Efficient Emulation of Hardware Prefetchers
via Event-Driven Helper Threading

llya Ganusov and Martin Burtscher
Computer Systems Laboratory, Cornell University
Ithaca, New York

{ilya, burtschery@csl.cornell.edu

ABSTRACT

The advance of multi-core architectures provides significant
benefits for parallel and throughput-oriented computing, but
the performance of individual computation threads does not
improve and may even suffer a penalty because of the in-
creased contention for shared resources. This paper explores
the idea of using available general-purpose cores in a CMP
as helper engines for individual threads running on the ac-
tive cores. We propose a lightweight architectural frame-
work for efficient event-driven software emulation of com-
plex hardware accelerators and describe how this framework
can be applied to implement a variety of prefetching tech-
niques. We demonstrate the viability and effectiveness of
our framework on a wide range of applications from the
SPEC CPU2000 and Olden benchmark suites. On average,
our mechanism provides performance benefits within 5% of
pure hardware implementations. Furthermore, we demon-
strate that running event-driven prefetching threads on top
of a baseline with a hardware stride prefetcher yields signifi-
cant speedups for many programs. Finally, we show that
our approach provides competitive performance improve-
ments over other hardware approaches for multi-core exe-
cution while executing fewer instructions and requiring con-
siderably less hardware support.
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B.8 [Performance and Reliability]: General

General Terms

Performance
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1. INTRODUCTION

All major high-performance microprocessor manufactur-
ers have announced or are already selling chips with two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PACT’ 06, September 1620, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

to eight cores. Future generations of these processors will
undoubtedly include more cores. While multiple cores are
immediately beneficial in multiprogrammed environments
and for parallel applications, the performance of individ-
ual computation threads does not improve and may even
suffer a penalty because of increased contention for shared
resources such as caches. Moreover, manually parallelizing
applications to obtain a benefit from multiple cores increases
the software complexity and cost. Finally, many general-
purpose applications, including ones that are easy to par-
allelize, exhibit limited scalability and may not be able to
take advantage of additional cores beyond a certain point.

Improving the performance of single threads in a multi-
core environment has proven to be difficult. Moreover, multi-
core architectures favor simpler and smaller cores, which
limits the opportunity to exploit the available ILP with
wide-issue cores. On the other hand, special-purpose hard-
ware accelerators that are located outside the core can im-
prove a thread’s performance by eliminating control and
memory bottlenecks (e.g., advanced branch predictors and
data prefetchers), but they often result in significant chip
area additions and additional complexity. In light of these
trends, architectural techniques that allow the use of ad-
ditional cores to speed up single threads are becoming an
attractive alternative [18].

This paper describes and evaluates a lightweight architec-
tural framework that allows otherwise idle cores in a CMP to
function as helper engines for the individual threads running
on the active cores. Our technique employs special helper
threads to emulate hardware prefetchers. These threads are
launched when a helper core receives a special event trig-
ger from a core that is running in conventional, non-helper
mode. Event triggers are sent to the helper cores through a
unidirectional communication interface, which can be con-
figured to attach different data to the triggers.

We demonstrate the viability and effectiveness of the pro-
posed framework by using it to implement a wide variety
of simple and complex hardware prefetching algorithms [3,
5, 7, 8]. The performance of the emulated accelerators
is within 5% of pure hardware implementations. Further-
more, we demonstrate that running prefetching event-driven
helper threads (EDHTSs) on top of a baseline with hard-
ware stride prefetching yields speedups of 5%-100% on a
wide range of programs. Finally, we implement two other
recently proposed hardware-only techniques for multi-core
execution [4, 26] and show that even without customizing
the EDHT prefetching threads for each application, EDHT
can provide competitive performance improvements while



executing fewer instructions and requiring considerably less
hardware support.

We believe that such a framework allows multi-core pro-
cessors to provide immediate benefits and presents a rela-
tively simple yet effective architectural enhancement to ex-
ploit additional cores to speed up individual threads. Unlike
previously proposed approaches for software prefetching, our
EDHT mechanism can improve performance without the
need to modify or analyze the original binary. Moreover,
EDHT solves many problems that have hampered the in-
troduction of complex hardware prefetching algorithms into
commercial microprocessors. Specifically, EDHT needs min-
imal hardware modifications, does not require specialized
hardware storage for prediction tables, and can be easily
reconfigured to customize prefetching algorithms for indi-
vidual applications.

The rest of the paper is organized as follows. Section 2
provides an overview of outcome prediction-based prefetch-
ing algorithms. Section 3 presents the architectural support
for EDHT as well as its operation. Sections 4 and 5 de-
scribe the simulation methodology and evaluate our design.
Section 6 discusses related work and Section 7 concludes the

paper.

2. DATA PREFETCHING TECHNIQUES

Hardware prefetchers often rely on various kinds of ad-
dress predictors to dynamically predict which memory ad-
dresses to prefetch. In this work, we examined stride-based
address prediction and Markov address prediction. This sec-
tion briefly discusses both approaches and introduces the
basic algorithms that we later use.

2.1 Stride Prefetching

Stride prefetchers represent the most common form of pre-
fetching based on outcome prediction. The stride prefetcher
is usually located in the cache controller, where it monitors
the stream of cache miss requests observed by the cache.
Stride prefetchers identify distinct streams within the se-
quence of cache misses, associate strides with each of the
streams, and issue memory requests for the next few ad-
dresses in the stream. The simplest form of stride prefetch-
ing is next-sequential prefetching, in which the prefetcher
issues a request for cache line L+1 as soon as line L is ref-
erenced [17].

