
2d-2e20.sym 4,190,208 1,048,576 grid 4.0 4
amazon0601 4,886,816 403,394 co-purchases 12.1 2,752
as-skitter 22,190,596 1,696,415 InTopo 13.1 35,455
citationCiteseer 2,313,294 268,495 PubCit 8.6 1,318
cit-Patents 33,037,894 3,774,768 PatCit 8.0 793
coPapersDBLP 30,491,458 540,486 PubCit 56.4 3,299
delaunay_n24 100,663,202 16,777,216 triangulation 6.0 26
europe_osm 108,109,320 50,912,018 roadmap 2.1 13
in-2004 27,182,946 1,382,908 weblinks 19.7 21,869
internet 387,240 124,651 InTopo 3.1 151
kron_g500-logn21 182,081,864 2,097,152 Kronecker 86.8 213,904
r4-2e23.sym 67,108,846 3,888,608 random 8.0 26
rmat16.sym 967,866 65,536 RMAT 14.8 569
rmat22.sym 65,660,814 4,194,304 RMAT 15.7 3,687
soc-LiveJournal1 85,702,474 4,847,571 community 20.3 20,333
USA-road-d.NY 730,100 264,346 roadmap 2.8 8
USA-road-d.USA 57,708,624 23,947,347 roadmap 2.4 9
toroid-wedge 485,564 196,608 mesh 2.47 4
star 654,080 327,680 mesh 2.00 2
toroid-hex 4,684,142 1,572,864 mesh 2.98 4
cold-flow 6,295,558 2,112,512 mesh 2.98 5
klein-bottle 18,793,715 8,388,608 mesh 2.24 4

them have been decided. The average number of iterations executed
by most threads is small and correlates somewhat (𝑟 = 0.64) with
the ratio of the maximum degree over the average degree of the
vertices. (A high such ratio is indicative of a power-law graph, which
tends to have a low diameter [24].) This finding is surprising, as
graph algorithms that propagate information along edges typically
require more iterations on higher-diameter graphs. Yet, ECL-MIS
exhibits the opposite behavior. The reason is that the MIS algorithm
makes local decisions based on neighboring vertices and hardly
ever propagates information far in the graph.

The maximum number of iterations executed by any thread also
exhibits an interesting behavior. On our smallest input (internet),
this number is higher than on some of our largest inputs (e.g.,
europe_osm), which have orders of magnitudemore vertices. In fact,
there is a small negative correlation with the number of vertices in
the graph (𝑟 = −0.37). This is because each thread only processes a
single vertex on our smallest inputs, meaning there is little work per
iteration. Hence, each thread rapidly checks a few conditions over
and over until they finally change (due to updates from neighboring
threads), explaining the high maximum iteration counts.

A thread eventually finalizes all of its vertices that are ‘in’ theMIS.
This number is generally much lower than the number of assigned
vertices, since few are included in the MIS per iteration. Finalizing a
vertex also marks its neighbors as ‘out’. The average and maximum
number of vertices finalized per thread both correlate strongly with
the number of vertices in the input (𝑟 ≥ 0.98), indicating a balanced
vertex distribution and little load imbalance.

Since ECL-MIS is asynchronous, some of its behavior is thread-
timing dependent [12], making it internally non-deterministic (but
the final result is deterministic). To account for this internal non-
determinism, we measured the number of iterations executed by
each thread several times for each input. Table 3 lists the results.

As we can see, the iteration counts are a little different for every
run, but the general trends remain the same. We found other met-
rics to behave similarly (not shown). Hence, despite its lock-free
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Table 2: ECL-MIS metrics

Graph Iterations Vertices Finalized
Avg Max Avg Avg Max

2d-2e20.sym 2.28 42 5.34 0.71 6
amazon0601 2.16 53 2.05 0.26 3
as-skitter 6.46 140 8.67 1.62 9
cit-Patents 1.89 29 19.20 4.38 18
citationCiteseer 1.84 100 1.38 0.40 2
coPapersDBLP 4.46 215 2.76 0.08 3
delaunay_n24 1.96 19 85.34 8.65 42
europe_osm 2.04 15 258.95 38.42 141
in-2004 4.12 235 7.03 1.60 8
internet 1.34 52 0.73 0.28 1
kron_g500-logn21 2.05 42 10.70 2.53 11
r4-2e23.sym 2.16 28 42.66 4.17 26
rmat16.sym 1.74 33 0.55 0.08 1
rmat22.sym 2.12 36 21.33 2.79 18
soc-LiveJournal1 4.35 79 24.66 3.99 22
USA-road-d.NY 1.76 80 1.36 0.31 2
USA-road-d.USA 1.89 11 121.80 22.32 81

