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Abstract—Determining the maximum possible flow (max-flow)
between a source vertex and a sink vertex in a network with
given capacities on every edge is a fundamental graph problem
found in many domains. The Push-Relabel (PR) algorithm is
the leading approach for solving the max-flow problem and
has been parallelized for GPUs. However, existing approaches
suffer from scalability issues and may perform poorly on large
graphs. This paper focuses on improving the efficiency of the
PR algorithm on GPUs, presenting several implementation and
parallelization improvements compared to the state of the art.
Our improvements include fast global relabeling on the GPU,
worklists to minimize wasted work and CUDA threads, and a
two-level parallelization scheme to improve load balancing. Our
approach is, on average, 5.75x faster than the fastest prior GPU
implementation and 5.08x faster than the fastest CPU code.

Index Terms—Maximum flow, graph algorithms, parallel al-
gorithms, graphics processing units, optimization

I. INTRODUCTION

A flow network is a graph with capacities on the edges
that describe how much flow each link can handle, with the
vertices acting as junctions. For example, a flow network may
represent a network of routers, where each edge is an Ethernet
cable with a given maximum throughput. The maximum flow
problem (max-flow) finds the highest amount of flow that can
be transferred from a source vertex to a sink vertex using all
available links. In our example, we could use it to determine
the maximum data transfer rate between two routers.

Flow networks can model many other real-world scenarios
and systems, such as road networks and electrical circuits.
Moreover, the maximum flow problem has found use in ap-
plications such as optimization [1], transportation planning [2],
computer vision [3], and VLSI design [4], [5].

The Push-Relabel (PR) algorithm [6] is the leading approach
for solving the max-flow problem. It is named after its two
local vertex operations, which Push excess flow to neighboring
vertices or Relabel themselves to find new valid routes. The
algorithm iteratively repeats these operations until converging
at an optimal solution [6]. The global relabeling heuristic is a
well-known optimization to drastically improve the practical
performance of PR [7]. The heuristic is run periodically and
uses a backwards breadth-first search (BFS) to compute the
exact distance from each vertex to the source or sink.
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Like for many other graph problems, poor scalability and
growing input sizes have motivated the exploration of GPU-
based solutions for max-flow. Implementations of PR for
GPUs [8] have been proposed that successfully improve the
performance. PR’s local operations make it more suitable for
parallelization than other max-flow algorithms. However, most
prior works found the BFS-based global relabeling to be faster
when performed serially on the CPU and opt for a hybrid
approach. In addition, graphs with millions of vertices or more
still prove to be very time consuming.

To address these challenges, our work focuses on improving
the implementation and parallelization of PR as well as the
global relabeling heuristic. For example, to improve scalability,
our code runs the global relabeling on the GPU. We reduce
the amount of wasted work by using worklists for both the PR
and the global relabeling kernels. Our implementation limits
the impact of load imbalance caused by varying vertex degrees
using a two-level parallelization scheme in the PR and global
relabeling kernels. Vertices are processed in parallel by warps,
i.e., groups of 32 threads, and each vertex’s set of neighbors
is processed in parallel by the threads of a warp. We further
propose a new frequency for performing the global relabeling
that adapts to the characteristics of the input graph without
a priori knowledge.

This paper makes the following main contributions.

o It describes ECL-MaxFlow, a high-speed PR implementa-
tion with GPU-based global relabeling written in CUDA.

o It presents several key optimizations that improve the
scalability and load balancing of our code.

« It introduces a new frequency for global relabeling that
yields good performance across multiple classes of inputs.

« It shows that ECL-MaxFlow outperforms state-of-the-art
CPU and GPU implementations on many real-world and
synthetic inputs.

The ECL-MaxFlow CUDA code is publicly available in
open source at https://github.com/burtscher/ECL-MaxFlow.

The rest of the paper is organized as follows. Section II
provides background information about the max-flow problem
and PR algorithm. Section III summarizes related work. Sec-
tion IV explains our approach in detail. Section V describes the
experimental methodology. Section VI presents and analyzes
the results. Section VII concludes the paper.



II. BACKGROUND

A flow network is a directed graph G(V, E) with capacity
values c associated with each edge, representing the maximum
amount of flow f that the edge can carry. The maximum flow
of the network is the maximum amount of flow that can be
transferred from a source vertex s to a sink vertex ¢ without
exceeding any edge capacities. In a valid flow state, the amount
of flow entering a vertex v must be the same as the amount
leaving v, unless v is the source or the sink.

Max-flow algorithms generally operate on the residual
graph G;(V, E), which includes all vertices from the given
graph G but replaces the edges F with residual edges Ej.
The residual edges represent the directions in which excess
flow can be moved between vertices based on the current flow
state. When an edge (v,n) € F has less flow than capacity,
it is included in E'y, and its residual capacity cy(v,n) is how
much remaining capacity it has. Additionally, when an edge
(v,n) € E has any flow, its inverse (n,v) is in E; with
a residual capacity cs(n,v) equal to that flow. This allows
flow to be removed from an edge if the destination ends up
temporarily receiving more flow than it can discharge.

Goldberg and Tarjan’s Push-Relabel (PR) algorithm [6] is a
well-known approach for solving the max-flow problem. It has
a time complexity of O(V2E). The algorithm pushes as much
flow from the source as it can and gradually pushes that flow
to the sink. To do so, it introduces the concept of excess flow.
The excess flow e of a vertex v is the difference between the
incoming and outgoing flows for that vertex. Vertices v €V —
{s,t} with an e(v) > 0 are sometimes called overflowing.
The final state of the computation will have no overflowing
vertices remaining. The algorithm is commonly split into two
phases [9]. Phase I pushes as much excess as it can towards
and into the sink, which finds the maximum flow value (and,
therefore, the minimum cut value). Phase II then returns any
excess flow remaining in the network to the source. To help
guide the flow in the right direction, the algorithm associates a
height h with each vertex. In Phase I, the height of the sink ¢ is
initialized to 0, and the rest of the height values are commonly
initialized via a backwards BFS on Gy, using ¢ as the BFS
source. If v can reach t, its height will be a lower bound on
the distance from v to t. If v cannot reach ¢, its height will be
set to |V|. Vertices with e(v) > 0 and h < |V (i.e., vertices
that are overflowing and can reach the source of the BFS) are
active vertices.

