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Abstract—Some of the fastest CUDA codes contain “benign”
data races to boost their performance. However, such races
can lead to unpredictable behavior and incorrect results on
other hardware and compilers, making their elimination
crucial for producing reliable and portable programs. This
paper investigates the performance impact of removing data
races from six high-end graph analytics codes. We identify
and eliminate the races from these GPU programs by adding
necessary synchronization and validating their correctness.
We present our race-free codes and their original versions as
an open-source suite. Comparing the performance of our new
codes with their baseline counterparts on multiple inputs
and GPUs, we observe that race-free implementations do not
always incur a performance penalty. In fact, some race-free
versions are faster, with our validated maximal independent
set implementation achieving a 5-11% speedup. Our findings
indicate that race-free code can reach comparable or even
superior performance, supporting the adoption of best
practices for parallel programming.

Index Terms—Parallel programming, data races, software
verification and validation, graph analytics, CUDA

I. Introduction
Data analytics has become a major workload in recent

years. Due to the high computational demands, GPUs are
often used for running such analytics. In many cases, the
inputs consist of semi- or unstructured data, requiring
irregular algorithms [1] for processing them that can be
difficult to parallelize and optimize, especially for GPUs.
To maximize performance and simplify implementation,

programmers sometimes resort to tricks such as using
“benign” data races that do not affect program correctness
on their system. In fact, CUDA explicitly allows such races
via the volatile qualifier (see below). However, these tricks
yield non-portable programs that may not work on future
generations of the same GPU family or on other current
GPU families. Moreover, they may result in miscompiled
code when switching to a different compiler or to a future
version of the same compiler [2]. For these reasons, many
multithreading specifications, including those for C [3],

This work has been supported in part by the National Science Foundation
under Award Number 1955367 and by an equipment donation from NVIDIA
Corporation.

C++ [4], Posix threads [5], OpenMP [6], and now CUDA [7],
specify all data races as undefined behavior. Consequently,
any source code with a data race is incorrect. In other words,
there is no such thing as a “benign” data race in high-level
programming languages [2].

Current CUDA-capable GPUs load and store scalar values
in a single access. Hence, it is common for programmers to
not protect memory operations to shared scalar data beyond
labelling the data as volatile. The volatile qualifier alerts
the compiler that a memory location may be concurrently
used or changed by other threads, so all accesses to it must
compile into an actual memory read or write instruction
without local caching [7]. However, the assumption that
these accesses are atomic may not hold on other architectures
or future generations, breaking previously working code.
Therefore, the volatile keyword does not solve the portability
issue and disables optimizations.

As a remedy, NVIDIA recently introduced libcu++, a C++
Standard Library that can be used both in and between
CPU and GPU code [8]. This library allows the declaration
of atomic data types with optional memory-ordering and
scope specifications, which were not available for atomic
operations in CUDA before. The memory order restricts
how the surrounding memory accesses can be reordered
with respect to the atomic operation. The scope determines
whether the operation is atomic at the block, grid, or
system level (including host code). Whereas libcu++ is a
welcome addition, it does not support older GPUs and is
new enough that most codes do not use it yet. Moreover, it
places an additional burden on the programmer, who may
need to determine the appropriate memory ordering and
scope, especially given that the defaults can lead to poor
performance [9].
In “regular” codes, such as those that operate on dense

matrices and arrays, data races can often easily be avoided
even without synchronization. This is not the case for
“irregular” codes with unpredictable memory-access patterns
and control flow, of which graph analytics are an important
and widely used representative.

To investigate the prevalence and performance benefit of



“benign” data races, we studied six high-performance graph
analytics CUDA codes: all-pairs shortest-paths (APSP) [10],
connected components (CC) [11], graph coloring (GC) [12],
maximal independent sets (MIS) [13], minimum spanning
trees (MST) [14], and strongly connected components
(SCC) [15]. We selected these codes because they are some
of the fastest GPU implementations of their respective graph
algorithms in the current literature.

We removed all data races from these codes using various
techniques as explained in Section IV. We validated our
modified codes with multiple verification tools (and by hand)
to ensure that they are data-race free. Then, we studied the
performance impact of removing the “benign” data races
on different inputs and GPU generations. Surprisingly, our
results show that the race-free codes are not necessarily
slower. Whereas our modifications make some codes between
1.1 and 2.2 times slower, our race-free MIS implementation is
around 5-11% faster than its baseline counterpart. This likely
makes it the currently fastest CUDA implementation of MIS.
In general, we found both the algorithm implementation and
the input size to impact the performance when removing
data races from a program. This paper makes the following
main contributions.

• It identifies latent data races in several high-
performance graph analytics CUDA codes.

• It explains how we modified these codes to make them
data-race free and how we verified them.

• It compares the execution time of our new codes with
their baselines to quantify the performance impact of
making programs data-race free.

• It demonstrates that removing “benign” races can, in
fact, improve performance and analyzes the conditions
under which this might happen.

Both the baseline and validated race-free codes are open-
sourced and freely available in our ECL-Suite [16].
The rest of the paper is organized as follows. Section II

reviews relevant background information and introduces
the six studied codes. Section III summarises related work.
Section IV describes our approach for identifying and
removing data races. Section V discusses the experimental
methodology. Section VI evaluates the performance impact of
removing data races from graph analytics codes. Section VII
summarizes our findings and draws conclusions.

II. Background
A. Concurrency Issues
This subsection reviews synchronization-related aspects

of parallel programs that are important for our study.
• Atomic access: a load or store memory operation that

cannot be interrupted.
• Word tearing: a single-element access that is per-

formed using multiple loads or stores.
• Volatile variable: a memory location that can change

its value (e.g., due to another thread).

