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Abstract—GPUs are increasingly being used to accelerate gen-

eral-purpose applications, including applications with data-
dependent, irregular memory access patterns and control flow. 
However, relatively little is known about the behavior of irregular 
GPU codes, and there has been minimal effort to quantify the 
ways in which they differ from regular GPGPU applications. We 
examine the behavior of a suite of optimized irregular CUDA 
applications on a cycle-accurate GPU simulator. We characterize 
the performance bottlenecks in each program and connect source 
code with microarchitectural characteristics. We also assess the 
impact of improvements in cache and DRAM bandwidth and 
latency and discuss the implications for GPU architecture design. 
We find that, while irregular graph codes exhibit significantly 
more underutilized execution cycles due to branch divergence, 
load imbalance, and synchronization overhead than regular pro-
grams, these factors contribute less to performance degradation 
than we expected. It appears that code optimizations are often 
able to effectively address these performance hurdles. Insufficient 
bandwidth and long memory latency are the biggest limiters of 
performance. Surprisingly, we find that applications with irregu-
lar memory access patterns are more sensitive to changes in L2 
latency and bandwidth than DRAM latency and bandwidth. 

I. INTRODUCTION 

The last several years have seen graphics processing units 
(GPUs) appear as general-purpose computation accelerators in 
many high-performance platforms. For programs that are well 
suited, GPUs offer a large advantage over multicore CPUs [32] 
in terms of performance, performance per dollar, performance 
per transistor, and often energy efficiency [18]. 

GPUs are very effective at accelerating regular programs 
that access vector- or matrix-based data structures in statically 
predictable ways. Such applications tend to exhibit large 
amounts of data parallelism, require little synchronization, and 
map easily to GPU hardware. GPU implementations of these 
regular algorithms can be tens of times faster than tuned paral-
lel CPU versions [9]. 

However, many problem domains employ algorithms that 
are irregular in nature: they build, traverse, and update point-
er-based data structures such as trees or graphs and exhibit 
input-dependent control flow and memory access patterns. 
Important irregular applications can be found across diverse 

domains including n-body simulation [3], optimization theory 
[12], meshing [11], satisfiability problems [5], compilers [1], 
and social networks [17]. Irregular codes do not map to GPU 
hardware as naturally as regular programs. Nonetheless, the 
literature includes several GPU implementations of irregular 
algorithms that outperform their multicore CPU counterparts 
[6][25][27]. 

Due to the advantages they offer over multicore CPUs, 
GPUs are likely to continue to grow in prevalence as accelera-
tors for general-purpose computation. Since there is significant 
evidence that they are capable of accelerating even irregular 
applications, it is important to understand the specific demands 
that irregular codes place on GPU hardware and the ways in 
which the behaviors of these codes differ from regular pro-
grams. This knowledge can guide developers of irregular GPU 
programs as well as hardware designers hoping to broaden the 
acceleration capabilities of GPUs. 

This paper makes the following main contributions. 

 We present the first simulation-based workload character-
ization focusing on irregular GPU applications. 

 We quantify the impact of the control flow and memory 
access irregularity in these codes on memory coalescing, 
branch divergence, and cache effectiveness. 

 We assess the sensitivity of these applications to cache 
and DRAM latency and bandwidth, cache size, and coa-
lescing behavior. 

 We analyze programs from the irregular LonestarGPU 
suite [7] and identify relationships between source code 
and microarchitectural performance behavior. 

 We demonstrate that the LonestarGPU codes comprise a 
wide variety of irregular behavior and performance bot-
tlenecks not typically found in regular GPU code. 

The rest of the paper is organized as follows. Section II re-
views the concept of irregularity and the challenges it presents 
to GPU programming. Section III discusses the benchmarks 
and inputs we study, and it describes the cycle-accurate simu-
lator we employ and its configurations. Section IV discusses 
and analyzes the results. Section V summarizes prior work. 
Section VI presents our conclusions. 

Microarchitectural Performance Characterization 
of Irregular GPU Kernels 

 



 
 
 

 

 

II.  BACKGROUND 

This section summarizes the differences between regular 
and irregular code. Regular code refers to programs in which 
neither control flow nor memory addresses are data dependent. 
For instance, the dynamic behavior (i.e., the conditional branch 
decisions and memory reference stream on an in-order proces-
sor) of a matrix multiply program can be statically determined 
based only on the input size and data-structure location but 
without knowing any input values. 

Irregular code, in contrast, refers to programs in which the 
runtime behavior is determined by the input values. Both con-
trol flow and memory access patterns may differ for different 
inputs. Irregular code usually arises from the use of dynamic 
data structures such as trees and graphs. 

Irregular algorithms are more difficult to parallelize in gen-
eral and more challenging to map to GPUs in particular than 
regular algorithms. For best performance, GPUs require coa-
lesced memory accesses and identical control flow paths for 
the threads within a warp. The data-dependent dynamic behav-
ior of irregular codes makes it difficult to assign work to 
threads in a manner that ensures coalesced accesses, identical 
control flow, and load balance. 

