
Omni-Homomorphic Compression for Large
Scientific Datasets

Alex Fallin
Department of Computer Science

Texas State University

Martin Burtscher
Department of Computer Science

Texas State University

Abstract—Scientific simulations can produce petabytes of data
in a single run. Even when aggressively compressed, such data
cannot be stored locally on a scientist’s workstation. This paper
introduces omni-homomorphic compression (oHC), a technique
to generate extremely compressed versions of the data that are
still useful and that can be processed locally without the need
for decompression. Since the main data is kept separate, it can
be preserved at any user-specified error bound and retrieved at
will. Compared to other lossy and/or homomorphic compressors,
oHC delivers not only orders of magnitude higher compression
ratios but also some of the highest throughputs. For example,
running on an RTX 4090 GPU with an error bound of 1E-2 on
single-precision data, it provides an average of 270 and 253 GB/s
throughput for compression and decompression, respectively.
When extracting the arithmetic mean from a large dataset, oHC’s
extremely compressed version is 95,000 times faster than the
fastest homomorphic compressor from the literature.

Index Terms—Data compression, omni-homomorphic compres-
sion, floating-point data, CPU/GPU parallelization, big data

I. INTRODUCTION

Top-of-the-line scientific codes and instruments produce
enormous amounts of data. For instance, the Hardware/Hybrid
Accelerated Cosmology Code (HACC) generates petabytes of
data in a single simulation [8], and the LCLS-II [9] coherent
light source can output up to 250 gigabytes per second. The
devices used to produce such data tend to be very expensive.
To maximize the return on these investments, it is paramount to
make the resulting data usable to as many people as possible.
However, storing and processing such large datasets is only
possible on relatively few HPC systems. Almost nobody has
the ability to download and process them locally.

Data compression can help by reducing storage require-
ments, minimizing transfer times, and improving network
throughput. However, conventional lossless compression ap-
proaches deliver only roughly a factor of 2 in reduction
on scientific floating-point data [4], and the leading lossy
approaches yield up to a factor of 100, depending on the
selected error bound [10]. Unfortunately, these factors are
orders of magnitude too small for processing and studying
a petabyte dataset on an individual researcher’s workstation.
As a remedy, we created oHC, which makes this possible by
providing compression ratios of well over 10,000.

Even with such high compression ratios, it would be chal-
lenging to process a petabyte dataset if it had to be decom-
pressed locally. Homomorphic compression, which not only
allows computations to be performed directly on compressed
data without the need for decompression but also to perform
these computations faster than is possible on the uncompressed

data, can help. Unfortunately, existing homomorphic compres-
sors have major limitations in the operations they support and
the compression ratios they yield.

To illustrate how homomorphic compression works, assume
we are searching a large weather dataset for regions where the
wind speed is at least 4 m/s. Assume further that the “original
data” row in Table I lists the 16 wind speeds of a data chunk
(in reality, chunks are much larger). To determine whether this
chunk meets the condition, we must check each value until we
find one that is at least 4 or reach the end of the chunk.

TABLE I: Simplified examples of non-homomorphic and
homomorphic data compression (CR = compression ratio)

Sequence of values (data chunk) Size CR
Original data 2, 2, 2, 2, 2, 6, 6, 1, 2, 2, 2, 2, 6, 6, 1, 4 16 1.00
Huffman compressed 0, 1, 2, 6, 0, 2, 5, 5, 6 9 1.78
LZ77 compressed 0, 0, 2, 1, 4, 6, 1, 1, 1, 7, 7, 4 12 1.33

If we compress this sequence with Huffman encoding, we
get 9 values, yielding a compression ratio of 1.78. Unfortu-
nately, without decompression, this format does not allow us
to determine whether the chunk contains values of at least
4. If we use Lempel-Ziv encoding (LZ77) instead, we get
a compression ratio of only 1.33, but the compressed data
makes it possible to check the condition. This is because LZ77
transforms the data into a sequence of triples, where the first
element indicates how far back in the sequence we must go,
the second element tells us how many values to copy starting
from that location, and the third element is the next value in the
sequence. Hence, to determine whether the LZ77-compressed
data contains wind speeds of at least 4, we just have to check
every third value (bolded in Table I) without any need for
decompression. In other words, LZ77 is a homomorphic com-
pression approach for our search operation whereas Huffman
coding is not. However, LZ77 compresses our data less than
Huffman coding, and LZ77 is not homomorphic for most other
operations For instance, it is not homomorphic for computing
the average wind speed.