• Memory ordering: restrictions on which memory
accesses can be reordered relative to each other.

Word tearing happens, for example, when a 64-bit variable
is read or written on a 32-bit architecture that does not have
machine instructions for directly accessing 64-bit words. On
such a system, a 64-bit write is accomplished by two 32-bit
stores and a 64-bit load by two 32-bit loads. To see why
this is a problem, consider Thread T2 running concurrently
with T1 in Fig. 1. If word tearing occurs, T2 will not always
print -1 or 0 as one might expect but may print the chimera
value 0xffffffff00000000 or 0x00000000ffffffff, in which half of
the bits come from the initialization value -1 and the other
half from the value 0 that T1 writes. This happens when the
thread timing is such that T1 executes its first 32-bit store,
then T2 executes its two 32-bit loads (to fetch the value for
printing), and finally T1 executes its second 32-bit store.
Word tearing is a problem even when another thread

performs an atomic access, as is the case for Thread T3
in Fig. 1, which atomically adds 6 to val. The atomic add
executes a read-modify-write operation, that is, it both loads
and stores val atomically. Note that the entire operation is
a single atomic transaction, it does not perform an atomic
load followed by a separate atomic store. Thus, other threads
can only access val before the atomic add starts or after it
has completed, but not after having loaded val and before
storing the updated result to val. Nevertheless, word tearing
in T1 would still be a problem because the atomic add might
execute after T1 has set the top half of the bits of val to 0
but not yet the bottom half. This yields the following three
possibilities. If T1 runs before T3, the final value of val will
be 6. If T3 runs before T1, the final value will be 0. If T1
and T3 interleave due to word tearing in T1, the final value
will be the nonsensical 0x0000000100000000.

In general, using non-atomic accesses results in unsafe
parallel programs even if word tearing never occurs on the
target machine, for example, because it supports 64-bit loads
and stores that are natively atomic. Such programs are still
unsafe because they are not portable. If they are compiled
and executed on a machine that does not support 64-bit
accesses directly, they may fail.
Another potential problem is illustrated by Thread T4.

Interestingly, it is not affected by the potential word tearing
of T1 because it only checks whether val has changed but not
to which value it changed (i.e., a chimera value is acceptable).
Nevertheless, the T4 code is wrong as it might result in an
infinite loop. Since the access to val is performed using a
conventional load, there is no indication that some other
thread might change this value. Hence, the compiler could
move the (seemingly) loop-invariant load out of the loop
and register allocate the data variable. Once the load has
executed, changing val by another thread will not change
the value in the data register and the loop in T4 will never
terminate. The keyword volatile in CUDA indicates that other
threads might change the corresponding memory location at



Shared v a r i a b l e
−−−−−−−−−−−−−−−
long v a l = −1 ;

Thread T1
−−−−−−−−−
va l = 0 ;

Thread T2
−−−−−−−−−
p r i n t f ( "% l d " , v a l ) ;

Thread T3
−−−−−−−−−
atomicAdd (& va l , 6 ) ;

Thread T4
−−−−−−−−−
do {

da t a = v a l ;
} wh i l e ( d a t a == −1 ) ;
p r i n t f ( " v a l u e changed " ) ;

Fig. 1: Initial state of a shared variable val and the instructions executed by four threads

any time, preventing the compiler from performing this and
some other optimizations. However, marking a variable as
volatile does not prevent word tearing, which is why atomic
accesses should be used rather than volatile variables.

The atomic operations in libcu++ support multiple memory
ordering restrictions. Relaxed is the weakest (all reordering
allowed), seq_cst is the strongest (no reordering allowed),
and acquire and release are in between (some reordering
allowed) [4]. The weakest version that is sufficient for
correctness should be used to maximize performance. In all
our codes, we are able to use the relaxed memory ordering.

B. Included Codes

This subsection describes the baseline codes we evaluated
and modified for our study.

1) All pairs shortest paths: All-pairs-shortest-paths (APSP)
algorithms calculate the shortest distance between every pair
of vertices in weighted graphs. The ECL-APSP code [10]
is based on the blocked approach of the Floyd-Warshall
algorithm [17]. It divides the adjacency matrix into 64×64-
element subblocks, and each kernel launch processes multiple
iterations on all subblocks. Utilizing the shared memory on
the GPU and maximizing the subblock size significantly
reduces global memory accesses. We found ECL-APSP to be
1.52× faster on average than the next fastest code [18].

2) Connected components: A connected component (CC)
is a set of vertices in an undirected graph that are linked
to each other by paths. The ECL-CC code [11] is based
on the label propagation technique. It employs a GPU-
friendly union-find method and, to improve the load balance,
processes the vertices at thread, warp, or block granularity
depending on the number of neighbors. Additionally, the
code is asynchronous and lock-free. ECL-CC is 1.8× faster
than the fastest prior CC implementation for GPUs [19].

3) Graph coloring: Graph-coloring (GC) algorithms assign
colors to the vertices of an undirected graph such that
adjacent vertices use different colors, while minimizing the
number of distinct colors used. The ECL-GC code [12] builds
upon the Jones-Plassmann algorithm [20] with the largest-
degree-first heuristic. It includes two shortcut optimizations.
The first shortcut identifies opportunities to already color
lower-priority vertices when their higher-priority neighbors
are still uncolored, which increases parallelism. The second
shortcut reduces the number of colors to consider when a
vertex has a higher-priority neighbor with no overlap in the

possible colors. ECL-GC is 2.9× faster and uses as few or
fewer colors as the best prior GPU code for GC [21].
4) Maximal independent set: A maximal independent set

(MIS) is a subset of vertices of an undirected graph that
contains no adjacent vertices and to which no other vertices
can be added without introducing adjacent vertices in the set.
The ECL-MIS code [13] builds upon Luby’s algorithm [22].
It employs several optimizations to improve the speed of the
computation as well as the size of the MIS. For instance, it
combines the status and the priority of a vertex in a single
byte, thus reducing the memory footprint. It utilizes partially
random priority values that are inversely proportional to a
vertex’s degree, which enables the code to find relatively
large sets. ECL-MIS is 11.5× faster and produces 10% larger
sets than the best prior MIS implementations for GPUs [23].