III. EXPERIMENTAL METHODOLOGY 

This section describes the applications we study as well as 
the inputs we choose for each benchmark. Additionally, it de-
tails the operation of GPGPU-Sim and the simulator configura-
tion options we apply in our study. 

A. Applications and Inputs 

We characterize performance aspects of the latest version of 
the LonestarGPU benchmark suite [23] as of 5/1/2014 in addi-
tion to several other programs. LonestarGPU is a collection of 
hand-optimized CUDA implementations of real-world irregu-
lar applications. It includes the following codes. 

 Breadth-First Search (BFS): This kernel labels each node 
in a graph with the node’s minimum level (or number of 
edges) from a specified start node, which is defined to be 
at level zero [27]. It is a key kernel in many applications 
such as mesh partitioning. 

 Barnes-Hut (BH): This n-body algorithm simulates the ef-
fect of gravity on a star cluster [3] by, in each time step, 
hierarchically decomposing the space around the stars, 
which is recorded in an octree. Special octree traversals 
allow for the quick approximation of forces. 

 Delaunay Mesh Refinement (DMR): This is a mesh re-
finement algorithm from computational geometry [21] 
that iteratively transforms the ‘bad’ triangles of a triangu-
lated input mesh into ‘good’ triangles by retriangulating 
the cavity around each bad triangle. 

 Minimum Spanning Tree (MST): Boruvka’s MST algo-
rithm computes a minimal spanning tree of an input graph 
through successive application of minimum weight edge 
contractions. This process is repeated until the graph con-
sists of just a single node. 

 Single-Source Shortest Paths (SSSP): This classic graph 
problem is similar to BFS and computes the shortest path 
to each node from a designated source node in a directed, 
weighted graph [12]. 

LonestarGPU version 2.0 relies on the CUB [13] library of 
parallel primitives, iterators, and I/O utilities, which in turn is 
dependent on CUDA 5.5. GPGPU-Sim, the microarchitectural 
simulator on which we perform our analysis, does not support 
CUDA versions later than 4.2 as of this writing. We have mod-
ified two of the LonestarGPU benchmarks, DMR and MST, to 
inline the PTX equivalent of their CUB functionality in order 
to allow them to be run on the simulator. We omit LonestarG-
PU’s Survey Propagation benchmark because it would require 
more significant modifications to remove its reliance on CUB. 
We also omit the Points-To Analysis benchmark due to exces-
sive simulation time on even the smallest available input. 
LonestarGPU includes multiple implementations of several of 
the algorithms; we characterize the primary implementation in 
each case. 

In addition to the above applications, we also examine the 
following, more regular GPU programs for comparison. 

 Floating-Point Compression (FPC): This program imple-
ments a lossless data (de-)compression algorithm for dou-
ble-precision floating-point values [30]. The code pro-
cesses chunks of input in parallel. Its control flow de-
pends on how well each word can be compressed. 

 Traveling Salesman Problem (TSP): This is a classic op-
timization problem involving finding the minimal Hamil-
tonian tour in a complete, undirected graph. The GPU 
code implements an iterative hill climbing approach with 
random restarts to find a near-optimal tour [31]. It has a 
data-dependent memory access pattern. 

 N-Body (NB): Similar to BH, this is an n-body program 
that simulates the motion of stars. Unlike BH, it performs 
precise all-to-all force calculations, making it regular. It is 
our own implementation and outperforms the correspond-
ing CUDA SDK code. 

 Monte Carlo (MC): This program evaluates the fair call 
price for a set of European options using the Monte Carlo 
method. It is a highly regular, array-based code from the 
CUDA SDK version 4.2 [33]. 

Table 1 lists the inputs we use. For each application, we se-
lect an input large enough to keep the simulated hardware busy 
but small enough to result in reasonable (less than 48-hour 
where possible) simulator runtimes. For each irregular code, 
Table 1 also includes the size of the data structures read by the 
dominant kernel’s inner loop (the working set) compared to the 
simulated GPU’s L2 cache size. By definition, irregular codes 
display input-dependent behavior. We have attempted to select 
a realistic, representative input for each program. Additionally, 
we study a second input for each application to quantify the 
expected behavior variation. Input variance is discussed in 
Section IV.C. Table 1 lists the primary input first. 



 
 
 

 

 

Table 1: Application inputs 

Code Input 
BFS NYC road network (~264K nodes, ~734K edges) 

   (working set = 3898 kB = 5.08x L2 size) 
RMAT graph (250K nodes, 500K edges) 

BH 494K bodies, 1 time step 
   (working set = 7718 kB = 10.05x L2 size) 

DMR 50.4K nodes, ~100.3K triangles, maxfactor = 10 
   (working set w/ maxfactor 10 = 7840 kB = 10.2x L2 size) 
30K nodes, 60K triangles 

MST NYC road network (~264K nodes, ~734K edges) 
   (working set = 3898 kB = 5.08x L2 size) 
RMAT graph (250K nodes, 500K edges) 

SSSP NYC road network (~264K nodes, ~734K edges) 
   (working set = 3898 kB = 5.08x L2 size) 
RMAT graph (250K nodes, 500K edges) 