Phase I starts by fully saturating all outgoing edges from
the source s. Saturating an edge (v,n) € E means to add
enough flow to fill its capacity, i.e., make f(v,n) = c(v,n).
The vertices that receive this flow comprise the initial set of
active vertices. The main portion of the computation is the
repeated application of push or lift operations, whichever is
applicable, to active vertices. A vertex v can push its excess
flow to a neighbor in G if the neighbor has a lower height
than v, as shown in Algorithm 1. If no lower-height neighbors
exist, a vertex instead relabels its own height to be 1 higher
than its minimum-height neighbor, as shown in Algorithm 2,

Algorithm 1 Push operation for vertex v
Require: e(v) > 0, (v,n’) € Ef, h(v) > h(n')
n' < argmin, {h(n) | ¢;(v,n) > 0 and h(v) > h(n)}
A + min{e(v), cy(v,n’)}
if (v,n’) € E then
Fo,n) — flo, ) + A
else if (n’,v) € E then
f(n',v) < f(n',v) — A
end if
e(v) +e(v) — A
e(n’) «e(n')+ A

effectively allowing it to look for an alternate path leading to
t in Phase I or to s in Phase II. We refer to this operation
as a lift to differentiate it from “global” relabeling, which is
described later in this section. When there are no remaining
active vertices, Phase I is complete.

Phase II is similar to Phase I with a few changes. It
starts with a BFS from the source with h(s) = 0, and any
unreachable vertex is set to h(v) = oco. The push operation
is replaced with a similar reduce operation, which exclusively
removes flow from incoming edges, as shown in Algorithm 3.

As the computation progresses, the structure of Gy changes
as vertices lift their own heights, decreasing the accuracy
and usefulness of the heights’ distance estimates. The global
relabeling heuristic, as suggested by Goldberg and Tarjan [6],
addresses this issue by periodically recomputing the height
labels using another backward BFS in Gy from ¢ in Phase I
and from s in Phase II. A common strategy is to perform this
global relabeling after every |V| lift operations [7] to balance
the overhead cost of running the BFS with the amount of
work saved. This heuristic has proven to be highly effective
at boosting the performance of PR and is still used in modern
implementations [10]. The push and lift operations can be
run concurrently on all active vertices without locks through
the use of atomic read-modify-write operations [11]. This
has enabled the development of GPU-based PR algorithms
that leverage the massively parallel architecture of GPUs for
performance gains [8]. The BFS used for global relabeling can
also be partially parallelized and run on the GPU. However,
most prior works found their attempts at doing so to be

Algorithm 2 Lift operation for vertex v
Require: e(v) > 0, and h(v) < h(n) foralln s.t. (v,n) € Ey
h(v) <= min{h(n) | c¢f(v,n) >0} +1

Algorithm 3 Reduce operation for vertex v
Require: e(v) >0, (n',v) € Ey, h(v) > h(n')
n' < argmin, {h(n) | f(n,v) > 0 and h(v) > h(n)}
A < min{e(v), f(n',v)}
f(n',v) « f(n',v) — A
e(v) «e(v) — A
e(n’) «e(n')+ A




less performant than offloading the work to a serial CPU
implementation, even when accounting for the overhead of
transferring data between the CPU and GPU [8].

III. RELATED WORK

The first max-flow algorithm, by Ford and Fulkerson [12],
works by repeatedly finding augmenting paths. An augmenting
path is any s—t path in the residual graph along which
additional flow can be sent. Once no such path exists, the
maximum flow has been reached. Edmonds and Karp [13]
found that augmenting along the shortest paths leads to a
polynomial time complexity of O(V E?). Dinitz [14] proposed
a method to find all of the shortest augmenting paths at once,
leading to a time complexity of O(V?2E).

Karzanov [15] introduced the concept of a preflow, allow-
ing excess flow to be pushed across the graph in O(V3)
time. Based on this, Goldberg and Tarjan [6] proposed the
generic Push-Relabel (PR) algorithm with a time complex-
ity of O(V2E). They also introduced the global relabeling
heuristic for improving the algorithm’s practical performance.
Cheriyan and Maheshwari [16] proved that operating on the
highest-labeled active vertices first reduces the worst-case time
bound to O(V2VE). Derigs and Meier [9] found the PR
algorithm’s practical performance to be significantly better
than the prior augmenting-path-based methods. Their fastest
implementations include global relabeling and a new gap-
search heuristic, which uses gaps in the height values to
quickly identify when vertices can no longer reach the sink.

Cherkassky and Goldberg [7] studied several optimizations
and found that operating on the highest-labeled active vertices
first is very effective when combined with the global relabel
and gap-search heuristics. Even though it is already over two
decades old, their optimized serial implementation, first called
h_prf and later hi_pr [17], is still one of the fastest max-
flow implementations ever published and has been used as
a comparison baseline in numerous parallel CPU and GPU
max-flow papers [8], [18]-[22].

Anderson and Setubal [23] proposed an efficient parallel
version of PR for shared-memory systems as well as a
technique for performing the global relabeling heuristic con-
currently with the main algorithm using locks. Over a decade
later, Bader and Sachdeva [18] improved upon Anderson
and Setubal’s approach with a cache-aware implementation.
Hong [11] introduced a lock-free parallel version of PR that
uses atomic read-modify-write operations. Hong proved that
pushing to the lowest-height neighbor makes the algorithm
robust to any interleaving of Push and Relabel operations
without requiring any locking.

A. Push-Relabel on the GPU

Hussein et al. [24] and Vineet and Narayanan [25] in-
troduced the first GPU implementations of PR, which are
specifically optimized for obtaining graph cuts for computer-
vision problems. Later, He and Hong [8] proposed the first
generic PR algorithm for CUDA GPUs. Their approach is
asynchronous, looping in the PR kernel a fixed number of

times before exiting to perform global relabeling on the CPU.
Their algorithm also adaptively switches between using the
CPU and GPU depending on the available level of parallelism
to maximize efficiency. On the CPU, they use Goldberg’s fast
serial hi_pr [17] code. He and Hong report a speedup of up to
2x compared to hi_pr. Stefanes and Alvino [22] extend He and
Hong’s hybrid approach by parallelizing the global relabeling
and gap relabeling heuristics using OpenMP on the CPU. In
addition, they optimize the PR kernel using kernel overlapping
and loop unrolling. Stefanes and Alvino report a speedup of
up to 3.28x compared to hi_pr.

The Gunrock [26] library of graph analytics codes includes
a GPU implementation of Hong’s lock-free parallel PR algo-
rithm [11]. However, the authors found their implementation
to be slower than a sequential max-flow implementation.
The code has since been deprecated. Nevertheless, Khatri
et al. [27] used the Gunrock code as a baseline to study
various optimizations for GPU PR algorithms, including some
approximation techniques. The most impactful optimization
they found is changing the global relabeling frequency from
every |V/| iterations to every 100 iterations.

Hsieh et al. [10] study a set of optimizations applied
to He and Hong’s parallel GPU algorithm [8]. They call
their workload-balanced push-relabel algorithm WBPR. They
parallelize the search for the minimum-height neighbor using
an entire warp (a group of 32 threads in CUDA) and a
parallel reduction. Moreover, they propose two alternatives to
using a compressed sparse row (CSR) representation when
searching the incoming and outgoing edges for the minimum-
height neighbor in G. The first alternative, called reverse
CSR (WBPR-RCSR), stores incoming edges in compressed-
sparse-column (CSC) format with an extra set of pointers to
the corresponding forward edge. The second alternative, called
bidirectional CSR (WBPR-BCSR), combines the CSR and
CSC formats into one bidirectional representation to increase
locality when traversing all neighbors. This comes at the cost
of needing to search the adjacency list to find the matching
reverse edge.