Table 3: Measurements across multiple runs of ECL-MIS

Number of iterations
Graph Run 1 Run 2 Run 3

Avg Max Avg Max Avg Max
2d-2e20.sym 2.28 42 2.32 49 2.26 37
amazon0601 2.16 53 2.11 51 2.11 58
as-skitter 6.46 140 5.79 128 6.35 140
cit-Patents 1.89 29 1.90 31 1.91 31
citationCiteseer 1.84 100 1.82 70 1.85 79
coPapersDBLP 4.46 215 4.38 223 4.36 169
delaunay_n24 1.96 19 1.97 21 1.95 20
europe_osm 2.04 15 2.04 15 2.04 14
in-2004 4.12 235 4.11 238 4.19 226
internet 1.34 52 1.34 56 1.36 47
kron_g500-logn21 2.05 42 2.05 46 2.04 45
r4-2e23.sym 2.16 28 2.17 26 2.18 27
rmat16.sym 1.74 33 1.76 35 1.78 40
rmat22.sym 2.12 36 2.14 36 2.11 31
soc-LiveJournal1 4.35 79 4.27 79 4.18 74
USA-road-d.NY 1.76 80 1.78 72 1.74 54
USA-road-d.USA 1.89 11 1.89 12 1.89 13

asynchronous implementation, this code exhibits quite consistent
behavior. Nevertheless, it is important to note that the same pro-
gram and input may have to be profiled multiple times, even if
the overall code is deterministic. Moreover, since the execution of
profiling instructions affects thread timing, the measurement of
thread-timing-sensitive metrics may be perturbed.

6.1.2 ECL-SCC. Figure 1, generated using the star.mesh input, il-
lustrates how the ECL-SCC algorithm progressively identifies SCCs.
The plot legends list the values of m and n, where m is the outer
loop counter and n is the inner loop counter. Hence, n represents
the current signature-propagation iteration, in which the maximum
vertex IDs reachable along the edges are updated. Propagation con-
tinues iteratively until no further changes occur. The outer loop
counter m is incremented, and n is reset to 1 (reflecting a do-while
loop) after removing all edges with non-matching signatures and
resetting all vertex signatures to their vertex IDs. This process re-
peats until the two signature values are equal in all vertices. Note
that signature propagation occurs at the thread-block level: if any
thread in a block performs an update, all threads in that block re-
main active and continue checking for further updates in the next
local iteration. Likewise, if any block detects an update, the entire

Figure 1: ECL-SCC code progression

grid of blocks re-enters the outer propagation loop to check for
additional changes. To analyze this behavior in detail, we track the
number of updates performed by each thread block during every
signature-propagation iteration (n).

The x-axis of the plots lists the block IDs (384 total blocks with
512 threads per block), and the y-axis lists the number of signature
updates in each thread-block for each signature-propagation itera-
tion (m). We show plots for two different outer iterations: m=1 and
m=2 out of 10 total. The upper plots show the number of block-wide
updates in the first outer iteration (m=1). Of the 43 total signature-
propagation iterations, the 1st and 27th are shown. In the first plot
(upper left), we see around 70 updates in each block, meaning the
threads in each block collectively updated their in and out signa-
tures around 70 times. These updates may trigger further updates
in subsequent iterations, but they diminish quickly, leading to an
increase in the number of inactive blocks. The upper right plot
illustrates this, with approximately 10 updates for the majority of
the blocks and no updates in others. Signature propagations thus
appear to remain largely localized within thread blocks.

Similar behavior is observed in the second outer iterations (m=2,
bottom plots). In the second-to-last iteration (lower right plot), only
one thread block is active, with only 3 updates, possibly from just
one thread. However, all threads in the block still check for updates,
as any change triggers another propagation step. Additional plots
from other inputs (not shown) show comparable trends. These
observations suggest that smaller block sizes may lower the average
number of iterations per block and improve performance.

