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Abstract—Processing large graphs has become an important
irregular workload. We present Massively Parallel Log Graphs
(MPLG) to accelerate GPU graph codes, including highly opti-
mized codes. MPLG combines a compressed in-memory repre-
sentation with low-overhead parallel decompression. This yields a
speedup if the boost in memory performance due to the reduced
footprint outweighs the overhead of the extra instructions to
decompress the graph on the fly. However, achieving a sufficiently
low overhead is difficult, especially on GPUs with their high-
bandwidth memory. Prior work has only successfully employed
similar ideas on CPUs, but those approaches exhibit limited
parallelism, making them unsuitable for GPUs. On large real-
world inputs, MPLG speeds up graph analytics by up to 67% on
a Titan V GPU. Averaged over 15 graphs from several domains,
it improves the performance of Rodinia’s breadth-first search by
11.9%, Gardenia’s connected components by 5.8%, and ECL’s
graph coloring by 5.0%.

Index Terms—Compressed in-memory representation, graph
analytics, massive parallelism, GPU acceleration

I. INTRODUCTION

Graph analytics algorithms such as connected compo-
nents [1] and pattern mining [2] are widely used in various
fields. When processing real-world inputs, many of these ir-
regular codes are memory-bound and exhibit poor locality [3].
Hence, memory accesses are often the performance bottleneck
and determine the overall execution time. Using a compressed
in-memory representation can speed up the memory accesses
at the cost of extra computation to decompress the data
dynamically. However, achieving a low-enough decompression
overhead in combination with a high-enough compression ratio
to yield a net benefit is challenging, especially on GPUs with
high-bandwidth memory.

Due to their high performance and energy efficiency, GPUs
are now widely used as accelerators. However, they tend to
have much smaller memories than CPUs. Operating directly
on compressed data allows to fit more information into the
memory but necessitates the need to decompress every ele-
ment as it is being accessed. This idea has previously been
demonstrated for CPUs but is much harder to realize on GPUs
due to their high parallelism and memory bandwidth.

This paper demonstrates how to speed up graph algorithms
running on GPUs by operating on a log-compressed graph [4]
and decompressing it faster than directly operating on the
uncompressed data. Note that we decompress the accessed
graph elements on the fly while the graph is being processed
and not ahead of time in a separate pre-processing step.

Consequently, our approach requires no storage to hold the
uncompressed graph. Using the compressed representation re-
duces the number of main-memory accesses and cache misses,
which, combined with our massively-parallel low-latency de-
compression approach, often yields significant speedups. This
is our primary goal, but our compressed representation also
makes it possible to fit larger graphs on the GPU. LIGRA+ [5]
similarly uses a compressed in-memory format that is de-
compressed dynamically. LIGRA+ only targets CPUs and is
primarily designed to fit larger graphs in memory without
loss of processing performance. It exhibits relatively low
parallelism as it does not use parallelization within short and
medium-sized adjacency lists, making it unsuitable for GPUs.

Compression can reduce the number of main-memory trans-
actions because compressed graphs have a smaller footprint,
exhibit more spatial locality, and allow a fixed-sized cache
to hold a larger portion of the graph, leading to higher
in-cache presence. However, these benefits tend to be less
pronounced on GPUs, which have faster main memories and
smaller caches than CPUs, making it more difficult to exploit
compression. This paper makes the following contributions.

• It presents MPLG, the first approach that makes it pos-
sible for GPUs to run graph analytics programs directly
on compressed graphs without loss of performance.

• It allows to fit 20% to 70% more data into memory and
to process correspondingly larger inputs.

• It introduces a decompression technique that is so quick
that it often results in faster operation (about 5% on
average) than accessing the uncompressed data, thus
making some of the fastest graph codes run even faster.

• It introduces 3 levels of massively-parallel, low-latency,
high-throughput decompression of MPLG graphs.

Some of our MPLG-accelerated codes are publicly available
at https://cs.txstate.edu/∼burtscher/research/MPLG/.

II. BACKGROUND

A. GPU Memory Architecture

GPUs employ various types of fast memory, including
GDDR6, GDDR6X, and HBM2. The high bandwidth makes
it difficult to perform real-time decompression because only
very few computations can be executed before any benefit is
lost. This may be why the related work has only focused on
CPU implementations so far.

https://cs.txstate.edu/~burtscher/research/MPLG/


B. Warp-based Execution

GPUs are vector processors where a warp is the basic unit
of execution. In CUDA, a warp is represented as a collection
of 32 threads that either execute the same instruction or are
disabled. We exploit warp-based execution to speed up our
warp, block, and hybrid implementations of decompression.

C. Coalesced Memory Accesses

Due to warp-based execution, the threads of a warp perform
loads and stores together. The GPU’s memory interface is op-
timized for this scenario. In particular, the hardware combines
the up to 32 memory accesses into groups such that each
group only contains requests that go to the same naturally
aligned block in main memory. Only one memory transaction
is performed per group, which is called a coalesced access.
In the best case, all 32 accesses of a warp fit into a single
group, meaning just one coalesced transaction is needed to
satisfy them. In the worst case, each thread’s access will
form a group by itself, resulting in 32 individual memory
transactions. Compressing a graph’s adjacency list will place
more list elements into the same block, thus increasing the
coalescing opportunity. This helps with thread-level operations
on low-degree vertices as well as with warp- and block-level
operations on medium- and high-degree vertices.