Several homomorphic compressors exist, but they all have
severe limitations. So far, the prior work has only resulted in
approaches that 1) are tied to specific compression algorithms
that may not yield high compression ratios or speeds, 2) do
not support floating-point data or do not guarantee error
bounds, and 3) support only a few fixed operations that
may not be the ones the user wants. Our solution does not
have these limitations. In fact, we call it omni-homomorphic
compression (oHC) because it supports an unbounded number



of homomorphic operations and works with any compression
algorithm, including algorithms that guarantee the error bound.

oHC makes this possible by combining two independent
compression algorithms. The first algorithm is an existing
compressor optimized to compress well and fast while guar-
anteeing the error bound. It operates on what we call the
main data. The sole purpose of the second algorithm is to
retain just enough information to allow the user-requested
homomorphic operation(s). It saves this information in a very
small index file. In our example, the index file might contain
just the maximum wind speed of each data chunk. The user
then processes this index file without decompressing it to,
for instance, identify all chunks containing wind speeds of
at least 4 and ultimately retrieves only those chunks from the
large main data. Assuming the index file is 100,000 times
smaller than the original data (which is the case if the chunk
size is 100,000 values since the index only retains one value
per chunk), oHC enables a computer with only a few dozen
gigabytes of memory to work with a petabyte dataset.

This paper makes the following main contributions.
• It presents omni-homomorphic compression, which al-

lows dataset providers to generate homomorphic index
files for one or more operations of their choosing. Dataset
users can then download and process these index files
many orders of magnitude faster than the original data.

• It describes how oHC enables compression ratios of over
100,000 while supporting homomorphic operations.

• It compares oHC to state-of-the-art lossy compressors,
including homomorphic compressors.

Our oHC CUDA and C++/OpenMP implementations are
available in open source at https://github.com/burtscher/oHC.

The rest of this paper is organized as follows. Section II
summarizes related work. Section III explains the oHC ap-
proach. Section IV describes the evaluation methodology. Sec-
tion V discusses the results. Section VI provides a summary.

II. RELATED WORK

A. Homomorphic Schemes

Compression that allows for operations to be performed on
the compressed data, i.e., homomorphic compression (HC),
is a nascent research area that arose from homomorphic en-
cryption [6]. Both are transformations that allow computations
on the transformed data without the need to first reverse the
transformation. The main difference is that the former aims to
decrease data size whereas the latter aims to obfuscate data.

Agarwal et al. [1] introduce PyBlaz, a homomorphic lossy
compressor for arrays. It splits the array into blocks and runs a
discrete cosine transform (DCT) on each block, which makes
it possible for the data to be operated on by modifying the
DCT coefficients. The compressor is lossy, but the error is
reasonable and the throughput is similar to the state of the art.

Agarwal et al. [2] further developed the ideas in PyBlaz
to bound the error while maintaining several homomorphic
operations to create HoSZp. It supports derivative, diver-
gence, Laplacian, mean, and variance computations on the

compressed data. HoSZp’s scalar operations are fully ho-
momorphic, but the bivariate and reduction operations are
only partially homomorphic, requiring the data to be partially
decompressed before they can be applied. It only supports the
NOA error bound. We compare oHC to HoSZp in Section V.

Guan et al. [7] introduce HOCO, an engine that compresses
text homomorphically to allow for a variety of operations. It
supports three schemes: run-length encoding (RLE), Lempel-
Ziv-Welch (LZW), and “text analytics directly on compres-
sion” (TADOC). RLE is a widely used lossless compression
algorithm that removes repeated symbols.

Overall, not much research on HC exists so far. The few
papers we could find on HC that focus on scientific data
support only a fixed set of operations, such as PyBlaz and
HoSZp, or do not guarantee the error bound like PyBlaz.
Also, none of them support GPU execution. Our oHC im-
plementation guarantees the error bound and supports fully
compatible CPU and GPU execution. In general, oHC is able
to combine any well-compressing algorithm for the given
data with a separate algorithm that enables fast homomorphic
operations. This results in higher compression ratios and
throughputs than conventional homomorphic approaches can
provide. Moreover, it makes it possible to support a much
wider range of homomorphic operations.

