
An Efficient Push-Relabel Implementation for
Max-Flow Computations on GPUs

Avery VanAusdal
Texas State University
San Marcos, TX, USA

arv107@txstate.edu

Martin Burtscher
Texas State University
San Marcos, TX, USA
burtscher@txstate.edu

Abstract—Determining the maximum possible flow (max-flow)
between a source vertex and a sink vertex in a network with
given capacities on every edge is a fundamental graph problem
found in many domains. The Push-Relabel (PR) algorithm is
the leading approach for solving the max-flow problem and
has been parallelized for GPUs. However, existing approaches
suffer from scalability issues and may perform poorly on large
graphs. This paper focuses on improving the efficiency of the
PR algorithm on GPUs, presenting several implementation and
parallelization improvements compared to the state of the art.
Our improvements include fast global relabeling on the GPU,
worklists to minimize wasted work and CUDA threads, and a
two-level parallelization scheme to improve load balancing. Our
approach is, on average, 5.75x faster than the fastest prior GPU
implementation and 5.08x faster than the fastest CPU code.

Index Terms—Maximum flow, graph algorithms, parallel al-
gorithms, graphics processing units, optimization

I. INTRODUCTION

A flow network is a graph with capacities on the edges
that describe how much flow each link can handle, with the
vertices acting as junctions. For example, a flow network may
represent a network of routers, where each edge is an Ethernet
cable with a given maximum throughput. The maximum flow
problem (max-flow) finds the highest amount of flow that can
be transferred from a source vertex to a sink vertex using all
available links. In our example, we could use it to determine
the maximum data transfer rate between two routers.

Flow networks can model many other real-world scenarios
and systems, such as road networks and electrical circuits.
Moreover, the maximum flow problem has found use in ap-
plications such as optimization [1], transportation planning [2],
computer vision [3], and VLSI design [4], [5].

The Push-Relabel (PR) algorithm [6] is the leading approach
for solving the max-flow problem. It is named after its two
local vertex operations, which Push excess flow to neighboring
vertices or Relabel themselves to find new valid routes. The
algorithm iteratively repeats these operations until converging
at an optimal solution [6]. The global relabeling heuristic is a
well-known optimization to drastically improve the practical
performance of PR [7]. The heuristic is run periodically and
uses a backwards breadth-first search (BFS) to compute the
exact distance from each vertex to the source or sink.

This work has been supported by the National Science Foundation under
Award #1955367 and by an equipment donation from NVIDIA Corporation.

Like for many other graph problems, poor scalability and
growing input sizes have motivated the exploration of GPU-
based solutions for max-flow. Implementations of PR for
GPUs [8] have been proposed that successfully improve the
performance. PR’s local operations make it more suitable for
parallelization than other max-flow algorithms. However, most
prior works found the BFS-based global relabeling to be faster
when performed serially on the CPU and opt for a hybrid
approach. In addition, graphs with millions of vertices or more
still prove to be very time consuming.

To address these challenges, our work focuses on improving
the implementation and parallelization of PR as well as the
global relabeling heuristic. For example, to improve scalability,
our code runs the global relabeling on the GPU. We reduce
the amount of wasted work by using worklists for both the PR
and the global relabeling kernels. Our implementation limits
the impact of load imbalance caused by varying vertex degrees
using a two-level parallelization scheme in the PR and global
relabeling kernels. Vertices are processed in parallel by warps,
i.e., groups of 32 threads, and each vertex’s set of neighbors
is processed in parallel by the threads of a warp. We further
propose a new frequency for performing the global relabeling
that adapts to the characteristics of the input graph without
a priori knowledge.

This paper makes the following main contributions.

• It describes ECL-MaxFlow, a high-speed PR implementa-
tion with GPU-based global relabeling written in CUDA.

• It presents several key optimizations that improve the
scalability and load balancing of our code.

• It introduces a new frequency for global relabeling that
yields good performance across multiple classes of inputs.

• It shows that ECL-MaxFlow outperforms state-of-the-art
CPU and GPU implementations on many real-world and
synthetic inputs.

The ECL-MaxFlow CUDA code is publicly available in
open source at https://github.com/burtscher/ECL-MaxFlow.

The rest of the paper is organized as follows. Section II
provides background information about the max-flow problem
and PR algorithm. Section III summarizes related work. Sec-
tion IV explains our approach in detail. Section V describes the
experimental methodology. Section VI presents and analyzes
the results. Section VII concludes the paper.

II. BACKGROUND

A flow network is a directed graph G(V,E) with capacity
values c associated with each edge, representing the maximum
amount of flow f that the edge can carry. The maximum flow
of the network is the maximum amount of flow that can be
transferred from a source vertex s to a sink vertex t without
exceeding any edge capacities. In a valid flow state, the amount
of flow entering a vertex v must be the same as the amount
leaving v, unless v is the source or the sink.

Max-flow algorithms generally operate on the residual
graph Gf (V,Ef), which includes all vertices from the given
graph G but replaces the edges E with residual edges Ef .
The residual edges represent the directions in which excess
flow can be moved between vertices based on the current flow
state. When an edge (v, n) ∈ E has less flow than capacity,
it is included in Ef , and its residual capacity cf (v, n) is how
much remaining capacity it has. Additionally, when an edge
(v, n) ∈ E has any flow, its inverse (n, v) is in Ef with
a residual capacity cf (n, v) equal to that flow. This allows
flow to be removed from an edge if the destination ends up
temporarily receiving more flow than it can discharge.

Goldberg and Tarjan’s Push-Relabel (PR) algorithm [6] is a
well-known approach for solving the max-flow problem. It has
a time complexity of O(V 2E). The algorithm pushes as much
flow from the source as it can and gradually pushes that flow
to the sink. To do so, it introduces the concept of excess flow.
The excess flow e of a vertex v is the difference between the
incoming and outgoing flows for that vertex. Vertices v ∈V−
{s, t} with an e(v) > 0 are sometimes called overflowing.
The final state of the computation will have no overflowing
vertices remaining. The algorithm is commonly split into two
phases [9]. Phase I pushes as much excess as it can towards
and into the sink, which finds the maximum flow value (and,
therefore, the minimum cut value). Phase II then returns any
excess flow remaining in the network to the source. To help
guide the flow in the right direction, the algorithm associates a
height h with each vertex. In Phase I, the height of the sink t is
initialized to 0, and the rest of the height values are commonly
initialized via a backwards BFS on Gf , using t as the BFS
source. If v can reach t, its height will be a lower bound on
the distance from v to t. If v cannot reach t, its height will be
set to |V |. Vertices with e(v) > 0 and h < |V | (i.e., vertices
that are overflowing and can reach the source of the BFS) are
active vertices.

Phase I starts by fully saturating all outgoing edges from
the source s. Saturating an edge (v, n) ∈ E means to add
enough flow to fill its capacity, i.e., make f(v, n) = c(v, n).
The vertices that receive this flow comprise the initial set of
active vertices. The main portion of the computation is the
repeated application of push or lift operations, whichever is
applicable, to active vertices. A vertex v can push its excess
flow to a neighbor in Gf if the neighbor has a lower height
than v, as shown in Algorithm 1. If no lower-height neighbors
exist, a vertex instead relabels its own height to be 1 higher
than its minimum-height neighbor, as shown in Algorithm 2,

Algorithm 1 Push operation for vertex v

Require: e(v) > 0, (v, n′) ∈ Ef , h(v) > h(n′)
n′ ← argminn{h(n) | cf (v, n) > 0 and h(v) > h(n)}
∆← min{e(v), cf (v, n′)}
if (v, n′) ∈ E then

f(v, n′)← f(v, n′) + ∆
else if (n′, v) ∈ E then

f(n′, v)← f(n′, v)−∆
end if
e(v)← e(v)−∆
e(n′)← e(n′) + ∆

effectively allowing it to look for an alternate path leading to
t in Phase I or to s in Phase II. We refer to this operation
as a lift to differentiate it from “global” relabeling, which is
described later in this section. When there are no remaining
active vertices, Phase I is complete.

Phase II is similar to Phase I with a few changes. It
starts with a BFS from the source with h(s) = 0, and any
unreachable vertex is set to h(v) = ∞. The push operation
is replaced with a similar reduce operation, which exclusively
removes flow from incoming edges, as shown in Algorithm 3.