III. RELATED WORK

Many papers describe optimizations to more efficiently pro-
cess and store large graphs on GPUs. For example, the CuSha
graph processing framework [6] speeds up graph algorithms
by using sets of ordered edges, called shards, as the graph
representation to boost coalescing. This is in contrast to the
CSR format (cf. Section IV-A), which tends to suffer from un-
coalesced memory accesses for warp-based algorithms. SIMD-
x [7] is another GPU framework for accelerating data-intensive
irregular algorithms. It utilizes system-level optimizations and
just-in-time task management to achieve speedups over Gun-
rock [8] and Galois [9]. There have also been many papers on
accelerating specific graph algorithms. For example, Merrill et
al. [10] use fine-grained task management and parallel prefix
sums as an alternative to atomics to speed up breadth-first
search (BFS) on large sparse graphs. Alabandi et al. [11]
propose shortcut computations to increase the parallelism and
the performance of graph coloring (GC). These and many other
optimizations are orthogonal to our approach, meaning MPLG
can be employed on top of them to boost the performance.

Most prior work on graph compression aims at maximally
compressing graphs without considering the decompression
speed or the performance of the algorithms that process
them [12]–[15].

LIGRA+ [5], an upgrade to LIGRA [16] (lightweight graph
processing framework for shared memory) trades off a smaller
memory footprint for extra overhead to fit larger graphs
on the CPU while maintaining and sometimes improving
performance of graph algorithms. We compare our approach
to LIGRA+ in Section VI-D.

LIGRA+ first sorts and delta encodes the adjacency list of
each vertex. It then compresses the lists using variable-length
codes. Rather than encoding each value separately, it groups
consecutive values that require the same number of bytes (or
nibbles) together and precedes each group with a one-byte
header indicating both the number of bytes (or nibbles) each
value requires and the number of values in the group. These
header bytes lower the compression ratio but simplify and
speed up the decoding.

LIGRA+’s decoding is primarily parallelized over the ver-
tices, meaning each adjacency list is processed by a single
thread. Only high-degree vertices are decoded in parallel. To
avoid the costly prefix-sum computation that would be needed
to perform the delta decoding in parallel, LIGRA+ splits
long adjacency lists into independent 1000-value chunks. This
works well for CPUs with dozens of cores but does not yield
enough parallelism for GPUs running 100,000s of threads,
which is why we adopted a different approach.

Due to its encoding scheme, LIGRA+ needs to separately
store each vertex’s degree, which increases the memory foot-
print. Like the widely-used CSR graph format, our approach
requires no such extra storage as the degrees can trivially
be derived from the starting locations of the adjacency lists.
Moreover, our approach does not need the adjacency lists to
be sorted and does not employ delta encoding. This means that
there is no need for a prefix sum in the MPLG decoder as op-
posed to LIGRA+, making random access to the decompressed
data possible in our approach. Finally, LIGRA+ is specifically
designed for LIGRA whereas our approach is designed for
easy integration into third-party codes.

The recent Log(Graph) work [4] describes a compressed
graph representation that uses logarithmic lower bounds to
compress graph information (by eliminating a fixed number
of leading zero bits from all values) while decreasing the
overhead of decompression to a point where performance is
comparable to non-compressed algorithms. This work also
only targets CPUs. We cannot compare to Log(Graph) as
the code is not public. However, we adopt and extend its
log-encoding idea to boost the graph-processing performance
on GPUs. In particular, we designed the MPLG format to
enable massively parallel decoding with minimal overhead and
implemented three such decoders that operate at thread, warp,
and block granularity as well as hybrids thereof.

IV. APPROACH

This section describes our approach in detail, which com-
bines the CSR graph representation with log-based encoding.
We call our approach Massively Parallel Log Graphs (MPLG).

A. Compressed Spare Row Format

The Compressed Sparse Row (CSR) format is probably the
most widely used representation for large sparse graphs [17]. It
includes the word “compressed” because it does not store the
zero elements of the corresponding adjacency matrix. Instead,
CSR is based on two dense arrays: an array of indices and
an array of edges. The edge array holds the concatenated



adjacency lists of all vertices. The index array holds the
starting position (index) of each adjacency list. It has an extra
element at the end specifying the size of the edge array.
Figure 1 shows an example graph and its CSR representation.
Note that Vertex 1 has no outgoing edges.

Fig. 1. Example graph (left) and corresponding CSR representation (right)

Our MPLG approach employs a compressed form of CSR as
its in-memory graph representation. To achieve a sufficiently
low decompression overhead to obtain a net performance
benefit, we augmented log encoding in the following three
ways. First, we designed a GPU-friendly massively parallel
decompression technique for it. Second, we implemented this
technique at multiple levels of granularity to match the thread,
warp, block, and hybrid implementations of existing graph
codes. Third, we only compress the edge array, which is
highlighted in Figure 1, as it is typically the larger of the
two arrays and accessed more often.

B. Log Encoding

The MPLG format is a compressed representation of graphs
that is based on log encoding of the CSR format.

Log encoding reduces the storage requirement of each value
in the edge array by eliminating leading zero bits [4]. The
largest value in the edge array of many graphs is much smaller
than the maximum value that can be expressed by a word. In
this case, all stored values start with some number of leading
zeros that provide no useful information but take up space.

MPLG eliminates these unnecessary zero bits from each
value in the edge array, concatenates the remaining bits, and
places them into a shorter array. To determine the number of
zero bits that can be eliminated, we need to know the largest
value in the array. Since each array element refers to a vertex
ID, the largest value cannot be greater than the number of
vertices in the graph. Figure 2 illustrates MPLG’s encoding
scheme on an array of three integers. Integer c is the largest
of the three values and has 18 leading zeros, so we eliminate
the 18 zeros highlighted in red from all three integers and
place the remaining 14 bits into the encoded array, one after
another. The resulting encoded array requires only two integers
or about 67% of the size of the original array.

