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Abstract We numerically model the brain dy-

namics during and after impulsive head translations

using linear Partial Differential Equations (PDEs)

describing viscoelastic solids and a nonlinear gener-

alization of these PDEs describing incompressible,

viscoelastic fluids. The brain matter motion and the

sensitivity of the solutions with respect to the skull’s

geometry differ substantially in the two cases. In

particular, the oscillatory rotational flows, which

we discovered to appear in the matter after the

translations stop, are quite distinct. The signifi-

cance of the results for understanding the mecha-

nisms of Closed Head Injuries (CHI) is discussed.
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1 Introduction

The most successful model of CHI to date em-
phasizes the role of shear waves in the injury
creation. The initial version of this model [1]
uses the linear, partial differential Voigt1 equa-
tions describing viscoelastic solids:

∂v

∂t
=P(c2u+ ν v),

∂u

∂t
=v, ∇ ·u=0. (1)

Here, v(x, t) is the time-dependent, spatial ve-
locity vector field, u(x, t) is the corresponding
displacement vector field, c≡ G/δ is the ve-
locity of the shear waves (where G is the shear

1System (1) is also referred to as Kelvin-Voigt [2],
Kelvin [3], or Navier-Stokes equations [4]. We omit
Kelvin’s name since it should be used when an addi-
tional term is present [5]. We invoke Navier-Stokes’
name when the full material derivative is involved.

modulus and δ is the density of the medium),
and ν denotes the kinematic viscosity coeffi-
cient. The analytic solutions of (1) found in
[4] for impulsive head rotations explained the
mechanism of bridging-vein hematomas and
lead to establishing brain injury tolerance cri-
teria for Diffuse Axonal Injuries (DAI) [2].
However, these equations cannot explain why
DAI are scattered in a pointwise manner in the
white matter, predominantly along its bound-
aries with the gray matter or ventricles [6, 7].
In our research on impulsive head rotations

about the brain’s ‘center’ [8, 9, 10], we have
been able to recreate these subtle features of
DAI using a nonlinear generalization of system
(1). Our approach treats the brain tissue as
a viscoelastic, incompressible fluid (the human
brain contains 78% water)2. Specifically, we
augment the standard Navier-Stokes equations
with a term that describes elastic media, i.e.,
we model the brain’s dynamics in traumatic
scenarios by means of the following PDEs:

Dv

Dt
= −∇p̃ +P(c2u+ ν v),

Du

Dt
= v, ∇ · v = 0, (2)

where D/Dt ≡ ∂/∂t+(v ·∇) denotes the ma-
terial derivative, and p̃(x, t) is the (normalized
by δ) sum of the standard pressure and the
hydrostatic compression of solids [8].
Head rotations have been the primary fo-

cus of CHI research since it has been argued

2The need to replace (1) by equations that account
for the brain’s fluidity is widely accepted, cf., e.g., [3].



that translations should have a negligible im-
pact on CHI [1, 11] due to the brain’s incom-
pressibility. This argument sounds reasonable
for steady translations, but an abrupt stop or
change of direction may lead to a traumatic ro-
tational movement within the tissue. In fact,
substantial brain injuries appear among boxers
and shaken babies despite minimal rotations of
their heads. Modeling head translations also
helps understand the brain dynamics during
head rotations about an arbitrary axis, e.g.,
about the neck. Such a rotation can be ap-
proximated by a sequence of small rotations
about the head’s ‘center’ alternated with small
translations in varying directions.
Analytic solutions of (1) are only known for

a cylinder and a sphere rotated about the cen-
ter [4], whereas analytic solutions of (2) are not
even known for such basic scenarios. For an
impulsive translation of a skull containing an
incompressible medium, the initial boundary
condition (that the skull is moved in a fixed
direction) violates the requirement ∇ ·v = 0.
Thus, proving the existence of analytic solu-
tions in this case is far more complicated than
for rotations and most likely requires the use of
perturbation methods [12]. As of now, numer-
ical approaches are the only way to study the
solutions of (1) and (2) in realistic scenarios.
A new version of our finite difference numer-

ical solver, which has been validated against
the known analytic solutions of (1), allows us
to model the brain dynamics during and after
impulsive translations of an impenetrable skull
(whose ‘interaction’ with the outside environ-
ment is suppressed). Our previous simulations
of impulsive head rotations about the ‘center’
[13] imply that the skull’s geometry is an im-
portant factor in determining the brain motion
in traumatic scenarios. Therefore, besides sim-
ulating translations of realistic 2D brain cross-
sections, we also simulate identical motions of a
variety of idealized cross-sections with circular,
elliptic, rectangular, etc., boundaries. A com-
parison of the results reveals important differ-
ences between the linear and nonlinear cases
and thus helps us understand the role of the
brain’s fluidity in CHI creation.