5) Minimum spanning tree: The minimum spanning tree
(MST) of a weighted undirected graph is the set of edges
that connect all vertices while having the least total edge
weight. The ECL-MST code [14] employs a data-driven
algorithm. To improve performance, it uses implicit path
compression in the union-find data structure, primarily edge-
based processing, and a hybrid parallelization between thread
and warp computation. ECL-MST is 4.5× faster than the
fastest prior GPU implementations of MST [24].
6) Strongly connected components: A strongly connected

component (SCC) is a subset of vertices in a directed graph
that has a path to every other vertex in the subset. The
ECL-SCC code [15] is based on a new data-driven, edge-
centric, parallel algorithm for computing SCCs. It identifies
the maximum ID vertex on the incoming and outgoing paths
of each vertex to demarcate multiple SCCs concurrently.
This allows all vertices to simultaneously act as pivots, thus
increasing the parallelism. It exploits the monotonicity of
the maximum-ID propagation to speed up the code. On
average, ECL-SCC outperforms the previous fastest parallel
SCC implementations by about 2× on power-law graphs
and 6.5× on mesh graphs [25].

III. Related Work
Many benchmark suites with parallel codes exist. Some

include codes with known bugs, such as program verification
suites. However, there is almost no prior work on the
performance impact of correcting data races.
Splash-3 [26] is a parallel benchmark suite for CPUs

that corrects performance bugs and data races present in
the widely-used Splash-2 [27] suite, complying with the



newer C11 memory consistency standards. The authors
compare the runtime and lock contention of both suites
on simulated hardware. Their results suggest that proper
synchronization can increase performance on some programs
while decreasing it on others. Our study shows that this is
also the case for GPU codes.

Indigo3 [28] is a parallel program verification benchmark
suite consisting of irregular graph codes with implemen-
tations for CPUs and GPUs. The suite contains 2516 bug-
free codes and 39,274 buggy codes derived from 7 core
graph algorithms. Indigo3 is a follow-up to the Indigo [29]
benchmark suite, which consists of short parallel code
patterns for CPUs and GPUs. The buggy codes in both
suites are labelled for use by verification tools. Whereas
Indigo and Indigo3 contain versions of the same codes with
and without data races, the respective publications do not
discuss the performance difference between them. Moreover,
Indigo3 is based on straightforward implementations of the
included graph algorithms. In contrast, we study some of
the highest-performing implementations in this paper.
DataRaceBench [30] is a suite of regular programs de-

signed to evaluate CPU data-race-detection tools. It includes
a set of kernels, some of which contain data races. Verma
et al. enhanced the suite by adding kernels that repre-
sent additional patterns and include FORTRAN code [31].
RMARaceBench [32] is a microbenchmark suite to evaluate
the capabilities of RMA (Remote Memory Access) race
detection tools for MPI RMA, OpenSHMEM, and GASPI.
It consists of about 100 synthetic race test cases for each
programming model, aiming to cover all possible race
scenarios. Whereas these suites focus on testing tools for
finding and eliminating data races, we study the performance
impact of removing races.
Many other publications present parallelized and opti-

mized irregular graph codes. Lonestar [33] contains 22 C++
and CUDA implementations of iterative graph algorithms.
Pannotia [34] is an OpenCL suite of 8 applications for
studying graph algorithms on GPUs. GraphBIG [35] contains
implementations of representative data structures, workloads,
and data sets from 21 real-world use cases of multiple
application domains. GAPBS [36] not only specifies graph
kernels, input graphs, and evaluation methodologies but also
provides optimized reference implementations for 6 mostly
irregular parallel codes written in OpenMP. GARDENIA [37]
is a suite for studying irregular graph algorithms on
accelerators. It includes 9 workloads from graph analytics,
sparse linear algebra, and machine learning. GBBS [38] is a
C++ suite of scalable, provably-efficient implementations of
20 graph problems for multicore machines. None of these
works focus on data races or their performance impact.

Boehm discusses the concept of supposedly “benign” data
races and explains why they are not benign in source
code [2]. Harmless races can only exist in machine code,
where they are, for example, used to implement synchroniza-

tion primitives. As a consequence, the standards for many
high-level programming languages, such as C [3], C++ [4],
CUDA [7], OpenMP [6], and Posix threads [5], define data
races as undefined behavior. Hence, there is no guarantee
that source code containing a data race will compile into
correct machine code. This triggered our study.

Nevertheless, there are several dynamic verification tools
that categorize data races in CPU code as harmful or
“harmless” for triage and performance purposes. Race-
Fuzzer [39], Portend [40], RaceMob [41], RaceChecker [42],
ColFinder [43], PRFinder [44], and RaceTest [45] employ
various methods to identify potential data races and then
verify each one, tagging or simply ignoring data races found
to be “benign”. The existence of these tools hints at a wide-
spread use of data races in high-performance codes.