We experimented with many other encoding schemes that
yield higher compression ratios, such as using blocks of 8-

Fig. 2. Log encoding example

and 16-bit values with continuation bits to store variable-
length values in an array of integers. We also combined
these approaches with delta coding to reduce the number of
bits per value. However, none of these approaches yielded a
speedup because the decompressors ended up being too slow.
In contrast, log encoding does not produce a particularly high
compression ratio but makes decompression of each element
of the edge list independent and fast. We tried increasing the
compression ratio by compressing not only the adjacency lists
but also the index list, but doing so resulted in an overall
decrease in performance. The simple log encoding of the adja-
cency lists enables massively-parallel decompression because
each thread can independently extract any edge, eliminating
the need for synchronization. MPLG’s log-encoding technique
also makes massively-parallel compression possible (with the
use of atomic operations). However, graphs are typically read
many more times than they are written, which is why we focus
on decompression in this paper.

C. Log Decoding

To maximize the performance of graph algorithms through
the use of compression, we must minimize the overhead of
the on-the-fly decompression, which is invoked every time an
adjacency-list element is read. As mentioned, MPLG achieves
this by using an encoding scheme that can be decoded both
quickly and independently.

Log decoding is quite fast as it only entails reading two
adjacent integers, concatenating their bits, shifting them, and
masking out extraneous bits. These operations are mostly
single machine instructions. In fact, CUDA supports funnel
shifts that concatenate the bits of two integers and shift them
in a single operation.

Massively parallel log decoding is possible because there are
no dependencies between the decoding operations. After all, a
thread that needs the kth edge can simply extract the bits in the
range [k× b, (k+1)× b−1] from the compressed edge array,
where b is the number of bits used to represent each value. This
bit extraction is independent of whatever edges other threads
may be extracting, thus enabling random accesses.

GPU hardware exposes three levels of parallelism, namely
thread, warp, and block parallelism, and many high perfor-
mance codes explicitly take advantage of them. Hence, we
implemented MPLG decompression at all three levels as well
as hybrids thereof. Listings 1, 3, and 5 show thread-, warp-,
and block-level implementations of a generic graph traversal



algorithm, and Listings 2, 4, and 6 show the MPLG counter-
parts. The adjacency list of a vertex is accessed and processed
by either a thread, a warp, or a block. The ProcessNeighbor
function in each listing refers to the algorithm-specific code
that is independent of whether compression is used or not.
The highlighted sections in the MPLG versions mark the extra
code needed for the dynamic decompression. logn denotes
the number of bits used to represent each value. Since 32
is a power of two, the division and modulus operations
are compiled into fast shift and bitwise AND instructions.
Moreover, the expression (1 << logn) − 1 is loop invariant
and only computed once before the loop starts. As a result,
the highlighted statements in the loop bodies map to just a
few fast machine instructions.

1 tid = threadIdx.x + blockIdx.x * blockDim.x;
2 if (tid < numv) {
3 beg = nindex[tid];
4 end = nindex[tid + 1];
5 for (j = beg; j < end; j++) {
6 nei = nlist[j];
7 ProcessNeighbor(nei);
8 }
9 }

Listing 1. thread-level graph processing

1 tid = threadIdx.x + blockIdx.x * blockDim.x;
2 if (tid < numv) {
3 beg = nindex[tid];
4 end = nindex[tid + 1];
5 cur = beg * logn;
6 shift = cur % 32;
7 for (j = beg; j < end; j++) {
8 pos = cur / 32;
9 res = __funnelshift_rc(encoded[pos], encoded[pos

+ 1], shift);
10 cur += logn;
11 shift = (shift + logn) % 32;
12 nei = res & ((1 << logn) - 1);
13 ProcessNeighbor(nei);
14 }
15 }

Listing 2. MPLG-based thread-level graph processing

1 wid = (threadIdx.x + blockIdx.x * blockDim.x) /
WarpSize;

2 if (wid < numv) {
3 beg = nindex[wid];
4 end = nindex[wid + 1];
5 lane = threadIdx.x % WarpSize;
6 for (j = beg + lane; j < end; j += WarpSize) {
7 nei = nlist[j];
8 ProcessNeighbor(nei);
9 }

10 }

Listing 3. warp-level graph processing

We inserted these MPLG decoding operations into the
CUDA implementations of various graph algorithms from
three different suites. In high-performance GPU graph codes
that process the edge lists of low-degree vertices with individ-
ual threads but the edge lists of high-degree vertices with entire
warps [11] or even thread blocks [18], we inserted multiple
versions of MPLG.

1 wid = (threadIdx.x + blockIdx.x * blockDim.x) /
WarpSize;

2 if (wid < numv) {
3 beg = nindex[wid];
4 end = nindex[wid + 1];
5 lane = threadIdx.x % WarpSize;
6 wsln = WarpSize * logn;
7 lln = lane * logn;
8 cur = beg * logn;
9 curlo = cur % 32;

10 curhi = cur / 32;
11 shift = (curlo + lln) % 32;
12 pos = curhi + (curlo + lln) / 32;
13 for (j = beg + lane; j < end; j += WarpSize) {
14 res = __funnelshift_rc(encoded[pos], encoded[pos

+ 1], shift);
15 pos += logn;
16 shift = (shift + wsln) % 32;
17 nei = res & ((1 << logn) - 1);
18 ProcessNeighbor(nei);
19 }
20 }

Listing 4. MPLG-based warp-level graph processing

1 bid = blockIdx.x;
2 if (bid < numv) {
3 beg = nindex[bid];
4 end = nindex[bid + 1];
5 for (j = beg + threadIdx.x; j < end; j += blockDim