B. Differences in our Approach

Like the other GPU PR codes mentioned in Section III-A,
ECL-MaxFlow is based on Hong’s lock-free parallel algo-
rithm [11]. However, unlike Hong’s follow-up GPU work [8],
[28], our PR kernel is not asynchronous. While their kernels
freely loop for a preset number of attempted PR cycles, our
kernel applies a single push or lift operation per active vertex
before exiting, enabling our code to check the termination
condition more often. This can cut down on unnecessary
iterations. Gunrock [26], Stefanes and Alvino [22], Khatri et
al. [27], and WBPR [10] also use synchronous kernels.

All prior GPU-based PR implementations that we are aware
of check all vertices in every iteration. ECL-MaxFlow mini-
mizes the amount of work and the number of launched threads
by storing only the active vertices in a worklist. Vertices that
receive excess flow or could not get rid of all of their excess
flow are added to the next iteration’s worklist in our PR



kernel. WBPR [10] is the only other code that also uses an
active-vertex worklist, but its kernel scans all vertices in every
iteration to populate the worklist.

Hong [8], [28], Stefanes and Alvino [22], and WBPR [10]
offload the BFS-based global relabeling operation to the
CPU, limiting scalability and incurring transfer overhead.
Gunrock [26] and Khatri et al. [27] are the exceptions, keeping
the global relabel step on the GPU. However, Gunrock’s
implementation runs the BFS on a single GPU thread, greatly
limiting performance. Khatri et al. employ a parallel BFS
algorithm that utilizes hierarchical queues and shared memory.
In each iteration, their method marks any unvisited neighbors
of vertices in the queue, counts how many children each
queued vertex has, performs a prefix sum on those values,
and uses the sums to fill the next queue in parallel. ECL-
MaxFlow also performs the BFS on the GPU. However, we
insert elements into the next worklist during the BFS kernel by
atomically incrementing the worklist size. The value returned
by the atomic addition corresponds to the index at which the
element is to be stored in the worklist.

The literature encompasses a variety of different strategies
for determining the frequency at which the global relabeling
heuristic is performed. When Goldberg and Tarjan [6] first
proposed the heuristic, they suggested two strategies. One is
to perform the global relabeling after every |V| lift operations.
The other is to do so every time an edge into the sink is
saturated or an edge out of the source has its flow reduced to
zero. Most papers since then describe variations of the first
strategy. Cherkassky and Goldberg [7] report (from internal
experimentation) that adjusting the number of lift operations
needed could favor one class of inputs over another. They
considered the suggested threshold of exactly |V| lifts to
be a good compromise and used it for their experiments.
Later, Goldberg augmented this strategy for hi_pr [17] to
account for the density of the graph. The code also considers
|E| and activates the global relabeling based on a weighted
combination of the total number of lifts and the number of
edges traversed to perform those lifts.

Instead of tracking the global number of lifts, all of the
generic GPU PR works mentioned attempt a fixed number
of push or lift operations on each vertex before exiting to
perform a global relabel. We refer to this number as cycles
since the various works use different definitions of what an
“iteration” is. He and Hong [8], for their experiments on a set
of well-defined synthetic graphs, chose to use 32 cycles for
the very-high-degree acyclic-dense graphs and 4096 cycles for
their other inputs. Gunrock [26] and WBPR [10] both wait for
[V'| cycles between global relabels. Stefanes and Alvino [22]
use 98 cycles and Khatri et al. [27] use 100 cycles. We found
running global relabeling every |V'|2/(1000 x |E|) cycles to
be performant for our implementation and well balanced for
different classes of input graphs.

Like WBPR [10], our PR kernel uses an entire warp to find
the minimum-height neighbor of each active vertex. This helps
minimize the impact of varying vertex degrees on the workload
balance. Our code and WBPR use a minimum reduction per

warp to find the collective result for a designated thread to
use for pushing or lifting. However, while WBPR performs the
reduction in the GPU’s shared memory, our code uses CUDA’s
warp-shuffle primitives that do not access memory. Moreover,
and unlike any prior work, we wrote our BFS kernel so the
threads of a warp process the neighbors of a single vertex in
parallel, which increases memory-access coalescing.

For each “forward” edge (v,n) € E, Ey conditionally
includes a “reverse” edge (n,v) to allow flow to be removed
from (v,n) when needed. The residual capacities c¢; of all
edges in Iy are derived from the flow and capacity values
of the forward edges in E since cf(v,n) = c¢(v,n) — f(v,n)
and c¢f(n,v) = f(v,n). hi_pr [17] and the mentioned GPU
works with public implementations, Stefanes and Alvino [22],
Gunrock [26], Khatri et al. [27], and WBPR [10], store and
operate on the cy values of forward and reverse edges. When
pushing flow along an edge e € Ey, they subtract residual
capacity from cs(e) and add it to ¢y (inverse(e)). Since they
need to find the inverses of edges often, hi_pr, Stefanes and
Alvino, Gunrock, and Khatri et al. use 2 x |E| pointers that
bidirectionally map each edge to its matching inverse edge.
WBPR-RCSR stores cy for reverse edges alongside the cy
for their forward edges, so they only need |E| pointers to
map from reverse edges to their forward counterparts. In their
BCSR format, they need no extra pointers, but they must run
binary search to find reverse edges.

Our graph representation is the same as the RCSR format
Hsieh et al. propose for WBPR, storing the forward and reverse
edges in separate compressed adjacency lists. However, our
code directly uses the flow and capacity values of the forward
edges in E. We dynamically derive cs(e) at runtime based on
whether e is a forward or a reverse edge. For a forward edge
(v,n), if f(v,n) < c¢(v,n), then (v,n) € Ey. For a reverse
edge (n,v), if f(inverse(n,v)) > 0, then (n,v) € Ey. This
allows us to save an atomic operation for every push by only
updating the forward edge’s flow value instead of updating
two residual capacities. Since c¢ is constant throughout the
computation, it can be accessed non-atomically.

IV. APPROACH

As mentioned in prior work [8] and supported by our own
observations, the amount of parallelism available on sparse
graphs is limited by a lack of concurrent tasks, i.e., active
vertices and frontier vertices. Despite typically only a small
portion of the vertices needing computation at a time, the prior
GPU works repeatedly process all vertices (see Section III-B),
leading to many idle CUDA threads. To minimize the amount
of wasted work, our GPU kernels use worklists to only process
the vertices that likely need computing.