In many cases cache miss addresses are composed of sev-
eral interleaved streams. A typical case of multiple streams
is the traversal of several arrays within a matrix-matrix mul-
tiplication loop. Stride prefetchers employ special mecha-
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Figure 1: Organization of stride prefetchers

nisms to decipher and disambiguate interleaving streams.
If the memory hierarchy propagates the program counter
(PC) of the instructions that cause cache misses, the pre-
fetcher can attribute misses to specific instructions and track
streams on a per PC basis [3]. We call this local stride pre-
fetching. The conventional implementation of a local stride
prefetcher uses a table to store stride-related local history
information and is shown in Figure la. The PC of a load
instruction indexes the table. Each table entry holds the
load’s last stride and the last address. A prefetch is trig-
gered when a load causes a cache miss and its last stride is
equal to the current stride.

If PC information is not available, then a global stride pre-
fetcher can be used. Such stride prefetchers need to identify
distinct streams within the global memory access pattern.
Minimum delta prediction and memory partitioning were
proposed to handle this problem. Minimum delta predic-
tion associates a miss with the stream or prior miss that
is the closest. Memory partitioning separates the physical
memory address space into regions and attributes all misses
falling within a single region to a single stream [25]. Fig-
ure 1b shows the organization of a global stride prefetcher.
When a cache miss occurs, the global miss history buffer
is searched for the minimum difference between the previ-
ously observed addresses and the current miss address. An
address stream is identified if the global miss history con-
tains an address that differs from the current address by two
minimum deltas.

For each identified address stream, the prefetcher allo-
cates a prefetch stream buffer from a limited number of
available buffers. This buffer contains information about
the current stream base address and the associated stride.
Typically, stride prefetchers use an LRU replacement policy
for stream buffers. The newly allocated stream buffer issues
prefetches and then waits for the prefetched cache lines to
be requested by the processor. Upon receiving such a no-
tification, the stride prefetcher looks up its stream table to
see which stream entry the consumed address belongs to.
If it finds a match, it increments the corresponding stream
address by the stream’s stride and issues one new prefetch
to keep up with the data consumption of the processor.

2.2 Markov Prefetching

Markov prefetching [7] is another example of outcome-
based prediction. A Markov predictor assumes that the ad-
dress stream of a program can be approximated by a Mar-
kov model. A Markov model is a probabilistic state machine
with a set of states and state transition probabilities. Each
transition from state A to B is assigned a weight represent-
ing the fraction of A states that are followed by B states.
Figure 2a presents an example of a Markov model. The
states in the Markov model are determined by the set of
previously seen values.

Markov models are usually characterized by two param-
eters. The first parameter determines what kind of values
defines a state. In case of prefetching, the most common
way is to use either the absolute addresses or the differences
between consecutive addresses. The second parameter de-
termines how many values are used to determine the state.
An order n Markov predictor associates each state with the
n previous values.

Markov prefetching techniques incrementally build an Mar-
kov model for the target application at run-time. This model
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Figure 2: Markov prefetching

is later used by a prefetching mechanism to predict future
addresses. Previous work on hardware-based Markov pre-
fetching concentrated on finding optimal parameters for an
accurate Markov model that work well for many applica-
tions and on devising efficient hardware designs to store
this model. The most common hardware implementation
in the literature is based on a two-level table representation.
The first table contains information to determine the cur-
rent state (i.e., node in a Markov model). As in the case
of stream prefetchers, there are global and a local versions
of Markov prefetchers. A local Markov prefetcher, shown
in Figure 2b, uses the load’s PC to index a first-level table,
which stores a local history of the last three deltas for that
load. A global Markov prefetcher uses a global history of
the last three deltas (instead of a per-PC local history).

The calculated state serves as an index into the second-
level table, which stores predictions (the immediate neigh-
bors of the current node). To limit the total area required
for the table, the second-level table usually contains only a
limited number of unique predictions. A Markov prefetcher
can prefetch the addresses predicted by the adjacent nodes
in the Markov model. We refer to this policy as width pre-
fetching. However, it is also possible to perform depth pre-
fetching in which the sequence of arcs in the Markov model
is traversed with prefetching initiated at each node along the
path. We use a combination of width and depth prefetching
in our experiments.

This subsection presents an overview of how Markov pre-
fetching works. Markov prefetchers incrementally build a
Markov model for the address stream generated by the pro-
gram. A Markov model can be characterized by three pa-
rameters: the kind of values that determine the state, the
model order, and the maximum number of node neighbors
in the graph. Prefetchers utilize Markov models to make
predictions. These prefetchers are most commonly charac-
terized by their prefetch distance and depth.

3. IMPLEMENTATION

As demonstrated in the previous section, hardware pre-
fetching algorithms based on outcome prediction are natu-
rally decoupled from the execution of the target thread. The
only data dependence between the target thread and the pre-
fetching algorithm is the information about the cache miss
address and the load instruction that caused it. As such,
these prefetch mechanisms could be emulated by a software
prefetching thread that is started whenever the target thread
experiences a cache miss. However, a software implementa-
tion of a hardware prefetcher faces two obstacles. First,

such prefetch threads would need to be spawned quickly on
microarchitectural events as opposed to program events in
the conventional multithreading paradigm. Second, com-
plex prefetch algorithms, such as Markov prefetching, often
require a large amount of state that needs to be stored some-
where.