.x) {
6 nei = nlist[j];
7 ProcessNeighbor(nei);
8 }
9 }

Listing 5. block-level graph processing

1 bid = blockIdx.x;
2 if (bid < numv) {
3 beg = nindex[bid];
4 end = nindex[bid + 1];
5 bsln = blockDim.x * logn;
6 tln = threadIdx.x * logn;
7 cur = beg * logn;
8 curlo = cur % 32;
9 curhi = cur / 32;

10 shift = (curlo + tln) % 32;
11 pos = curhi + (curlo + tln) / 32;
12 for (j = beg + threadIdx.x; j < end; j += blockDim

.x) {
13 res = __funnelshift_rc(encoded[pos], encoded[pos

+ 1], shift);
14 pos += logn * WarpsPerBlock;
15 shift = (shift + bsln) % 32;
16 nei = res & ((1 << logn) - 1);
17 ProcessNeighbor(nei);
18 }
19 }

Listing 6. MPLG-based block-level graph processing

V. METHODOLOGY

We present performance results from two systems. The first
system is based on a Ryzen Threadripper 2950X CPU with
16 hyperthreading cores and a TITAN V GPU. This GPU has
5120 processing elements distributed over 80 multiprocessors
(SMs). Each SM has 96 kB of L1 data cache. The 80 SMs
share a 4.5 MB L2 cache as well as 12 GB of global memory
with a peak bandwidth of 652 GB/s and a clock frequency of
1455 MHz. The second system is based on a Xeon Gold 6226R



CPU with 32 hyperthreading cores and an RTX 3090 GPU.
This GPU has 10,496 processing elements distributed over 82
SMs. Each SM has 128 kB of L1 data cache. The 82 SMs
share a 6 MB L2 cache as well as 24 GB of global memory
with a peak bandwidth of 936 GB/s and a clock frequency of
1395 Mhz. These differences between the two systems may
cause different timing behaviors, which is why we test our
programs on more than one system.

We compiled the CPU codes using g++ version 11.2.1 with
the −O3 flag. For the GPU codes, we used nvcc version
11.4 with the −arch = sm 70 flag for the TITAN V and
the −arch = sm 86 flag for the RTX 3090. We ran each
experiment 9 times on each input and use the median runtime
for the results shown in this paper.

A. Codes

We added MPLG to the following 8 GPU codes from
the Rodinia [19] and Gardenia [20] benchmark suites and
from ECL [11], [21]. Some of the algorithms are represented
multiple times but implemented differently in each case.

• BFS: Breadth First Search is a graph traversal algorithm
that computes the distance of each vertex (in number of
edges) from a given source vertex. We selected the thread-
level BFS implementation from Rodinia [22], in which
each adjacency list is processed by a separate thread.

• CC: Connected Components is an algorithm that com-
putes maximal subgraphs of an undirected graph such
that there is a path between any pair of vertices within a
subgraph but there is no path between any pair of vertices
from different subgraphs. We selected three CC codes,
a thread- and a warp-level implementation from Garde-
nia [20] and a hybrid implementation from ECL [18].

• GC: Graph Coloring assigns a color to each vertex such
that no two adjacent vertices have the same color. The
goal is to do this with as few colors as possible. As this
problem is NP-hard, heuristics are employed in practice
that do not necessarily result in the smallest number of
colors. We selected the hybrid GC code from ECL [11].

• MIS: Maximal Independent Set is an algorithm that
computes a subset of the vertices such that none of the
vertices from the set are adjacent (independence) and
no other vertex from the graph can be added to the
set without violating the independence (maximality). We
selected the thread-level MIS code from ECL [21].

• MST: Minimum Spanning Tree is an algorithm that
computes a minimum-weight subset of the edges that
connects all vertices of the graph. We selected the thread-
level MST code from Gardenia [20].

• SSSP: Single Source Shortest Paths is an algorithm that
computes the distance (the sum of the edge weights) of
the shortest path from a given source vertex to all other
vertices. We selected the thread-level SSSP code from
Gardenia [20].

Table I shows the granularity at which we applied MPLG
to each of these codes.

TABLE I
CODES AUGMENTED WITH MPLG DECOMPRESSION (E = ECL, G =

GARDENIA, R = RODINIA)

Algorithm Thread-level Warp-level Hybrid
E G R E G R E G R

BFS ✓
CC ✓ ✓ ✓
GC ✓
MIS ✓
MST ✓
SSSP ✓

B. Input Graphs

We used the 15 graphs listed in Table II as inputs. They
have between about two million and half a billion edges and
represent various types, including social-network, road-map,
random, Internet, and RMAT graphs. They were obtained
from the Center for Discrete Mathematics and Theoretical
Computer Science at the University of Rome (Dimacs) [23],
the Galois framework (Galois) [9], the Stanford Network
Analysis Platform (SNAP) [24], and the SuiteSparse Matrix
Collection (SSMC) [25]. Where necessary, we made the
graphs undirected, removed self-edges, and added weights.
Each undirected edge is represented by two directed edges. In
all cases that use MPLG, the edge array is log encoded. The
resulting compression ratios (CR) are shown in the rightmost
column of Table II, that is, the MPLG size divided by the
original CSR graph size (lower percentages are better).

