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ABSTRACT
Graph algorithms are important for many domains, and GPUs can
be used to accelerate them. Unfortunately, CUDA code can only be
run on NVIDIA GPUs. In this study, we port the CUDA graph codes
from the Indigo3 benchmark suite to HIP. This enables them to run
on both AMD and NVIDIA GPUs. In addition, it allows the study of
performance differences between compiled CUDA and HIP codes
that are otherwise identical. Since the Indigo3 codes are written in
a variety of different implementation and parallelization styles, this
also allows us to study the performance of AMD GPUs on these
styles and compare the results with the NVIDIA-based style trends.
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1 BACKGROUND
The Indigo3 benchmark suite [7] describes 13 implementation and
parallelization styles for graph analytics codes, where each style
represents a choice to bemadewhenwriting code. Indigo3 combines
these styles in hundreds of ways for 7 important graph problems
for CPUs and NVIDIA GPUs. For example, the parallelization styles
determine at what granularity the computation is parallelized. GPUs
have multiple levels of hardware parallelism that can be exploited
when processing the neighbors of vertices in a graph [12], and the
GPU granularity style addresses that.

The simplest granularity option is Thread-level, which assigns
one thread to each element that needs processing. The downside is
the vulnerability to load imbalance if some elements require more
work to process than others, such as vertices with more neighbors.
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The next granularity option is Warp-level, which assigns an en-
tire warp to each vertex that needs processing. A warp is a set of
32 or more contiguous threads, so the threads in the same warp
work together to process the neighbors of a single vertex, reduc-
ing the effect of load imbalance. Threads in the same warp can
communicate quickly without going through memory by using
warp-level primitives, but this may require more complex synchro-
nization than the Thread-level option. We can take this one step
further with Block-level granularity, which assigns an entire block
of threads to each vertex. Threads in the same block can use fast
shared memory to communicate, but this may require even more
complex synchronization than Warp-level granularity.

While the parallelization styles determine how work is divided,
other styles refer to how the computations are implemented. For
example, the Push or Pull style [3] determines the direction of the
data flow. Push-style codes read the private data of active vertices
and update their neighbors with it, leading to possibly overlapping
updates. Conversely, Pull-style codes read their neighbors’ data and
use it to update their active vertices’ private data.

The described styles are mostly independent sets of choices that
can be combined inmanyways. For example, with just the Push-Pull
and Thread-Warp-Block styles mentioned, we can already generate
six combinations: push-thread, push-warp, push-block, pull-thread,
pull-warp, and pull-block. By using several styles on several graph
problems, hundreds of codes can be generated.

Xie et al. [11] compare the performance of three graph algorithms
on NVIDIA GPUs and AMD-like GPUs. They find that the relatively
simple BFS algorithm prefers AMD-like GPUs’ larger wavefront
sizes and independent shared memory, whereas more complex
and branch-heavy algorithms such as TC prefer NVIDIA GPUs. In
contrast, our work focuses on how the choice in GPU manufacturer
affects style decisions made within graph algorithms.

2 APPROACH
In this work, we study 330 CUDA codes from 6 graph problems from
the Indigo3 suite: Breadth-First-Search (BFS), Maximal Independent
Set (MIS), Minimum Spanning Tree (MST), PageRank (PR), Single
Source Shortest Path (SSSP), and Triangle Counting (TC).

2.1 Styles
Table 1 shows the 9 styles we investigate and marks which style
options apply to each graph problem with a “+” symbol. The last
row shows the total number of combinations for each problem,
ranging from 16 to 84 codes. The styles are as follows.

• Vertex-based or Edge-based: This style determines if the
code iterates across the vertices or the edges of the graphs.

• Topology-driven or Data-driven [10]: Topology-driven
codes process all elements each iteration, while Data-driven
codes only process the elements on a worklist.
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• Duplicates onWL or No duplicates onWL [9]: This style
only applies to Data-driven codes and determines if duplicate
elements are allowed on the worklist. Not allowing them
incurs overhead to ensure the element has not already been
added but can be more efficient and allows smaller worklists.