6.1.3 ECL-CC. Table 4 shows profiling data from the init kernel
in ECL-CC, which accounts for 10-20% of the total runtime. It
includes two metrics: the number of vertices initialized and the
number of vertices traversed to find the first smaller neighbor. As
discussed in Section 2.1, ECL-CC initializes the label of each vertex
to the ID of the first neighbor in its adjacency list with a smaller ID.

The number of vertices initialized matches the total number of
vertices in each input graph as all vertices are initialized and the
counts are aggregated across all threads. We include this value as
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Table 4: ECL-CC init kernel profiling data

Graph
Vertices

initialized
Vertices
traversed Graph

Vertices
initialized

Vertices
traversed

2d-2e20.sym 1.05 × 106 1.68 × 106 internet 1.25 × 105 1.65 × 105
amazon0601 4.03 × 105 4.04 × 105 kron_g500-logn21 2.10 × 106 2.59 × 106
as-skitter 1.70 × 106 1.70 × 106 r4-2e23.sym 8.39 × 106 8.39 × 106
citationCiteseer 2.68 × 105 4.00 × 105 rmat16.sym 6.55 × 104 10.35 × 104
cit-Patents 3.77 × 106 8.21 × 106 rmat22.sym 4.19 × 106 6.20 × 106
coPapersDBLP 5.40 × 105 6.00 × 105 soc-LiveJournal1 4.85 × 106 4.87 × 106
delaunay_n24 1.68 × 107 2.74 × 107 USA-road-d.NY 2.64 × 105 2.94 × 105
europe_osm 5.09 × 107 5.29 × 107 USA-road-d.USA 2.39 × 107 3.23 × 107
in-2004 1.38 × 106 2.58 × 106

a reference for the second metric. For most inputs, the number of
vertices traversed is only slightly higher than, and often nearly
equal to, the number of vertices initialized. A small difference be-
tween the two metrics indicates that most vertices find a smaller
neighbor after visiting very few neighbors (e.g., as-skitter). Some
inputs result in a large difference (e.g., cit-Patents), meaning that
initialization requires searching through many neighbors.

Per-thread data (not shown) corroborates that the number of ver-
tices traversed is either 1 or equal to the vertex’s degree, indicating
a full traversal of the adjacency list when a smaller neighbor cannot
be found. This behavior stems from the fact that the adjacency lists
are sorted, placing the smallest neighbor first. Hence, failing to find
a smaller neighbor ID right away results in unnecessary work since
all remaining neighbors have an even higher ID.

6.1.4 ECL-MST. Figure 2 presents key profiling metrics for the
ECL-MST code on the amazon0601 input, focusing on the main
computation kernel (K1). For each iteration, it shows the fraction
of launched threads that end up having work to do (i.e., process
edges connecting distinct components), the percentage of conflict-
ing threads (attempting atomic updates to the same memory loca-
tion), and the fraction of useless atomics (atomicCAS failures and
atomicMin operations with no effect).

The x- and y-axes in the figure represent percentages and itera-
tions, respectively, with each set of three bars showing metrics from
one iteration. The code distinguishes between “Regular” iterations,
which process the light edges (with weights below a threshold), and
“Filter” iterations, which handle heavier edges (if needed).

Except in the first iteration of both kinds, the percentage of
threads doing useful work is quite low. This trend also holds for
other inputs (not shown). Upon inspecting the code, we found part
of the reason for this behavior to be the launch configuration (i.e.,
the number of blocks), which is not updated correctly.

ECL-MST builds the MST by successively merging connected
components (CCs) along their lightest edge until just one CC re-
mains. Early iterations involve many small CCs connected to others.
Interestingly, our results show that thread conflicts tend to decrease
with increasing iteration count. We expected the initial abundance
of CCs to distribute atomic updates and result in fewer conflicts.

The reason for this behavior is that each thread non-atomically
checks if its edge is lighter than the current minimum for the CCs it
connects. Only if it passes this check does it attempt an atomic up-
date. Early on, many threads pass the check, yielding more conflicts.
In later iterations, with fewer CCs and edges left, most threads fail
the check and skip the atomic update, preventing conflicts.