As the computation progresses, the structure of Gf changes
as vertices lift their own heights, decreasing the accuracy
and usefulness of the heights’ distance estimates. The global
relabeling heuristic, as suggested by Goldberg and Tarjan [6],
addresses this issue by periodically recomputing the height
labels using another backward BFS in Gf from t in Phase I
and from s in Phase II. A common strategy is to perform this
global relabeling after every |V | lift operations [7] to balance
the overhead cost of running the BFS with the amount of
work saved. This heuristic has proven to be highly effective
at boosting the performance of PR and is still used in modern
implementations [10]. The push and lift operations can be
run concurrently on all active vertices without locks through
the use of atomic read-modify-write operations [11]. This
has enabled the development of GPU-based PR algorithms
that leverage the massively parallel architecture of GPUs for
performance gains [8]. The BFS used for global relabeling can
also be partially parallelized and run on the GPU. However,
most prior works found their attempts at doing so to be

Algorithm 2 Lift operation for vertex v

Require: e(v) > 0, and h(v) ≤ h(n) for all n s.t. (v, n) ∈ Ef

h(v)← min{h(n) | cf (v, n) > 0}+ 1

Algorithm 3 Reduce operation for vertex v

Require: e(v) > 0, (n′, v) ∈ Ef , h(v) > h(n′)
n′ ← argminn{h(n) | f(n, v) > 0 and h(v) > h(n)}
∆← min{e(v), f(n′, v)}
f(n′, v)← f(n′, v)−∆
e(v)← e(v)−∆
e(n′)← e(n′) + ∆

less performant than offloading the work to a serial CPU
implementation, even when accounting for the overhead of
transferring data between the CPU and GPU [8].

III. RELATED WORK

The first max-flow algorithm, by Ford and Fulkerson [12],
works by repeatedly finding augmenting paths. An augmenting
path is any s→t path in the residual graph along which
additional flow can be sent. Once no such path exists, the
maximum flow has been reached. Edmonds and Karp [13]
found that augmenting along the shortest paths leads to a
polynomial time complexity of O(V E2). Dinitz [14] proposed
a method to find all of the shortest augmenting paths at once,
leading to a time complexity of O(V 2E).

Karzanov [15] introduced the concept of a preflow, allow-
ing excess flow to be pushed across the graph in O(V 3)
time. Based on this, Goldberg and Tarjan [6] proposed the
generic Push-Relabel (PR) algorithm with a time complex-
ity of O(V 2E). They also introduced the global relabeling
heuristic for improving the algorithm’s practical performance.
Cheriyan and Maheshwari [16] proved that operating on the
highest-labeled active vertices first reduces the worst-case time
bound to O(V 2

√
E). Derigs and Meier [9] found the PR

algorithm’s practical performance to be significantly better
than the prior augmenting-path-based methods. Their fastest
implementations include global relabeling and a new gap-
search heuristic, which uses gaps in the height values to
quickly identify when vertices can no longer reach the sink.

Cherkassky and Goldberg [7] studied several optimizations
and found that operating on the highest-labeled active vertices
first is very effective when combined with the global relabel
and gap-search heuristics. Even though it is already over two
decades old, their optimized serial implementation, first called
h prf and later hi pr [17], is still one of the fastest max-
flow implementations ever published and has been used as
a comparison baseline in numerous parallel CPU and GPU
max-flow papers [8], [18]–[22].

Anderson and Setubal [23] proposed an efficient parallel
version of PR for shared-memory systems as well as a
technique for performing the global relabeling heuristic con-
currently with the main algorithm using locks. Over a decade
later, Bader and Sachdeva [18] improved upon Anderson
and Setubal’s approach with a cache-aware implementation.
Hong [11] introduced a lock-free parallel version of PR that
uses atomic read-modify-write operations. Hong proved that
pushing to the lowest-height neighbor makes the algorithm
robust to any interleaving of Push and Relabel operations
without requiring any locking.

A. Push-Relabel on the GPU

Hussein et al. [24] and Vineet and Narayanan [25] in-
troduced the first GPU implementations of PR, which are
specifically optimized for obtaining graph cuts for computer-
vision problems. Later, He and Hong [8] proposed the first
generic PR algorithm for CUDA GPUs. Their approach is
asynchronous, looping in the PR kernel a fixed number of

times before exiting to perform global relabeling on the CPU.
Their algorithm also adaptively switches between using the
CPU and GPU depending on the available level of parallelism
to maximize efficiency. On the CPU, they use Goldberg’s fast
serial hi pr [17] code. He and Hong report a speedup of up to
2x compared to hi pr. Stefanes and Alvino [22] extend He and
Hong’s hybrid approach by parallelizing the global relabeling
and gap relabeling heuristics using OpenMP on the CPU. In
addition, they optimize the PR kernel using kernel overlapping
and loop unrolling. Stefanes and Alvino report a speedup of
up to 3.28x compared to hi pr.

The Gunrock [26] library of graph analytics codes includes
a GPU implementation of Hong’s lock-free parallel PR algo-
rithm [11]. However, the authors found their implementation
to be slower than a sequential max-flow implementation.
The code has since been deprecated. Nevertheless, Khatri
et al. [27] used the Gunrock code as a baseline to study
various optimizations for GPU PR algorithms, including some
approximation techniques. The most impactful optimization
they found is changing the global relabeling frequency from
every |V | iterations to every 100 iterations.

Hsieh et al. [10] study a set of optimizations applied
to He and Hong’s parallel GPU algorithm [8]. They call
their workload-balanced push-relabel algorithm WBPR. They
parallelize the search for the minimum-height neighbor using
an entire warp (a group of 32 threads in CUDA) and a
parallel reduction. Moreover, they propose two alternatives to
using a compressed sparse row (CSR) representation when
searching the incoming and outgoing edges for the minimum-
height neighbor in Gf . The first alternative, called reverse
CSR (WBPR-RCSR), stores incoming edges in compressed-
sparse-column (CSC) format with an extra set of pointers to
the corresponding forward edge. The second alternative, called
bidirectional CSR (WBPR-BCSR), combines the CSR and
CSC formats into one bidirectional representation to increase
locality when traversing all neighbors. This comes at the cost
of needing to search the adjacency list to find the matching
reverse edge.

B. Differences in our Approach

Like the other GPU PR codes mentioned in Section III-A,
ECL-MaxFlow is based on Hong’s lock-free parallel algo-
rithm [11]. However, unlike Hong’s follow-up GPU work [8],
[28], our PR kernel is not asynchronous. While their kernels
freely loop for a preset number of attempted PR cycles, our
kernel applies a single push or lift operation per active vertex
before exiting, enabling our code to check the termination
condition more often. This can cut down on unnecessary
iterations. Gunrock [26], Stefanes and Alvino [22], Khatri et
al. [27], and WBPR [10] also use synchronous kernels.

All prior GPU-based PR implementations that we are aware
of check all vertices in every iteration. ECL-MaxFlow mini-
mizes the amount of work and the number of launched threads
by storing only the active vertices in a worklist. Vertices that
receive excess flow or could not get rid of all of their excess
flow are added to the next iteration’s worklist in our PR

kernel. WBPR [10] is the only other code that also uses an
active-vertex worklist, but its kernel scans all vertices in every
iteration to populate the worklist.

Hong [8], [28], Stefanes and Alvino [22], and WBPR [10]
offload the BFS-based global relabeling operation to the
CPU, limiting scalability and incurring transfer overhead.
Gunrock [26] and Khatri et al. [27] are the exceptions, keeping
the global relabel step on the GPU. However, Gunrock’s
implementation runs the BFS on a single GPU thread, greatly
limiting performance. Khatri et al. employ a parallel BFS
algorithm that utilizes hierarchical queues and shared memory.
In each iteration, their method marks any unvisited neighbors
of vertices in the queue, counts how many children each
queued vertex has, performs a prefix sum on those values,
and uses the sums to fill the next queue in parallel. ECL-
MaxFlow also performs the BFS on the GPU. However, we
insert elements into the next worklist during the BFS kernel by
atomically incrementing the worklist size. The value returned
by the atomic addition corresponds to the index at which the
element is to be stored in the worklist.