B. Lossy Compressors

This section describes the floating-point compressors with
which we compare oHC. None of them are homomorphic.

There are several versions of SZ. They all use prediction in
their compression pipeline. SZ3 [10] uses Lorenzo prediction
and entropy coding plus lossless compression after the lossy
stage. SZ3 is a CPU-only compressor. cuSZp [11] is a CUDA
implementation that employs a different, more GPU-friendly
algorithm. It performs Lorenzo prediction and quantization
followed by multi-byte Huffman coding. FZ-GPU [12] is a
specialized version of cuSZ that fuses multiple kernels together
for better throughput. It splits the data into blocks and then
quantizes and predicts the values in all nonzero blocks, which
are then compressed by a fixed-length encoder.

MGARD [3] supports compression and decompression
across CPUs and GPUs. It uses multigrid hierarchical refac-
toring to decompose and recompose the data to a specified
accuracy via selective loading based on the hierarchy.

PFPL [5] is a CPU/GPU compatible guaranteed-error-bound
lossy compressor. It operates in parallel on 16 kB independent
chunks of the input. It first performs quantization based on the
requested error bound. Values that cannot be quantized within
the requested bound are stored losslessly. The quantized data
is then fed into a bespoke lossless pipeline of transformations.
We chose PFPL as the main compressor in oHC because it has
high throughput, guarantees the error bound, supports CPU
and GPU execution, and splits the data into small chunks,
which are ideal for retrieving portions of a larger file.

III. APPROACH

There are two distinct types of oHC users:

https://github.com/burtscher/oHC


• Data providers host the main data as well as one or more
associated index files and provide read-only access to
these items. They choose if and how the main data is
compressed (e.g., lossily or losslessly). Moreover, they
select which index files to make available and, therefore,
which homomorphic operations are supported.

• Data consumers download the index file, run the homo-
morphic operation on it to determine the needed chunks
of the main data, and then only download and decompress
the chunks of interest before processing them locally.

As already mentioned, there are two types of oHC files:
• The main data is the very large dataset that is orders

of magnitude too large to download in full and to store
locally, even if it is compressed.

• The index file is an extremely lossy and compact rep-
resentation of the main data. It is small enough to be
downloaded quickly and stored locally. It is only useful to
support a few selected homomorphic operations. Multiple
index files can be provided to broaden the range of
supported homomorphic operations.

A key innovation of oHC is that, by separating the index
file from the main data, the index can be compressed at
much higher ratios than would ordinarily be possible. This is
because it only has to retain enough information to support the
desired homomorphic operation. Consider, for instance, our
wind-speed dataset with a chunk size of 10,000 values. In this
example, the index file only stores a single value per chunk,
namely the maximum wind speed, yielding a compression ratio
of 10,000. This information is sufficient to homomorphically
determine which chunks contain wind speeds of at least 4. The
operation is homomorphic as no decompression is performed.

Another benefit of oHC is that the index file is independent
of the main data in the sense that indices can be created later.
This is important because it allows the data provider to include
more index files at any point (or recreate a lost or corrupted
index). Hence, support for additional homomorphic operations
can be added at any time to accommodate data-consumer
demand. Since the index files are typically just a fraction of
a percent of the size of the main data (see Section V), the
overhead of providing multiple indices is small.

A. oHC Operation

This subsection illustrates how oHC works on the imple-
mentation we evaluate in the result section. We use PFPL to
compress the main data and record the minimum, average, and
maximum value of each chunk in our index file. This type of
index allows, for example, to homomorphically determine the
chunks that contain values in a user-specified range, above
or below a user-specified threshold, and sums of values that
meet a user-specified condition. It is important to note that
other compression algorithms can be used for the main data
and other types of information can be stored in the index file.

We selected PFPL for compressing the main data for the
following reasons. First, it is one of the only lossy compressors
to offer a true point-wise error-bound guarantee (for the ABS,

REL, and NOA error-bound types). Second, it is able to
compress and decompress on the CPU and GPU producing
bit-for-bit the same result. Third, it internally slices the data
into 16 kB chunks, which it processes independently and in
parallel. This is advantageous for our oHC implementation
because it allows us to access the data at 16 kB granularity
without the need to retrieve or decompress the entire dataset.