We further employ a 2-level parallelization scheme specific
to GPUs to minimize the workload imbalance caused by
different vertices having varying numbers of neighbors. In
CUDA, warps are groups of 32 adjacent threads that execute
in lockstep. We process the vertices in the relevant worklist
in parallel, using an entire warp per vertex, and also process
each vertex’s set of neighbors in parallel across the threads of



Algorithm 4 Parallel push-relabel algorithm for GPUs

Algorithm 5 Code of push_relabel_kernel for warp W

GR_FREQ + max(100, |V|?/(1000 x |E|))
Initialize e, h, f, ¢, time
Initial saturating pushes from s, add neighbors to W Lpg
call global_relabeling_loop() > Phase 1
iteration < 0
while W Lpg 75 0 do
iteration < iteration + 1
WLnezt — @
call push_relabel_kernel()
10: WLpr <+ WiLpeut
if iteration mod GR_FREQ@Q == 0 then
12: call global_relabeling_loop()
13: end if
14: end while
15: call global_relabeling_loop()
16: iteration < 0
17: while W Lpg 3& 0 do

R A A ol e

—
—_

> Phase 2

18: iteration < iteration + 1
19: W Lpext < 0
20: call push_relabel_kernel()

21: WLpr + WiLpeut

22: if iteration mod GR_FREQ == 0 then
23: call global_relabeling_loop()

24: end if

25: end while

a warp. WBPR [10] uses a similar approach in their PR kernel,
whereas we use it in both our PR and global relabeling kernels.
Since the worklists typically do not contain many vertices,
even on large graphs, launching only 1 thread per worklist item
will likely under-utilize modern GPUs. Launching 32 threads
per element (i.e., an entire warp) helps ECL-MaxFlow exploit
the GPU hardware more.

Algorithm 4 presents our implementation of the PR al-
gorithm. The push_relabel_kernel, global_relabeling_loop,
and global_relabeling_kernel functions are defined in Algo-
rithms 5 to 7. After initializing the necessary data structures
on the GPU, a trivial kernel performs the initial saturating
pushes from the source vertex s (Line 3 of Algorithm 4),
where each edge leaving the source (s,n) € E receives as
much flow as it can handle f(s,n) < c(s,n). The kernel
also adds each neighbor that receives flow to the active-vertex
worklist W Lpgr. Then, the first global relabeling is called
(Line 4) to set the initial heights before the main Phase I
loop begins. Since we store active vertices on W Lpgr, we
use WLpr = () as the termination condition for both phases.
After every GR_FREQ calls of push_relabel_kernel, the
global relabeling is repeated (Lines 11-13). GR_F REQ) is set
(Line 1) to the greater value of 100 and |V'|2/(1000 x |E|).
This frequency is a combination of the graph’s vertex count
and average degree with an additional scaling factor. We found
this frequency to be effective for our implementation and well
balanced across the different types of graphs we tested.

When Phase I completes, a trivial kernel adds all remaining

1: v < WLPR[W]

2: if e(v) > 0 and h(v) < |V| then > Active vertex
3: n' + oo

4: for all (v,n) € E; do > Split among threads in W
5: if h(n) < h(n'") then

6: n’ < n

7: end if

8: end for

9: n' < Parallel_Reduction(n’”) > Min. height neighbor
10: if localldz == 0 then > Designated thread
11: if h(v) > h(n') then

12: Push(v, n’) > Phase II uses Reduce
13: W Lpext ¢ W Lpert U{n'}

14: if e(v) > 0 then

15: WLnext — WLne:nt U {’U}

16: end if

17: else

18: h(v) < h(n') +1 > Lift(v)
19: if h(v) < |V| then
20: WLnext «— WLne:nt U {U}
21: end if

22: end if
23: end if
24: end if

Algorithm 6 Implementation of global_relabeling_loop
1: if Phase I then > BFS from sink

2 h(t)=0

3: h(v) =|V| forveV—{t}

4: WLgr + {t}

5: else if Phase II then > BFS from source
6: h(s) =0

7: h(v) = oo for veV—{s}

8: WLar <+ {S}

9: end if

10: BFS_ID «+ (—1 x PR_iterations) > Unique per BFS
11: level < 0

12: while W Lggr # 0 do

13: level < level + 1

14: W Loyt < 0

15: call global_relabeling_kernel(level, BF'S_I D)

16: WLar < WLpeut

17: end while

overflowing vertices to W Lpg. If none are found, we skip
Phase II and the algorithm terminates. Otherwise, Phase II
starts with an initial global relabeling (Line 15) to replace
Phase I’s heights with estimated distances to s (Line 5 of
Algorithm 6). While PR in Phase I can add or remove flow,
Phase II only needs PR to remove flow from edges until
all remaining excess has returned to s [9]. This means the
corresponding GPU kernels in Phase II only use reverse edges
to find neighbors in the residual graph (Line 4 of Algorithm 5



Algorithm 7 Implementation of global_relabeling_kernel for
warp W
1: v Wlg R[W]
2: for all (n,v) € Ef do > Split among threads in W
3: last_visit < atomicMin(time(n), BFS_ID)

4 if last_visit # BFS_ID then © First visit this BFS
5: h(n) < level

6: W Lnext < W Lpeqt U {n}

7 end if

8: end for

and Line 2 of Algorithm 7).

The GPU kernels described in Algorithms 5 and 7 both
use worklists to store vertices that likely need processing in
the next iteration. Algorithm 5 adds vertices to W Ly, if
they are still active, i.e., v could not push all of its excess
flow away (Lines 15 and 20), or became active, i.e., neighbor
n received excess flow from a push (Line 13). Algorithm 7
adds neighboring vertices to W L,,.,; when they are visited
for the first time in this global relabel operation (Line 6). We
launch both kernels with enough threads to assign an entire
warp to each vertex in the relevant worklist. Algorithm 5
performs a parallel reduction within each warp (Line 9) to
find the minimum-height neighbor »n’ in G for vertex v. Our
reduction uses CUDA’s warp-level shuffle functions to quickly
exchange data between the warp’s threads. WBPR [10] uses
shared memory to perform its reduction.

We implement the worklists W Lpr, W Lgr, and W Lyc.t
as arrays. Each kernel call processes one worklist while filling
W L, ezt Our kernels insert elements into W L., by atomi-
cally incrementing W L,,..;’s size. The element is placed into
W Lyext at the index returned by the atomic addition. After
each kernel finishes, we swap the pointers of the processed
worklist and W L,ept. W iLyeyt is emptied before the next
kernel call by setting its size to 0. Algorithms 5 and 7 share
the same W L,,.,: pointer, so we only need to allocate three
worklist arrays of |V| integers in total.

We avoid duplicates in the worklist using integer times-
tamps associated with each vertex and initialized to 0. When
Algorithm 5 adds a vertex v to W L.+, it first ensures v has
not already been added during this iteration. It does this using
the atomicMax operation, which simultaneously increases v’s
timestamp to the current iteration number iter and returns
the replaced timestamp value old_iter. If a thread finds that
old_iter # iter, then this thread is the first to attempt to add
v to W L.+ in this iteration, so v can safely be inserted.