• Push or Pull [3]: As mentioned in Section 1, this style de-
termines if vertices push data out to their neighbors or pull
data in from their neighbors.

• Read-Write or Read-Modify-Write [8]: Read-Write codes
read from a neighbor and then write to it as two separate
memory accesses, while Read-Modify-Write codes use atomic
operations to read, modify, and write to a neighbor in a single
(albeit more expensive) transaction.

• Deterministic or Non-deterministic [2]: Deterministic
codes read from and write to distinct data structures, which
enforces internal determinism for easier debugging, while
non-deterministic codes perform their reads and writes to
the same data structure.

• Persistent or Non-persistent [5]: The Persistent thread
style launches exactly as many threads as the GPU can run si-
multaneously and splits up the work among them, with each
thread likely processing multiple elements. Non-persistent
codes simply launch as many threads as are needed to cover
each element, with each thread only processing one element.

• Thread, Warp, or Block [12]: This GPU granularity style,
as mentioned in Section 1, determines the level of GPU hard-
ware parallelism that the code exploits.

• Global-add, Block-add, or Reduction-add: This GPU re-
duction style only applies to PR and TC. In those codes, each
thread computes a partial sum, and this style determines how
they are combined into the overall sum. In Global-add, every
thread simply updates the same global memory location us-
ing atomic addition. In Block-Add, the threads in each block
use shared memory to compute block-wide partial sums and
a single designated thread atomically adds it to the global
total. In Reduction-Add, each warp calculates a sum, each
block combines its warps’ sums into a block-wide sum, and
a designated thread per block adds it to the global total.

2.2 Porting CUDA to HIP
Unlike CUDA codes, which only work on NVIDIA GPUs, AMD
designed the HIP API to be portable and run on both AMD and

NVIDIA GPUs. HIP has very similar syntax to CUDA, mostly re-
naming variables and functions that include the word “cuda” to
include “hip”. HIP also offers HIPify tools to semi-automatically
port CUDA source codes to HIP. However, differences in the GPU
architecture between AMD and NVIDIA GPUs can necessitate some
changes beyond syntax to ensure the code is truly portable. For ex-
ample, AMD GPUs do not all have the same warp size like NVIDIA
GPUs, so HIP source codes should not assume a specific warp size.
There are also some CUDA functions that do not currently exist for
AMD GPUs but cannot be removed from the source code without
breaking it on NVIDIA GPUs. We also discovered that AMD GPUs
cannot launch more than 232 total threads at the same time, while
NVIDIA GPUs do not have the same restriction.

All NVIDIA GPUs have exactly 32 threads per warp, so CUDA
codes often hardcode that value for simplicity and compiler opti-
mization reasons. They will often declare a constant value for the
warp size and manually unroll loops that rely on that value to avoid
loop overhead. Since AMD GPUs have 32 or 64 threads per warp
depending on the GPU, portable HIP code should support both. To
do so, we replaced any constant warp size values with the built-in
𝑤𝑎𝑟𝑝𝑆𝑖𝑧𝑒 constant available for both NVIDIA and AMD GPUs. In
addition, we re-roll any unrolled loops to use the𝑤𝑎𝑟𝑝𝑆𝑖𝑧𝑒 value.

Warps execute in lockstep on current AMD GPUs, so they do not
need (and do not define) some CUDA functions like __𝑠𝑦𝑛𝑐𝑤𝑎𝑟𝑝

and the _𝑠𝑦𝑛𝑐 variants of the __𝑠ℎ𝑓 𝑙 , __𝑎𝑛𝑦, and __𝑎𝑙𝑙 functions. To
handle this, we use preprocessor macros to check if the code is being
compiled for an AMD device and disable or replace those missing
functions if needed. We define __𝑠𝑦𝑛𝑐𝑤𝑎𝑟𝑝 as an empty function
to effectively disable it, and we replace functions like __𝑠ℎ𝑓 𝑙_𝑠𝑦𝑛𝑐
with their non-sync variants like __𝑠ℎ𝑓 𝑙 . This allows the same
source code to compile and work on both AMD and NVIDIA GPUs.