IV. Approach
Most of the ECL baseline codes contain data races. We

identified them with the help of multiple verification tools,
including Compute Sanitizer [46] and iGuard [47]. Building
tools for identifying data races is an active research area,
and even the best tools currently available have drawbacks.
For example, iGuard seems to ignore the implicit barrier
between kernel launches, causing false positive reports, and
ComputeSanitizier does not check for races in global memory.
Nevertheless, such tools are very useful for highlighting code
regions that should be investigated in more detail, so we
manually checked the source codes as well.
A. Races Found
The APSP code is the only regular program [1] in the

suite. It does not have irregular control flow or irregular
memory-access patterns since it processes all elements of a
shared matrix and uses constant strides. As a consequence,
only one thread accesses a given matrix element, meaning
the baseline code does not have any data races.
The remaining studied codes are irregular, operate on a

shared graph represented in CSR format [48], and provide
no guarantee as to which threads might access a vertex or
edge. Since these accesses are performed with unprotected
loads and stores, all of those codes contain data races.
The CC code stores the label of each vertex in a shared

int array. During computation, these labels can be read and
written by any thread operating on the same connected
component. Most of these accesses are unprotected.

The GC code records the possible colors and chosen color
of each vertex in shared int arrays. During computation,
vertices read and write their neighbors’ values in these
arrays using unprotected accesses.
The MIS code stores the combined status and priority

value of each vertex in a shared char array. During compu-
tation, vertices read and update their neighbor’s values in
this array. All of these accesses are unprotected.
The MST code records the best neighbor to merge

next for each union in a shared long long array. During



1 # i n c l u d e <cuda / atomic >
2 con s t au to r e l a x e d = cuda : : memory_order_re laxed ;
3
4 t emp l a t e <typename T>
5 __dev i c e__ i n l i n e T atomicRead ( T ∗ con s t p )
6 {
7 r e t u r n ( ( cuda : : a tomic <T> ∗ ) p ) −> l oad ( r e l a x e d ) ;
8 }
9
10 t emp l a t e <typename T>
11 __dev i c e__ i n l i n e vo id a tomicWr i t e ( T ∗ con s t p ,

c on s t T v a l )
12 {
13 ( ( cuda : : a tomic <T> ∗ ) p ) −> s t o r e ( va l , r e l a x e d ) ;
14 }

Fig. 2: Atomic read and write operations using libcu++

computation, these values can be read and written by any
thread operating on the same component. Most of these
accesses are unprotected.

The SCC code stores information about the incoming and
outgoing paths of each vertex in a shared int2 array. This
built-in CUDA data type stores a pair of int variables as a
structure [7]. The code also uses a global boolean variable to
determine if another iteration is needed. During computation,
these values can be read and written by any thread. All of
these accesses are unprotected.

B. Atomic Reads and Writes

All studied codes except APSP contain at least one shared
data structure in which threads may simultaneously access
the same location. For example, when performing the label
propagation for computing connected components, different
threads may read and write the same vertex’s label. To
remove these data races, we replaced all memory accesses
to shared data with atomic load and store operations from
libcu++, as shown in Fig. 2. These operations use the relaxed
memory ordering for maximum performance. The relaxed
ordering is sufficient since there is no ordering constraint
on these operations in the baseline codes. After all, we are
only using atomic accesses to prevent word tearing and to
force the compiler to not optimize the access away.

C. Typecasting and Masking

CUDA atomic operations only support certain data types
such as int and long. They do not support small scalars (e.g.,
char and bool) or structures (e.g., pair and int2). However, the
baseline codes use these smaller data types and structures to
save memory and improve performance. To enable atomic
operations on shared data structures of these types, we use
typecasting and masking. For instance, the MIS code stores
the vertex status in a char variable, as shown in Fig. 3a.
Since the atomic load operation in CUDA does not support
char, we use the workaround shown in Fig. 3b, which casts
the type to int on line 2, computes the new index (i.e., v/4)

(a) Baseline MIS
1 t y p ed e f uns igned char s t a t ;
2 s t a t nv = node_ s t a t [ v ] ;

(b) Atomic MIS
1 t y p ed e f uns igned char s t a t ;
2 i n t ∗ c on s t n s t a t 4 = ( i n t ∗ ) n od e _ s t a t ;
3 s t a t nv = ( a tomicRead (& n s t a t 4 [ v / 4 ] ) >>

( ( v % 4 ) ∗ 8 ) ) & 0 x f f ;

Fig. 3: Example of atomically reading a char using typecasting
and masking in MIS

(a) Baseline MIS
1 t y p ed e f uns igned char s t a t ;
2 node_ s t a t [ v ] = 0 x00 ;

(b) Atomic MIS
1 t y p ed e f uns igned char s t a t ;
2 i n t ∗ c on s t n s t a t 4 = ( i n t ∗ ) n od e _ s t a t ;
3 atomicAnd (& n s t a t 4 [ v / 4 ] , ~ ( 0 x f f <<

( ( v % 4 ) ∗ 8 ) ) ) ;

Fig. 4: Example of atomically writing 0x00 to a char using
typecasting and masking in MIS

for the int array, atomically reads the int, and then uses bit
shifting and masking to extract the needed char in line 3.
To atomically write these unsupported types, we use a

similar method based on atomic bitwise operations. For
example, Fig. 4a writes 0x00 to the vertex status. Fig. 4b
creates a mask and uses it with an atomic bitwise AND
operation to zero out the specified char from the int array.
Since the SCC code’s shared boolean is a single scalar

variable (i.e., not an array), we simply changed its type to an
int to enable atomic operations on it. For the int2 variables,
we change the type to long long for which atomic operations
exist. In cases where the code accesses only one value of
such a pair, we use helper functions to typecast each half of
the 64-bit value to an int and apply atomic operations to the
specified half, as shown in Fig. 5. Note that word tearing
between the upper and lower halves of the long long value
is okay in these cases but not within the halves.