TABLE II
TESTED GRAPHS AND MPLG COMPRESSION RATIOS

Graph Name Edges Vertices Type Source CR
2d-2e20.sym 4,190,208 1,048,576 grid Galois 62.5%
amazon0601 4,886,816 403,394 product co-purchases SNAP 59.3%
as-skitter 22,190,596 1,696,415 Internet topology SNAP 65.6%
cit-Patents 33,037,894 3,774,768 patent citations SSMC 68.7%
citationCiteseer 2,313,294 268,495 publication citations SSMC 59.3%
coPapersDBLP 30,491,458 540,486 publication citations SSMC 62.5%
delaunay n24 100,663,202 16,777,216 triangulation SSMC 78.1%
europe osm 108,109,320 50,912,018 road map SSMC 81.2%
in-2004 27,182,946 1,382,908 web links SSMC 65.6%
kron g500-logn21 182,081,864 2,097,152 kronecker SSMC 65.6%
r4-2e23.sym 67,108,846 8,388,608 random Galois 71.8%
rmat22.sym 65,660,814 4,194,304 RMAT Galois 71.8%
soc-LiveJournal1 85,702,474 4,847,571 RMAT SNAP 71.8%
uk-2002 523,574,516 18,520,486 web links SSMC 78.1%
USA-road-d.USA 57,708,624 23,947,347 road map Dimacs 78.1%

VI. RESULTS

In this section, we first present the performance benefit and
the reduction in cache misses due to MPLG on the eight GPU
codes. Then, we compare the compression ratio of MPLG
to that of LIGRA+. Finally, we show the performance of
LIGRA+ on its own set of CPU graph codes for reference.

A. MPLG Performance

Tables III and V list the median running times in mil-
liseconds for each baseline code and input pair. Tables IV
and VI show the speedups achieved by adding MPLG. The
bold-printed values highlight the cases where MPLG yields a
performance improvement. Tables III and IV are for the newer



TABLE III
RTX 3090 RUNTIMES (MS) OF ORIGINAL CODES

Input graph ecl-CC ecl-GC ecl-MIS gr-CC-t gr-CC-w gr-MST gr-SSSP rd-BFS
2d-2e20.sym 0.41 0.30 0.17 0.11 0.26 6.30 29.08 23.15
amazon0601 0.29 0.59 0.26 0.75 0.15 5.95 5.64 23.11
as-skitter 0.96 8.30 2.63 8.72 1.24 48.28 25.98 23.13
citationCiteseer 0.22 0.29 0.09 0.33 0.09 2.66 2.75 22.91
cit-Patents 4.16 7.05 1.84 2.79 2.51 74.54 16.12 47.90
coPapersDBLP 0.58 22.74 1.12 1.49 0.34 25.62 9.14 23.26
delaunay n24 17.80 8.33 12.50 1.18 3.72 100.37 50.82 138.86
europe osm 19.86 10.22 23.27 2.01 11.34 174.95 318.22 393.41
in-2004 0.73 23.13 1.15 4.25 0.78 31.14 50.35 22.99
kron g500-logn21 3.86 89.88 2.15 63.96 8.61 404.30 158.42 31.13
r4-2e23.sym 9.30 18.84 8.85 6.85 6.75 146.01 37.11 81.30
rmat22.sym 5.32 41.95 3.52 6.45 6.76 1.16 29.53 48.82
Soc-LiveJournal1 4.98 29.76 5.92 8.37 4.72 141.12 40.33 56.56
uk-2002 18.86 156.35 37.54 34.66 14.00 148.34 132.20 157.23
USA-road-d.USA 15.63 5.18 11.10 0.99 5.08 473.59 113.61 194.91

TABLE IV
RTX 3090 SPEEDUPS DUE TO MPLG

Input graph ecl-CC ecl-GC ecl-MIS gr-CC-t gr-CC-w gr-MST gr-SSSP rd-BFS
2d-2e20.sym 1.15 1.16 0.89 1.19 0.94 1.04 1.01 1.22
amazon0601 1.13 1.03 0.93 1.01 0.99 0.91 0.97 1.20
as-skitter 1.14 0.99 1.01 1.02 1.01 1.05 0.93 1.22
citationCiteseer 1.02 0.96 0.83 0.98 0.92 0.87 1.00 1.18
cit-Patents 1.07 1.11 1.10 1.18 1.02 1.08 1.01 1.06
coPapersDBLP 1.02 1.02 1.05 1.32 1.09 1.02 0.98 1.22
delaunay n24 1.04 1.12 1.15 1.14 0.88 0.98 1.04 1.02
europe osm 1.03 1.05 0.87 1.03 0.89 0.97 1.01 1.01
in-2004 1.09 1.02 1.00 0.96 0.99 1.01 1.00 1.21
kron g500-logn21 1.06 1.03 1.02 0.98 1.00 1.01 1.01 1.15
r4-2e23.sym 1.09 1.06 1.10 1.10 1.03 0.92 1.03 1.04
rmat22.sym 1.06 1.03 1.04 1.05 1.03 1.00 1.01 1.10
Soc-LiveJournal1 1.07 1.02 1.01 1.10 1.03 0.84 1.04 1.08
uk-2002 1.06 1.03 1.01 0.98 1.01 1.08 0.95 1.03
USA-road-d.USA 1.03 1.11 1.22 1.03 0.88 0.98 0.97 1.01
GEOMEAN 1.07 1.05 1.01 1.07 0.98 0.98 1.00 1.11

Ampere-based RTX 3090 GPU and Tables V and VI for the
Volta-based Titan V GPU.

To better visualize and analyze the results, Figure 3 presents
the performance of the GPU codes (along the x axis) with
MPLG over the performance of the original codes that do not
use compression. Ratios (along the y axis) above 1.0 mean
that MPLG provides a speedup. Each box and whisker plot
summarizes the 15 ratios (one per input graph). The bottom
whisker reflects the lowest, the bottom of the blue box the first
quartile, the transition from blue to orange the median, the top
of the orange box the third quartile, and the top whisker the
highest of the 15 ratios.