The literature encompasses a variety of different strategies
for determining the frequency at which the global relabeling
heuristic is performed. When Goldberg and Tarjan [6] first
proposed the heuristic, they suggested two strategies. One is
to perform the global relabeling after every |V | lift operations.
The other is to do so every time an edge into the sink is
saturated or an edge out of the source has its flow reduced to
zero. Most papers since then describe variations of the first
strategy. Cherkassky and Goldberg [7] report (from internal
experimentation) that adjusting the number of lift operations
needed could favor one class of inputs over another. They
considered the suggested threshold of exactly |V | lifts to
be a good compromise and used it for their experiments.
Later, Goldberg augmented this strategy for hi pr [17] to
account for the density of the graph. The code also considers
|E| and activates the global relabeling based on a weighted
combination of the total number of lifts and the number of
edges traversed to perform those lifts.

Instead of tracking the global number of lifts, all of the
generic GPU PR works mentioned attempt a fixed number
of push or lift operations on each vertex before exiting to
perform a global relabel. We refer to this number as cycles
since the various works use different definitions of what an
“iteration” is. He and Hong [8], for their experiments on a set
of well-defined synthetic graphs, chose to use 32 cycles for
the very-high-degree acyclic-dense graphs and 4096 cycles for
their other inputs. Gunrock [26] and WBPR [10] both wait for
|V | cycles between global relabels. Stefanes and Alvino [22]
use 98 cycles and Khatri et al. [27] use 100 cycles. We found
running global relabeling every |V |2/(1000 × |E|) cycles to
be performant for our implementation and well balanced for
different classes of input graphs.

Like WBPR [10], our PR kernel uses an entire warp to find
the minimum-height neighbor of each active vertex. This helps
minimize the impact of varying vertex degrees on the workload
balance. Our code and WBPR use a minimum reduction per

warp to find the collective result for a designated thread to
use for pushing or lifting. However, while WBPR performs the
reduction in the GPU’s shared memory, our code uses CUDA’s
warp-shuffle primitives that do not access memory. Moreover,
and unlike any prior work, we wrote our BFS kernel so the
threads of a warp process the neighbors of a single vertex in
parallel, which increases memory-access coalescing.

For each “forward” edge (v, n) ∈ E, Ef conditionally
includes a “reverse” edge (n, v) to allow flow to be removed
from (v, n) when needed. The residual capacities cf of all
edges in Ef are derived from the flow and capacity values
of the forward edges in E since cf (v, n) = c(v, n)− f(v, n)
and cf (n, v) = f(v, n). hi pr [17] and the mentioned GPU
works with public implementations, Stefanes and Alvino [22],
Gunrock [26], Khatri et al. [27], and WBPR [10], store and
operate on the cf values of forward and reverse edges. When
pushing flow along an edge e ∈ Ef , they subtract residual
capacity from cf (e) and add it to cf (inverse(e)). Since they
need to find the inverses of edges often, hi pr, Stefanes and
Alvino, Gunrock, and Khatri et al. use 2 × |E| pointers that
bidirectionally map each edge to its matching inverse edge.
WBPR-RCSR stores cf for reverse edges alongside the cf
for their forward edges, so they only need |E| pointers to
map from reverse edges to their forward counterparts. In their
BCSR format, they need no extra pointers, but they must run
binary search to find reverse edges.

Our graph representation is the same as the RCSR format
Hsieh et al. propose for WBPR, storing the forward and reverse
edges in separate compressed adjacency lists. However, our
code directly uses the flow and capacity values of the forward
edges in E. We dynamically derive cf (e) at runtime based on
whether e is a forward or a reverse edge. For a forward edge
(v, n), if f(v, n) < c(v, n), then (v, n) ∈ Ef . For a reverse
edge (n, v), if f(inverse(n, v)) > 0, then (n, v) ∈ Ef . This
allows us to save an atomic operation for every push by only
updating the forward edge’s flow value instead of updating
two residual capacities. Since c is constant throughout the
computation, it can be accessed non-atomically.

IV. APPROACH

As mentioned in prior work [8] and supported by our own
observations, the amount of parallelism available on sparse
graphs is limited by a lack of concurrent tasks, i.e., active
vertices and frontier vertices. Despite typically only a small
portion of the vertices needing computation at a time, the prior
GPU works repeatedly process all vertices (see Section III-B),
leading to many idle CUDA threads. To minimize the amount
of wasted work, our GPU kernels use worklists to only process
the vertices that likely need computing.

We further employ a 2-level parallelization scheme specific
to GPUs to minimize the workload imbalance caused by
different vertices having varying numbers of neighbors. In
CUDA, warps are groups of 32 adjacent threads that execute
in lockstep. We process the vertices in the relevant worklist
in parallel, using an entire warp per vertex, and also process
each vertex’s set of neighbors in parallel across the threads of

Algorithm 4 Parallel push-relabel algorithm for GPUs
1: GR FREQ← max(100, |V |2/(1000× |E|))
2: Initialize e, h, f , c, time
3: Initial saturating pushes from s, add neighbors to WLPR

4: call global relabeling loop() ▷ Phase 1
5: iteration← 0
6: while WLPR ̸= ∅ do
7: iteration← iteration+ 1
8: WLnext ← ∅
9: call push relabel kernel()

10: WLPR ←WLnext

11: if iteration mod GR FREQ == 0 then
12: call global relabeling loop()
13: end if
14: end while
15: call global relabeling loop() ▷ Phase 2
16: iteration← 0
17: while WLPR ̸= ∅ do
18: iteration← iteration+ 1
19: WLnext ← ∅
20: call push relabel kernel()
21: WLPR ←WLnext

22: if iteration mod GR FREQ == 0 then
23: call global relabeling loop()
24: end if
25: end while

a warp. WBPR [10] uses a similar approach in their PR kernel,
whereas we use it in both our PR and global relabeling kernels.
Since the worklists typically do not contain many vertices,
even on large graphs, launching only 1 thread per worklist item
will likely under-utilize modern GPUs. Launching 32 threads
per element (i.e., an entire warp) helps ECL-MaxFlow exploit
the GPU hardware more.

Algorithm 4 presents our implementation of the PR al-
gorithm. The push relabel kernel, global relabeling loop,
and global relabeling kernel functions are defined in Algo-
rithms 5 to 7. After initializing the necessary data structures
on the GPU, a trivial kernel performs the initial saturating
pushes from the source vertex s (Line 3 of Algorithm 4),
where each edge leaving the source (s, n) ∈ E receives as
much flow as it can handle f(s, n) ← c(s, n). The kernel
also adds each neighbor that receives flow to the active-vertex
worklist WLPR. Then, the first global relabeling is called
(Line 4) to set the initial heights before the main Phase I
loop begins. Since we store active vertices on WLPR, we
use WLPR = ∅ as the termination condition for both phases.
After every GR FREQ calls of push relabel kernel, the
global relabeling is repeated (Lines 11-13). GR FREQ is set
(Line 1) to the greater value of 100 and |V |2/(1000 × |E|).
This frequency is a combination of the graph’s vertex count
and average degree with an additional scaling factor. We found
this frequency to be effective for our implementation and well
balanced across the different types of graphs we tested.