FPC obs_error dataset (60 MB), 30 blocks, 24 warps/block 
num_plasma dataset (34 MB), 30 blocks, 24 warps/block 

TSP att48 (48 cities, 15K climbers) 
eil51 (51 cities, 15K climbers) 

NB 23,040 bodies, 1 time step 
MC 256 options 

B. GPGPU-Sim 

To characterize the performance of the selected irregular 
GPU codes, we study the benchmarks using GPGPU-Sim, a 
cycle-accurate microarchitectural model of an NVIDIA-like 
GPU for general-purpose computation [2]. GPGPU-Sim mod-
els the streaming multiprocessors (SMs), L1 caches, texture 
and constant caches, shared memory, interconnect network, 
memory partition (including the L2 cache), and off-chip 
DRAM. In addition to the caches and shared memory, each 
SM models an instruction cache, fetch, decode, an issue 
scheduler, the SIMT stacks used to resolve branch divergence, 
a scoreboard and operand collector for register file access, as 
well as ALU and load/store pipelines. GPGPU-Sim models 
shared memory bank conflicts and coalescing stalls based on 
the coalescing logic of compute capability 1.3 devices. 

GPGPU-Sim performs functional and timing simulation of 
PTX assembly instructions extracted from a CUDA executa-
ble. In PTXPlus mode, it has been correlated against an 
NVIDIA GT 200 GPU with an IPC correlation of 97.6% on a 

subset of the CUDA SDK and against Fermi (compute capabil-
ity 2.0) hardware with an IPC correlation of 97.3% on the 
Rodinia benchmark suite with reduced problem sizes [16]. 
Because PTX is a virtual ISA and not the actual code that runs 
on the hardware, GPGPU-Sim supports PTXPlus, an extended 
version of PTX that adds addressing modes, condition codes, 
and instructions similar to those in SASS, NVIDIA’s native 
hardware assembly. While PTXPlus simulation is likely to 
result in more accurate correlation to real hardware, GPGPU-
Sim does not yet fully support it for all programs supported in 
PTX. Many of our benchmarks do not run successfully in 
PTXPlus mode. PTX assumes an infinite register set and thus 
simulation results do not capture the impact of register spill 
code. Of our studied codes, however, only NB causes register 
spills in its dominant kernel. 

All of the studied codes were compiled using CUDA 4.2. 
We performed our experiments using GPGPU-Sim version 
3.2.1 with a handful of minor bug fixes and instrumented with 
additional performance counters. 

C. Simulator Configurations 

GPGPU-Sim release 3.2.1 includes a configuration for the 
GTX 480, a Fermi NVIDIA GPU [14]. The GTX 480 has 15 
SMs. Each SM includes two warp schedulers and two dispatch 
units, allowing warps to dual-issue. The 32 threads in a warp 
are issued over two cycles, 16 threads at a time. We use the 
GTX 480 configuration as the default configuration in our 
study. Several of the studied benchmarks utilize the CUDA 
API routine cudaFuncSetCacheConfig, which sets (on a kernel 
basis) the L1 cache configuration to either 48kB software-
controlled shared memory and 16kB hardware-managed cache 
or vice-versa. GPGPU-Sim v3.2.1 does not support this API 
call. Hence, we modified the benchmark codes to remove these 
calls and ran each benchmark with the shared memory and L1 
data cache size set according to the program’s dominant ker-
nels. We confirmed on real hardware that these changes had a 
negligible impact on runtime. 

Table 2: Simulator configurations 
Latency Bus width L1D L2 

ROP DRAM Ict DRAM CP Sz (PS) Sz (PL) MQ MS MM Size MQ MS MM 
Default 240 200 32 4 Y 16 48 8 32 8 768 4 32 4 

1/2x ROP 120 200 " " " " " " " " " " " " 
2x ROP 480 200 " " " " " " " " " " " " 

1/2x DRAM 240 100 " " " " " " " " " " " " 
2x DRAM 240 400 " " " " " " " " " " " " 

No Latency 0 0 " " " " " " " " " " " " 
1/2x L1D Cache 240 200 32 4 Y 8 24 8 32 8 768 4 32 4 

2x L1D Cache " " " " " 32 96 " " " " " " " 
1/2x L2 Cache " " " " " 16 48 " " " 384 " " " 

2x L2 Cache " " " " " " " " " " 1536 " " " 
1/2x DRAM Bandwidth 240 200 " 2 Y 16 48 8 32 8 768 4 32 4 

2x DRAM Bandwidth " " " 8 " " " " " " " " " " 
1/2x Ict + DRAM B/W " " 16 2 "  "  " " " " " " " " 

2x Ict + DRAM B/W " " 64 8 "  "  " " " " " " " " 
No Coalesce Penalty 240 200 32 4 N 16 48 8 32 8 768 4 32 4 
NCP + Impr L1 Miss " " " " N " " 16 64 16 " 4 32 4 

NCP +Impr L1+L2 Miss " " " " N " " 16 64 16 " 8 64 8 

Latencies represent number of shader core cycles. Cache sizes in kB. ROP=Raster Operations Pipeline (models L2 hit latency). Ict = Interconnect (flit size). CP=Coalesce penalty, 
PS = Prefer Shared Mem, PL = Prefer L1, MQ=Miss queue entries, MS=Miss status holding register entries, MM=Max MSHR merges  



 
 
 

 

 

In addition to the default configuration, we modified the 
provided GTX 480 configuration to scale the minimum L2 hit 
latency, minimum DRAM latency, interconnect bandwidth, 
DRAM bus width, the L1D and L2 cache sizes, and the num-
ber of cache miss queue and miss-status handling register 
(MSHR) entries. Moreover, we added a configuration option to 
GPGPU-Sim to disable the pipeline penalty associated with 
uncoalesced memory accesses within a warp. Table 2 summa-
rizes the simulator configurations used. 