Algorithm 7 uses the same timestamp array as Algorithm 5,
with some changes to avoid interfering with each other.
While Algorithm 5 uses atomicMax with the positive value
iter, Algorithm 7 uses atomicMin with the negative value
BFS_ID. By using the same BF'S_ID for every kernel
call launched by the same global relabeling operation, the
timestamp also acts as a “visited” flag (Line 4) without needing
to allocate additional storage. This allows our algorithm to use
the timestamp array without ever resetting its values.

Our implementation stores the original set of edges F in
the widely-used CSR format. However, the residual graph
Gy also requires the use of a “reverse” edge (n,v) for each
“forward” edge (v,n) € E to allow flow to be removed from
(v,n). We store these reverse edges separately, also in CSR
format, with pointers that map each reverse edge’s index to its
forward counterpart. This allows us to easily process forward
and reverse edges separately. As mentioned in Section III-B,
and unlike prior GPU works, our implementation dynamically
calculates residual capacity, which determines if an edge is
present in Ey. A forward edge e is in Ey if it has remaining
capacity f(e) < c(e), and a reverse edge re is in Ey if its
inverse has flow f(inverse(re)) > 0. In Phase I, our GPU
kernels iterate through both CSRs to find all neighbors in G'¢
(Line 4 of Algorithm 5 and Line 2 of Algorithm 7). Since
Phase II only uses reverse edges, our GPU kernels are able to
entirely skip one of the CSRs in Phase II, reducing the number
of neighbors processed and improving performance.

V. EXPERIMENTAL METHODOLOGY
A. Codes

We compare the performance of ECL-MaxFlow with the
serial CPU code hi_pr [17], the GPU code from Gunrock [26],
the GPU code by Khatri et al. [27], and the hybrid code
WBPR-RCSR by Hsieh et al. [10] for computing the max-
imum flow. We obtained the GPU codes from their authors’
public GitHub repositories [29]-[31] and hi_pr from an Inter-
net Archive snapshot of the author’s website [17].

In all codes we evaluate, reading the input graphs, building
internal representations, and allocating data structures on the
CPU and GPU are not included in the reported execution
times. However, data transfer between the CPU and GPU
during the computation are included in the measured runtimes.

The code from Khatri et al. includes several optimizations
that introduce approximation. Since the rest of the compared
codes use exact methods, we disable all approximation tech-
niques for our experiments.

B. Hardware and Software

We evaluate the performance of the GPU codes on two
systems. Since WBPR uses the CPU for global relabeling,
we also list the processor and main memory of each system.
System 1 has an RTX 4090 GPU with 16,384 processing
elements and 24 GB of global memory. It is based on an AMD
Ryzen Threadripper 2950X CPU with 48 GB of main memory.
System 2 has an NVIDIA A100 GPU with 6912 processing
elements and 40 GB of global memory. It is based on an Intel
Xeon Gold 6226R CPU with 64 GB of main memory. We run
the serial code hi_pr [17] on System 3, which has a higher
serial performance than the other two systems. System 3 uses
a Ryzen Threadripper 3970X with 256 GB of main memory.

We compiled the GPU codes with nvcc 12.6 on System 1
and with nvcc 12.0 on System 2. For our code, we used
the “-O3 -arch=sm_89” flags on System 1 and the “-O3
-arch=sm_80" flags on System 2. We compiled the prior GPU



codes with the same architecture flag as our code. We compiled
hi_pr with gcc 13.3.0 and the provided “-O4” flag.

C. Inputs

We used two sets of inputs to evaluate the performance of
the codes. The first set, shown in Table I, is composed of three
types of graphs used in the first DIMACS Implementation
Challenge [32]. The source and sink are the first and last vertex
by index, respectively. These graph types are commonly used
for evaluating performance in max-flow works [7], [8]:

1) Acyclic-Dense graphs: These are complete directed
acyclic dense graphs where every vertex is connected
to every other vertex. Each edge has a random integer
capacity between 1 and 10, 000.

2) Genrmf graphs: These graphs are made of b frames,
which are square grids of a x a vertices. The source
vertex is a corner of the first frame, and the sink vertex
is the opposite corner of the last frame. Each vertex is
bidirectionally connected with its neighbors in the same
grid. The vertices of each grid are also connected one-
to-one with the vertices in the next frame in a random
permutation. The cross-grid edges have randomized inte-
ger capacities from c; to co, while neighbor edges have
capacities of ¢y xa?. We used ¢; = 100 and ¢ = 10, 000.

— Genrmf-long: These graphs have an a : b ratio of
1 : 8, creating many small frames between s and ¢.

— Genrmf-wide: These graphs have an a : b ratio of
1:1, creating a balance between the size of the
frames and their quantity.

3) Washington-RLG graphs: These graphs are rectangular
grids with r rows and c columns. Each vertex is connected
to three random vertices in the next row. The source is
connected to all vertices in the first row, and all vertices
in the last row are connected to the sink. The cross-
row edges have randomized integer capacities from 1
to c1, while edges connected to the source or sink have
capacities of 3 x ¢;. We used ¢; = 10, 000.

— Washington-RLG-long: These graphs have an r : ¢
ratio of 1: 2, creating a rectangle with the source
and sink along the long axis.

— Washington-RLG-wide: These graphs have an r : ¢
ratio of 1 : 1, creating a square grid.

The second set of inputs is listed in Table II. We ob-
tained them from the Center for Discrete Mathematics and
Theoretical Computer Science at the University of Rome (DI-
MACS) [33], the Galois framework [34], the Stanford Network
Analysis Platform (SNAP) [35], and the SuiteSparse Matrix
Collection (SSMC) [36]. We modified these graphs where
needed as follows. We eliminated self-loops and duplicate
edges between the same two vertices. We added any missing
back edges to make the graphs undirected. We removed any
vertices that are not part of the largest connected component,
since those vertices cannot contribute to the flow of the
network. For unweighted graphs, we inserted random weights
between 100 and 10,000 to be used as edge capacities. For