Data provider: oHC starts when the data provider has the
main data ready and compressed, in our case with PFPL using
whatever error bound is desired. At this point, the data provider
can create a first index file by decompressing the main data,
extracting the pertinent information from each chunk, and
storing the result in the index file. These steps can be done
on the fly (and in parallel), meaning the index is created as
the main data is being decompressed so that the decompressed
data does not need to be stored. Optionally, multiple indices
can be generated at the same time. Once the index files are
ready, they are made available with a description of their
content and/or pieces of code to homomorphically extract
information from them, such as generating a list of chunks
that contain values above a user-provided threshold. The top
half of Figure 1 illustrates the workflow of the data provider.

PFPL

oHC Index Creation

oHC Decompression

oHC Index Processing

Original Uncompressed DataPFPL

Compressed DataoHC Index Creation

oHC Decompression

Chunk
Request

oHC Index ... oHC Index n

oHC Index 1 oHC Index 2

oHC Index Processing oHC Index 2

D
ata Provider

D
ata C

onsum
er

oHC Decompression Requested Chunks

Decompressed Requested
Data Chunks

+
+

+
+

Fig. 1: Overview of the oHC workflow

Data consumer: Once an index file and the corresponding
code snippets are available, data consumers can download
them and run the supported homomorphic operations locally,
which yields a list of data chunks that meet a given selection
criterion. If the list is too long or too short, the criterion can be
refined and the operation repeated. When the list is reasonable,
the data consumer can download those chunks from the main
data (plus “surrounding” chunks if needed), decompress them
with oHC’s version of PFPL, and process them locally. These
steps can be iterated as needed with other criteria and/or other
indices if different homomorphic operations or compound
criteria are desired. The bottom half of Figure 1 illustrates
the workflow of the data consumer.



Note that the achieved compression ratio is solely de-
termined by the data-provider-selected oHC chunk size and
independent of the values in the main data. For example, an
oHC chunk size of 8192 words always yields a compression
ratio twice that of an oHC chunk size of 4096 words. This
provides several advantages. First, the compression ratio of the
index file is known a priori and can be precisely controlled by
the data provider. Second, the provider can generate multiple
index files with the same content but for different chunk sizes
(i.e., with different compression ratios), giving data consumers
the flexibility to trade off coarser chunks for faster download
and processing of the index file. Third, it decouples the
compression of the index file from that of the main data,
meaning the main data can be compressed at any level of
fidelity (e.g., lossless) without affecting the compression ratio
of the index file. These oHC features make it possible to
preselect the size of the index file, thus guaranteeing that it
will fit in a data consumer’s system for local analysis.

IV. EXPERIMENTAL METHODOLOGY

Whereas our oHC approach is general, we only evaluate a
specific implementation. In this implementation, we use PFPL
as the compressor for the main data. We chose to record the
minimum, average, and maximum value of each oHC chunk
in the index file. These three pieces of information allow the
data consumer to isolate and research specific regions of the
main data that meet certain criteria (see Section III-A).

We compare oHC to the six state-of-the-art compressors
described in Section II using various NOA error bounds [5].
Our system runs Fedora 37 and is based on an AMD Ryzen
Threadripper 2950X CPU with 16 hyperthreaded cores. It has
64 GB of main memory. The GPU is an NVIDIA RTX 4090
with 24 GB of global memory. The GPU driver version is
525.85. The CPU codes were compiled using gcc/g++ version
12.2.1 and the GPU codes with nvcc version 12.0.

We compiled the CPU codes using the build processes
supplied by their respective authors. When not specified, we
used the “-O3 -march=native” flags. Unless automatically
determined, the thread count was set to the number of CPU
cores as hyperthreading usually does not help. We compiled
the GPU codes with the “-O3 -arch=sm 89” flags.

For all compressors, we measured the compression ratio
as well as the execution time of the compression and de-
compression functions. For oHC, we separately measured the
compression ratio of the index file as the compression ratio of
the main data is simply that of PFPL. The oHC “compression”
throughput is that of creating the index file. It consists of
decompressing the main data and generating the index. In
Section V-A, we report compression results for various chunk
sizes and decompression results for retrieving between 1 MB
and 30 MB of main data. In Section V-B, we use an index size
of 32,768 words for oHC. In the decompression subsection,
we trimmed all inputs to 30 MB to show the throughput of the
compressors when retrieving just a portion of the main data.