To overcome these issued, it is necessary for a processor
architecture to support explicit communication of microar-
chitectural events from one thread to another. Ideally, the
target thread should not be aware of this communication so
that prefetching can be easily turned on and off depending
on the availability of hardware resources. To achieve this,
we propose Event-Driven Helper Threading (EDHT), which
provides a way for a low-latency, unidirectional event trig-
ger transmission between regular and helper threads. EDHT
threads execute on a conventional core of a chip multiproces-
sor and the state of the underlying prefetching algorithm is
loaded into the private data cache of the core via the conven-
tional memory hierarchy. The rest of this section explains
the hardware support for EDHT and its operation.

3.1 Overview of Operation

Figure 3a shows a typical pointer chasing loop. Each itera-
tion of the loop processes a node of a linked list and fetches
the next node to be processed. Assuming that the linked
list is not cache-resident, each access to the field dat a of
the list’s node will result in a cache miss and stall the pro-
cessor. As shown in Figure 3a, this access translates into
a single load instruction dat a=poi nt er - >dat a. Markov
prefetchers are a good fit for prefetching such linked list
traversals since they can memorize previous traversals of
this list and accurately predict the next node’s location.

A typical hardware implementation of a Markov prefetcher
will snoop the cache miss addresses coming out of the cache.
For each observed cache miss, it will look up its prediction
table similar to the one shown in Figure 2b and determine
which addresses are likely to be referenced next. After that,
it will issue prefetch requests for those addresses into the
memory hierarchy in the hope that the program will soon
request those data as well.

Figure 3b demonstrates a conceptual prefetching thread
that can emulate a prefetcher. The prefetching thread con-
sists of an infinite while loop. In each iteration, the prefetch-
ing loop stalls waiting for cache miss event data to arrive
from the target thread. When the target thread experiences

while (ptr) { while (true) {
data = ptr->data; miss_info=event.addr;
foo(data); pref=predict(miss_info);

ptr=ptr->next;

}
@ cache ﬂ

miss event

prefetch(pref);

1. data = ptr->data 1. m ss_info=event. addr
2. foo(data) 2. pref=predict(m ss_info)
3. ptr=ptr->next 3. prefetch(pref)
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Figure 3: Code example
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such a miss, the prefetching thread loads the cache miss
address along with the associated PC value and uses this in-
formation to run its prediction algorithm. Finally, it issues
a prefetch instruction and loops back. If by this time there
is a new miss event waiting in the event queue, it immedi-
ately executes the prefetching algorithm with the new data.
Otherwise, it stalls until a new event arrives.

Of course, a dedicated hardware implementation will exe-
cute the prediction algorithm much faster than its software
thread equivalent. Hence, there may be situations when the
frequency of cache miss events outpaces the speed at which
the prefetching thread can process them. In this case, lim-
ited buffering can be provided to store unprocessed events.
The next subsection describes the organization of such a
buffer and its interaction with other components of the CPU.

3.2 Implementation and Hardware Support

Even if the architecture provides a way to communicate
architectural events to user-level threads, prefetching-based
event-driven helper threading is likely to perform poorly
on current hardware due to the following reasons. First,
synchronization must occur via the operating system or via
spin-locks. In the OS case, the trap and return time is so
large that it can negate any performance advantage. In ad-
dition, the communication between the threads must occur
via shared memory, increasing the contention for the shared
cache ports and wasting dynamic power. Thus, for EDHT-
based prefetching to be successful, it is imperative that the
implementation of the event delivery mechanism be efficient.

Since much of the problem related to the implementa-
tion of fast inter-thread communication is due to the use
of shared memory, we propose to use an event buffer. Fig-
ure 4 shows the architecture of an out-of-order CMP that
supports event-driven helper-threading. The event buffer
and associated datapaths are highlighted in bold. The reg-
ular computation thread executes on the “left” core, while
its EDHT prefetching thread is running on the “right” core.
The event buffer is located between the two cores. It rep-
resents a FIFO structure of limited capacity. It receives
information about cache miss events from the ROB of one
of the cores. The ISA abstraction for the event buffer is
an I/0O device that can be accessed by program threads via
I/0 read instructions from a reserved address. The event
buffer controller snoops the cache bus and supplies data for
all event buffer I/O reads.

The instructions in the left core execute and commit nor-
mally. If a load instruction experiences a cache miss, a
prefetch trigger is transmitted to the event buffer once the
load commits. Event transmission is also triggered if a load
instruction loads data that has been prefetched by the pre-
fetching thread. The data that needs to be transferred in-
cludes the instruction’s PC value and the referenced memory
address. Some prefetching mechanisms also require informa-
tion on whether the event was triggered by a cache miss or
a correctly prefetched cache miss.

In the meantime, the prefetch thread is running on the
helper core. When the prefetching thread issues an I/O
read instruction to obtain data about a cache miss event,
it stalls waiting for a reply. When the event buffer receives
this data, it supplies the received information to the stalling
read request. Then the prefetching thread calculates the
prefetch addresses based on the underlying algorithm and
executes a non-binding prefetch load instruction that will
fetch data into the shared memory hierarchy. After that, it
loops back and issues another I/O read instruction to obtain
information about the next architectural event.