TABLE I
DIRECTED INPUT GRAPHS FROM DIMACS
Graph Name Vertices Edges d-avg | d-max
ac_n2000 2,000 1,999,000 999.50 1999
ac_n4000 4,000 7,998,000 | 1999.50 3999
ac_n6000 6,000 | 17,997,000 | 2999.50 5999
ac_n8000 8,000 | 31,996,000 | 3999.50 7999
ac_n10000 10,000 | 49,995,000 | 4999.50 9999
genrmf-long_a32_b256 262,144 1,276,928 4.87 5
genrmf-long_a48_b384 884,736 4,347,648 491 5
genrmf-long_a64_b512 2,097,152 | 10,350,592 4.94 5
genrmf-long_a80_b640 4,096,000 | 20,268,800 4.95 5
genrmf-long_a96_b768 7,077,888 | 35,085,312 4.96 5
genrmf-wide_a64_b64 262,144 1,290,240 4.92 5
genrmf-wide_a96_b96 884,736 4,377,600 4.95 5
genrmf-wide_al28_b128 2,097,152 | 10,403,840 4.96 5
genrmf-wide_al60_b160 4,096,000 | 20,352,000 4.97 5
genrmf-wide_al92_b192 7,077,888 | 35,205,120 4.97 5
wash...-long_r512_c1024 524,290 1,572,352 3.00 512
wash...-long_r896_c1792 1,605,634 4,816,000 3.00 896
wash...-long_r1280_c2560 | 3,276,802 9,829,120 3.00 1280
wash...-long_r1664_c3328 | 5,537,794 | 16,611,712 3.00 1664
wash...-long_r2048_c4096 | 8,388,610 | 25,163,776 3.00 2048
wash...-wide_r1024_c1024 | 1,048,578 3,144,704 3.00 1024
wash...-wide_r1536_c1536 | 2,359,298 7,076,352 3.00 1536
wash...-wide_r2048_c2048 | 4,194,306 | 12,580,864 3.00 2048
wash...-wide_r2560_c2560 | 6,553,602 | 19,658,240 3.00 2560
wash...-wide_r3072_c3072 | 9,437,186 | 28,308,480 3.00 3072
TABLE II
UNDIRECTED INPUT GRAPHS
Graph Name Vertices Edges d-avg d-max
2d-2e20.sym 1,048,576 4,190,208 4.00 4
amazon0312 400,727 4,699,738 11.73 2747
as-skitter 1,694,616 22,188,418 13.09 35455
cit-Patents 3,764,117 33,023,480 8.77 793
coPapersDBLP 540,486 30,491,458 56.41 3299
delaunay_n24 16,777,216 | 100,663,202 6.00 26
in-2004 1,353,703 26,252,344 19.39 21869
kron_g500-logn21 1,543,901 | 182,081,678 | 117.94 | 213904
rgg_n_2_22 s0 4,194,299 60,718,394 14.48 36
rmat22.sym 3,744,385 65,618,254 17.52 3687
soc-LiveJournal 1 4,843,953 85,691,368 17.69 20333
uk-2002 18,459,128 | 523,113,442 28.34 | 194955
USA-road-d.E 3,598,623 8,708,058 242 9
USA-road-d.NY 264,346 730,100 2.76 8
USA-road-d.W 6,262,104 15,119,284 241 9

graphs with existing weights, we divided their weights by 3
to prevent a 32-bit integer overflow from occurring in certain
situations. Table II lists the name and the resulting vertex
count, edge count, average degree, and maximum degree
of each graph. We selected these mostly real-world graphs
because they cover a wide range of types and sizes.

Since the undirected graphs do not have specified source
and sink vertices, we use 5 distinct pairs of source and sink
vertices from each graph. The first pair is the highest and
second-highest degree vertices, the second pair is the third-
highest and fourth-highest degree vertices, and so on. For
the uniform-degree graph 2d-2e20.sym, the pairs are chosen
randomly. Using multiple pairs helps to diversify the required
computation. We run our code and hi_pr nine times per input
and use the median runtime for comparison. Due to their lower
performance, we only ran the other GPU codes once per input.



VI. RESULTS

Table III lists all runtimes gathered for all tested codes for
all inputs on System 1. Fig. 1 and Fig. 2 present the speedup
of our code over the comparison codes on System 1. The
y axes list the input graphs and the x axes the speedups on
a logarithmic scale. A speedup above 1 means our code runs
faster than the comparison code, and below 1 means our code
runs slower. This boundary of a speedup of 1 is visualized by
the vertical dotted line. We use “TIMEOUT” labels to identify
the inputs that the comparison codes could not complete in 60
minutes. The bottommost sets of bars reflect the geometric-
mean speedup over the set of inputs that did not time out
for each comparison code. The speedups on System 2 exhibit
similar trends. For space reasons, we only describe those
results in the text but do not show corresponding figures.

Fig. 1 presents the speedups for the DIMACS graphs listed
in Table I. Each of these graphs has exactly one pair of
source and sink vertices. Fig. 2 presents the speedups for the
undirected graphs listed in Table II. The box-and-whisker plot
shows the speedup distribution across the 5 pairs of source and
sink vertices used for each input graph. The highest speedup
for each graph is indicated by the rightmost whisker and the
lowest by the leftmost whisker. The boxes range from the
first to the third quartile. The line inside the box indicates
the median speedup. We only use the “TIMEOUT” label in
Fig. 2 if all 5 pairs timed out.

Note that the comparison code from Gunrock [30] outputs
incorrect max-flow values on all tested Acyclic-Dense graphs
and Washington-RLG graphs due to an unknown issue. Curi-
ously, this issue does not seem to affect the Genrmf graphs.
Since Gunrock’s max-flow code is deprecated and not fully
correct, its performance should be viewed with caution. We
also found WBPR-RCSR [29] to contain an unknown bug
that causes it to occasionally output wrong max-flow values,
leading us to believe it might be a data race. However, it
may not represent the final product as WBPR is from a
preprint paper [10]. Since the current version of the code
is not fully correct, its performance should also be viewed
with caution. The remaining codes, including ours, produce
identical maximum flow values for all tested inputs.

A. GPU Performance Comparison

In the mean and on most tested inputs, ECL-MaxFlow is
substantially faster than the prior GPU max-flow works on
both sets of inputs. Fig. 1 shows that our code is faster than
the three baseline GPU codes on all but one DIMACS input.
The Khatri code is faster on ac_n10000, which takes less than a
second for our code to compute on both systems. Based on the
geometric mean, our code is 54.6x faster than Gunrock, 5.97x
faster than Khatri et al., and 25.6x faster than WBPR-RCSR
across the DIMACS inputs on System 1. On System 2, our
code is 63.8x faster than Gunrock, 7.53x faster than Khatri et
al., and 29x faster than WBPR-RCSR. Note the many timeouts
by the prior GPU works on the Genrmf graphs; WBPR-RCSR
times out on all of them, Khatri et al.’s code times out on all
except the two smallest long graphs, and Gunrock times out
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Fig. 1. Speedup over prior works on DIMACS graphs on System 1
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on three of the larger graphs. In contrast, our code finishes the
slowest Genrmf input in under 39 seconds on our test systems.
Fig. 2 shows that ECL-MaxFlow is faster than the three
baseline GPU codes on all tested undirected inputs. According
to the geometric mean, it is 615x faster than Gunrock, 5.48x
faster than Khatri et al., and 430x faster than WBPR-RCSR
on System 1. On System 2, it is 638x faster than Gunrock, 6x
faster than Khatri et al., and 482x faster than WBPR-RCSR.
The three prior GPU codes time out on all five source/sink
pairs for uk-2002, the largest tested graph, while our code
finishes its slowest pair in under 3 minutes on our systems.
Across both sets of inputs, our code is 5.75x faster than
the fastest prior GPU code on System 1 and 6.78x faster on
System 2. Note that these speedups are underestimates as they
exclude the inputs on which the comparison codes timed out.