IV. RESULTS AND ANALYSIS 

This section first studies the impact on the selected codes of 
several common sources of GPU performance limitation. Then 
we examine each application individually and assess the domi-
nant performance bottlenecks of each. 

The LonestarGPU benchmarks include applications across a 
wide range of performance points. Figure 1 illustrates the in-
structions per cycle (IPC) of each studied application. The the-
oretical peak performance of the GTX 480 is 480 IPC. 

 
Figure 1: Measured instructions per cycle of each benchmark 

As expected, the regular programs NB and MC perform 
very well. More surprisingly, the irregular code BH also reach-
es a high IPC, though not in all of its kernels (see below). The 
remaining irregular codes underperform even FPC, the worst 
of the (semi-)regular codes. DMR’s IPC is dismal for reasons 
we explain in the individual application analysis below. Over-
all, there is a clear tendency towards much lower IPCs for ir-
regular codes and none of them come close to achieving peak 
performance. However, it is also clear that there is no simple 
or fixed delineation between the performance of codes operat-
ing on irregular data structures and more regular codes. 

A. Common Performance Bottlenecks 

GPU performance is heavily impacted by the presence of 
control flow divergence within a warp and memory accesses 
that cannot be coalesced. We study the effect of both of these 
factors on each code. In addition, we examine the cache and 
memory performance of each application, including the effect 
of cache size as well as cache hit and main memory latency 
and bandwidth. 
1) Control flow divergence 

Figure 2(a) plots the average warp occupancy based on the 
active mask of instructions within a warp at the issue stage in 
each scheduler. The first bar for each benchmark represents the 
average warp occupancy in only those cycles where a warp 
instruction was issued to the core pipeline. The second bar 
represents the average warp occupancy across all cycles of the 

simulation, including cycles in which a scheduler did not issue 
any warp due to a stall or idle condition. 

The left bar for each application provides a graphical repre-
sentation of the amount of branch divergence. A program with 
no control flow divergence would reach an average warp oc-
cupancy (not including idle and stall cycles) of 32. Indeed, the 
two highly regular codes we study have average warp occu-
pancies very close to 32, implying they do not suffer from 
branch divergence. As we expect from codes operating on an 
irregular data structure, BFS, MST, SSSP, and especially 
DMR display lower warp occupancies, but only DMR’s occu-
pancy falls below half-occupied. Of the irregular codes, only 
BH has very little control flow divergence because the force 
calculation kernel, which accounts for 95% of the runtime, has 
been implemented in a warp-based manner to improve perfor-
mance. In contrast, the tree-building kernel, denoted as 
‘BH(tree)’, exhibits significantly more control irregularity. 
Overall, with the exception of DMR, the branch divergence is 
not as severe as we had expected from irregular codes. Figure 
2(b) illustrates the speedup that each benchmark would achieve 
given perfect warp formation, i.e., if each cycle in which an 
issue could be made issued 32 instructions per scheduler. 

 
(a) 

 
(b) 

Figure 2: (a) Average warp occupancy of each application, both inclu-
sive and exclusive of idle/stall cycles; (b) Benchmark speedup with 

perfect warp formation 

The right bar of each application in Figure 2(a) illustrates 
the impact of issue stalls on warp occupancy, particularly due 
to memory latency and uncoalesced accesses. The rest of this 
subsection investigates these factors in more detail. 

2) Memory coalescing 

Figure 3(a) plots the average number of memory accesses 
performed by each global or local load or store instruction. A 
bar height above one illustrates the presence of uncoalesced 
memory accesses. The highly regular applications NB and MC 
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have average access counts of 1, meaning that essentially all 
loads and stores are fully coalesced, i.e., each access by a warp 
results in a single memory transaction. BH and TSP perform 
very few but quite uncoalesced stores. On average, BH’s loads 
are almost all coalesced, but this is again due to the dominant 
‘regularized’ force calculation kernel. The BH tree building 
kernel, in contrast, exhibits more uncoalesced loads than any 
other application. TSP possesses a data-dependent and byte-
granular memory access pattern and thus exhibits highly unco-
alesced accesses. FPC, though a semi-regular code, also suffers 
from a high average access count resulting from its data-
dependent byte-granular memory accesses, since stores to two 
bytes in the same word are serialized by the hardware. BFS 
and SSSP have fully coalesced stores and display only slightly 
increased load access counts; however, their high load instruc-
tion counts result in significant slowdown from coalescing. 