3 EXPERIMENTAL METHODOLOGY
Table 1 lists the codes we study along with the styles applied to
each code. In total, we tested 330 CUDA codes and 330 HIP codes
on 1 AMD GPU and 2 NVIDIA GPUs. The AMD GPU is an RX 7900
XTX with 24 GB of memory. The NVIDIA GPUs are an RTX 4090
with 24 GB of memory and an A100 with 40 GB of memory. To
compile the codes for the AMD GPU, we used HIP version 6.2.41134
and ROCm 6.2.3. For the RTX 4090 and A100, we used HIP version
6.3.42134 for both and nvcc versions 12.6 and 12.0, respectively.

Table 1: List of styles used, “+” symbol indicates compatibility with listed style option

Style Options BFS MIS MST PR SSSP TC
Vertex-based, Edge-based +, + +, + +, + +, - +, + +, +
Topology-driven, Data-driven +, + +, + +, + +, - +, + +, -
Duplicates on WL, No duplicates on WL +, + -, + -, - -, - +, + -, -
Push, Pull +, + +, + -, - +, + +, + +, -
Read-write, Read-modify-write +, + -, + -, - -, + +, + -, +
Deterministic, Non-deterministic +, + +, + -, - +, + +, + +, -
Persistent, Non-persistent +, + +, + +, + +, + +, + +, +
Thread, Warp, Block +, +, + +, +, + +, +, + +, +, + +, +, + +, +, +
Global-add, Block-add, Reduction-add -, -, - -, -, - -, -, - +, +, + -, -, - +, +, +
Number of codes 84 56 16 54 84 36
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Table 2: Input graphs and their characteristics

Name Type Origin Vertices Edges d-avg d-max d≥32 d≥512 Diameter
2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 0.0% 0.000% 2047
coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 52.5% 0.092% 24
rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,689 12.4% 0.045% 19
soc-LiveJournal community SNAP 4,847,571 85,702,474 17.7 20,333 14.0% 0.125% 20
USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 0.0% 0.000% 721

Table 3: Geometric mean of HIP throughput over CUDA
throughput on NVIDIA GPUs

GPU BFS MIS MST PR SSSP TC
4090 1.006 0.998 1.000 0.998 1.003 1.012
A100 0.999 1.000 1.001 1.000 1.000 1.000

We use the 5 inputs listed in Table 2 to evaluate the codes’ per-
formance. These graphs vary in type, size, and degree distribution
and include synthetic grids, social networks, and a road map.

As our performance metric, we use throughput in giga-edges per
second, which is calculated by taking the number of edges in the
graph, dividing it by the execution time, and then dividing by one
billion. To compare the performance of two alternatives, we report
throughput ratios, i.e., dividing one throughput by another. For
example, to compare the performance of Push against Pull codes
with only the GPU granularity style present, we would present
the ratios calculated by dividing the throughputs of Push+Thread
by Pull+Thread, Push+Warp by Pull+Warp, and Push+Block by
Pull+Block. A ratio of 1.0 means the performance is the same.

4 RESULTS
4.1 CUDA versus HIP on NVIDIA GPUs
First, we compared the performance of each CUDA code with its
HIP port on the same GPU. Table 3 lists the geometric mean of the
throughput ratios for each code on each NVIDIA GPU. As we can
see, the performance is practically identical, meaning the HIP port
does not significantly change the execution time.