V. Experimental Methodology
A. Hardware and Software
We compared the performance of our race-free CUDA

codes with their baseline counterparts on 4 generations
of NVIDIA GPUs. Table I lists the specifications of these
GPUs, where the cores denote the processing elements in the
streaming multiprocessors (SMs). Each SM has an L1 cache
and all SMs share an L2 cache. The last two columns of
the table list the nvcc version and flags used to compile the
codes. Since nvcc 10.1 predates the introduction of libcu++,



1 s t a t i c __dev i c e__ i n t r e a d F i r s t ( u l l ∗ addr )
2 {
3 i n t ∗ i a d d r = ( i n t ∗ ) addr ;
4 r e t u r n atomicRead (& i a d d r [ 0 ] ) ;
5 }
6
7
8 s t a t i c __dev i c e__ i n t readSecond ( u l l ∗ addr )
9 {
10 i n t ∗ i a d d r = ( i n t ∗ ) addr ;
11 r e t u r n atomicRead (& i a d d r [ 1 ] ) ;
12 }
13
14 s t a t i c __dev i c e__ vo id w r i t e F i r s t ( u l l ∗ c on s t

addr , c on s t i n t f i r s t )
15 {
16 i n t ∗ c on s t i a d d r = ( i n t ∗ ) addr ;
17 a tomicWr i t e (& i a d d r [ 0 ] , f i r s t ) ;
18 }
19
20
21 s t a t i c __dev i c e__ vo id wr i t eSecond ( u l l ∗ c on s t

addr , c on s t i n t second )
22 {
23 i n t ∗ c on s t i a d d r = ( i n t ∗ ) addr ;
24 a tomicWr i t e (& i a d d r [ 1 ] , second ) ;
25 }

Fig. 5: Functions for atomic read and write operations on
individual int values stored as pairs in long long variables

we used the version of libcu++ from the CUDA C++ Common
Libraries (CCCL) [49] for the Titan V runs.

B. Inputs

Since the baseline version of APSP does not have any data
races, we do not measure its performance. We ran CC, GC,
MIS, and MST on the undirected inputs shown in Table II.
These inputs are available on an ECL web page [50]. For
SCC, we used a mix of mesh and power-law directed graphs
from the ECL-SCC paper [25], which are listed in Table III.
All input graphs are stored in compressed-sparse-row (CSR)
format [48] and vary significantly in size, type, degree, and
origin. We run each code nine times per input and use the
median runtime for comparison.

VI. Results
A. Performance of Race-free Programs

Tables IV to VII present the speedups (the baseline’s
runtime divided by that of the race-free program) for CC,
GC, MIS, and MST on our four test GPUs. The SCC speedups
are listed separately in Table VIII since they are based on
different inputs. The bottom rows of each table show the
minimum, geometric-mean, and maximum speedup for each
algorithm. The geometric-mean speedups are visualized in
Fig. 6. A speedup greater than 1 means the race-free program
is faster, and less than 1 means the race-free program runs
more slowly than the baseline. In the tables, speedups of 1
or greater are highlighted in green. Except on a few of the

smallest inputs, the nine repeated runs of each configuration
are very close in runtime to each other. The median relative
deviation is only 0.6%.

The race-free CC and SCC codes are substantially slower
than the baseline on all 4 devices, with the least performance
loss on the 2070 Super. The race-free GC and MST codes
are slightly slower than their baselines, with their mean
speedups staying above 0.92. Interestingly, the race-free MIS
code is 5-11% faster than its baseline on all 4 GPUs.
MIS and GC only update each vertex’s direct neighbors.

As a consequence, these updates typically do not overlap.
In contrast, CC, MST, and SCC repeatedly access the set
representative of each vertex, leading to more overlapping
atomic accesses and lower performance. The impact on MST
is significantly lower due to its use of implicit path compres-
sion, which reduces the number of these accesses [24]. In
CC and SCC, the newly inserted atomic operations replace
accesses to non-volatile arrays in the baseline codes, affecting
L1 cache performance much more significantly than in the
other codes. For example, the baseline CC code includes a
particularly significant code section with data races. This
code uses a non-volatile array of pointers to find its set
representative and shortens the path along the way, called
pointer jumping. These updates are monotonic, so they
do not need to be visible to other threads for correctness.
However, the race-free CC code performs an atomic read
and an atomic write for every jump. Profiling the two code
versions revealed that the baseline code has a much higher
L1 hit rate for both loads and stores, which explains the
performance difference.

The MIS code is based on an asynchronous implementation
where threads repeatedly poll neighbors and eventually
update a vertex. Since the baseline code does this using
non-atomic loads and stores, the compiler may “optimize”
some of these accesses, thus delaying when updates become
visible to other threads. The use of atomic loads and stores in
our race-free version may prevent these changes, resulting
in faster propagation of values and, therefore, improved
performance. Profiling the MIS code reveals increased cache
hit rates, supporting this theory. In addition, the MIS source
code changed the most relative to its baseline (see Figs. 3b
and 4b), which yields correspondingly larger differences in
the compiled machine instructions.

B. Correlation with Graph Properties

Table IX lists the correlation coefficients between the input
graphs’ properties and the resulting speedups. Note that the
low variance in speedups exhibited by GC and MST causes
outliers to be over-represented in their correlations.
The degree distribution of the input graph only signifi-

cantly affects the SCC code. Its speedup shows a moderate
to strong negative correlation with the average degree.
The graph size affects the race-free speedup quite differ-

ently depending on the code and GPU. It is not a significant



TABLE I: GPU specifications and compilation parameters
GPU Name Architecture Cores SMs L1 Size L2 Size Memory Mem. Bandwidth NVCC NVCC Flags
Titan V Volta 5120 80 96 kB 4.5 MB 12 GB 652 GB/s 10.1 -O3 -arch=sm_70
2070 Super Turing 2560 40 96 kB 4 MB 8 GB 448 GB/s 12.0 -O3 -arch=sm_75
A100 Ampere 6912 108 192 kB 40 MB 40 GB 1555 GB/s 12.0 -O3 -arch=sm_80
4090 Ada Lovelace 16,384 128 128 kB 72 MB 24 GB 1008 GB/s 12.0 -O3 -arch=sm_89