We used the 5 single-precision suites listed in Table II as in-
puts for the compressors, a total of 66 files. These inputs stem

TABLE II: Information about the floating-point input suites
Name Description Files Dimensions Size (MB)
CESM-ATM Climate 33 26 × 1800 × 3600 674
Hurricane Isabel Weather Sim. 13 100 × 500 × 500 100
NYX Cosmology 6 512 × 512 × 512 537
SCALE Climate 12 98 × 1200 × 1200 564
QMCPACK Quantum MC 2 33,120 × 69 × 69 631

from the SDRBench repository [13], which hosts scientific
datasets from various domains for compression evaluation.

We ran each experiment 9 times and collected the com-
pression ratio, median compression throughput, and median
decompression throughput. The plots report the geometric
mean of the geometric mean of each input suite. For all
compressors, the circular data point is for an error bound of
1E-2, the square is for 1E-3, and the triangle for 1E-4.

For compressors that support serial and parallel execution
or CPU and GPU execution, we only show the fastest version
if the compression ratio is the same between the versions. Oth-
erwise, we show all versions. In the oHC-specific subsection,
we show results for all 3 oHC versions.

V. RESULTS

In this section, we investigate the performance of our imple-
mentation of omni-homomorphic compression and compare it
to state-of-the-art compressors from the literature.

A. oHC Compression and Decompression Performance

Index Generation: Figure 2 shows the geometric-mean
compression ratio and throughput for the three tested error
bounds across varying chunk sizes. The chunk size reflects
the number of 4096-word main data chunks that corresponds
to one oHC chunk. Note that both y-axes are logarithmic. The
reported throughputs are for the index generation from the
already decompressed main data.

0 20 40 60 80 100

101

102

103

Number of main data chunks per oHC chunk

C
om

pr
es

si
on

th
ro

ug
hp

ut
(G

B
/s

)

103

104

105

C
om

pr
es

si
on

ra
tio

1E-2 error bound
1E-3 error bound
1E-4 error bound
Compression ratio

Serial

OpenMP

CUDA

Fig. 2: Geometric-mean compression throughput and compres-
sion ratio for different chunk sizes and main-data error bounds

We only show a single curve for the compression ratio
because the compression ratio of the index is independent



of the main data. As the oHC chunk size increases, the
overall compression ratio increases proportionately. The first
few chunk-size increments yield very large increases. Hence,
we recommend using an oHC chunk size greater than 1
PFPL chunk. At the high end, the compression ratios achieved
are orders of magnitude higher than what other compressors
can supply. For example, at an oHC chunk size of 80, the
compression ratio for all inputs is 107,980.

There is a trade off, however, between the oHC chunk size
and the main data access granularity. As the chunk size and
compression ratio increase, the minium amount of main data
retrievable also increases. At a chunk size of 1, the main data
can be accessed at a granularity of 16 kB. At a chunk size of
80, it must be accessed at a granularity of 1.25 MB.

The throughput is only marginally affected by the error
bound of the main data. This is because the index is generated
from the decompressed main data, and the decompressed main
data at a looser error bound is the same size as the decom-
pressed main data at a tighter error bound. Consequently,
we see a nearly constant throughput for the index generation
across all chunk sizes. On the GPU, the throughput reaches
931.8 GB/s on average, which approaches the memory-access
bandwidth. This suggests that the index generation is memory
bound and the bottleneck is reading the main data as we do
not see an increase in throughput for higher index compression
ratios, that is, when writing less index data.

Decompression: Figure 3 shows the decompression
throughput for differing amounts of main data being retrieved.
As the main data is typically much larger than the data
consumer’s local storage, we analyze the performance of oHC
when decompressing a small number of retrieved chunks. We
tested up to 30 megabytes of retrieved data as that is slightly
smaller than our smallest tested input.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

101

102

Megabytes retrieved

D
ec

om
pr

es
si

on
th

ro
ug

hp
ut

(G
B

/s
)

1E-2 error bound
1E-3 error bound
1E-4 error boundSerial

OpenMP

CUDA

Fig. 3: Geometric-mean decompression throughput for differ-
ent amounts of main data retrieved

The decompression throughput changes depending on the
amount of data retrieved. The serial version reaches its
throughput plateau at a few megabytes. The OpenMP version

is parallel and, thus, reaches its plateau only above about 12
MB. The CUDA code is highly parallel and requires over
30 MB to reach its plateau. Nevertheless, even at its lowest
throughput, it is an order of magnitude faster than the OpenMP
version. At the highest measured throughput of 258 GB/s, the
CUDA oHC decompressor is 18.2 times faster.