The cache lines that were prefetched by the helper core are
tagged. When the regular core references a prefetched cache
line, it marks the executed load instruction as the consumer
of the prefetched data. When this load instruction commits,
it causes a prefetch trigger to be transmitted to the helper
core as if this instruction had experienced a cache miss. This
mechanism essentially mimics the way traditional hardware
prefetchers work and allows the helper core to stay ahead of
the data consumption of the regular thread.

The operation of EDHT has the following implications
on the operating system. EDHT threads and the main ap-
plication run in the same address space and hence share a
page table. EDHT threads do not use absolute code ad-
dresses (they are fully relocatable) and use a thread-private
data area to avoid conflicts with the main thread. The OS
scheduler should also be aware of the helper threads asso-
ciated with each application and schedule them as a group
to execute on cores that share at least one level of memory
hierarchy. Note that, while we have presented EDHT for
two cores running a single main thread, the technique can
be extended to support multiple cores by providing either
additional event buffers between pairs of cores or the ability
to communicate events from different cores to a centralized
buffer.

3.3 Prefetching Algorithms

To demonstrate the efficiency and flexibility of the pro-
posed architectural framework, we implement a number of
prefetching algorithms on it. This section presents a detailed
description of these algorithms.

First, we implement a conventional stride prefetcher. We
evaluate both a local and a global stride prefetcher and name
them Istride and gstride, respectively. The local stride pre-
fetcher uses a table with 1K entries to keep track of strides
on a per-load basis. The global prefetcher keeps a history of
the 8 last miss addresses to identify address streams. Both
kinds of prefetchers have 8 stream buffers and utilize an LRU
replacement policy for buffer allocation.

Second, we implement two prefetching algorithms that are
based on a third-order delta-correlation Markov model with
a table size that fits into the L1 data cache. Unlike with
stride prefetching, the algorithmic difference between the



Table 1: EDHT threads for emulating hardware prefetching mechanisms

prefetch algorithm | description # of insns | load insns | longest dep. chain
global stride 8 simultaneous streams, 8-entry miss history buffer, prefetch dis- 52 (23) 12 (10) 15 (10)
tance of 8
local stride 1K-entry PC-indexed prediction table, prefetch distance of 8 18 (23) 4 (10) 6 (10)
DFCM 128-entry 3rd order L1 table, 2bc confidence, 16K-entry L2 table, 26 6 7
select-fold-shift-xor (SFSX) hash function, prefetch distance of 8
markov 128-entry 3rd order L1 table, 8K-entry L2 table storing 2 distinct 29 7 8
predictions, SFSX hash function, prefetch distance of 4
correlation 128-entry 1st order L1 table, 256K-entry L2 table storing 2 dis- 24 6 6
tinct sequences of 4 predictions, prefetch distance of 4

global and local versions of the Markov prefetcher is mini-
mal. Therefore, we evaluate only local prefetchers. Our first
prefetching algorithm is based on the differential finite con-
text method (DFCM) value predictor [5]. This algorithm
uses a 2-bit counter-based confidence estimator in the first-
level table to suppress low-confident predictions for load in-
structions that exhibit unpredictable behavior. The second
algorithm is more similar to a conventional Markov model.
It stores two distinct values (predictions) in each entry of
its second-level table. Each value in the second-level table
is associated with a 1-bit confidence counter, which is incre-
mented every time a particular prediction is observed to be
correct. Thus, the confidence is associated with transitions
in the Markov graph rather than with the predictability of
individual load instructions. This algorithm uses a prefetch
width of two and a prefetch distance of four, generating up
to eight prefetch addresses on each invocation of the algo-
rithm. We call this algorithm Markov prefetcher.

Finally, we show how our framework can be used to im-
plement prefetching schemes based on very large Markov
models. To this end, we implement a first order Markov
prefetcher with address correlation containing 256K entries
in its second-level table. Each entry contains two Markov
graph neighbors. In addition to the delta for the next ad-
dress, each table entry records the four deltas that last fol-
lowed the most recent address in MRU order. This organi-
zation of the Markov prefetcher is similar to the replicated
correlation prefetcher used by Solihin et al. [22]. Each value
in the second-level table is associated with a 1-bit confidence
counter, similar to our Markov algorithm. When a table en-
try is accessed by the prefetcher, all addresses recorded in
this entry are prefetched. Each second-level table entry is
configured to fit into an L2 cache line. We call this algorithm
Correlation prefetcher.

To emulate these prefetching techniques, we manually con-
structed five different prefetching threads. Table 1 sum-
marizes the properties of these threads. The third column
provides the number of instructions in each thread up to
the first prefetch instruction. The stride prefetching mecha-
nisms execute different instruction sequences depending on
whether the event is associated with a cache miss or an
access to a correctly prefetched cache line. The values in
parentheses indicate the properties of a thread associated
with the access to prefetched data. The fourth column spec-
ifies the total number of load instructions, and the last col-
umn indicates the length of the longest instruction depen-
dence chain. Note that the number of static and dynamic
instructions for each prefetching thread up to the issue of the
first prefetch is the same because we removed all branches
from the code via loop unrolling and extensive use of condi-
tional move instructions. Global stride prefetching requires

Table 2: Simulated processor parameters
Processor

Fetch/decode/commit 4/4/4 instructions per cycle
I-window/ROB/LSQ size | 64/128/64 entries