To further study the relationship between coalescing and 
performance in these benchmarks, we added a configuration 
option to GPGPU-Sim that removes the pipeline stall penalty 
associated with non-coalesced accesses. This configuration 
allows an SM to issue a warp instruction requiring multiple

  
(a) 

  
(b) 

Figure 3: (a) Average access count per global or local warp load or 
store instruction; (b) Percentage of cycles marked as coalescing stalls 

accesses in a single cycle. However, it does not further im-
prove the memory pipeline to handle the increased memory 
traffic. It is not intended to model a realistic hardware im-
provement, but it provides some visualization of theoretical 
improvement. We studied each benchmark with the no-
coalesce-penalty configuration applied both by itself and in 
combination with increased-capacity cache miss queues and 
MSHRs. Figure 3(b) displays the percentage of simulation 
cycles in each benchmark that the simulator marks as stalls due 
to coalescing; this provides a visualization of the theoretical 
speedup that would result from somehow entirely removing 
the coalescing requirements. Figure 4 plots the speedups over 
the default setting for each of our no-coalesce-penalty configu-
rations. 

As intuitively expected, simply removing the pipeline penal-
ty associated with coalescing stalls has little impact on perfor-
mance due to a corresponding increase in cache reservation 
stalls and interconnect backup. More surprisingly, for most of 
the benchmarks, improving the miss-handling capability of the 
caches does little to improve the performance of removing the 
coalescing penalty. (FPC is an outlier due to its many serial-
ized byte-granular stores, which are counted as coalescing 
stalls). This suggests that hardware improvements aimed at 
reducing the coalescing penalty are likely to be ineffective on 
irregular codes unless they are combined with increased 
memory bandwidth. 

 

3) L2 and DRAM latency 
Next we examine the performance impact of scaling the L2 

hit latency and DRAM access latency. GPGPU-Sim models 
the minimum L2 hit latency via the raster operations pipeline 
(ROP) latency, which determines the minimum latency be-
tween when a memory request arrives at the memory partition 
and when it accesses the L2 cache. Additionally, the simulator 
allows configuration of the DRAM latency, the minimum la-
tency between when a memory request accesses the L2 cache 
and when it is pushed to the DRAM scheduler. The default 
options for these latencies are based on a microbenchmarking 
study of the GT200 [34]. We do not assess the effect of scaling 
the L1 hit latency. GPGPU-Sim models the minimum L1 hit 
latency as a single cycle. However, a recent study [24] sug-
gests a significantly longer hit latency, making this an area for 
further investigation. 

 
Figure 4: Speedups over the default simulator configuration when removing the coalescing pipeline penalty and increasing the size of the cache 
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Figure 5: Speedup over the default simulator configuration when scaling the minimum L2 hit latency and DRAM latency 

(TSP does not include data for the No Latency configuration due to a simulator deadlock) 

 
Figure 6: Speedup over the default simulator configuration when scaling the interconnect and DRAM bandwidth 

(DMR does not include data for the 1/2X Ict B/W + 1/2X DRAM B/W configuration due to a simulator deadlock) 
 

We examine each benchmark with both latencies configured 
to zero as well as with the latencies doubled and halved. Figure 
5 plots the speedup relative to the default setting for each la-
tency configuration. Interestingly, nearly all of the studied 
benchmarks are more sensitive to the L2 latency than the 
DRAM latency, even in the presence of working set sizes sev-
eral times larger than the L2 capacity. The exception is FPC, 
which accesses data in a streaming manner and displays high 
spatial locality. The regular NB code uses tiling to read all data 
into shared memory and is largely compute-bound; it is thus 
insensitive to memory latencies. These results suggest that, at 
least for our inputs, L2 latency is more important than DRAM 
latency for the performance of GPGPU codes, especially irreg-
ular ones.  
4) Interconnect and DRAM bandwidth 

Next we scale the interconnect bandwidth between the 
memory partitions (including the L2 cache) and the core, as 
well as the DRAM bandwidth (by adjusting the DRAM bus 
width). Figure 6 illustrates the performance impact on each 
benchmark of halving and doubling the interconnect and 
DRAM bandwidths. Similarly to the L2 and DRAM latency 
behavior, most of the studied applications are significantly 
more sensitive to interconnect bandwidth than to DRAM 
bandwidth. It seems that for these applications and input sizes, 
the L2 is large enough that sufficient L2 bandwidth keeps 
enough warps able to execute. The regular codes are helped 
very little by additional memory bandwidth. 
5) Cache behavior 

Lastly, we observe cache misses per thousand warp instruc-
tions (MPKI) for each program, plotted in Figure 7. Most of 
the applications, including the highly regular codes, have L1 
cache miss ratios above 50%, which would be considered ex-
tremely high for CPU applications. After all, CPU and GPU 

architectures have L1 data caches for different reasons: in 
GPUs, they mostly provide coalescing support rather than ex-
ploit temporal locality, because there cannot be an expectation 
of the cache holding data for a significant period of time due to 
the high number of active threads. 