When Phase I completes, a trivial kernel adds all remaining

Algorithm 5 Code of push relabel kernel for warp W

1: v ←WLPR[W]
2: if e(v) > 0 and h(v) < |V | then ▷ Active vertex
3: n′′ ←∞
4: for all (v, n) ∈ Ef do ▷ Split among threads in W
5: if h(n) < h(n′′) then
6: n′′ ← n
7: end if
8: end for
9: n′ ← Parallel Reduction(n′′) ▷ Min. height neighbor

10: if localIdx == 0 then ▷ Designated thread
11: if h(v) > h(n′) then
12: Push(v, n′) ▷ Phase II uses Reduce
13: WLnext ←WLnext ∪ {n′}
14: if e(v) > 0 then
15: WLnext ←WLnext ∪ {v}
16: end if
17: else
18: h(v)← h(n′) + 1 ▷ Lift(v)
19: if h(v) < |V | then
20: WLnext ←WLnext ∪ {v}
21: end if
22: end if
23: end if
24: end if

Algorithm 6 Implementation of global relabeling loop
1: if Phase I then ▷ BFS from sink
2: h(t) = 0
3: h(v) = |V | for v ∈V −{t}
4: WLGR ← {t}
5: else if Phase II then ▷ BFS from source
6: h(s) = 0
7: h(v) =∞ for v ∈V −{s}
8: WLGR ← {s}
9: end if

10: BFS ID ← (−1× PR iterations) ▷ Unique per BFS
11: level← 0
12: while WLGR ̸= ∅ do
13: level← level + 1
14: WLnext ← ∅
15: call global relabeling kernel(level, BFS ID)
16: WLGR ←WLnext

17: end while

overflowing vertices to WLPR. If none are found, we skip
Phase II and the algorithm terminates. Otherwise, Phase II
starts with an initial global relabeling (Line 15) to replace
Phase I’s heights with estimated distances to s (Line 5 of
Algorithm 6). While PR in Phase I can add or remove flow,
Phase II only needs PR to remove flow from edges until
all remaining excess has returned to s [9]. This means the
corresponding GPU kernels in Phase II only use reverse edges
to find neighbors in the residual graph (Line 4 of Algorithm 5

Algorithm 7 Implementation of global relabeling kernel for
warp W

1: v ←WLGR[W]
2: for all (n, v) ∈ Ef do ▷ Split among threads in W
3: last visit← atomicMin(time(n), BFS ID)
4: if last visit ̸= BFS ID then ▷ First visit this BFS
5: h(n)← level
6: WLnext ←WLnext ∪ {n}
7: end if
8: end for

and Line 2 of Algorithm 7).
The GPU kernels described in Algorithms 5 and 7 both

use worklists to store vertices that likely need processing in
the next iteration. Algorithm 5 adds vertices to WLnext if
they are still active, i.e., v could not push all of its excess
flow away (Lines 15 and 20), or became active, i.e., neighbor
n received excess flow from a push (Line 13). Algorithm 7
adds neighboring vertices to WLnext when they are visited
for the first time in this global relabel operation (Line 6). We
launch both kernels with enough threads to assign an entire
warp to each vertex in the relevant worklist. Algorithm 5
performs a parallel reduction within each warp (Line 9) to
find the minimum-height neighbor n′ in Gf for vertex v. Our
reduction uses CUDA’s warp-level shuffle functions to quickly
exchange data between the warp’s threads. WBPR [10] uses
shared memory to perform its reduction.

We implement the worklists WLPR, WLGR, and WLnext

as arrays. Each kernel call processes one worklist while filling
WLnext. Our kernels insert elements into WLnext by atomi-
cally incrementing WLnext’s size. The element is placed into
WLnext at the index returned by the atomic addition. After
each kernel finishes, we swap the pointers of the processed
worklist and WLnext. WLnext is emptied before the next
kernel call by setting its size to 0. Algorithms 5 and 7 share
the same WLnext pointer, so we only need to allocate three
worklist arrays of |V | integers in total.

We avoid duplicates in the worklist using integer times-
tamps associated with each vertex and initialized to 0. When
Algorithm 5 adds a vertex v to WLnext, it first ensures v has
not already been added during this iteration. It does this using
the atomicMax operation, which simultaneously increases v’s
timestamp to the current iteration number iter and returns
the replaced timestamp value old iter. If a thread finds that
old iter ̸= iter, then this thread is the first to attempt to add
v to WLnext in this iteration, so v can safely be inserted.

Algorithm 7 uses the same timestamp array as Algorithm 5,
with some changes to avoid interfering with each other.
While Algorithm 5 uses atomicMax with the positive value
iter, Algorithm 7 uses atomicMin with the negative value
BFS ID. By using the same BFS ID for every kernel
call launched by the same global relabeling operation, the
timestamp also acts as a “visited” flag (Line 4) without needing
to allocate additional storage. This allows our algorithm to use
the timestamp array without ever resetting its values.

Our implementation stores the original set of edges E in
the widely-used CSR format. However, the residual graph
Gf also requires the use of a “reverse” edge (n, v) for each
“forward” edge (v, n) ∈ E to allow flow to be removed from
(v, n). We store these reverse edges separately, also in CSR
format, with pointers that map each reverse edge’s index to its
forward counterpart. This allows us to easily process forward
and reverse edges separately. As mentioned in Section III-B,
and unlike prior GPU works, our implementation dynamically
calculates residual capacity, which determines if an edge is
present in Ef . A forward edge e is in Ef if it has remaining
capacity f(e) < c(e), and a reverse edge re is in Ef if its
inverse has flow f(inverse(re)) > 0. In Phase I, our GPU
kernels iterate through both CSRs to find all neighbors in Gf

(Line 4 of Algorithm 5 and Line 2 of Algorithm 7). Since
Phase II only uses reverse edges, our GPU kernels are able to
entirely skip one of the CSRs in Phase II, reducing the number
of neighbors processed and improving performance.

V. EXPERIMENTAL METHODOLOGY

A. Codes

We compare the performance of ECL-MaxFlow with the
serial CPU code hi pr [17], the GPU code from Gunrock [26],
the GPU code by Khatri et al. [27], and the hybrid code
WBPR-RCSR by Hsieh et al. [10] for computing the max-
imum flow. We obtained the GPU codes from their authors’
public GitHub repositories [29]–[31] and hi pr from an Inter-
net Archive snapshot of the author’s website [17].

In all codes we evaluate, reading the input graphs, building
internal representations, and allocating data structures on the
CPU and GPU are not included in the reported execution
times. However, data transfer between the CPU and GPU
during the computation are included in the measured runtimes.

The code from Khatri et al. includes several optimizations
that introduce approximation. Since the rest of the compared
codes use exact methods, we disable all approximation tech-
niques for our experiments.

B. Hardware and Software

We evaluate the performance of the GPU codes on two
systems. Since WBPR uses the CPU for global relabeling,
we also list the processor and main memory of each system.
System 1 has an RTX 4090 GPU with 16,384 processing
elements and 24 GB of global memory. It is based on an AMD
Ryzen Threadripper 2950X CPU with 48 GB of main memory.
System 2 has an NVIDIA A100 GPU with 6912 processing
elements and 40 GB of global memory. It is based on an Intel
Xeon Gold 6226R CPU with 64 GB of main memory. We run
the serial code hi pr [17] on System 3, which has a higher
serial performance than the other two systems. System 3 uses
a Ryzen Threadripper 3970X with 256 GB of main memory.

We compiled the GPU codes with nvcc 12.6 on System 1
and with nvcc 12.0 on System 2. For our code, we used
the “-O3 -arch=sm 89” flags on System 1 and the “-O3
-arch=sm 80” flags on System 2. We compiled the prior GPU

codes with the same architecture flag as our code. We compiled
hi pr with gcc 13.3.0 and the provided “-O4” flag.

C. Inputs

We used two sets of inputs to evaluate the performance of
the codes. The first set, shown in Table I, is composed of three
types of graphs used in the first DIMACS Implementation
Challenge [32]. The source and sink are the first and last vertex
by index, respectively. These graph types are commonly used
for evaluating performance in max-flow works [7], [8]:

1) Acyclic-Dense graphs: These are complete directed
acyclic dense graphs where every vertex is connected
to every other vertex. Each edge has a random integer
capacity between 1 and 10, 000.

2) Genrmf graphs: These graphs are made of b frames,
which are square grids of a × a vertices. The source
vertex is a corner of the first frame, and the sink vertex
is the opposite corner of the last frame. Each vertex is
bidirectionally connected with its neighbors in the same
grid. The vertices of each grid are also connected one-
to-one with the vertices in the next frame in a random
permutation. The cross-grid edges have randomized inte-
ger capacities from c1 to c2, while neighbor edges have
capacities of c2×a2. We used c1 = 100 and c2 = 10, 000.

– Genrmf-long: These graphs have an a : b ratio of
1 : 8, creating many small frames between s and t.

– Genrmf-wide: These graphs have an a : b ratio of
1 : 1, creating a balance between the size of the
frames and their quantity.