The general trend is the same for both GPUs, so we discuss
them together unless otherwise noted. For each code, we see
a range of behaviors. This is typical for irregular codes, which
tend to be highly input dependent [3]. Except for Gardenia’s
gr-CC-warp code on the RTX 3090 and ECL’s ecl-MIS code
on the Titan V, the median is above 1.0, meaning that using

TABLE V
TITAN V RUNTIMES (MS) OF ORIGINAL CODES

Input graph ecl-CC ecl-GC ecl-MIS gr-CC-t gr-CC-w gr-MST gr-SSSP rd-BFS
2d-2e20.sym 0.642 0.713 0.243 0.230 0.327 8.699 34.467 25.232
amazon0601 0.588 1.109 0.342 1.004 0.186 8.306 7.328 25.470
as-skitter 1.881 12.342 4.136 10.088 1.658 64.679 35.402 34.293
citationCiteseer 0.319 0.409 0.124 0.434 0.118 3.707 3.479 25.768
cit-Patents 7.435 13.959 3.244 4.401 3.858 103.315 28.968 46.399
coPapersDBLP 0.809 37.071 2.096 2.968 0.513 37.924 15.584 25.489
delaunay n24 28.795 12.667 16.362 1.842 4.332 144.593 70.145 146.114
europe osm 29.662 15.655 17.325 3.084 15.566 244.202 383.849 401.615
in-2004 1.162 32.408 1.968 4.776 0.926 43.056 60.722 25.325
kron g500-logn21 7.068 140.984 4.071 75.637 13.905 513.938 222.861 34.620
r4-2e23.sym 20.305 33.590 13.800 11.277 10.989 214.770 67.209 86.059
rmat22.sym 10.418 87.065 5.872 10.751 11.189 201.722 54.581 54.949
Soc-LiveJournal1 9.823 57.791 10.763 12.711 7.528 209.045 65.571 56.246
uk-2002 36.158 243.466 70.036 42.036 20.712 693.578 218.983 160.472
USA-road-d.USA 25.021 8.615 9.839 1.364 5.766 121.591 154.689 201.353

TABLE VI
TITAN V SPEEDUPS DUE TO MPLG

Input graph ecl-CC ecl-GC ecl-MIS gr-CC-t gr-CC-w gr-MST gr-SSSP rd-BFS
amazon0601.egr 1.24 1.34 0.96 1.08 0.97 1.04 1.03 1.18
as-skitter.egr 1.16 0.99 0.96 1.07 1.01 1.03 0.99 1.12
citationCiteseer.egr 1.04 1.05 0.80 1.02 1.00 1.02 0.99 1.21
cit-Patents.egr 1.06 1.13 0.98 1.16 1.03 1.00 1.05 1.09
coPapersDBLP.egr 1.04 1.03 1.11 1.14 1.10 1.01 1.02 1.18
delaunay n24.egr 1.04 1.13 0.90 1.06 0.94 1.01 1.03 1.03
europe osm.egr 1.03 1.05 0.80 1.04 0.95 1.00 1.00 1.01
in-2004.egr 1.12 1.05 1.10 0.99 1.00 0.98 0.94 1.18
kron g500-logn21.egr 1.07 1.02 1.06 0.97 1.04 1.00 1.02 1.13
r4-2e23.sym.egr 1.06 1.08 0.99 1.10 1.00 1.01 1.02 1.05
rmat22.sym.egr 1.06 1.01 0.98 1.06 1.00 1.01 1.04 1.13
soc-LiveJournal1.egr 1.06 1.03 0.99 1.05 1.03 1.02 1.06 1.06
uk-2002.egr 1.05 1.01 1.02 0.97 1.00 1.00 0.93 1.02
USA-road-d.USA.egr 1.04 1.06 0.62 1.03 0.93 1.00 1.01 1.02
GEOMEAN 1.08 1.07 0.94 1.05 1.00 1.01 1.01 1.10

(a) RTX 3090 GPU

(b) Titan V GPU

Fig. 3. Performance with MPLG normalized to performance w/o compression

MPLG results in better performance on the majority of the
input graphs for 7 of the 8 tested codes. On about half of the
codes, over three quarters of the inputs derive a benefit from
MPLG. On ecl-CC and Rodinia’s rd-BFS codes, MPLG yields
a speedup on all tested inputs. On Gardenia’s thread-level CC
code, MPLG yields speedups of up to 32% on the RTX 3090
and up to 67% on the Titan V. The four best median speedups
on the RTX 3090 are 6.4% for ecl-CC, 3.3% for ecl-GC, 2.7%
for gr-CC-thread, and 10.0% for rd-BFS. On the Titan V, the
four best median speedups are 6.1% for ecl-CC, 5.0% for ecl-
GC, 5.8% for gr-CC-thread, and 11.9% for rd-BFS.

B. Cache Misses

Since the performance of MPLG is a tradeoff between faster
memory accesses and decompression overhead, this subsection
separately investigates just the memory behavior. In particular,



we used nvprof to count the L2 cache misses (i.e., the main
memory accesses) on the Titan V.

Figure 4 presents the number of L2 misses in the MPLG-
enhanced codes divided by the number of L2 misses in the
original codes that do not use compression. Note that this is a
lower-is-better metric. A value below 1.0 indicates that there is
a decrease in cache misses, which should improve performance
on memory-bound codes. We employ the same type of box and
whiskers plots as before to show the minimum, first quartile,
median, third quartile, and maximum of the normalized L2-
cache misses of the 8 GPU codes on the 15 inputs.