However, the irregular codes all have markedly higher 
MPKI rates than the regular codes. NB, which tiles its data into 
shared memory and is compute-bound, has MPKI rates near 
zero for both caches. TSP is composed mostly of shared 
memory accesses and many of its local memory accesses are 
strided, which is why this program has one of the lowest ob-
served L1 miss rates. FPC also exhibits a relatively low cache 
miss rate due to its streaming behavior. BFS and SSSP both 
perform a significant number of pointer-chasing operations and 
are not able to exploit much spatial locality, resulting in ex-
tremely high L1 miss rates. 

 
Figure 7: Cache misses per thousand warp instructions (MPKI) 

Figure 8 plots the performance impact on each benchmark 
of halving and doubling the L1D and L2 cache sizes over the 
default configuration. In general, those benchmarks that are 
significantly sensitive to interconnect bandwidth also benefit 
most from increased L1 data cache size. The exception is the 
irregular BH tree construction kernel. This kernel traverses tree 
prefixes beginning with the root of the tree. The top of the tree 
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Figure 8: Speedup over the default simulator configuration when scaling the L1D and L2 cache size 

is therefore likely to hit in the L1, but after the top portion of 
the tree there is insufficient locality to leverage even a larger 
L1. Increased bandwidth to the L2, however, improves per-
formance because the L2 allows for significant exploitation of 
locality in the traversals. Nearly all of the codes are hurt signif-
icantly more by decreased L2 capacity than decreased L1 ca-
pacity. For this input, SSSP displays an unexpected slowdown 
with an increased L2 size. The SSSP code iterates until con-
vergence is reached, which can cause architectural changes to 
alter the timing between threads and result in a different num-
ber of instructions executed, leading to occasionally counterin-
tuitive performance changes. 

B. Individual Application Analysis 

We supplemented GPGPU-Sim’s warp issue metrics with 
additional stall type counters. In each cycle, every SM incre-
ments a histogram bin with the active instruction count of the 
warp it issued in that cycle. In cycles with no issue, a histo-
gram bin for the cause of the issue stall is incremented. To 
ensure that only one bin is updated per scheduler per cycle, it 
is necessary to define a priority between idle/stall conditions 
since warps ineligible for issue in that cycle may be stalled for 
multiple reasons. Figure 9 illustrates the priority definitions of 
the issue histogram bins. In case of issue stalls due to a full 
functional unit pipe, we added instrumentation to collect addi-
tional information on the functional unit responsible for the 
stall. In our codes, the majority of these stalls are due to pres-
sure in the load/store functional unit. 

Based on the resulting warp occupancy histogram and stall 
distribution, we calculated the number of issue cycles with 
underused thread occupancy due to branch divergence, control 
flow, barriers, atomics, functional unit stalls, and work imbal-
ance between blocks (denoted as ‘interblock imbalance’). Fig-
ure 10 displays the breakdown of underused cycles on a per-
application basis as well as the cycles in which the GPU issued 
at full occupancy (which are denoted as ‘busy’ cycles). Score-
board collision stalls include both read-after-write (RAW) and 
write-after-write (WAW) hazards but are dominated by RAW 
hazards in all of the codes. Because the majority of these RAW 
hazards are caused by outstanding loads, the ‘scoreboard haz-
ards’ metric provides a rough estimate of the impact of 
memory latency. In addition, load/store unit (LSU) pipeline 
stalls reflect both coalescing penalty and cache reservation 
fails; the latter is also an indication of memory latency associ-
ated slowdown. 

We discuss each code in detail and conclude with general 
observations about the major performance limitations: 

Figure 9: Issue stage histogram bin definitions 

 Breadth-First Search (BFS): This code suffers from a 
high number of LSU and RAW stalls due to the data-
dependent nature of its memory accesses (based on the 
connectivity of the input graph). The BFS implementation 
further displays some control-flow irregularity due to 
graph nodes having different numbers of edges, which re-
sults in branch divergence. 

 Barnes-Hut (BH): The BH code, while tree-based and ir-
regular in nature, is dominated by the force calculation 
kernel, which has been optimized to eliminate almost all 
divergence and to ensure that most of its main memory 
accesses are coalesced. As a result, BH spends a larger 
percentage of execution time at full occupancy than the 
other irregular codes. It should be noted that BH’s warp 
threads perform some unnecessary computation to mini-
mize branch divergence, and these unnecessary cycles are 
denoted as busy cycles rather than divergence. However, 
the unnecessary work improves both the performance and 
the accuracy of the algorithm. Figure 10 also includes 
metrics for the BH tree-building kernel. This kernel ex-
hibits significantly more irregularity, suffering from both 
memory access stalls and substantial branch divergence. 
It also exhibits a noticeable performance penalty due to 
the synchronization barriers necessary to build the tree in 
parallel. There is a small amount of work imbalance as it 
is a priori unknown how deep the various branches of the 
unbalanced octree will be. 