Int/FP registers 184

LdSt/Int/FP units 2/4/2

Branch predictor 16K-entry bimodal/gshare hybrid
BTB 2K-entry, 4-way associative

RAS entries 16

Misprediction penalty minimim 12 cycles

Memory Subsystem

64KB IL1, 64KB DL1, 2MB L2
2-way L1, 8-way L2

3 cyc L1, 12 cyc L2

64B L1, 64B L2

16 L1, 24 L2

minimum 400 cycles
split-transaction, 8B-wide,

1/4 CPU frequency; contention,
queuing, bandwidth modeled

Cache sizes

Cache associativity
Cache latencies
Cache line sizes
Cache MSHRs

Main memory latency
Memory bus

Table 3: Benchmark suite details
App. perfect stride App. perfect stride
speedup | coverg speedup | coverg
bzip2 24.5 70.4 fma3d 217.4 81.4
crafty 2.1 1.3 galgel 2.0 83.1
eon 0.2 35.2 lucas 431.6 94.1
gap 24.6 62.2 mesa 23.0 90.4
gce 30.3 45.7 mgrid 203.2 93.3
gzip 3.3 95.2 sixtrack 4.8 49.5
mcf 1399.6 52.5 swim 689.8 99.6
parser 103.5 71.6 wupwise 134.7 53.3
perlbmk 7.4 45.7 bh 0.2 80.1
twolf 1.8 15.6 bisort 27.9 19.3
vortex 34.6 26.3 em3d 28.2 74.1
vpr 120.5 5.4 health 834.3 2.2
ammp 28.7 22.1 mst 222.7 22.8
applu 198.4 77.5 perimeter 90.6 55.3
apsi 10.8 91.1 power 0.02 49.3
art 183.5 97.3 treeadd 158.6 95.4
equake 675.6 91.3 tsp 13.9 54.8
facerec 178.5 53.7 voronoi 35.4 27.6

the most instructions due to the large number of compar-
isons when the global history is searched for two repeating
strides. The next section evaluates how well these prefetch-
ing threads work.

4. EVALUATION METHODOLOGY

We evaluate our approach using an extended version of the
SimpleScalar v4.0 simulator [10]. The baseline is a two-way
CMP consisting of two identical four-wide dynamic super-
scalar cores that are similar to an Alpha 21264 (Table 2).
The minimum memory latency for the baseline processor
is 400 cycles. We model bandwidth and contention on the
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Figure 5: Performance of hardware prefetchers and their EDHT counterparts

memory bus and limit the number of outstanding bus trans-
actions to 32. We used CACTI 3.2 [21] to determine the
simulated cache access latencies. The event buffer contains
20 entries. The communication latency between each core
and event buffer is 5 cycles. In all modeled configurations
we assume that one of the cores in the CMP can be used
for executing a prefetching thread. All evaluated prefetch-
ing algorithms monitor L2 cache misses and issue prefetch
requests for the L2 cache only.

To perform our evaluations, we considered all 36 programs
from the SPEC CPU2000 and Olden benchmark suites [6,
13]. Table 3 provides information related to cache misses in
every program. The first column for each program shows
the speedup with a perfect L2 cache over the baseline with-
out prefetching. In this study, we define a program to be
memory-bound if it experiences more than 30% speedup
with a perfect L2 cache. Since prefetching techniques target
memory latencies, we eliminate from this evaluation the 17
programs that are not memory-bound. The second column
specifies the percentage of original cache misses that can be
prefetched by a hardware global stride prefetcher. We fur-
ther eliminate all regular programs that are easily prefetch-
able by a simple hardware stride prefetcher and thus would
get little benefit from a complex prefetching algorithm (art,
mgrid, swim, and treeadd).

The SPEC CPU2000 programs are run with the SPEC-
provided reference inputs. If multiple reference inputs are
given, we simulate the corresponding programs with up to
the first three inputs and average the results from the dif-
ferent runs. We simulate vpr with only one of the reference
inputs (routing) because SimpleScalar could not simulate
it correctly with the other input (placement). The Olden
programs are run with the parameters commonly used in
previous research on prefetching [13]. The C programs were
compiled with Compaq’s C compiler V6.3-025 using “—O3
—arch ev67 —non_shared” plus feedback optimization. The
C++ and Fortran 77 programs were compiled with g++/g77
V3.3 using “-O3 —static”. The Fortran 90 programs were
compiled with Compaq’s 90 compiler V5.3-915. We use the
SimPoint 3.1 toolset to identify representative simulation
points. Each program is simulated for 500 million instruc-
tions after fast-forwarding past the number of instructions
determined by SimPoint.

5. EXPERIMENTAL RESULTS

In this section, we experimentally measure the effective-
ness of our proposed mechanism. In Section 5.1, we eval-
uate the performance of various prefetching schemes based

on EDHT and compare the speedups with those of hard-
ware implementations of the same prefetching mechanisms.
In Section 5.2, we demonstrate how EDHT-based prefetch-
ing can improve single thread performance by combining
hardware stride prefetching with Markov EDHT prefetch-
ing. Finally, Section 5.3 illustrates how EDHT prefetching
compares to two other previously proposed hardware tech-
niques that use extra cores to speed up single threads.