Fig. 4. L2 cache misses with MPLG normalized to L2 misses without
compression on the Titan V

Except for about half of the inputs on ecl-MIS, we observe
a reduction in the number of cache misses on essentially all
inputs and codes. This is, of course, the goal of the compres-
sion and expected as MPLG yields a significant reduction of
the memory footprint for all inputs (cf. Table II).

Comparing the cache results from Figure 4 to the per-
formance results from Figure 3, we find a clear correlation
between the performance increase and the cache miss decrease.
For example, ecl-MIS exhibits no performance improvement
on average because it yields no reduction in the number
of cache misses on average. In contrast, the code with the
highest performance improvement (rd-BFS) yields one of the
highest cache-miss reductions. Since the decompression over-
head hurts performance, the cache miss reduction is generally
higher than the resulting increase in performance. For instance,
MPLG is able to decrease the number of cache misses on all
15 inputs for Gardenia’s warp-level CC code, but this only
yields a performance gain on half the inputs (cf. Figure 3). On
gr-CC-thread, MPLG reduces the L2 cache misses by over a
factor of 4 on one input. The four best median reductions are
15.5% on ecl-GC, 22.6% on gr-CC-thread, 15.2% on gr-MST,
and 15.9% on rd-BFS.

C. Decompression Throughput

Table VII shows the decompression throughput in number
of edges processed per second by MPLG on the Titan V. On
Gardenia’s warp-level CC code, MPLG decompresses up to
65.6 billion edges per second. This amounts to 262 gigabytes
of decompressed data generated per second, which exceeds
the main-memory bandwidth of many high-end CPUs. On

Fig. 5. Compression ratios of LIGRA+ and MPLG

ECL’s GC code, MPLG achieves a geomean decompression
throughput of 15 billion edges per second (i.e., over 60 GB/s).

TABLE VII
DECOMPRESSED EDGES (IN MILLIONS) PER SECOND ON THE TITAN V

Input graph ecl-CC ecl-GC ecl-MIS gr-CC-thr gr-CC-wrp gr-MST gr-SSSP rd-BFS

2d-2e20.sym 9,227.1 13,328.0 18,306.2 30,600.0 12,493.5 109.5 120.3 1,966.3

amazon0601 11,116.5 12,961.3 10,911.6 5,249.4 25,642.3 77.0 689.3 2,295.4

as-skitter 14,752.3 14,045.4 4,452.9 2,362.3 13,579.0 39.9 622.2 7,315.0

citationCiteseer 8,262.6 12,997.8 11,644.4 5,467.2 19,691.3 96.5 660.8 1,098.4

cit-Patents 5,029.3 6,417.9 6,118.1 8,748.0 8,835.5 49.7 1,200.9 7,837.7

coPapersDBLP 40,048.1 54,777.9 9,502.7 11,806.9 65,650.4 110.3 1,998.1 14,306.0

delaunay n24 4,207.7 18,458.6 3,719.2 58,571.7 21,987.0 142.5 1,476.6 7,139.8

europe osm 5,545.3 12,314.0 6,698.3 36,658.9 6,644.9 89.2 282.0 2,742.2

in-2004 27,562.8 27,463.8 11,364.4 5,701.4 29,876.8 100.3 404.8 12,305.1

kron g500-logn21 27,712.9 33,280.2 6,060.6 2,352.1 13,620.4 42.9 835.7 59,792.0

r4-2e23.sym 3,933.0 4,903.6 3,341.5 6,548.7 6,138.8 49.1 1,021.0 8,246.5

rmat22.sym 7,016.8 6,498.2 3,557.6 6,480.4 5,880.8 38.2 1,250.8 13,644.3

soc-LiveJournal1 9,807.3 18,240.3 3,760.1 7,093.9 11,740.4 56.9 1,384.9 16,383.8

uk-2002 15,666.0 27,612.5 4,972.5 12,212.0 25,962.7 130.8 2,215.8 33,620.6

USA-road-d.USA 3,319.7 12,236.2 4,269.3 43,775.6 9,395.4 114.5 378.1 2,965.3

GEOMEAN 9,698.5 15,032.5 6,301.3 9,995.3 14,644.0 75.8 762.3 7,392.6

These throughputs highlight the difficulty of achieving a
benefit from on-the-fly decompression and why it only works
with a high-speed and massively-parallel approach like MPLG.
As mentioned, we have implemented dozens of progressively
simpler algorithms and faster decompressors until we finally
found a combination that was fast enough to yield a speedup.

D. Comparison to LIGRA+

In this subsection, we compare MPLG to LIGRA+, which
uses a different compression approach that is tailored to CPUs.

Compression quality We compressed our 15 input graphs
using MPLG and LIGRA+’s highest-quality technique. Note
that LIGRA+ compresses both the edge and weight arrays (on
weighted graphs) whereas MPLG only compresses the edge
array. Figure 5 shows the resulting compression ratios.

LIGRA+ achieves better compression on all but 3 of our
inputs, which is expected since MPLG’s log-based encoding
is simple by design to enable fast and massively-parallel
decoding. Based on the geometric mean, LIGRA+ shrinks our



graphs down to 54% and MPLG shrinks them down to 69%
of their original size.

Performance To see whether LIGRA+’s higher compres-
sion ratio translates into better performance, we converted
the 15 graphs into the LIGRA and LIGRA+ formats and
used them as inputs for the codes that are provided with
LIGRA/LIGRA+. Figure 6 shows the box and whisker plots
of the resulting performance ratios on two types of CPUs.