 Delaunay Mesh Refinement (DMR): DMR has by far the 
lowest IPC of all the codes we examine and is in a sense 
the most irregular code as well. It suffers from a large 
amount of memory access stalls, divergence, and by far

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

BFS BH BH(tree) DMR MST SSSP FPC TSP NB MC

Sp
ee
d
u
p

1/2x L1D size 1/2x L2 size 2x L2 size 2x L1D size



 
 
 

 

 

 
Figure 10: The proportion of underused vs. fully-occupied cycles in each application 

the largest fraction of synchronization stalls of any of 
our codes. For each bad triangle, DMR’s refinement 
kernel builds a cavity whose size and shape are data 
dependent, checks whether there is overlap with anoth-
er cavity, employs a priority-based back-off mechanism 
in case of overlap, and finally refines the cavity if the 
thread has the highest priority of all the triangles in the 
cavity. The synchronization stalls stem from global bar-
riers separating these phases, the divergence is the re-
sult of load imbalance between threads, and the 
memory stalls are likely unavoidable when processing 
an irregular graph whose shape changes at runtime. 

 Minimum Spanning Tree (MST): MST spends the ma-
jority of its cycles waiting for uncoalesced load data 
due to the irregular nature of its accesses to the merged 
graph nodes, or components. The innermost loop con-
tains a set of nested if statements to unify the minimum-
weight components, resulting in significant divergence 
penalty and the highest control flow penalty of our ir-
regular codes. MST displays more slowdown associat-
ed with atomics than any of our other codes due to the 
atomic operations necessary to merge components; 
however, it is still a minor source of performance loss 
compared to memory-related stalls. 

 Single-Source Shortest Paths (SSSP): This algorithm is 
similar to the BFS implementation. Its performance is 
also limited by LSU and RAW stalls resulting from un-
coalesced memory accesses and insufficient memory 
bandwidth, as well as branch divergence due to control 
flow irregularity when processing the input graph. 

 Floating-Point Compression (FPC): This application 
spends most of its time stalled due to a full load/store 
unit pipeline. These stalls stem from the coalescing be-
havior of its double-precision memory accesses as well 
as warp-threads reading and writing data-dependent 
byte locations in main memory. FPC also exhibits a 
large percentage of control hazard stalls due to the short 
(maximum iteration count of 8) data-dependent loops 
that read and write the compressed bytes corresponding 

to an uncompressed double. FPC further suffers from 
some branch divergence due to imbalance in the num-
ber of bytes processed by each warp thread, as well as a 
code section in which only every other thread has work. 

 Traveling Salesman Problem (TSP): The TSP code is 
semi-regular, possessing relatively regular control flow 
but data-dependent memory accesses, and it spends the 
majority of its execution time on computation. Its 
memory accesses are mostly to shared memory, but it 
does access main memory when performing the 2-opt 
city ordering swaps, resulting in uncoalesced accesses 
and LSU stalls. TSP also exhibits a large fraction of 
idle time associated with synchronization barriers. 
These barrier idle cycles occur as threads in a block fin-
ish computing their locally best solution but have to 
wait for the slowest thread in the block before the glob-
al solution can be updated. The branch divergence 
stems from an instance of control-flow irregularity 
where some threads have reached a local minimum and 
want to move on to a new tour while other threads are 
still searching for a minimum. 

 N-Body (NB): This code is highly regular and computa-
tion-bound. Additionally, we chose an input size to ex-
actly fill the resident blocks to provide a basis of com-
parison for the irregular benchmarks. NB demonstrates 
the highest busy ratio of the studied programs. Its lost 
cycles are due mostly to RAW hazards on the small 
amount of data not accessed via shared memory as well 
as full computation pipelines and the synchronization 
barriers necessary between transferring data to shared 
memory and the computation phase. 

 Monte Carlo (MC): The MC application is embarrass-
ingly parallel, highly regular, and dominated by compu-
tation. Its largest source of slowdown is scoreboard 
hazards due to cache misses. It also displays some im-
balance between blocks as well as pipeline stalls in the 
special function unit (SFU) pipeline due to its extensive 
use of square root operations in the quasi-random se-
quence generation kernel. 
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Many of the irregular codes rely on synchronization barri-
ers and atomic operations. Interestingly, these primitives 
contribute a smaller fraction of program slowdown than ex-
pected. The performance loss associated with imbalance and 
branch divergence was also somewhat less severe than we 
expected of codes operating on irregular data structures. 
Clearly, the benchmark codes have been successfully opti-
mized to minimize the performance impact of these aspects 
[28][29]. In line with expectation, memory bandwidth ap-
pears to be the most significant performance bottleneck for 
highly optimized irregular GPU applications. Apparently, 
this bottleneck is more difficult to address with source-code 
optimizations, making corresponding hardware enhance-
ments very valuable for accelerating irregular codes. 

C. Input sensitivity 

In addition to the primary input listed in Table 1, we com-
pared the behavior of each code for a second input of similar 
size to understand the impact of input variation on our re-
sults. Figure 11 compares the application behavior for two of 
the graph codes operating on their primary input (a New 
York City roadmap) and a randomly-generated RMAT 
graph. The benchmarks BFS and SSSP displayed the highest 
amount of input variation. For BFS and SSSP, the RMAT 
input results in significantly more cycles lost to divergence. 
RMAT graphs are denser and have higher and more varied 
out-degree per node than road networks, so we would expect 
the graph traversal codes to exhibit a greater performance 
penalty associated with many uncoalesced accesses. 