B. Performance Comparison
Compression: Figure 4 shows a scatter plot of the com-

pression ratio versus throughput for three error bounds.

10−1 100 101 102 103
100

101

102

103

104

105

106

Compression throughput (GB/s)

C
om

pr
es

si
on

ra
tio

SZ3Serial SZ3OMP

MGARD-XCUDA FZ-GPUCUDA

cuSZpCUDA PFPLCUDA

HoSZpSerial oHCCUDA

Fig. 4: Geometric-mean compression ratio and compression
throughput with 3 NOA error bounds

As discussed, the compression ratio of oHC’s index file can
be set to any level. We selected a chunk size of 32,768 words,
yielding compression ratios of around 10,000 (depending on
how full the last chunk is). The oHC results in Figure 4 for
all tested error bounds overlap. The compressors from the
literature, however, yield lower compression ratios when using
tighter error bounds.

In terms of throughput, oHC is orders of magnitude faster
than both versions of SZ3, the next best compressing codes.
HoSZp, the only other homomorphic compressor, produces
relatively low compression ratios and throughputs. This is due
to the drawbacks of homomorphism discussed in Section I.
Since oHC uses the fast PFPL compressor on the main data, its
throughput is close to that of the standalone version of PFPL
and on par or higher than that of the other two GPU-based
compressors while producing much higher compression ratios
(see Section V-C). Moreover, oHC can be used to generate
additional index files for other use cases without incurring
slowdowns or decreases in compression ratio.

Decompression: Figure 5 shows a bar chart of the through-
put for three error bounds when decompressing 30 MB of data.
We trim all inputs to 30 MB to simulate a partial-retrieval
scenario where the data consumer requests only a small portion
of the main data from the provider.

All compressors have their performance hindered by the
relatively small 30 MB file size. This is particularly true for
some of the GPU-based compressors, which need more data to



1E-2 1E-3 1E-4
10−2

10−1

100

101

102

103
D

ec
om

pr
es

si
on

th
ro

ug
hp

ut
(G

B
/s

)

SZ3Serial SZ3OMP

MGARD-XCUDA FZ-GPUCUDA

cuSZpCUDA PFPLCUDA

HoSZpSerial oHCCUDA

Fig. 5: Geometric-mean decompression throughput on 30 MB
data with 3 NOA error bounds

fully load the hardware. Of the GPU-based compressors, FZ-
GPU, PFPL, and oHC are the most resilient to the smaller file
size, cuSZp is affected more but still maintains relatively high
throughputs, and MGARD-X is severely impacted by the small
file size, running slower than even the serial compressors. The
CPU-based compressors are much less affected. This is likely
because fully loading a CPU requires less data than a GPU.

Overall, on the tested error bounds, oHC outperforms even
the best compressors in terms of compression ratio while being
orders of magnitude faster. It delivers a GPU throughput on
par with all but the fastest GPU compressors but produces
compression ratios that are, in the worst case, 104 times higher.
HoSZp, the other tested homomorphic compressor, yields rel-
atively low throughputs and compression ratios that are 1586
times lower than oHC’s due to the specialized compression
algorithm used to allow for conventional homomorphism.

C. Matching oHC’s Compression Ratios
The main purpose of oHC is to facilitate the analysis of

petabyte datasets on a local machine. This section studies
what error bound is required for each tested compressor to
match the size of oHC’s index file with 32,768-word chunks,
which corresponds to a compression ratio of over 10,000×
as our indices store three words per chunk. For simplicity,
we performed this experiment on the CESM-ATM-UU file,
an input that results in performance close to the average
numbers reported in Section V-B. For each compressor, we
ran a binary search to find the smallest error bound that yields
a compression ratio in excess of 10,000×, if reachable.

Table III shows either the maximum achievable compression
ratio or the minimally required error bound to deliver a
compression ratio above 10,000×. It further lists the mean
squared error (MSE), a quality metric. For reference, we also
include PFPL with an error bound of 0.001.