B. CPU Performance Comparison

Fig. 1 shows that our GPU code outperforms the serial hi_pr
code on all DIMACS inputs except the smallest Genrmf long
and wide graphs. Importantly, the speedup over hi_pr increases
with the size of the Genrmf and Washington-RLG-long graphs.
Compared to hi_pr, which we always run on System 3, our



TABLE 111

2426208y ] i - — SYSTEM 1 COMPUTATION TIMES IN SECONDS
— = Graph Name Source / Sink | _hi_pr | ECL-MaxFlow | _Gunrock Khatri | WBPR-RCSR
= ac_n2000 071999 | 0.200 0.024 2943 0.068 0345
amazon0312 - A, ac_n4000 073999 | 099 0078 8.677 0.170 0696
[mn ac_n6000 075999 | 1.363 0.124 72135 0618 3.098
. ac_n8000 077999 | 3.5% 0364 93.622 0.401 5.567
ac_n10000 079999 | 5730 0.665 67.138 0.446 5583
as-skitter 4 —{IH genmmiL_a32 5756 07262143 | 0769 0.822 8.148 739 TIMEOUT
— I genrmi-L_ad8_b384 07884735 | 3516 1368 70350 34062 TIMEOUT
genrmi-L_a64_b512 072097151 | _10.934 2936 | TIMEOUT | TIMEOUT TIMEOUT
—— genrmi-L_aB0_b640 074095999 | 30.830 7326 581,519 | TIMEOUT TIMEOUT
cit-Patents 4 —hH genrmf-L._a96_b768 077077887 | 75401 16,537 | TIMEOUT | TIMEOUT TIMEOUT
—H genrmi-W_al28_b128 072007151 | _17.073 8.564 912.045 | TIMEOUT TIMEOUT
- genrmi-W_al60_b160 074095999 | 32.897 14.898 | 3113394 | TIMEOUT TIMEOUT
HEH genrmi-W_al92_b192 077077887 | _88.406 38.139 | TIMEOUT | TIMEOUT TIMEOUT
coPapersDBLP | - genrmi-W_a64_b64 07262143 | 0874 1275 47342 | TIMEOUT TIMEOUT
- genrmi-W_a06_b96 07884735 | 5851 3283 378303 | TIMEOUT TIMEOUT
—a— wash...-L_r1280_c2560 073276801 | 5605 2753 55.048 36388 90315
H— sh...-L_r1664_c3328 075537793 | 20959 6.151 131.345 69.046 619811
delaunay n24 | “L_r2048_c4096 078388609 | _36.080 T1.987 683.758 135.893 330499
- - T 512 1024 07524289 | 0469 0399 769 2437 7448
TIMEQUT L_1896_c1792 071605633 2,749 113 21.000 13.644 41321
— -W_r1024_c1024 071048577 1459 0.779 15398 9.587 10.089
in-2004 | [ | — “W_r1536_c1536 072359297 | _4.887 1570 30521 20.118 57.449
H “W_r2048_c2048 074194305 | 14.656 3871 96.985 41529 158.705
Ho— “W_r2560_c2560 076553601 | 31.278 7368 300272 65326 482585
¥ wash...-W_r3072_c3072 079437185 | _57.276 13.724 | _1087.039 130.656 434,690
§ 500-0gn21 ] 2d-2¢20.5ym 07400000 | 0303 0038 5352 0244 3275
ron_g>00-logn HIl—— 2d2¢20.5ym 100000 / 500000 | _ 0522 0.158 13.021 1454 8174
HIH 2d-2¢20.sym 200000 7 600000 0.302 0.077 5.845 0.443 3432
I 2d-2¢20.5ym 300000 7 700000 | 0511 0.104 13.076 1034 8300
— 2d-2¢20.5ym 400000 / 800000 | 0.544 0313 12.080 2743 8255
r9g_n_2 22 [l amazon0312 273%5 | 2312 0.043 80536 0.188 12783
—{ T h amazon0312 872887 1.934 0.052 74.398 0.156 50215
amazon0312 12588 /2989 | 2038 0022 78559 0.160 78728
%ﬂq amazon0312 J4038 79363 | 1447 0.027 56.244 0152 354
rmat22.sym - — amazon0312 20107 /21020 | 1436 0.022 33439 0.087 45824
| S — as-skitter 7046 7 1039 | 2.666 1:636 | TIMEOUT 1067 2106.074
T Kitter 7579 /7588 | 2647 5.068 | TIMEOUT 11.568 2246823
» | fiter 704075569 | 2.620 3.657 | TIMEOUT 5.685 2172512
soc-LiveJournall 4 . itter 811/ 7581 2.397 1256 | 3517.286 9.697 2124.444
TIMEOUT as-sKitter 758277589 | 2.584 2996 | 2123278 17.761 2215500
Cit-Patents 7506522 / 3559277 | 25210 0.066 166.237 0.096 790,304
'_——1"|Msour Cit-Patents 3646084 / 3616615 3.185 0.080 77928 0.220 35.693
uk-2002 - TIMEQUT Cit-Patents 2248384 / 2524085 | __8.100 0.039 108.717 0.079 1048.666
TIMEOUT Cit-Patents 2131075 / 2342725 | 1552 0033 108.042 0.110 200915
cit-Patents 2009155 / 2466844 | 15.744 0.065 184.975 0.186 958.565
—— coPapersDBLP 279427 27836 | 2336 0016 28582 0.097 112416
USA-road-d.E 4 e D CoPapersDBLP 27967/ 28839 | 2278 0.027 24.174 0.178 45.203
% S CoPapersDBLP 3226 /27818 | 2217 0019 25.153 0215 24,161
= coPapersDBLP 27077 /11422 | 1339 0018 24120 0112 22452
Il --- Speedup=1 CoPapersDBLP 78442 [ 22607 | 2072 0.024 29.105 0235 12.907
USA-road-d.NY 4 i LNl B hi_pr delaunay_n24 3142593 / 4456146 5257 1.465 | TIMEOUT 12.310 TIMEOUT
P 1 Gunrock delaunay_n24 135118 /5180418 | 7.778 1884 | TIMEOUT 9343 TIMEOUT
delaunay_n24 1063084 /3395380 | 4.934 1530 | TIMEOUT 10.497 TIMEOUT
—— m B Khatri et al. delaunay_n24 4378370 / 8062206 6216 1.127 | TIMEOUT 5.083 TIMEOUT
-road-d.W 1 ~ delaunay_n24 8122623 / 8589070 | 4.849 T611 | 2247888 5497 TIMEOUT
UsA-road-d.W Hl— TIMEGUT BN WBPR-RCSR n-2004 854554 / 246034 | 0.618 1969 | 2369.207 19.974 1068.963
n-2004 854566 / 1198077 | 1842 2707 | TIMEOUT 73266 1186366
10.98x in-2004 1094952 / 1198078 | 2.723 0.189 | 3207309 21087 1116153
OVERALL GEOMEAN 615.10x in-2004 1205144 / 1231855 2370 0.725 | 3232707 7.672 1152.504
5.48x n-2004 687758 1 863247 | 0508 0255 30313 17.288 296.485
I 430-14x kron_g500-Togn21 1421105 / 1531673 | 36448 6917 | TIMEOUT 85475 TIMEOUT
00 oL 02 03 na Kkron_g500-Togn2 1 317615 / 787489 | 12.450 2527 93831 7537 99,853
10 10 08 10 10 Kron_g500-Togn2T 350500 / 447517 | _15.000 2750 | TIMEOUT 3522 TIMEOUT
Speedup, Logarithmic scale Kron_g500-Togn21 773179 7 1058878 | 12617 2540 93310 5315 142776
; . ; Kron_g500-Togn21 777127 711343 |_12.243 2426 96.670 5716 222432
Fig. 2. Speedup over prior works on undirected graphs on System 1 rgg_n_2_22_50 1010837 / 1777383 | 2.781 0.120 59.800 2320 59242
regn_. 1777466 / 1777484 | 2.672 0034 59.490 0.265 55705
tog N 6012277800176 | 2250 0.055 29252 0551 8215
. Teg_n_ 1777076 / 1777681 | 2.624 0033 59523 0.258 58.860
code is 3.2x faster on System 1 and 2.35x faster on System 2 T2e 02 2250 7346650 7 3295893 | 2271 0.125 0754 2,001 10349
. . . rmai22.sym 1837250 / 2244496 | 121.093 0.104 364,781 0.144 TIMEOUT
across the DIMACS mputs accordlng to the geometr]c mean. rmat22sym 492520 / 1539774 | 179.145 0.085 270,743 1505 503.125
K X K rmat22.sym 2374507 / 3094149 | 5.370 0.069 43.467 0514 3869
Tmat22.sym 1181640/ 3055470 | 5.376 0.071 44835 0.640 3237
Flg' 2 shows that our code is also faster than hl—pr on rmai22.sym 3414666 / 1395919 | 38.130 0.091 333.400 0421 2674928
: : : : soc-LiveJournall 10009 / 37344 | _50.104 1172 | TIMEOUT 2288 TIMEOUT
most undirected nputs. Itis Only slower on a few source/sink soc-LiveJournal | 10029/ 8737 | 33072 0.717 | TIMEOUT 1397 TIMEOUT
. . . soc-LiveJournall 87718962 | 36425 0.666 | TIMEOUT 0985 TIMEOUT
paitrs for as-skitter, in-2004, uk-2002, and USA-road-d.NY. soc-LiveJournall 2914718961 | 39362 0,556 | 3065.798 1965 TIMEOUT
. . soc-LiveJournall 39283791282 | 31126 0391 | TIMEOUT 2273 TIMEOUT
However, the median speedups for in-2004 and uk-2002 are uk-2002 17159799 / 13118355 | 15020 38024 | TIMEOUT | TIMEOUT TIMEOUT
. . . uk-2002 15237349 7 8504954 | 11,571 0.205 | TIMEOUT | TIMEOUT TIMEOUT
above 1. Across the undirected inputs, our code is 11x faster WK2002 6748291 7 3870967 | 91.756 61.724 | TIMEOUT | TIMEOUT TIMEOUT
Uk-2002 6750968 7 15421709 | _15.790 58459 | TIMEOUT | TIMEOUT TIMEOUT
than hi pr on System 1 and 6.98x faster on System 2. Across uk-2002 17364050 / 11678704 | 66209 7921 | TIMEOUT | TIMEOUT TIMEOUT
— USA-road-d.E 3300125 /574622 | 0639 0385 44351 1831 39.567
: i3 USA-road-dE 1344070 7 1842610 | 0416 0.172 78708 1352 66214
both sets of nputs, 1t 1s 5.08x faster on SyStem 1 and 3.54x USA-road-dE 3228454 7219319 | 3056 0337 74.659 2.906 31011
: USA-r0ad-d.E 574620/ 673831 | 0.700 0.268 75,800 0.771 77073
faster on System 2. Of course, the speedup over hi_pr depends st TSI 779D 043 (O S 3 S T30
. . . USA-road-d.NY 140960 / 134677 | 0.151 0.191 4363 0.718 1601
on the GPU/CPU pairing and is different on other systems. USA-road-d.NY 136299 / 139787 | _ 0.122 0.143 5.697 0.501 1775
USA-r0ad-d.NY 141455 / 145196 | 0028 0.025 0496 0.092 475
USA-road-dNY 187960 / 190405 | 0.027 0023 0495 0062 1504
USA-road-d.NY 194677 /47619 | 0.112 0.179 5423 0564 1478
VII. SUMMARY AND CONCLUSIONS USA-road-d.W 5001424 1026346 | 4.261 0.940 780.980 15.188 TIMEOUT
USA-road-d.W 1160080 / 5261496 | 2.253 1693 358.506 13.271 TIMEOUT
S : : USA-road-dW 6237650/ 721826 | T7.19 2619 543486 17.534 TIMEOUT
Determlnlng the maximum POSSlble flow (max-ﬂow) be- USA-r0ad-d.W 1378713 / 1407631 1104 0.266 76.089 1540 TIMEOUT
USA-road-d.W 1712888 / 1993834 | _12.416 1.027 758,515 9.791 TIMEOUT