3) Washington-RLG graphs: These graphs are rectangular
grids with r rows and c columns. Each vertex is connected
to three random vertices in the next row. The source is
connected to all vertices in the first row, and all vertices
in the last row are connected to the sink. The cross-
row edges have randomized integer capacities from 1
to c1, while edges connected to the source or sink have
capacities of 3× c1. We used c1 = 10, 000.

– Washington-RLG-long: These graphs have an r : c
ratio of 1 : 2, creating a rectangle with the source
and sink along the long axis.

– Washington-RLG-wide: These graphs have an r : c
ratio of 1 : 1, creating a square grid.

The second set of inputs is listed in Table II. We ob-
tained them from the Center for Discrete Mathematics and
Theoretical Computer Science at the University of Rome (DI-
MACS) [33], the Galois framework [34], the Stanford Network
Analysis Platform (SNAP) [35], and the SuiteSparse Matrix
Collection (SSMC) [36]. We modified these graphs where
needed as follows. We eliminated self-loops and duplicate
edges between the same two vertices. We added any missing
back edges to make the graphs undirected. We removed any
vertices that are not part of the largest connected component,
since those vertices cannot contribute to the flow of the
network. For unweighted graphs, we inserted random weights
between 100 and 10, 000 to be used as edge capacities. For

TABLE I
DIRECTED INPUT GRAPHS FROM DIMACS

Graph Name Vertices Edges d-avg d-max
ac n2000 2,000 1,999,000 999.50 1999
ac n4000 4,000 7,998,000 1999.50 3999
ac n6000 6,000 17,997,000 2999.50 5999
ac n8000 8,000 31,996,000 3999.50 7999
ac n10000 10,000 49,995,000 4999.50 9999
genrmf-long a32 b256 262,144 1,276,928 4.87 5
genrmf-long a48 b384 884,736 4,347,648 4.91 5
genrmf-long a64 b512 2,097,152 10,350,592 4.94 5
genrmf-long a80 b640 4,096,000 20,268,800 4.95 5
genrmf-long a96 b768 7,077,888 35,085,312 4.96 5
genrmf-wide a64 b64 262,144 1,290,240 4.92 5
genrmf-wide a96 b96 884,736 4,377,600 4.95 5
genrmf-wide a128 b128 2,097,152 10,403,840 4.96 5
genrmf-wide a160 b160 4,096,000 20,352,000 4.97 5
genrmf-wide a192 b192 7,077,888 35,205,120 4.97 5
wash...-long r512 c1024 524,290 1,572,352 3.00 512
wash...-long r896 c1792 1,605,634 4,816,000 3.00 896
wash...-long r1280 c2560 3,276,802 9,829,120 3.00 1280
wash...-long r1664 c3328 5,537,794 16,611,712 3.00 1664
wash...-long r2048 c4096 8,388,610 25,163,776 3.00 2048
wash...-wide r1024 c1024 1,048,578 3,144,704 3.00 1024
wash...-wide r1536 c1536 2,359,298 7,076,352 3.00 1536
wash...-wide r2048 c2048 4,194,306 12,580,864 3.00 2048
wash...-wide r2560 c2560 6,553,602 19,658,240 3.00 2560
wash...-wide r3072 c3072 9,437,186 28,308,480 3.00 3072

TABLE II
UNDIRECTED INPUT GRAPHS

Graph Name Vertices Edges d-avg d-max
2d-2e20.sym 1,048,576 4,190,208 4.00 4
amazon0312 400,727 4,699,738 11.73 2747
as-skitter 1,694,616 22,188,418 13.09 35455
cit-Patents 3,764,117 33,023,480 8.77 793
coPapersDBLP 540,486 30,491,458 56.41 3299
delaunay n24 16,777,216 100,663,202 6.00 26
in-2004 1,353,703 26,252,344 19.39 21869
kron g500-logn21 1,543,901 182,081,678 117.94 213904
rgg n 2 22 s0 4,194,299 60,718,394 14.48 36
rmat22.sym 3,744,385 65,618,254 17.52 3687
soc-LiveJournal1 4,843,953 85,691,368 17.69 20333
uk-2002 18,459,128 523,113,442 28.34 194955
USA-road-d.E 3,598,623 8,708,058 2.42 9
USA-road-d.NY 264,346 730,100 2.76 8
USA-road-d.W 6,262,104 15,119,284 2.41 9

graphs with existing weights, we divided their weights by 3
to prevent a 32-bit integer overflow from occurring in certain
situations. Table II lists the name and the resulting vertex
count, edge count, average degree, and maximum degree
of each graph. We selected these mostly real-world graphs
because they cover a wide range of types and sizes.

Since the undirected graphs do not have specified source
and sink vertices, we use 5 distinct pairs of source and sink
vertices from each graph. The first pair is the highest and
second-highest degree vertices, the second pair is the third-
highest and fourth-highest degree vertices, and so on. For
the uniform-degree graph 2d-2e20.sym, the pairs are chosen
randomly. Using multiple pairs helps to diversify the required
computation. We run our code and hi pr nine times per input
and use the median runtime for comparison. Due to their lower
performance, we only ran the other GPU codes once per input.

VI. RESULTS

Table III lists all runtimes gathered for all tested codes for
all inputs on System 1. Fig. 1 and Fig. 2 present the speedup
of our code over the comparison codes on System 1. The
y axes list the input graphs and the x axes the speedups on
a logarithmic scale. A speedup above 1 means our code runs
faster than the comparison code, and below 1 means our code
runs slower. This boundary of a speedup of 1 is visualized by
the vertical dotted line. We use “TIMEOUT” labels to identify
the inputs that the comparison codes could not complete in 60
minutes. The bottommost sets of bars reflect the geometric-
mean speedup over the set of inputs that did not time out
for each comparison code. The speedups on System 2 exhibit
similar trends. For space reasons, we only describe those
results in the text but do not show corresponding figures.

Fig. 1 presents the speedups for the DIMACS graphs listed
in Table I. Each of these graphs has exactly one pair of
source and sink vertices. Fig. 2 presents the speedups for the
undirected graphs listed in Table II. The box-and-whisker plot
shows the speedup distribution across the 5 pairs of source and
sink vertices used for each input graph. The highest speedup
for each graph is indicated by the rightmost whisker and the
lowest by the leftmost whisker. The boxes range from the
first to the third quartile. The line inside the box indicates
the median speedup. We only use the “TIMEOUT” label in
Fig. 2 if all 5 pairs timed out.

Note that the comparison code from Gunrock [30] outputs
incorrect max-flow values on all tested Acyclic-Dense graphs
and Washington-RLG graphs due to an unknown issue. Curi-
ously, this issue does not seem to affect the Genrmf graphs.
Since Gunrock’s max-flow code is deprecated and not fully
correct, its performance should be viewed with caution. We
also found WBPR-RCSR [29] to contain an unknown bug
that causes it to occasionally output wrong max-flow values,
leading us to believe it might be a data race. However, it
may not represent the final product as WBPR is from a
preprint paper [10]. Since the current version of the code
is not fully correct, its performance should also be viewed
with caution. The remaining codes, including ours, produce
identical maximum flow values for all tested inputs.

A. GPU Performance Comparison

In the mean and on most tested inputs, ECL-MaxFlow is
substantially faster than the prior GPU max-flow works on
both sets of inputs. Fig. 1 shows that our code is faster than
the three baseline GPU codes on all but one DIMACS input.
The Khatri code is faster on ac n10000, which takes less than a
second for our code to compute on both systems. Based on the
geometric mean, our code is 54.6x faster than Gunrock, 5.97x
faster than Khatri et al., and 25.6x faster than WBPR-RCSR
across the DIMACS inputs on System 1. On System 2, our
code is 63.8x faster than Gunrock, 7.53x faster than Khatri et
al., and 29x faster than WBPR-RCSR. Note the many timeouts
by the prior GPU works on the Genrmf graphs; WBPR-RCSR
times out on all of them, Khatri et al.’s code times out on all
except the two smallest long graphs, and Gunrock times out

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

100 101 102100

Speedup, Logarithmic scale

ac_n2000

ac_n4000

ac_n6000

ac_n8000

ac_n10000

genrmf-L_a32_b256

genrmf-L_a48_b384

genrmf-L_a64_b512

genrmf-L_a80_b640

genrmf-L_a96_b768

genrmf-W_a64_b64

genrmf-W_a96_b96

genrmf-W_a128_b128

genrmf-W_a160_b160

genrmf-W_a192_b192

wash-L_r512_c1024

wash-L_r896_c1792

wash-L_r1280_c2560

wash-L_r1664_c3328

wash-L_r2048_c4096

wash-W_r1024_c1024

wash-W_r1536_c1536

wash-W_r2048_c2048

wash-W_r2560_c2560

wash-W_r3072_c3072

OVERALL GEOMEAN
3.20x

54.56x
5.97x

25.64x

Speedup=1
hi_pr
Gunrock
Khatri et al.
WBPR-RCSR

Fig. 1. Speedup over prior works on DIMACS graphs on System 1

on three of the larger graphs. In contrast, our code finishes the
slowest Genrmf input in under 39 seconds on our test systems.