0 20 40 60 80 100
Percentage

Regular iter 1

Regular iter 2

Regular iter 3

Regular iter 4

Regular iter 5

Regular iter 6

Regular iter 7

Filter iter 1

Filter iter 2

Filter iter 3

Filter iter 4

100% of 395,264 threads launched

39% of 395,264 threads launched

51% of 154,624 threads launched

63% of 78,848 threads launched

69% of 49,664 threads launched

53% of 34,816 threads launched

0% of 18,432 threads launched

100% of 744,960 threads launched

15% of 744,960 threads launched

3% of 114,688 threads launched

0% of 4,096 threads launched

74% of 395,197 working threads

50% of 154,271 working threads

33% of 78,752 working threads

13% of 49,514 working threads

4% of 34,378 working threads

1% of 18,286 working threads

0% of 0 working threads

32% of 744,790 working threads

18% of 114,442 working threads

21% of 3,690 working threads

0% of 0 working threads

19% of 869,559 attempts

12% of 210,210 attempts

14% of 52,200 attempts

17% of 10,532 attempts

35% of 1,737 attempts

62% of 227 attempts

0% of 0 attempts

20% of 437,929 attempts

20% of 34,072 attempts

42% of 1,041 attempts

0% of 0 attempts

% Threads doing useful work % Thread conflicts % Failed atomic operations

Figure 2: Bar plot of metrics derived from ECL-MST profiling
data for the amazon0601 input. Error bars show 95% confi-
dence intervals around the median.

The percentage of failed atomics increases with the iteration
count. This is expected as the threads that pass the check try to
update one of the remaining CCs, and there are exponentially fewer
CCs in later iterations, yielding a higher percentage of failures.

6.1.5 ECL-GC. Table 5 presents per-vertex statistics of two coun-
ters in the runLarge kernel, which colors high-degree vertices
(𝑑𝑒𝑔𝑟𝑒𝑒 > 31). Hence, the table excludes inputs that only have ver-
tices with degrees below this threshold. The first counter, “Best
available color changed,” records how often a vertex’s best available
color is invalidated because a higher-priority neighbor has claimed
it. The second counter, “Color assignment not yet possible,” tracks
how often a vertex cannot be colored because some higher-priority
neighbor might still affect which color the vertex gets. This counter
shows how many times a vertex is processed unsuccessfully.

Using coPapersDBLP as an example, which has a high average
degree, the table shows that every vertex has its best color inval-
idated 40.3 times and is processed unsuccessfully 186.4 times on
average. In contrast, inputs with low average degrees such as ama-
zon0601, citationCiteseer, and internet yield much lower counts.
These results suggest that dense inputs increase the likelihood of
color invalidations and of unsuccessful coloring attempts. Indeed,
the averages in Table 5 correlate moderately (𝑟 ≈ 0.62) with the
average degree of the graphs, reinforcing that the density is an
important factor affecting the efficiency of the coloring heuristic.

6.2 Optimizations based on Observations
In this section, we discuss code-specific optimizations for ECL-SCC,
ECL-CC, and ECL-MST that we derived from what we learned in
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Table 5: Per-vertex statistics of the ECL-GC runLarge kernel

Graph
Best available
color changed

Color assignment
not yet possible

Avg Max Avg Max
amazon0601 0.12 10 0.26 45
as-skitter 1.86 61 27.09 1316
cit-Patents 0.97 10 3.70 68
citationCiteseer 0.09 10 0.25 41
coPapersDBLP 40.31 342 186.39 3363
in-2004 14.52 446 25.04 4632
internet 0.00 4 0.00 6
kron_g500-logn21 10.22 322 61.52 1057
rmat16.sym 0.12 11 0.84 58
rmat22.sym 8.57 29 82.80 163
soc-LiveJournal1 20.18 289 120.92 1620

Table 6: Speedups for a few ECL-
SCC block sizes (original=512)

Graph Threads Per Block
64 128 256 1024

toroid-wedge 0.85 0.98 1.03 0.94
star 0.99 1.14 1.12 0.76
toroid-hex 0.79 0.95 1.08 0.77
cold-flow-sponge 0.89 0.95 0.99 0.89
klein-bottle 1.02 1.28 1.02 0.76

Table 7: Performance im-
provement in ECL-CC

Graph Speedup
as-skitter 1.05
coPapersDBLP 1.03
in-2004 1.16
kron_g500-logn21 1.14
rmat22.sym 1.03

Section 6.1. We then apply these optimizations and present per-
formance results. Note that the codes in the ECL suite are already
highly optimized. The goal of this section is merely to demonstrate
that counter-based profiling can, in some cases, reveal additional
optimization potential even on state-of-the-art codes.