2 Simulation Setup

To clearly separate the dynamic consequences
of translations from other factors (e.g., the
differences in physical properties between the
gray and the white matter, cf. [8, 9]), we
treat the brain tissue as a uniform mixture of
the gray and the white matter with the shear
wave velocity c=1.5m/s, viscosity ν=0.01m2/s,
and density δ=1.06×103 kg/m3. These physi-
cal properties imply the length of the short-
est shear waves that can propagate in the tis-
sue to be circa 0.02m [8]. To properly model
such short waves and maintain good numerical
stability of the solutions, a grid resolution of
1·10−3m ≤ ∆x ≤ 2·10−3m and a time step of
2·10−5s ≤ ∆t ≤ 1·10−4s is used.
We assume there is no slippage between the

skull and the brain, i.e., for all (idealized and
realistic) brain cross-sections, the boundary
between the brain and the skull reflects the
shape of the brain. We use analytic formulas
for circular, elliptic, rectangular, etc., bound-
aries whereas for realistic sagittal and horizon-
tal cross-sections, we introduce (based on med-
ical data) spline approximations of the brain’s
shape. The falx cerebri is modeled as a solid
substructure rigidly attached to the skull.

We impulsively translate brain cross-
sections for up to 0.05s with the velocity
V=1m/s. We chose V to be significantly
smaller than c to prevent nonlinear effects from
leading to an excessive turbulent flow that
would overshadow the basic rotational features
of the solutions, see [9, 10, 13]. The relatively
short translation times are selected because our
model, as well as the Voigt model, assumes a
linear relation between strain and stress, which
is only appropriate when small displacements
are created. To deal with large deformations,
nonlinear relations should be used [14]. Since
the analytic solutions of (1) [4] as well as our
theoretical and numerical results [8] imply that
the shear waves are damped exponentially, we
monitor the solutions for only up to 0.3s. Thus,
each simulation requires up to 15,000 time
steps with up to 40,000 nodes being calculated
in each time step.



3 Results

In the following, we refer to simulations based
on linear system (1) and nonlinear system (2)
as L and NL, respectively. The solutions
presented are obtained for translations lasting
T=0.05s, but their qualitative features are also
representative for shorter translations. The re-
sults are shown in the coordinate system at-
tached to the skull. The vector magnitudes in
the vector field plots are scaled down to make
the plots ‘readable’. The 3D graphs represent-
ing vector components depict true values. All
translations are horizontal from left to right.
A NL translation of a circular cross-section

of radius 0.08m leads to a piling up of the brain
tissue on the left side where it is pushed, as
the several right-pointing displacement vectors
u=(ux, uy) with ux > 0 in Fig. 1 show. These
positive values of ux increase in time, but the
region they appear in remains limited to a nar-
row strip on the left. The remaining vectors
with ux < 0 reflect that the brain matter lags
behind in the cross-section.

Fig. 1: Circular cross-section - NL.
The displacement field u(x, y) at t=0.03s.

In the L case, no piling up takes place and
the lagging is the largest in the middle of the
cross-section, Fig. 2. Contrary to analytic [4]
and our previous results concerning rotations3,

3Constant rotations lead to a periodic, tangential
lagging/outpacing and the creation of shear waves by
both systems. For a tangential V=1m/s and c, ν as
above, the maximum lagging appears in a circle at
t ≈ 0.03s. Then the process of outpacing begins [4, 8].

no outpacing happens during constant transla-
tions in either case. However, nonzero values of
uy appear due to the incompressibility condi-
tion ∇ · v=0. The maxima (minima) depicted
in Fig. 3 for the NL case correspond to the lo-
calized upward (downward) flow, and are also
representative of the L case.

Fig. 2: Circular cross-section - L.
The ux(x, y) component at t=0.03s.

Fig. 3: Circular cross-section - NL.
The uy(x, y) component at t=0.03s.

The corresponding velocity vector fields
v=(vx, vy) are also predominantly horizontal
during translations in both cases (the graphs
of v, vx and vy mimic Figs. 1, 2 and 3). In
the L case, |vx|≤V=1m/s, whereas the max-
imum vy ≈ 0.5m/s. Our simulations with var-
ious idealized and realistic cross-sections im-
ply that during translations the skull’s shape
is largely irrelevant to the general features of
the solutions presented above. This concerns
also the turbulent flow that appears in the NL
case in two localized regions to the left where



|vx| substantially exceeds V, Figs. 4 and 5.4

Fig. 4: Circular cross-section - NL.
The velocity field v(x, y) at t=0.04s.

Fig. 5: Circular cross-section - NL.
The vx(x, y) component at t=0.04s.

When the forcing stops in the circular L case,
two vortices form rotating the matter in oppo-
site directions, Fig. 6. The rotations reverse
after just 0.015s, Fig. 7, and the oscillations
continue with a frequency of circa 0.035s, go-
ing through patterns of six, four, or just two
vortices, cf. Footnote 3. The values of the com-
ponent vx before the first reversal are depicted
in Fig. 8, 0.0025s after the translation, i.e., at
the time when the induced material velocity
has already been halved (the graph of vy mim-
ics Fig. 3, with the maximum vy≈ 0.25m/s).