tween a source and a sink vertex in a network is a fun-
damental graph problem with many applications, such as
transportation planning, bipartite matching, and segmentation.
Existing implementations of the max-flow push-relabel (PR)
algorithm for GPUs are work-inefficient and, in fact, struggle
to compete with the fastest serial CPU code called hi_pr. This
paper presents ECL-MaxFlow, a new GPU implementation of
PR and the key optimizations used to make it efficient. For

example, we use worklists to minimize the amount of wasted
work. We employ a 2-level parallelization scheme to reduce
workload imbalance and to better exploit the GPU hardware.
We also introduce a new frequency for the global relabeling
heuristic that yields good performance across multiple classes
of inputs.



We implemented ECL-MaxFlow in CUDA. The source code
is available at https://github.com/burtscher/ECL-MaxFlow. We
evaluated our code on two distinct sets of input graphs to
demonstrate the robustness and generality of our approach.
The first set consists of synthetic directed graphs from DI-
MACS that were specifically designed for evaluating max-
flow algorithms and are widely used in the literature. The
second set includes real-world and synthetic undirected graphs
from various domains and reflects a broader range of input
characteristics. On an RTX 4090-based system, ECL-MaxFlow
outperforms leading CPU and GPU codes from the literature
on these inputs by 5.08x and 5.75x, respectively.
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