 
Figure 11: Input variance for BFS and SSSP 

V. RELATED WORK 

There have been several prior studies characterizing GPU 
applications using simulation, but they focus on mostly regu-
lar codes. Bakhoda et al. [2] present GPGPU-Sim and study 
twelve CUDA applications (including BFS) demonstrating 
various levels of GPU performance. They characterize the 
performance impact of several microarchitectural design 
choices, including interconnect topology, caches, memory 
controller design, and workload distribution. Goswami et al. 
[15] propose a set of microarchitecture-agnostic GPGPU 
workload characterization metrics and use these metrics to 
study benchmarks in the CUDA SDK, Rodinia, and Parboil 
suites using GPGPU-Sim. Blem et al. [4] propose a set of 
challenge benchmarks (selected from the GPGPU-Sim 
benchmarks, Rodinia, and a handful of naïve ports of Parsec 
applications) where the achieved IPC is less than 40% of 
peak. They use GPGPU-Sim to present a characterization of 
the benchmarks’ key architectural bottlenecks and apply an 
analytic model to predict the performance impact of mitigat-

ing each bottleneck. Che et al. [10] evaluate the Rodinia 
benchmark suite on a GTX 480 and in GPGPU-Sim. 

GPGPU application performance has also been studied us-
ing PTX emulators that do not provide cycle-accurate simu-
lation. Kerr et al. [19] propose a set of metrics for GPU 
workloads and analyze these metrics on over fifty mostly 
regular applications, including the SDK and Parboil, via the 
GPU Ocelot emulator. They investigate the impact of opti-
mizations such as various branch re-convergence mecha-
nisms and memory read coalescing. Wu et al. [35] study 
several benchmarks (including the SDK, Rodinia, and Par-
boil) to identify sources of control-flow irregularity. 

Burtscher et al. [7] previously characterized the control 
flow and memory access irregularity of the LonestarGPU 
suite. Their study relied on hardware performance counters 
for issued and executed instructions, divergent branches, and 
instructions replayed for coalescing or bank conflicts. Che et 
al. [8] also describe a hardware performance counter-based 
characterization of a suite of irregular GPGPU graph appli-
cations. Many of the counters of interest in a study of irregu-
lar codes (e.g., stall cause per issue cycle) are not available 
through hardware counters, which is why we believe simula-
tion to be necessary to provide a more complete picture of 
application behavior. 

Meng et al. [26] investigate via simulation a method of 
dynamic warp subdivision to hide branch and memory laten-
cy divergence. Similarly to our paper, they characterize the 
performance impact of variations in cache miss latency and 
other microarchitectural parameters; however, they primarily 
apply these modifications to their proposed dynamic warp 
hardware modification. Lee and Wu [22] also use GPGPU-
Sim to examine program behavior in terms of stall cycle 
distribution. They focus on the Rodinia benchmark suite, 
examine fewer aspects of microarchitectural performance, 
and do not attempt to delineate the impact of irregularity. To 
the best of our knowledge, ours is the first use of a cycle-
accurate simulator to characterize the performance and bot-
tlenecks specifically of irregular CUDA codes. 

VI. CONCLUSIONS 

This paper presents a microarchitectural workload charac-
terization focusing on irregular GPU codes. We study the 
impact of control flow and memory access irregularity on 
several performance aspects, analyze how this behavior dif-
fers from regular GPU programs, and characterize the sensi-
tivity of irregular code to cache and DRAM latency and 
bandwidth as well as cache size. We additionally connect 
source code to particular microarchitectural performance 
characteristics. 

As expected, even extensively hand-optimized graph and 
tree algorithms achieve lower IPCs than regular codes. In 
general, they exhibit greater performance loss due to load 
imbalance, branch divergence, and uncoalesced memory 
accesses resulting from the unpredictable nature of their con-
trol flow and memory access patterns. This general trend is 
not always true, though. BH, for example, builds and oper-
ates on an irregular data structure (an octree) but, due to tar-
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geted code optimizations, displays less memory irregularity 
than FPC, which is not based on a dynamic data structure. 

Interestingly, for these (presumably comprehensively op-
timized) irregular codes, load imbalance, branch divergence, 
and the overhead of synchronization and atomic operations 
limited the performance less than we expected. Memory-
related slowdown is the single biggest factor limiting the 
performance of irregular applications, even those that have 
been demonstrated to possess ample parallelism [20], be-
cause irregular memory access patterns appear to be difficult 
to regularize and coalesce. 

We find that, for our sizeable inputs, reducing the L2 la-
tency and bandwidth is more important than decreasing the 
DRAM latency and bandwidth to improve the performance 
of programs with irregular memory accesses. Additionally, 
we observe that hardware strategies designed to reduce the 
penalty associated with uncoalesced memory accesses, in-
cluding increasing in-core miss-handling resources, are un-
likely to have a significant effect without corresponding im-
provements in memory bandwidth and latency. 
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