(a) LIGRA+ on a 64-thread 6226R CPU

(b) LIGRA+ on a 32-thread 2950X CPU

Fig. 6. Performance of LIGRA+ normalized to LIGRA

On all tested codes and both CPUs, LIGRA+ results in
a slowdown on the majority of our inputs and on average.
Its highest median speedup is 0.98. In contrast, MPLG’s
highest median speedup is 1.12. As before, we observe a large
variation in performance ratios across the 15 inputs due to the
data-dependent nature of these irregular programs. LIGRA+
delivers an up to 35% performance boost but also an up to
89% performance drop compared to MPLG’s maximum 67%
boost and 38% drop. On average, MPLG yields substantially
more performance than LIGRA+. This is perhaps unexpected
since MPLG runs on GPUs, which have a much higher
memory bandwidth, making it more difficult to perform the
decompression fast enough to obtain a speedup. However,
LIGRA+’s main goal is to reduce the in-memory graph sizes
without loss in performance whereas MPLG’s main goal is to
boost performance while reducing the graph sizes.

VII. SUMMARY AND CONCLUSION

We present Massively Parallel Log Graphs (MPLG), a
losslessly compressed data representation to increase the per-
formance of graph analytics codes running on GPUs. MPLG
trades off a smaller in-memory footprint for extra decom-
pression overhead when reading the graph’s adjacency list
entries. This accelerates the memory accesses due to in-
creased coalescing, improved spatial locality, and fewer overall
main-memory transactions. To maximally exploit this benefit,
MPLG employs a log-based encoding scheme that enables
low-latency and independent decompression of each adjacency
list element, making massively-parallel GPU operation possi-
ble. We had to experiment with many different compression
algorithms and decompressor implementations until we found
a combination that was able to deliver a speedup and operate
at the required tens to hundreds of gigabytes per second.

The LIGRA+ and Log(Graph) projects use a similar idea
but target CPUs. LIGRA+’s approach is not parallel enough
for GPU usage and has too much overhead for the GPU’s high-
bandwidth memory, which is why we employ an approach that
is closer to Log(Graph) in nature. Since the Log(Graph) code
is not publicly available, we cannot compare to it. On average,
LIGRA+ compresses graphs more but delivers less speedup
than MPLG. Moreover, LIGRA+ is an extension of and tied
to LIGRA whereas MPLG is independent and designed to be
included in third-party codes. While our primary goal is to
improve performance, MPLG can also be used to fit larger
graphs on a GPU than would otherwise be possible (like
LIGRA). For example, our UK graph does not fit on a GPU
with 2 GB of memory but the MPLG version does. MPLG
shrinks our 15 graphs from various domains down to between
59% and 81% of their original size. Using these inputs on 8
GPU codes that we augmented with MPLG yields significant
speedups on average and up to 67% faster execution in the
best observed case. Our work demonstrates that real-time
decompression is, in many cases, feasible and beneficial even
on massively-parallel GPUs with high-bandwidth memory
running irregular graph codes. We hope that our work will
inspire others to develop real-time decompression approaches
for additional data structures and domains.
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[13] E. Abbe and S. Verdú, “Compressing data on graphs with clusters,” in
Proc. of the International Symposium on Information Theory (to appear),
2017.

[14] Y. Asano, Y. Miyawaki, and T. Nishizeki, “Efficient compression of web
graphs,” in International Computing and Combinatorics Conference.
Springer, 2008, pp. 1–11.

[15] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in Proceedings of the 13th international conference on
World Wide Web, 2004, pp. 595–602.

[16] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
2013, pp. 135–146.

[17] J. Dongarra, “Compressed row storage,” http://www.netlib.org/utk/
people/JackDongarra/etemplates/node373.html, accessed: 2021-7-3.

[18] J. Jaiganesh and M. Burtscher, “A high-performance connected compo-
nents implementation for gpus,” in Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing,
2018, pp. 92–104.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[20] Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang, “Gardenia: A
domain-specific benchmark suite for next-generation accelerators,” arXiv
preprint arXiv:1708.04567, 2017.

[21] M. Burtscher, S. Devale, S. Azimi, J. Jaiganesh, and E. Powers, “A
high-quality and fast maximal independent set implementation for gpus,”
ACM Transactions on Parallel Computing (TOPC), vol. 5, no. 2, pp. 1–
27, 2018.

[22] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” in International conference on high-performance
computing. Springer, 2007, pp. 197–208.

[23] U. of Rome, “Center for discrete mathematics and theoretical com-
puter science,” http://www.dis.uniroma1.it/challenge9/download.shtml,
accessed: 2021-11-4.

[24] S. University, “Stanford network analysis platform (snap),” https://snap.
stanford.edu/data/, accessed: 2021-11-4.

[25] SSMC, “Suitesparse matrix collection,” https://sparse.tamu.edu/, ac-
cessed: 2021-11-4.

http://iss.ices.utexas.edu/projects/galois/downloads/Galois-2.3.0.tar.bz2
http://iss.ices.utexas.edu/projects/galois/downloads/Galois-2.3.0.tar.bz2
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.dis.uniroma1.it/challenge9/download.shtml
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://sparse.tamu.edu/

	Introduction
	Background
	GPU Memory Architecture
	Warp-based Execution
	Coalesced Memory Accesses

	Related Work
	Approach
	Compressed Spare Row Format
	Log Encoding
	Log Decoding

	Methodology
	Codes
	Input Graphs

	Results
	MPLG Performance
	Cache Misses
	Decompression Throughput
	Comparison to LIGRA+

	Summary and Conclusion
	Acknowledgments
	References