The only tested compressors able to deliver compression
ratios similar to those of oHC are the CPU-based SZ compres-

TABLE III: NOA error bound needed to reach 10,000×
compression or the maximum achievable compression ratio

Compressor Compression Ratio Error Bound MSE
SZ3 Serial 12,565 0.12 90,026
SZ3 OpenMP 11,104 0.02 2,344
PFPL 4,096 1.00 695,001
FZ-GPU 228 1.00 695,001
MGARD-X 32 1.00 115,706
cuSZp 128 0.95 694,293
HoSZp 5,616,000 1.01 695,001
PFPL 59 0.001 42

sors. Of these compressors, SZ3’s OpenMP version requires
the lowest error bound of 0.02. This error bound means that
all values in the input are quantized into 1 of 50 distinct
values. Many of the other compressors require an error bound
of 1.0. This is important because a NOA error bound of 1.0
quantizes all entries to the same value, resulting in a near total
loss of usable data, which is reflected by the many orders of
magnitude higher MSEs than the reference PFPL incurs.

PFPL, FZ-GPU, MGARD-X, and cuSZp all have a maxi-
mum compression ratio below 10,000× due to inefficiencies
in their algorithms. Notably, these are the compressors that
support GPU execution. Therefore, if high-speed operation
is desired, a lower compression ceiling than the CPU-only
compressors provide is likely unavoidable unless oHC is used.

These results demonstrate the two major problems with
conventional compression when it comes to extremely large
data. First, if local storage of the entire dataset is required,
excessively large error bounds must be used, rendering the
data mostly useless. Second, the currently available high-speed
GPU compressors deliver significantly lower compression ra-
tios than CPU-only compressors. oHC addresses both issues.
First, it allows the main data to be compressed at any level
of quality, including losslessly, since this data resides on the
provider’s servers and its fidelity does not affect the com-
pression ratio of the index file. Second, oHC’s compression
ratio can be directly controlled by increasing or decreasing the
chunk size to produce almost any desired compression ratio
even when using fast GPU-based compressors.

D. Homomorphic Average Computation

Both oHC and HoSZp are able to homomorphically com-
pute the average of all values in a dataset. In this section,
we compare their geometric-mean performance across our
test inputs. Table IV shows the runtime of HoSZp’s average
computation as well as the runtimes of all 3 versions of oHC’s
average computation for 3 error bounds. The chunk size of
oHC is again 32,768 words.

There is a big difference between the runtimes of HoSZp
and oHC when homomorphically computing the average. This
is to be expected, however, because HoSZp requires partial
decompression of the entire data file to perform its average
calculation. In contrast, oHC is able to compute the average
simply by averaging the chunk averages stored in the index
file. This is very fast and only takes a few microseconds on our



TABLE IV: Geometric-mean runtime in seconds for homo-
morphically computing the average for 3 error bounds

Error Bound
Compressor 1E-2 1E-3 1E-4
HoSZp 0.476553 0.475822 0.501909
oHC Serial 0.000005 0.000005 0.000005
oHC OpenMP 0.000324 0.000256 0.000206
oHC CUDA 0.000008 0.000008 0.000008

inputs. In fact, it is so fast that our serial code outperforms the
OpenMP and CUDA versions, both of which incur overheads
in form of parallel reductions, thread synchronization, and
kernel launches that cannot be amortized over such a short
runtime. Based on the geometric-mean runtimes, the serial
oHC average computation is over 95,000 times faster than the
serial HoSZp average computation.

VI. SUMMARY AND CONCLUSION

We introduce omni-homomorphic compression (oHC), a
technique that supports a large number of homomorphic
operations and works with any compression algorithm. It is
designed to be used both by data providers and data consumers
to enable the analysis of huge scientific datasets that are many
orders of magnitude too large to fit on a local system. We
developed an implementation of oHC and evaluated it against
5 state-of-the-art lossy compression algorithms on 5 single-
precision input suites from SDRBench, a total of 66 files. Our
oHC code is about as fast as the fastest GPU compressors
while delivering (tunable) compression ratios that are higher
than those of even the best-performing CPU compressors. oHC
outperforms HoSZp, another homomorphic compressor, by a
factor 1586 in compression ratio and by a factor of 95,000 in
runtime. We hope that oHC will help democratize access to
very large scientific datasets and, thus, enable breakthroughs
that were previously hampered by data size.