5.1 Prefetching Emulation Performance

In this section, we evaluate and compare emulation-based
prefetchers with their conventional, hardware-based coun-
terparts. The baseline machine for this experiment is de-
scribed in Table 2. We measure the performance of four dif-
ferent prefetching schemes: global stride prefetching (gstride)
local stride prefetching (Istride), differential finite-context
method prefetching (dfem), and Markov prefetching (mar-
kov). The hardware implementations of each scheme are
marked with a hw identifier, while the EDHT versions have
an edht identifier after the name of the prefetching algo-
rithm. Figure 5 presents speedups for individual programs
as well as the geometric mean. The performance of the stride
prefetching techniques is shown in the left panel, dfcm and
markov in the right panel.

The results show that the prefetching techniques used in
our study are very effective, attaining significant speedups
for the majority of the programs. When the hardware im-
plementations are compared with the EDHT implementa-
tions, we find that hardware outperforms helper threads
only slightly. In case of stride prefetching, hardware is sig-
nificantly better (over 5%) only on six out of 15 programs.
The results for the dfcm and markov prefetching schemes
are similar. The main reason for the performance difference
is the delayed issue of the prefetch requests by the helper
thread. Helper threads are triggered only when delinquent
load instructions commit and they take longer to compute
and issue prefetches. Hardware prefetchers initiate the pre-
fetching algorithm as soon a delinquent load instruction is-
sues and generate prefetch requests much faster. A high fre-
quency of cache miss events is another reason for decreased
speedup. In case of dfcm prefetching, a high frequency of
cache misses in equake and facerec causes 86% and 60% of
the cache miss events to be dropped. EDHT markov pre-
fetching faces similar problems in facerec and wupwise.

Surprisingly, some programs exhibit higher speedups with
EDHT prefetching. Hardware prefetchers observe cache
misses in the issue order of the load instructions, while
EDHT threads observe the sequence of cache miss events

)



&40 &80

2 2

© © 40 q

230 I

2 240l

€20] ¢ : o // /

= -+ gstride hw = 20 d -+-dfcm hw

404 -=-gstride edht 2 / -=-dfcm edht

E Istride hw 510 1 markov hw

0 -e-Istride edht 0 -e-markov edht

0 2 4 6 8 0 2 4 6 8

prefetch distance prefetch distance
Figure 6: Sensitivity to prefetch distance for stride
and markov prefetchers

in commit order. Commit order allows to get a more precise
cache miss history. In addition, EDHT threads never suf-
fer from cache miss history pollution caused by wrong-path
loads.

It might be unexpected that the performance of the hard-
ware and software implementations of these prefetching al-
gorithms differs by so little. After all, hardware prefetches
are issued at least 400 cycles earlier than software prefetches.
It seems unlikely that such a big delay would have so little
impact of performance.

Figure 6 explains this phenomenon. It illustrates the av-
erage speedup obtained by the prefetching schemes as the
prefetch distance is varied from 1 to 8. The most inter-
esting feature of this graph is how the performance differ-
ence between each hardware and EDHT pair rapidly de-
creases with increasing prefetch distance. For example, with
a prefetch distance of 1 the average speedup for a hardware
global stride prefetcher is 20%. The corresponding EDHT
prefetcher achieves only 7% speedup. However, prefetch-
ing with higher distances decreases the relative performance
gap. At a prefetch distance of 8 both hardware and EDHT
prefetching perform almost the same. Higher prefetch dis-
tances provide timelier prefetches and at some point it does
not matter whether prefetch requests are issued with a 400-
cycle delay or not. They are still issued early enough to mask
the full memory latency. Therefore, a high prefetch distance
is the key to good performance of software prefetching.

5.2 Combining Hardware and EDHT
Prefetching

Current high-performance microprocessors already include
some form of stride prefetching. More complicated prefetch-
ing schemes are typically not implemented because of algo-
rithm complexity and/or large storage requirements. EDHT
offers an attractive alternative implementation of complex
prefetching schemes. In this section we investigate how
hardware prefetching can be combined with a more com-
plex prefetching scheme implemented as an EDHT thread.
The base machine for this experiment includes the hard-
ware global stride prefetcher described in Table 1. We mea-
sure the performance of four different EDHT prefetching
schemes: local stride prefetching (Istride), differential finite-
context method prefetching (dfem), Markov prefetching (mar-
kov), and duplicated correlation prefetching (correlation).
Figure 7 shows the program speedups relative to the gstride
hw baseline.

The results show that adding a local stride prefetcher in
most cases provides little additional benefit. Only lucas and
wupwise experience a speedup of around 10%. On the other
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Figure 7: Speedup provided by different EDHT pre-
fetching mechanisms over a baseline with hardware
stride prefetching
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Figure 8: Prefetching coverage

hand, markov EDHTSs deliver significant speedups for eight
out of the 15 programs used in our study. The performance
of the dfecm prefetcher is similar to markov, except on mst.
The correlation prefetcher performs well for four programs.
It is especially successful with health and mcf, where it sig-
nificantly outperforms all other prefetching algorithms. On
average, local stride prefetching improves performance by
2%, DFCM by 13%, markov by 20%, and correlation by
13%.