6.2.1 ECL-SCC. Based on the findings discussed in Section 6.1.2,
we experimented with optimizing the number of threads per block
to minimize wasted work. Table 6 presents the speedups for differ-
ent threads-per-block configurations on the RTX 4090.

With a small block size (e.g., 64 threads), it is more likely that a
higher number of thread blocks remain idle even if some work is
still left, which means that some blocks may stop early and work
gets pushed to outer iterations. With a large block size (e.g., 1024
threads), the opposite happens: even a single active thread keeps
the entire block alive, forcing many idle threads to participate in
block-wide synchronizations and increasing inner-loop overhead.
The optimal block size balances these effects, allowing updates
to converge efficiently without over- or under-propagating across
blocks. Hence, moderate block dimensions with 128 or 256 threads
yield the best performance.

6.2.2 ECL-CC. As outlined in Section 6.1.3, the init kernel need-
lessly traverses the adjacency lists of the vertices that do not have a
neighbor with a lower ID. We optimized the code to only access the
first neighbor. Table 7 reports the effect of this change on overall
runtime. It only lists the inputs that yield a noticeable speedup.

An improvement is expected for the input graphs with large
differences between their two values in Table 4. However, not all
such inputs exhibit better runtimes (e.g., cit-Patents). This is likely
because the neighbor traversal constitutes only a small portion of
the overall compute time for these inputs. Nevertheless, other inputs
run up to 16% faster after the optimization. These improvements
result from reducing unnecessary neighbor traversals during the

Table 8: Runtime change of updated ECL-MST code

Graph Runtime %
change Graph Runtime %

change
2d-2e20.sym 0.43 internet 3.33
amazon0601 0.83 kron_g500-logn21 -3.35
as-skitter 0.10 r4-2e23.sym 0.05
cit-Patents 0.04 rmat16.sym -0.52
citationCiteseer -1.32 rmat22.sym 0.05
coPapersDBLP 0.30 soc-LiveJournal1 0.02
delaunay_n24 0.14 USA-road-d.NY 0.87
europe_osm 0.25 USA-road-d.USA 0.36
in-2004 0.75

search for smaller neighbors when assigning initial representatives
to vertices.

6.2.3 ECL-MST. The analysis in Section 6.1.4 revealed that two
of the three computation-intensive kernels are launched with too
many thread blocks. We corrected this issue and show the percent-
age improvement over the original version in Table 8.

The results indicate little to no improvement on average and, in a
few cases, even a degradation in overall performance despite launch-
ing significantly fewer threads per iteration. This is likely because
the overhead of recomputing the number of thread blocks before
each kernel launch largely offsets, or even exceeds, the savings
from launching extra threads (which is done by the GPU hardware
in essentially no time) that immediately terminate. Nevertheless,
the optimization can improve performance by up to 3.33%.

7 SUMMARY AND CONCLUSIONS
We manually instrumented the 5 high-performance GPU graph an-
alytics codes from the ECL suite with counters to track application-
specific events that general-purpose profiling tools cannot track.
The gathered information, such as per-thread iteration counts and
failure rates of atomic operations, reveals important behavioral
patterns, some of which can be exploited to boost performance.

In ECL-CC, we found that adjacency list traversals during ini-
tialization are unnecessary. Avoiding them improved the overall
runtime by up to 16%. In ECL-MST, we identified inefficient kernel
launch configurations, but correcting them only led to minimal
performance gain due to the extra cost of recalculating the launch
configuration. In ECL-SCC, our manual profiling exposed excessive
block-wide synchronizations, which we alleviated by tuning the
thread-block size, leading to a runtime improvement of up to 28%.

These results highlight that the simple approach of manual code
instrumentation can uncover important program-specific behavior
where standard profilers fall short as they are unaware of program
semantics. Therefore, we encourage programmers to not only rely
on sophisticated tools but also on simple approaches such as insert-
ing counters into source code, especially for irregular workloads.
Such manual instrumentation complements the capabilities of so-
phisticated tools and can provide otherwise missing information
needed for performance validation and optimization.
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