Fig. 2 shows that ECL-MaxFlow is faster than the three
baseline GPU codes on all tested undirected inputs. According
to the geometric mean, it is 615x faster than Gunrock, 5.48x
faster than Khatri et al., and 430x faster than WBPR-RCSR
on System 1. On System 2, it is 638x faster than Gunrock, 6x
faster than Khatri et al., and 482x faster than WBPR-RCSR.
The three prior GPU codes time out on all five source/sink
pairs for uk-2002, the largest tested graph, while our code
finishes its slowest pair in under 3 minutes on our systems.

Across both sets of inputs, our code is 5.75x faster than
the fastest prior GPU code on System 1 and 6.78x faster on
System 2. Note that these speedups are underestimates as they
exclude the inputs on which the comparison codes timed out.

B. CPU Performance Comparison

Fig. 1 shows that our GPU code outperforms the serial hi pr
code on all DIMACS inputs except the smallest Genrmf long
and wide graphs. Importantly, the speedup over hi pr increases
with the size of the Genrmf and Washington-RLG-long graphs.
Compared to hi pr, which we always run on System 3, our

TIMEOUT
TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

100 101 102 103 104100

Speedup, Logarithmic scale

2d-2e20.sym

amazon0312

as-skitter

cit-Patents

coPapersDBLP

delaunay_n24

in-2004

kron_g500-logn21

rgg_n_2_22

rmat22.sym

soc-LiveJournal1

uk-2002

USA-road-d.E

USA-road-d.NY

USA-road-d.W

OVERALL GEOMEAN
10.98x

615.10x
5.48x

430.14x

Speedup=1
hi_pr
Gunrock
Khatri et al.
WBPR-RCSR

Fig. 2. Speedup over prior works on undirected graphs on System 1

code is 3.2x faster on System 1 and 2.35x faster on System 2
across the DIMACS inputs according to the geometric mean.

Fig. 2 shows that our code is also faster than hi pr on
most undirected inputs. It is only slower on a few source/sink
pairs for as-skitter, in-2004, uk-2002, and USA-road-d.NY.
However, the median speedups for in-2004 and uk-2002 are
above 1. Across the undirected inputs, our code is 11x faster
than hi pr on System 1 and 6.98x faster on System 2. Across
both sets of inputs, it is 5.08x faster on System 1 and 3.54x
faster on System 2. Of course, the speedup over hi pr depends
on the GPU/CPU pairing and is different on other systems.

VII. SUMMARY AND CONCLUSIONS

Determining the maximum possible flow (max-flow) be-
tween a source and a sink vertex in a network is a fun-
damental graph problem with many applications, such as
transportation planning, bipartite matching, and segmentation.
Existing implementations of the max-flow push-relabel (PR)
algorithm for GPUs are work-inefficient and, in fact, struggle
to compete with the fastest serial CPU code called hi pr. This
paper presents ECL-MaxFlow, a new GPU implementation of
PR and the key optimizations used to make it efficient. For