VII. ACKNOWLEDGMENT

This work is supported by DOE Award DE-SC0022223.

REFERENCES

[1] Tripti Agarwal, Harvey Dam, Ponnuswamy Sadayap-
pan, Ganesh Gopalakrishnan, Dorra Ben Khalifa, and
Matthieu Martel. What Operations can be Performed
Directly on Compressed Arrays, and with What Error? In
Proceedings of the SC’23 Workshops of the International
Conference on High Performance Computing, Network,
Storage, and Analysis, SC-W ’23, page 254–262, New
York, NY, USA, 2023. ACM.

[2] Tripti Agarwal, Sheng Di, Jiajun Huang, Yafan Huang,
Ganesh Gopalakrishnan, Robert Underwood, Kai Zhao,
Xin Liang, Guanpeng Li, and Franck Cappello. HoSZp:
An Efficient Homomorphic Error-bounded Lossy Com-
pressor for Scientific Data. arXiv:2408.11971, 2024.

[3] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott
Klasky. Multilevel techniques for compression and re-
duction of scientific data—the univariate case. Comput-
ing and Visualization in Science, 19(5-6):65–76, 2018.

[4] Noushin Azami, Alex Fallin, and Martin Burtscher. Ef-
ficient Lossless Compression of Scientific Floating-Point
Data on CPUs and GPUs. In Proceedings of the 30th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 1, ASPLOS ’25, page 395–409, New York, NY,
USA, 2025. Association for Computing Machinery.

[5] Alex Fallin, Noushin Azami, Sheng Di, Franck Cappello,
and Martin Burtscher. Fast and Effective Lossy Compres-
sion on GPUs and CPUs with Guaranteed Error Bounds.
In 2025 IEEE International Parallel and Distributed
Processing Symposium, pages 874–887, Los Alamitos,
CA, USA, Jun 2025. IEEE Computer Society.

[6] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Forty-First Annual ACM
Symposium on Theory of Computing, STOC’09, page
169–178, New York, NY, USA, 2009. ACM.

[7] Jiawei Guan, Feng Zhang, Siqi Ma, Kuangyu Chen,
Yihua Hu, Yuxing Chen, Anqun Pan, and Xiaoyong Du.
Homomorphic Compression: Making Text Processing on
Compression Unlimited. Proc. Manag. Data, 1(4), 2023.

[8] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal
Finkel, Adrian Pope, and Katrin Heitmann. HACC:
Extreme scaling and performance across diverse archi-
tectures. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, pages 1–10, 2013.

[9] Linac Coherent Light Source (LCLS-II). https://lcls.slac.
stanford.edu/, 2017. Online.

[10] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert
Underwood, Ali M. Gok, Jiannan Tian, Junjing Deng,
Jon C. Calhoun, Dingwen Tao, Zizhong Chen, and
Franck Cappello. SZ3: A Modular Framework for Com-
posing Prediction-Based Error-Bounded Lossy Compres-
sors. IEEE Transactions on Big Data, 2023.

[11] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai
Zhao, Sian Jin, Yunhe Feng, Xin Liang, Dingwen Tao,
and Franck Cappello. Optimizing Error-Bounded Lossy
Compression for Scientific Data on GPUs. In 2021
IEEE International Conference on Cluster Computing
(CLUSTER), pages 283–293, Los Alamitos, CA, USA,
September 2021. IEEE Computer Society.

[12] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu,
Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cap-
pello. FZ-GPU: A Fast and High-Ratio Lossy Com-
pressor for Scientific Computing Applications on GPUs.
In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC’23, New York, NY, USA, 2023. ACM.

[13] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen
Tao, Julie Bessac, Zizhong Chen, and Franck Cappello.
SDRBench: Scientific Data Reduction Benchmark for
Lossy Compressors. In International Workshop on Big
Data Reduction, pages 2716–2724, 2020.

https://lcls.slac.stanford.edu/
https://lcls.slac.stanford.edu/

	Introduction
	Related Work
	Homomorphic Schemes
	Lossy Compressors

	Approach
	oHC Operation

	Experimental Methodology
	Results
	oHC Compression and Decompression Performance
	Performance Comparison
	Matching oHC's Compression Ratios
	Homomorphic Average Computation

	Summary and Conclusion
	Acknowledgment