TABLE II: Undirected input graphs for CC, GC, MIS, and MST
Graph Name Edges Vertices Type d-avg d-max
2d-2e20.sym 4,190,208 1,048,576 grid 4.0 4
amazon0601 4,886,816 403,394 co-purchases 12.1 2,752
as-skitter 22,190,596 1,696,415 Internet topology 13.1 35,455
citationCiteseer 2,313,294 268,495 publication citations 8.6 1,318
cit-Patents 33,037,894 3,774,768 patent citations 8.8 793
coPapersDBLP 30,491,458 540,486 publication citations 56.4 3,299
delaunay_n24 100,663,202 16,777,216 triangulation 6.0 26
europe_osm 108,109,320 50,912,018 roadmap 2.1 13
in-2004 27,182,946 1,382,908 weblinks 19.7 21,869
internet 387,240 124,651 Internet topology 3.1 151
kron_g500-logn21 182,081,864 2,097,152 Kronecker 86.8 213,904
r4-2e23.sym 67,108,846 8,388,608 random 8.0 26
rmat16.sym 967,866 65,536 RMAT 14.8 569
rmat22.sym 65,660,814 4,194,304 RMAT 15.7 3,687
soc-LiveJournal1 85,702,474 4,847,571 community 17.7 20,333
USA-road-d.NY 730,100 264,346 roadmap 2.8 8
USA-road-d.USA 57,708,624 23,947,347 roadmap 2.4 9

TABLE III: Directed input graphs for SCC
Graph Name Edges Vertices Type d-avg d-max
cage14 27,130,349 1,505,785 power-law 18.02 41
circuit5M 59,524,291 5,558,326 power-law 10.71 1,290,501
cold-flow 6,295,941 2,112,512 mesh 2.98 5
flickr 9,837,214 820,878 power-law 11.98 10,272
klein-bottle 18,793,715 8,388,608 mesh 2.24 4
star 654,080 327,680 mesh 2.00 2
toroid-hex 4,684,142 1,572,864 mesh 2.98 4
toroid-wedge 487,798 196,608 mesh 2.48 4
web-Google 5,105,039 916,428 power-law 5.57 456
wikipedia 39,383,235 3,148,440 power-law 12.51 6,576

TABLE IV: Speedups of race-free codes on Titan V
Input CC GC MIS MST
2d-2e20.sym 0.55 1.00 1.16 0.97
amazon0601 0.57 1.00 1.49 0.98
as-skitter 0.66 1.01 2.05 0.99
citationCiteseer 0.51 0.98 1.12 0.93
cit-Patents 0.80 1.00 1.21 0.96
coPapersDBLP 0.52 1.02 0.99 0.96
delaunay_n24 0.81 1.00 1.00 0.98
europe_osm 0.99 1.00 1.01 0.99
in-2004 0.59 0.97 1.11 0.99
internet 0.55 1.00 1.00 0.97
kron_g500-logn21 0.75 0.99 1.10 0.92
r4-2e23.sym 0.76 1.00 0.99 0.95
rmat16.sym 0.59 1.00 1.04 0.97
rmat22.sym 0.86 0.99 1.08 0.95
soc-LiveJournal1 0.72 1.00 0.98 0.97
USA-road-d.NY 0.47 1.00 0.91 0.99
USA-road-d.USA 0.73 1.00 1.05 0.98
Min Speedup 0.47 0.97 0.91 0.92
Geomean Speedup 0.66 1.00 1.11 0.97
Max Speedup 0.99 1.02 2.05 0.99

TABLE V: Speedups of race-free codes on 2070 Super
Input CC GC MIS MST
2d-2e20.sym 0.80 0.98 1.05 0.98
amazon0601 0.81 1.00 1.28 0.95
as-skitter 0.88 0.99 1.70 0.98
citationCiteseer 0.63 0.98 1.05 0.92
cit-Patents 0.95 1.00 1.06 0.98
coPapersDBLP 0.84 0.97 0.99 0.96
delaunay_n24 2.09 1.00 0.99 1.00
europe_osm 1.22 1.00 0.98 1.00
in-2004 0.85 0.94 0.99 0.98
internet 0.63 0.99 1.05 0.84
kron_g500-logn21 0.96 0.99 1.03 0.97
r4-2e23.sym 1.12 1.00 0.94 0.97
rmat16.sym 0.70 0.94 1.03 0.88
rmat22.sym 0.97 0.99 1.01 0.97
soc-LiveJournal1 1.00 1.00 1.00 0.98
USA-road-d.NY 0.54 0.87 0.94 0.89
USA-road-d.USA 0.73 1.00 0.98 1.00
Min Speedup 0.54 0.87 0.94 0.84
Geomean Speedup 0.88 0.98 1.05 0.95
Max Speedup 2.09 1.00 1.70 1.00