4.2 Style Performance Trends on NVIDIA
versus AMD GPUs

Figures 1 to 9 show the performance trends for each style, with the
results for CUDA codes on the RTX 4090 NVIDIA GPU on the left
and for HIP codes on the RX 7900 XTX AMD GPU on the right. The
figures only show the algorithms that utilize the style per Table 1.
Figures 1 to 7 plot the throughput ratios of one option over the
other using boxen plots to help visualize the distribution, with wider
boxes representing a larger number of samples in the given range.
The widest box represents the middle 50% of ratios and includes
a horizontal line for the median ratio. Any outliers are plotted as
circles. The dotted blue line indicates a ratio of 1.0. Figures 8 and 9
cover styles with three options, so their throughputs are directly
presented for a side-by-side comparison instead of using ratios.

Figure 1 shows the trends for the Vertex/Edge style. On the
NVIDIA GPU, BFS and SSSP have median ratios close to 1, so we
cannot say in general that either the edge- or vertex-based codes

Figure 1: Throughput ratios for Vertex versus Edge codes

perform better. MIS, however, has a median ratio close to 3 and
favors vertex-based code in general. This is likely because MIS
typically only needs to visit a few neighbors per vertex, making the
vertex-based approach quite load balanced. MST and TC generally
prefer Edge-based codes. These trends hold true for the AMD GPU
as well, with the general preferences staying the same.

Figure 2 presents the throughput ratios for Topology-driven
codes that do not use worklists over Data-driven codes that al-
low duplicates on their worklists. Figure 3 presents the ratios for
Topology-driven codes over Data-driven codes that do not allow
duplicates on their worklists. There are no versions of MIS that

Figure 2: Throughput ratios for Topology versus Data codes
with duplicates allowed on the worklist

Figure 3: Throughput ratios for Topology versus Data codes
without duplicates on the worklist
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allow duplicates on the worklist, so MIS appears in Figure 3 but not
in Figure 2. Overall, the trends for these styles look very similar
between the NVIDIA and AMD GPUs. The data-driven codes are
usually faster than their topology-driven counterparts.

Figures 4 to 7 present the throughput ratios for the Push/Pull,
ReadWrite/ReadModifyWrite, NonDeterm/Determ, and NonPer-
sist/Persist styles. PR behaves differently for theNonDeterm/Determ
style shown in Figure 6 since only the PR’s Pull-style codes support
the non-deterministic option. These styles, like the earlier ones,
show very similar trends between the NVIDIA and AMD GPUs.

Figure 4: Throughput ratios for Push versus Pull codes

Figure 5: Throughput ratios for Read-Write versus Read-
Modify-Write codes

Figure 6: Throughput ratios for Non-deterministic codes ver-
sus Deterministic codes

Figure 7: Throughput ratios for Non-Persistent thread versus
Persistent thread codes

Figure 8: Throughputs in giga-edges per second by GPU gran-
ularity style

Figure 9: Throughputs in giga-edges per second by GPU re-
duction style

Figure 8 shows the throughputs of the GPU granularity style
options for each code. On both GPUs, the Block granularity is
the slowest on our inputs for all codes. For each code, the fastest
granularity between Thread or Warp is the same on both GPUs.

Figure 9 presents the throughputs of the GPU reduction style
options for the PR and TC codes. The biggest deviation in trends is
visible in GlobalAdd for PR. GlobalAdd, where each vertex result is
independently added to the same global sum, performs noticeably
worse on the AMD than the NVIDIA GPU. While NVIDIA GPUs
automatically aggregate atomicAdd ops from the same warp [1, 4],
this suggests that AMD GPUs do not. Overall, however, the best
style options for each algorithm remain the same on both devices.

5 SUMMARY & CONCLUSIONS
We study 330 CUDA codes from the Indigo3 benchmark suite and
their HIP counterparts. We evaluate the performance of the CUDA
and HIP codes on 1 AMD GPU and 2 NVIDIA GPUs using 5 input
graphs from different domains. Our results show that HIP ports
are no slower than their original CUDA versions on NVIDIA GPUs.
We analyze the performance of the codes’ styles and find that
the overall trends are similar on AMD and NVIDIA GPUs despite
the unknown underlying architectural differences. These results
indicate that guidelines for writing graph analytics codes, such as
those found in Indigo2 [6], likely apply to AMD GPUs as well.
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