TABLE III
SYSTEM 1 COMPUTATION TIMES IN SECONDS

Graph Name Source / Sink hi pr ECL-MaxFlow Gunrock Khatri WBPR-RCSR
ac n2000 0 / 1999 0.200 0.024 2.943 0.068 0.345
ac n4000 0 / 3999 0.995 0.078 18.677 0.170 0.696
ac n6000 0 / 5999 1.563 0.124 42.135 0.618 3.098
ac n8000 0 / 7999 3.526 0.364 93.622 0.401 5.567
ac n10000 0 / 9999 5.730 0.665 67.138 0.446 5.583
genrmf-L a32 b256 0 / 262143 0.769 0.822 8.148 1.739 TIMEOUT
genrmf-L a48 b384 0 / 884735 3.516 1.868 70.350 34.062 TIMEOUT
genrmf-L a64 b512 0 / 2097151 10.934 2.936 TIMEOUT TIMEOUT TIMEOUT
genrmf-L a80 b640 0 / 4095999 30.830 7.326 581.519 TIMEOUT TIMEOUT
genrmf-L a96 b768 0 / 7077887 75.401 16.537 TIMEOUT TIMEOUT TIMEOUT
genrmf-W a128 b128 0 / 2097151 17.073 8.564 912.045 TIMEOUT TIMEOUT
genrmf-W a160 b160 0 / 4095999 32.897 14.898 3113.394 TIMEOUT TIMEOUT
genrmf-W a192 b192 0 / 7077887 88.406 38.139 TIMEOUT TIMEOUT TIMEOUT
genrmf-W a64 b64 0 / 262143 0.874 1.275 47.342 TIMEOUT TIMEOUT
genrmf-W a96 b96 0 / 884735 5.851 3.283 378.303 TIMEOUT TIMEOUT
wash...-L r1280 c2560 0 / 3276801 5.605 2.753 55.248 36.388 90.315
wash...-L r1664 c3328 0 / 5537793 20.959 6.151 131.345 69.046 619.811
wash...-L r2048 c4096 0 / 8388609 36.080 11.987 683.758 135.893 430.449
wash...-L r512 c1024 0 / 524289 0.469 0.399 4.649 2.427 7.448
wash...-L r896 c1792 0 / 1605633 2.749 1.113 21.000 13.644 41.321
wash...-W r1024 c1024 0 / 1048577 1.459 0.779 15.398 9.587 10.089
wash...-W r1536 c1536 0 / 2359297 4.887 1.570 30.521 20.118 57.449
wash...-W r2048 c2048 0 / 4194305 14.656 3.871 96.985 41.529 158.705
wash...-W r2560 c2560 0 / 6553601 31.278 7.368 400.272 65.326 482.585
wash...-W r3072 c3072 0 / 9437185 57.276 13.724 1087.039 130.656 434.690
2d-2e20.sym 0 / 400000 0.303 0.038 5.852 0.244 3.275
2d-2e20.sym 100000 / 500000 0.522 0.158 13.021 1.454 8.174
2d-2e20.sym 200000 / 600000 0.302 0.077 5.845 0.448 3.432
2d-2e20.sym 300000 / 700000 0.511 0.104 13.076 1.034 8.300
2d-2e20.sym 400000 / 800000 0.544 0.313 12.980 2.743 8.255
amazon0312 32 / 335 2.312 0.043 80.536 0.188 42.783
amazon0312 8 / 2887 1.934 0.052 74.898 0.156 50.215
amazon0312 12588 / 2989 2.038 0.022 78.559 0.160 48.728
amazon0312 44038 / 9363 1.447 0.027 56.244 0.152 44.354
amazon0312 20107 / 21020 1.436 0.022 33.439 0.087 45.824
as-skitter 7046 / 1039 2.666 1.636 TIMEOUT 4.067 2106.074
as-skitter 7579 / 7588 2.647 5.068 TIMEOUT 11.568 2246.823
as-skitter 7040 / 5569 2.620 3.657 TIMEOUT 5.685 2172.512
as-skitter 811 / 7581 2.397 1.256 3517.286 9.697 2124.444
as-skitter 7582 / 7589 2.584 2.996 2123.278 17.761 2215.509
cit-Patents 2506522 / 3559277 25.210 0.066 166.237 0.096 790.304
cit-Patents 3646084 / 3616615 3.185 0.080 77.928 0.220 35.693
cit-Patents 2248384 / 2524085 8.100 0.039 108.717 0.079 1048.666
cit-Patents 2131075 / 2342725 7.552 0.033 108.042 0.110 200.915
cit-Patents 2099155 / 2466844 15.744 0.065 184.975 0.186 958.565
coPapersDBLP 27942 / 27836 2.336 0.016 28.582 0.097 112.416
coPapersDBLP 27967 / 28839 2.278 0.027 24.174 0.178 45.203
coPapersDBLP 3226 / 27818 2.217 0.019 25.153 0.215 24.161
coPapersDBLP 27077 / 11422 1.339 0.018 24.120 0.112 22.452
coPapersDBLP 78442 / 22607 2.072 0.024 29.105 0.235 12.907
delaunay n24 3142593 / 4456146 5.257 1.465 TIMEOUT 12.310 TIMEOUT
delaunay n24 135118 / 5180418 7.778 1.884 TIMEOUT 9.343 TIMEOUT
delaunay n24 1063984 / 3395389 4.934 1.530 TIMEOUT 10.497 TIMEOUT
delaunay n24 4378370 / 8062206 6.216 1.127 TIMEOUT 5.083 TIMEOUT
delaunay n24 8122623 / 8589070 4.849 1.611 2247.888 5.497 TIMEOUT
in-2004 854554 / 246034 0.618 1.969 2369.207 19.974 1068.963
in-2004 854566 / 1198077 1.842 2.707 TIMEOUT 23.266 1186.366
in-2004 1094952 / 1198078 2.723 0.189 3207.309 21.987 1116.153
in-2004 1295144 / 1231855 2.370 0.725 3232.707 7.672 1152.504
in-2004 687758 / 863247 0.598 0.255 440.313 17.288 296.485
kron g500-logn21 1421105 / 1531673 36.448 6.917 TIMEOUT 85.475 TIMEOUT
kron g500-logn21 317615 / 787489 12.450 2.527 93.831 7.537 99.853
kron g500-logn21 350500 / 447517 15.009 2.750 TIMEOUT 4.522 TIMEOUT
kron g500-logn21 773179 / 1058878 12.617 2.540 93.310 5.315 142.776
kron g500-logn21 777712 / 711343 12.243 2.426 96.670 5.716 222.432
rgg n 2 22 s0 1010837 / 1777383 2.781 0.120 59.800 2.320 59.242
rgg n 2 22 s0 1777466 / 1777484 2.672 0.034 59.490 0.265 55.705
rgg n 2 22 s0 601227 / 800176 2.250 0.055 29.252 0.551 8.215
rgg n 2 22 s0 1777076 / 1777681 2.624 0.033 59.523 0.258 58.860
rgg n 2 22 s0 2346659 / 3295893 2.271 0.125 29.754 2.091 10.349
rmat22.sym 1837250 / 2244496 121.093 0.104 464.781 0.144 TIMEOUT
rmat22.sym 492520 / 1539774 179.145 0.085 270.743 1.505 503.125
rmat22.sym 2374507 / 3094149 5.370 0.069 43.467 0.514 3.869
rmat22.sym 1181640 / 3055470 5.376 0.071 44.845 0.640 4.232
rmat22.sym 3414666 / 1395919 38.130 0.091 333.400 0.421 2674.928
soc-LiveJournal1 10009 / 37344 59.104 1.172 TIMEOUT 2.288 TIMEOUT
soc-LiveJournal1 10029 / 8737 53.072 0.717 TIMEOUT 1.397 TIMEOUT
soc-LiveJournal1 87 / 18962 36.425 0.666 TIMEOUT 0.985 TIMEOUT
soc-LiveJournal1 2914 / 18961 39.362 0.556 3065.798 1.965 TIMEOUT
soc-LiveJournal1 39283 / 91282 31.126 0.391 TIMEOUT 2.273 TIMEOUT
uk-2002 17159799 / 13118355 15.020 38.024 TIMEOUT TIMEOUT TIMEOUT
uk-2002 15237349 / 8504954 11.571 0.205 TIMEOUT TIMEOUT TIMEOUT
uk-2002 6748291 / 3870967 91.756 61.724 TIMEOUT TIMEOUT TIMEOUT
uk-2002 6750968 / 15421709 15.790 58.459 TIMEOUT TIMEOUT TIMEOUT
uk-2002 17364050 / 11678704 66.209 7.921 TIMEOUT TIMEOUT TIMEOUT
USA-road-d.E 3300125 / 574622 0.639 0.385 44.351 1.831 39.567
USA-road-d.E 1344070 / 1842610 0.416 0.172 28.708 1.852 66.214
USA-road-d.E 3228454 / 219319 3.056 0.337 74.659 2.906 41.011
USA-road-d.E 574620 / 673831 0.700 0.268 45.809 0.771 77.073
USA-road-d.E 793551 / 794244 0.433 0.139 29.894 0.353 71.369
USA-road-d.NY 140960 / 134677 0.151 0.191 4.863 0.718 1.691
USA-road-d.NY 136299 / 139787 0.122 0.143 5.697 0.501 1.775
USA-road-d.NY 141455 / 145196 0.028 0.025 0.496 0.092 1.475
USA-road-d.NY 187960 / 190405 0.027 0.023 0.495 0.062 1.594
USA-road-d.NY 194677 / 47619 0.112 0.179 5.423 0.564 1.478
USA-road-d.W 5901424 / 1026346 4.261 0.940 280.980 15.188 TIMEOUT
USA-road-d.W 1160080 / 5261496 2.253 1.693 358.506 13.271 TIMEOUT
USA-road-d.W 6237650 / 721826 17.191 2.619 543.486 17.534 TIMEOUT
USA-road-d.W 1378713 / 1407631 1.104 0.266 76.089 1.540 TIMEOUT
USA-road-d.W 1712888 / 1993834 12.416 1.027 258.515 9.791 TIMEOUT

example, we use worklists to minimize the amount of wasted
work. We employ a 2-level parallelization scheme to reduce
workload imbalance and to better exploit the GPU hardware.
We also introduce a new frequency for the global relabeling
heuristic that yields good performance across multiple classes
of inputs.

We implemented ECL-MaxFlow in CUDA. The source code
is available at https://github.com/burtscher/ECL-MaxFlow. We
evaluated our code on two distinct sets of input graphs to
demonstrate the robustness and generality of our approach.
The first set consists of synthetic directed graphs from DI-
MACS that were specifically designed for evaluating max-
flow algorithms and are widely used in the literature. The
second set includes real-world and synthetic undirected graphs
from various domains and reflects a broader range of input
characteristics. On an RTX 4090-based system, ECL-MaxFlow
outperforms leading CPU and GPU codes from the literature
on these inputs by 5.08x and 5.75x, respectively.

REFERENCES

[1] R. Rockafellar, Network Flows and Monotropic Optimization,
ser. Series on optimization, computation, and control. Athena
Scientific, 1999. [Online]. Available: https://books.google.com/books?
id=7 85EAAAQBAJ

[2] E. L. Lawler, Combinatorial optimization: networks and matroids. Holt,
Rinehart and Winston, New York, 1976.

[3] V. Vineet and P. J. Narayanan, “Cuda cuts: Fast graph cuts on the GPU,”
in 2008 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, 2008, pp. 1–8.

[4] C.-G. Lyuh and T. Kim, “High-level synthesis for low power based
on network flow method,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 3, pp. 364–375, 2003.

[5] J. Qian, Z. Zhou, T. Gu, L. Zhao, and L. Chang, “Optimal reconfigu-
ration of high-performance VLSI subarrays with network flow,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 12, pp.
3575–3587, 2016.

[6] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-
flow problem,” Journal of the ACM, vol. 35, no. 4, pp. 921–940, 1988.
[Online]. Available: https://dl.acm.org/doi/10.1145/48014.61051

[7] B. V. Cherkassky and A. V. Goldberg, “On implementing the
push—relabel method for the maximum flow problem,” Algorithmica,
vol. 19, no. 4, pp. 390–410, 1997. [Online]. Available: http:
//link.springer.com/10.1007/PL00009180

[8] Z. He and B. Hong, “Dynamically tuned push-relabel algorithm for the
maximum flow problem on CPU-GPU-hybrid platforms,” in 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
2010, pp. 1–10.