TABLE VI: Speedups of race-free codes on A100
Input CC GC MIS MST
2d-2e20.sym 1.11 1.00 1.06 0.94
amazon0601 0.86 1.00 1.42 0.96
as-skitter 0.39 1.00 1.81 0.98
citationCiteseer 1.01 0.99 1.16 0.92
cit-Patents 0.66 0.99 1.02 0.91
coPapersDBLP 0.66 0.93 0.97 0.93
delaunay_n24 0.56 1.00 0.90 1.00
europe_osm 0.36 1.00 0.90 0.99
in-2004 0.60 0.93 1.00 1.02
internet 1.18 1.00 1.16 0.86
kron_g500-logn21 0.52 0.96 1.39 0.87
r4-2e23.sym 0.39 1.00 0.95 0.91
rmat16.sym 1.43 0.99 1.05 0.89
rmat22.sym 0.59 1.00 0.97 0.89
soc-LiveJournal1 0.49 0.97 0.98 0.93
USA-road-d.NY 0.62 1.00 1.01 0.89
USA-road-d.USA 0.67 1.00 0.93 0.98
Min Speedup 0.36 0.93 0.90 0.86
Geomean Speedup 0.66 0.99 1.08 0.93
Max Speedup 1.43 1.00 1.81 1.02

TABLE VII: Speedups of race-free codes on 4090
Input CC GC MIS MST
2d-2e20.sym 0.47 0.99 1.10 0.99
amazon0601 0.43 0.99 1.34 0.99
as-skitter 0.42 0.75 1.70 0.98
citationCiteseer 0.50 1.00 1.14 0.96
cit-Patents 0.48 1.24 1.04 0.91
coPapersDBLP 0.42 0.75 0.95 0.90
delaunay_n24 0.39 1.00 0.97 0.97
europe_osm 0.41 1.00 0.98 0.99
in-2004 0.48 0.80 1.11 1.00
internet 0.48 0.99 0.97 0.99
kron_g500-logn21 0.49 0.89 1.27 0.92
r4-2e23.sym 0.31 1.00 0.98 0.92
rmat16.sym 0.69 0.99 1.10 0.98
rmat22.sym 0.46 1.00 0.90 0.91
soc-LiveJournal1 0.45 0.99 0.99 0.96
USA-road-d.NY 0.47 1.07 0.90 0.99
USA-road-d.USA 0.42 0.99 0.97 0.96
Min Speedup 0.31 0.75 0.90 0.90
Geomean Speedup 0.45 0.96 1.07 0.96
Max Speedup 0.69 1.24 1.70 1.00

TABLE VIII: Speedups of race-free SCC
Input Titan V 2070 S A100 4090
cage14 0.52 0.67 0.36 0.43
circuit5M 0.77 0.76 0.98 0.79
cold-flow 0.90 0.84 0.57 0.47
flickr 0.43 0.69 0.34 0.40
klein-bottle 0.58 0.85 0.36 0.49
star 0.98 0.84 0.78 1.07
toroid-hex 0.90 0.81 0.58 0.53
toroid-wedge 1.05 0.86 0.87 1.06
web-Google 0.72 0.96 0.37 0.45
wikipedia 0.83 0.85 0.27 0.30
Min Speedup 0.43 0.67 0.27 0.30
Geomean Speedup 0.74 0.81 0.50 0.55
Max Speedup 1.05 0.96 0.98 1.07

Fig. 6: Geometric-mean speedup over the baseline across all
inputs on all tested GPUs

factor for the race-free GC and MST codes, which exhibit
little variance in speedup between inputs. Our MIS code
shows a mild but consistent decrease in speedup as the
vertex count of the input increases. The speedup of CC
is greatly affected by the size of the input and the GPU
used. On the Titan V and 2070 Super devices, CC’s speedup
increases with the graph size. However, on the newer A100
and 4090 GPUs, we see the opposite, where CC has worse
speedup on larger graphs.

C. Race-free Conversion Performance Impact

As the many green entries in Tables IV to VIII illustrate,
eliminating data races does not always slow down the
program and can even speed it up in some cases. The
algorithm implementation, the underlying data structure,
and the GPU architecture all affect the cumulative overhead
of the code inserted to make the program race-free. For
example, the race-free CC code is slower across most inputs
and devices but over twice as fast on a specific input and
GPU. Naturally, and as already mentioned, the execution
frequency of the affected code section plays an important
role in determining the performance impact. Overall, we
observe a trend towards more slowdown on newer GPUs as
illustrated in Fig. 6.

VII. Summary and Conclusions
We identify “benign” data races in five high-performance

graph analytics CUDA codes and explain how these races,
despite their apparent harmlessness, are problematic. Then,
we modified the codes to make them data-race-free and
study the performance impact of those code changes on
4 GPUs using graphs from various domains. The resulting
validated and fully optimized race-free graph analytics codes
are publicly available in the open-source ECL-Suite [16].

Our results show that, despite the additional synchroniza-
tion, the race-free versions are not necessarily slower than



TABLE IX: Correlation coefficients between input graph
properties and observed speedups

Correlated with CC GC MIS MST SCC
Titan V

Edge Count 0.71 -0.07 -0.21 -0.35 -0.27
Vertex Count 0.72 0.09 -0.20 0.32 -0.30
Average Degree -0.03 0.03 -0.04 -0.57 -0.62

2070 Super
Edge Count 0.57 0.41 -0.23 0.54 -0.34
Vertex Count 0.43 0.32 -0.21 0.47 0.01
Average Degree -0.02 0.03 -0.04 0.11 -0.68

A100
Edge Count -0.60 -0.16 -0.10 0.04 0.09
Vertex Count -0.42 0.26 -0.37 0.47 -0.07
Average Degree -0.17 -0.67 0.25 -0.28 -0.37