To gain additional insight about the prefetching activity,
we measure the prefetch coverage of the different algorithms.
We define prefetch coverage as the ratio of the total num-
ber of useful prefetches to the total number of L2 cache
misses incurred by the application. Figure 8 illustrates that
the speedup numbers of each algorithm largely correspond
to their prefetch coverages. The markov EDHT is very suc-
cessful on all SPECfp programs where it pushes the prefetch
coverage to almost 100%. It also works well on the Olden
programs mst and voronoi. The correlation prefetcher is at
its best on health, where it increases the prefetch coverage
from 2% to 70%. The integer programs from the SPECint
benchmark suite prove to be the toughest targets for pre-
fetching since mcf is the only integer program that experi-
ences a significant coverage increase.

Overall, this section demonstrates that the combination of
hardware stride prefetching and more complex prefetching
mechanisms implemented in our EDHT framework can yield
significant performance improvements for a wide variety of
programs. Both approaches exhibit significant synergy, as
the hardware prefetcher detects and prefetches simple pat-
terns, causing only undetectable patterns to be exposed to
the more complex prefetching algorithms. In addition, we



also observe that some algorithms suit applications much
better than others. This further justifies the use of EDHT-
based prefetching as prefetching threads can be easily cus-
tomized on a per-program basis.

5.3 Comparison with Other Multi-Core
Prefetching Techniques

The previous subsections showed that emulating hardware
prefetchers as EDHTs is quite effective and provides signifi-
cant speedups over the baseline with or without a hardware
stride prefetcher. In this section, we compare our mechanism
with two other recently proposed hardware-only techniques
that use an extra core of a CMP to speed up single threads.

First, we implement and evaluate Future Execution (FE)
[4]. FE dynamically creates prefetching threads by directing
a copy of the stream of committed instructions to a helper
core. On the way to the helper core, a value predictor mod-
ifies this stream to compute the results that these instruc-
tions are likely to produce during their n'* next dynamic
execution. Executing this modified instruction stream on
another core computes predictions for the future data ad-
dresses and issues prefetches into the shared memory hier-
archy. We implemented FE with a 4K-entry stride-two-delta
hardware value predictor and a buffering capacity of 100 in-
structions between the cores.

Second, we evaluate the performance of the dual-core ex-
ecution (DCE) architecture [26]. Instead of using the idle
core to run specialized prefetching threads, this technique
uses it to launch and execute a copy of the original program
in runahead mode [15]. This runahead thread attempts to
follow the program path and to execute all instructions that
are not dependent on the load instructions that miss in the
cache. Thus, it effectively extends the instruction window
and allows to issue load requests for data that may be needed
in the near future. The non-speculative core re-executes all
instructions committed by the runahead core and makes sure
that the program execution stays on the correct path. We
implement a variation of DCE with a 2K-entry result queue
between the cores, a 4KB runahead cache, and an optimistic
1-cycle latency to copy architectural state between the cores.

Note that both FE and DCE impose much higher hard-
ware requirements and complexity than the EDHT frame-
work. FE needs a prediction table and a high-bandwidth
communication link between the cores. DCE requires hard-
ware support for a large result queue, a runahead cache, and
misprediction recovery logic. Both FE and DCE also require
special multiplexing support to fetch instructions from an-
other core (in addition to from the instruction cache).

Figure 9 shows the speedup of the different techniques
relative to the gstride hw baseline. We chose the markov
edht algorithm to represent EDHT prefetching since it per-
forms the best on average. Out of the 15 programs used
in our study, EDHT performs the best on three programs
and DCE provides a significant performance lead (of over
5%) on five. On average, the EDHT Markov prefetcher
delivers 20% speedup, the FE technique improves perfor-
mance by 16%, and DCE shows the best average speedup
of 24%. EDHT compares favorably with FE and DCE on
floating-point programs, but it does not perform as well on
the integer applications. While future execution has the
lowest average speedup, it performs very consistently across
both the integer and the floating-point applications. One of
the explanations for DCE’s performance advantage on the
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Figure 9: Speedup provided by different multi-core
prefetching mechanisms over a baseline with stride
prefetching
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Figure 10: Instruction overhead

integer programs is its ability to significantly decrease the
penalty of the branch mispredictions observed by the tar-
get thread. Both EDHT prefetching and future execution
can only reduce load latencies. Nevertheless, if we exploit
the customization capability of EDHT prefetching and use
correlation threads for health and mcf, the geometric mean
speedup of EDHT prefetching increases to 27% and thus
exceeds that of both FE and DCE.

Figures 10 and 11 provide additional insight about the
operation of the evaluated techniques. Figure 10 shows the
number of instructions issued in the helper core relative to
the total number of instructions issued in the regular core.
In case of DCE, we measured this parameter as the total
increase in the number of issued instructions compared to
single-core execution. In almost all programs EDHT exe-
cutes the least number of instructions. The FE overhead
varies from 18% to 70%, while DCE in four cases increases
the total number of executed instructions by more than a
factor of two. This happens mainly due to fetching and exe-
cuting many instructions along a mispredicted branch path.
With the exception of wupwise, DCE always executes more
instructions than EDHT or FE. On average, the DCE tech-
nique executes about 104% extra instructions, compared to
48% for future execution and 18% for markov EDHT.