[9] U. Derigs and W. Meier, “Implementing Goldberg’s max-flow-
algorithm — a computational investigation,” Zeitschrift für Operations
Research, vol. 33, no. 6, pp. 383–403, 1989. [Online]. Available:
https://doi.org/10.1007/BF01415937

[10] C.-Y. Hsieh, P.-C. Lin, and S.-Y. Kuo, “Engineering a workload-
balanced push-relabel algorithm for massive graphs on GPUs,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.00270

[11] B. Hong, “A lock-free multi-threaded algorithm for the maximum flow
problem,” in 2008 IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp. 1–8.

[12] L. R. Ford and D. Fulkerson, “Flows in networks,” 1963.
[13] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic

efficiency for network flow problems,” J. ACM, vol. 19, no. 2,
p. 248–264, Apr. 1972. [Online]. Available: https://doi.org/10.1145/
321694.321699

[14] Y. Dinitz, “Algorithm for solution of a problem of maximum flow in
networks with power estimation,” Soviet Math. Dokl., vol. 11, pp. 1277–
1280, 01 1970.

[15] A. Karzanov, “Determining the maximal flow in a network by the
method of preflows,” Doklady Mathematics, vol. 15, p. 434–437, 02
1974.

[16] J. Cheriyan and S. N. Maheshwari, “Analysis of preflow push
algorithms for maximum network flow,” SIAM Journal on Computing,
vol. 18, no. 6, pp. 1057–1086, 1989. [Online]. Available: http:
//epubs.siam.org/doi/10.1137/0218072

[17] A. V. Goldberg, “hi pr maximum flow solver version 3.6,”
accessed: 2025-06-12. [Online]. Available: https://web.archive.org/
web/20061104200416/http://www.avglab.com/andrew/soft.html

[18] D. Bader and V. Sachdeva, “A cache-aware parallel implementation of
the push-relabel network flow algorithm and experimental evaluation of
the gap relabeling heuristic,” in 18th ISCA International Conference on
Parallel and Distributed Computing Systems 2005, PDCS 2005. United
States: International Society for Computers and Their Applications
(ISCA), 2005, pp. 41–48.

[19] B. Hong and Z. He, “An asynchronous multithreaded algorithm
for the maximum network flow problem with nonblocking global
relabeling heuristic,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 6, pp. 1025–1033, 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5557863/

[20] S. Soner and C. Ozturan, “Experiences with parallel multi-threaded net-
work maximum flow algorithm,” Partnership for Advanced Computing
in Europe, vol. 2013, no. 1, pp. 1–10, 2013.

[21] N. Baumstark, G. Blelloch, and J. Shun, “Efficient implementation
of a synchronous parallel push-relabel algorithm,” in Algorithms -
ESA 2015, N. Bansal and I. Finocchi, Eds., vol. 9294. Springer
Berlin Heidelberg, 2015, pp. 106–117. [Online]. Available: http:
//link.springer.com/10.1007/978-3-662-48350-3 10

[22] M. A. Stefanes and L. F. Alvino, “A hybrid parallel implementation
for the maximum flow problem,” in 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP). IEEE, 2018, pp. 229–233. [Online]. Available: https:
//ieeexplore.ieee.org/document/8374461/

[23] R. J. Anderson and J. C. Setubal, “On the parallel implementation
of goldberg’s maximum flow algorithm,” in Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures.
ACM, 1992, pp. 168–177. [Online]. Available: https://dl.acm.org/doi/
10.1145/140901.140919

[24] M. E. Hussein, A. Varshney, and L. Davis, “On implementing
graph cuts on CUDA,” First Workshop on General Purpose
Processing on Graphics Processing Units, 2007. [Online]. Available:
https://api.semanticscholar.org/CorpusID:9357297

[25] V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts on
the GPU,” in 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2008, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/document/4563095

[26] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Trans. Parallel Comput., vol. 4, no. 1, Aug. 2017.
[Online]. Available: https://doi.org/10.1145/3108140

[27] J. Khatri, A. Samar, B. Behera, and R. Nasre, “Scaling the
maximum flow computation on GPUs,” International Journal of
Parallel Programming, vol. 50, no. 5, pp. 515–561, 2022. [Online].
Available: https://link.springer.com/10.1007/s10766-022-00740-7

[28] J. Wu, Z. He, and B. Hong, “Chapter 5 - efficient CUDA algorithms for
the maximum network flow problem,” in GPU Computing Gems Jade
Edition, ser. Applications of GPU Computing Series, W.-m. W. Hwu,
Ed. Morgan Kaufmann, 2012, pp. 55–66. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123859631000058

[29] “GitHub - NTUDDSNLab/WBPR: Engineering A Workload-balanced
Push-Relabel Algorithm for Massive Graphs on GPUs (2024 arxiv) —
github.com,” https://github.com/NTUDDSNLab/WBPR/, [Accessed 05-
07-2025].

[30] “GitHub - gunrock/gunrock at dev — github.com,” https://github.com/
gunrock/gunrock/tree/dev, [Accessed 05-07-2025].

[31] “GitHub - Jash-Khatri/IJPP — github.com,” https://github.com/
Jash-Khatri/IJPP/, [Accessed 05-07-2025].

[32] D. Johnson and C. McGeoch, Eds., Network Flows and Matching:
First DIMACS Implementation Challenge, ser. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1993, vol. 12. [Online]. Available: http:
//www.ams.org/dimacs/012

[33] C. for Discrete Mathematics and T. C. Science, “DIMACS,” http://www.
diag.uniroma1.it//challenge9/download.shtml, 2010, accessed: 2022-10-
21.

[34] I. T. U. of Texas at Austin, “Galois,” https://iss.oden.utexas.edu/?p=
projects/galois, 2010, accessed: 2022-10-21.

[35] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[36] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

https://books.google.com/books?id=7_85EAAAQBAJ
https://books.google.com/books?id=7_85EAAAQBAJ
https://dl.acm.org/doi/10.1145/48014.61051
http://link.springer.com/10.1007/PL00009180
http://link.springer.com/10.1007/PL00009180
https://doi.org/10.1007/BF01415937
https://arxiv.org/abs/2404.00270
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
http://epubs.siam.org/doi/10.1137/0218072
http://epubs.siam.org/doi/10.1137/0218072
https://web.archive.org/web/20061104200416/http://www.avglab.com/andrew/soft.html
https://web.archive.org/web/20061104200416/http://www.avglab.com/andrew/soft.html
http://ieeexplore.ieee.org/document/5557863/
http://link.springer.com/10.1007/978-3-662-48350-3_10
http://link.springer.com/10.1007/978-3-662-48350-3_10
https://ieeexplore.ieee.org/document/8374461/
https://ieeexplore.ieee.org/document/8374461/
https://dl.acm.org/doi/10.1145/140901.140919
https://dl.acm.org/doi/10.1145/140901.140919
https://api.semanticscholar.org/CorpusID:9357297
https://ieeexplore.ieee.org/document/4563095
https://doi.org/10.1145/3108140
https://link.springer.com/10.1007/s10766-022-00740-7
https://www.sciencedirect.com/science/article/pii/B9780123859631000058
https://www.sciencedirect.com/science/article/pii/B9780123859631000058
https://github.com/NTUDDSNLab/WBPR/
https://github.com/gunrock/gunrock/tree/dev
https://github.com/gunrock/gunrock/tree/dev
https://github.com/Jash-Khatri/IJPP/
https://github.com/Jash-Khatri/IJPP/
http://www.ams.org/dimacs/012
http://www.ams.org/dimacs/012
http://www.diag.uniroma1.it//challenge9/download.shtml
http://www.diag.uniroma1.it//challenge9/download.shtml
https://iss.oden.utexas.edu/?p=projects/galois
https://iss.oden.utexas.edu/?p=projects/galois
http://snap.stanford.edu/data
https://doi.org/10.1145/2049662.2049663

	Introduction
	Background
	Related Work
	Push-Relabel on the GPU
	Differences in our Approach

	Approach
	Experimental Methodology
	Codes
	Hardware and Software
	Inputs

	Results
	GPU Performance Comparison
	CPU Performance Comparison

	Summary and Conclusions
	References