4090
Edge Count -0.30 -0.06 -0.07 -0.38 -0.21
Vertex Count -0.35 0.14 -0.25 0.14 -0.23
Average Degree 0.10 -0.48 0.19 -0.52 -0.47

their baseline counterparts. Whereas our modified CC and
SCC codes are 1.1 to 2.2 times slower than their original
implementations, the race-free MIS code is actually 5-11%
faster on average. The verified GC and MST codes are less
affected, running 0-8% slower on average.
Implementations like CC and SCC that rely heavily on

racy non-volatile accesses lose a substantial amount of
performance when those accesses are converted. In contrast,
graph algorithms that already use volatile data structures do
not incur much slowdown. In some asynchronous codes, the
atomic operations needed to make them race-free can prevent
undesired compiler optimizations that may delay when the
latest information is made available to other threads, thus
speeding up the program execution.
These results show that the removal of “benign” data

races can have a neutral or positive effect on performance
in addition to reducing undefined behavior. This further
endorses the removal of data races as a best practice approach
in parallel programming and teaching.
We found recent GPUs to be more negatively affected

by extra synchronization than older GPUs. Hence, the
performance gap between racy and non-racy code might
increase in the future. We hope that hardware manufacturers
recognize this trend and the importance of race-free codes
and add more support for fast atomics in future GPUs.
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Appendix
A. Abstract

Some of the fastest CUDA codes contain “benign” data
races to boost their performance. However, such races can
lead to unpredictable behavior and incorrect results on other
hardware and compilers, making their elimination crucial
for producing reliable and portable programs. This paper
investigates the performance impact of removing data races
from five high-end graph analytics codes. We identify and
eliminate the races from these GPU programs by adding
necessary synchronization and validating their correctness.
We present our race-free codes and their original versions as
an open-source suite. Comparing the performance of our new
codes with their baseline counterparts on multiple inputs
and GPUs, we observe that race-free implementations do not
always incur a performance penalty. In fact, some race-free
versions are faster, with our validated maximal independent
set implementation achieving a 5-11% speedup. Our findings
indicate that race-free code can reach comparable or even
superior performance, supporting the adoption of best
practices for parallel programming.

B. Artifact check-list (meta-information)
• Algorithm: APSP, CC, GC, MIS, MST, and SCC graph

analytics algorithms
• Compilation: GNU C++ (g++) compiler and NVIDIA CUDA

(nvcc) compilers
• Data set: Undirected and directed graphs
• Run-time environment: Results produced in a bash shell

on a Linux server
• Hardware: Our results are from the following GPUs, but

the experiment can be conducted on any NVIDIA GPU with
a compute capability of at least 6.0 and should yield similar
trends.
– NVIDIA Titan V
– NVIDIA GeForce 2070 SUPER
– NVIDIA A100 40GB
– NVIDIA GeForce RTX 4090

• Metrics: Speedup
• Output: Raw runtimes of the baseline and race-free codes,

tables of the speedups from baseline to race-free for each
algorithm on each input, and a bar chart of the geometric
mean speedup of each algorithm.

• Experiments: Compare runtime of race-free codes against
their baseline counterparts.

• Disk space required: At least 10 GB
• Time needed to complete experiments: 2-3 hours
• Publicly available: The code, inputs, and our results are

publicly available.
• Code license: 3-Clause BSD
• Data license: 3-Clause BSD
• Archived: DOI: https://doi.org/10.5281/zenodo.13228335

C. Description

1) How to access: The software can be obtained from
GitHub: https://github.com/burtscher/ECL-Suite.

git clone https://github.com/burtscher/ECL-Suite.git

2) Hardware dependencies: The experiment can be exe-
cuted on any system that has a CUDA-enabled NVIDIA
GPU with a minimum compute capability of 6.0. Compute
capability values can be found here: https://developer.nvidia.
com/cuda-gpus.

3) Software dependencies: All code is intended to run in a
Linux environment. The requirements for reproducing the
experiment are:

• nvcc version 10.2 or higher
• g++ version 7.3 or higher

We provide Python scripts to automate compiling and
running each code on each input multiple times as well as
generating the speedup tables and figures. The requirements
to run these scripts are:

• Python 3.11
• Numpy (https://numpy.org/) version 1.25 or later
• Matplotlib (https://matplotlib.org/) version 3.8 or later
• Scipy (https://scipy.org/) version 1.7 or later
4) Data sets: The inputs used for the experiment can be

acquired by running the download_inputs.sh script.

D. Installation

Install the necessary Python packages, such as with pip:
pip3 install numpy matplotlib scipy

1) GPU selection: If the system has multiple GPUs, the
experiment scripts use the fastest GPU available by default.
If a different GPU is desired, edit the value in line 4 of
all_tests.sh.

E. Experiment workflow

1) Acquire input graphs: To download and prepare all
input graphs, run:

./download_inputs.sh

The script will create the inputs-undirected/ and
inputs-directed/ directories and place the input graphs
in them.
2) Run experiment: To compile and execute all codes on

all inputs, run:
./all_tests.sh

The script will run every baseline and race-free code on
every appropriate input 9 times by default, then calculate
the speedups from baseline to race-free. This takes 1-2 hours
on a 2070 Super.

F. Evaluation and expected results

The raw runtime logs are available in the ./results/
directory. The speedups calculated using those logs are
available in the ./output/ directory. Inside, there
will be two CSV files listing the speedups from
the baseline to the race-free codes for each input
for each algorithm (undirected_speedups.csv and
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directed_speedups.csv) and a figure comparing
the geometric mean speedup of each algorithm
(geometric_means_bar.svg). These are single-GPU
analogues of Tables 7 and 8 and Figure 6.

The results may vary from those presented in the paper,
particularly if run with different GPUs. Nonetheless, we
expect the same general trends to be evident on similar
hardware.

G. Experiment customization
As mentioned in 4.1, if there are multiple GPUs present,

the GPU used for the experiment can be changed by
editing the value of CUDA_VISIBLE_DEVICES on line 4 of
the all_tests.sh script.
By default, each code is run on each input 9 times, the

same number of times we used to generate the paper’s
results. The median of those 9 runtimes is used for the
speedup calculations. If time is a concern, this number can
be edited on line 5 of the all_tests.sh script.

H. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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