4A similar local magnification of the material ve-
locity occurs in rotations of noncircular brain cross-
sections [13]. Once the material velocity exceeds the
velocity c of the sheer waves, a turbulent flow usually
appears leading to large displacements [8].

Fig. 6: Circular cross-section - L.
The velocity field v(x, y) at t=0.0501s.

Fig. 7: Circular cross-section - L.
The velocity field v(x, y) at t=0.065s.

Fig. 8: Circular cross-section - L.
The vx(x, y) component at t=0.0525.

If the width exceeds the height of the cross-
section, e.g., as is the case in a sagittal cross-
section of a human brain, the velocity field in
the L case also forms two well-defined vortices,



Figs. 9 and 10. The brightest spots depict the
maximum velocity vx≈ 1m/s.

Fig. 9: Sagittal cross-section - L.
The velocity field v(x, y) at t=0.0501s.

Fig. 10: Sagittal cross-section - L.
The vx(x, y) component at t=0.0501s.

In a horizontal brain cross-section whose height
exceeds its width, six vortices are created,
Fig. 11. They periodically merge and reappear,
going through complicated oscillatory patterns
of five, four, three, or just two vortices.

Fig. 11: Horizontal cross-section
without falx cerebri - L.

The velocity field v(x, y) at t=0.0501s.

The NL system creates quite different solu-
tions after the forcing has stopped. Indeed,
four vortices tend to form regardless of the
shape, Figs. 12, 13 and 14.

Fig. 12: Circular cross-section - NL.
The velocity field v(x, y) at t=0.0501s.

Fig. 13: Sagittal cross-section NL.
The velocity field v(x, y) at t=0.0501s.

Fig. 14: Horizontal cross-section
without falx cerebri - NL.

The velocity field v(x, y) at t=0.0501s.



Vectors not in unison with the rotations appear
due to the turbulent flow, cf. Fig. 5. Since in
the realistic cases the vortices are not as well-
defined as in the circle, the rotational motions
become more ‘disorganized’ with time (but the
oscillatory patterns are similar to the L case).

For the horizontal cross-section with falx
cerebri fully separating the hemispheres, the
L case leads to eight vortices, Fig. 15, whereas
the analogousNL case only results in four vor-
tices, Fig. 16.

Fig. 15: Horizontal cross-section
with falx cerebri - L.

The velocity field v(x, y) at t=0.0501s.

Fig. 16: Horizontal cross-section
with falx cerebri - NL.

The velocity field v(x, y) at t=0.0501s.

In fact, the latter solution resembles more the
four-vortex NL solution obtained without falx
cerebri, cf. Fig. 14, than the solution depicted
in Fig. 15.5 This is because in the NL case,

5A similar result has been observed during rotations
of these two types of cross-sections [13].

the maxima of vx≈ 2m/s are assumed at the
same two locations, Fig. 17, as they are in the
connected domain, cf. Fig. 5, and the turbu-
lent flow appearing in both types of domains
overshadows the influence of topology.

Fig. 17: Horizontal cross-section
with falx cerebri - NL.

The vx(x, y) component at t=0.0501s.

The oscillatory patterns in the disconnected
domains are similar to those in the connected
cross-sections. However, in the L case with a
disconnected domain, the vx decrease is twice
as large 0.0025s after the translation, Fig. 18,
as it is in the connected case, cf. Fig. 8.

Fig. 18: Horizontal cross-section
with falx cerebri - L.

The vx(x, y) component at t=0.0525s.

4 Conclusions

A general similarity of the solutions of both
PDE systems consists of a lagging of the brain
matter during the translation and of a compli-
cated rotational motion afterwards. A piling
up of the brain matter and a significant, lo-



calized increase of the material velocity result-
ing in a turbulent flow during and after trans-
lations is characteristic only for the nonlinear
system (2). Because of this flow, the character
of the rotational motion (e.g., number of vor-
tices) created by (2) does not depend as much
on the shape and the topology of the cross-
sections as it does with the linear system (1).
The solutions of system (2) are more influenced
by the shape and the topology as far as their
time evolution is concerned whereas system (1)
leads to more persistent rotational patterns.
The discovered rotational patterns can help

understand CHI mechanisms, e.g., why even
an abrupt, short head translation may create
injuries in specific localizations (cf. contracoup
injuries) as well as what role the brain’s flu-
idity plays in this respect. Moreover, dur-
ing repetitive translations the subsequent im-
pulsive translations face quite different initial
conditions since the first interrupted transla-
tion already results in a rotational movement.
Thus, more and more damaging rotations can
arise, especially if a resonance occurs. Inves-
tigating such scenarios could shed light on the
mechanisms of the shaken baby syndrome.
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