Figure 11 estimates how often the helper core is busy. In
case of EDHT, we assume that the helper core is idle if it is
fully stalled waiting for the next cache miss event to occur.
For FE and DCE, the idle periods correspond to the cycles
when the helper core’s ROB is empty. DCE keeps both cores
active almost all the time with an average occupancy of 97%.
FE is less demanding and the helper core occupancy varies
between 10% and 85%, resulting in an average occupancy
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Figure 11: Helper core occupancy

of 56%. EDHT prefetching represents the lightest load on
the helper core by activating it on average only 15% of the
time. These results highlight another strength of EDHT-
based helper threading. By virtue of the event-driven thread
communication mechanism, helper threads become active
for a short time only when a cache miss occurs. The other
two hardware techniques are active all the time or/and have
no fast way of exiting helper mode.

The results in this section demonstrate that prefetching
based on EDHT can provide performance improvements that
are on par with those provided by the dual-core execution
paradigm and future execution. At the same time, it re-
quires considerably less complex hardware support and exe-
cutes fewer instructions, thus keeping the helper core avail-
able for other tasks. For example, in a CMP with more than
two cores, several EDHTs could time-share on one helper
core to prefetch for the regular computation threads run-
ning on the other cores.

6. RELATED WORK

Most data prefetching techniques are based on one of two
broad classes of predictors - outcome prediction or operation
prediction.

Outcome-based prefetchers observe the history of the ad-
dresses generated by a program and attempt to detect re-
peating patterns in the address stream. Once such a pattern
is detected, outcome-based prefetchers extrapolate it to pre-
dict the addresses that are likely to be referenced in the near
future. One of the first hardware prefetchers based on out-
come prediction was the stream buffer proposed by Jouppi
[8]. Subsequently, a number of other outcome prediction-
based prefetching techniques have been introduced. Exam-
ples include stride prefetching [3], content-directed prefetch-
ing [2], Markov prefetching [7], and prefetching based on
other value-prediction techniques [11, 20].

To be effective on a wide range of applications, many of
the aforementioned prefetching techniques require relatively
large dedicated tables. While several approaches have been
proposed to reduce the table sizes of differential Markov pre-
dictors [9, 16], these techniques are not applicable to other
important Markov-based algorithms. Moreover, hardware
designs typically cannot be reconfigured, which is why de-
signers prefer to implement conservative prefetching algo-
rithms that are unlikely to hurt any application. These
issues have hampered the introduction of many promising
techniques into commercial microprocessors. EDHT repre-
sents an architectural framework that allows to use available
cores in a CMP to run various prefetching algorithms, elim-

inating the need for dedicated hardware and table space.
We further demonstrate that EDHT prefetching works natu-
rally in combination with hardware stride prefetching, where
the hardware prefetcher handles the simple patterns and the
EDHT thread tackles the more complicated cases. Thus, the
EDHT framework provides unique support for customizable
prefetcher designs.

Similar to EDHT, Solihin et al. [22] propose to emulate
hardware prefetching algorithms in software. Specifically,
they employ user-level memory threads (ULMT) for memory-
side correlation prefetching that are executed on a processor
in the memory controller or in a DRAM chip. We found that
PC information is crucial for the effective operation of Mar-
kov prefetchers, but PCs are not usually available at the
memory interface. Hence, ULMT is algorithmically limited
to exploiting only the global cache-miss history. In addi-
tion, ULMT observes cache misses in issue order. EDHT,
on the other hand, has access to the PCs and observes
the misses in program order, thus enabling it to achieve a
higher prefetching coverage and accuracy. ULMT faces scal-
ability challenges in multi-core environments where many
threads might simultaneously try to access the shared mem-
ory. EDHT naturally scales with the number of cores. Fi-
nally, our EDHT approach mainly relies on the pre-existing
hardware resources of a CMP and conventional user-level
threads while ULMT requires a programmable memory pro-
cessor, OS support to load the prefetching threads into spe-
cialized processors, and compiler support for the memory
processor’s (most likely different) ISA.

The second class of prefetchers is based on operation pre-
diction. Prefetchers of this kind also monitor the program’s
address stream. However, instead of detecting the address
patterns, they try to identify a sequence of operations that
can produce this stream. Speculative precomputation pre-
fetching techniques typically use additional execution pipe-
lines or idle thread contexts in a multithreaded processor to
execute helper threads that perform dynamic prefetching for
the main thread. Such helper threads can be constructed
statically [12, 19, 24] or dynamically by specialized hard-
ware structures [1, 14]. Generally, these techniques create
helper threads by extracting program slices that compute
critical data addresses. Then they insert triggers for these
helper threads into the original program. The execution of
the helper threads dynamically precomputes critical data
addresses ahead of the original program and issues prefetch
requests.

EDHT differs from these approaches in several ways. First,
EDHT threads are spawned on architectural events and as
such do not require any explicit thread triggers to be inserted
into the original program. Second, speculative precompu-
tation threads sometimes require explicit progress synchro-
nization with the main thread during their execution. EDHT
threads require no synchronization with the main thread
once they are launched. Third, EDHT helper threads can
be generated without knowledge about the main program.
Therefore, EDHT threads can provide benefits without the
need for program analysis or recompilation.

Prefetching based on speculative precomputation can po-
tentially provide a higher prefetching coverage since it is not
limited by the predictability of the address stream. However,
if one of the load instructions in the helper thread misses in
the cache, the entire prefetching thread is stalled and cannot
continue prefetching. For example, in a tight loop travers-



ing a long linked list that is stored in memory, speculative
precomputation may be of little help. EDHT threads can
prefetch such linked lists by dynamically linearizing the list
and storing it in main memory. Nevertheless, we believe
speculative precomputation and EDHT to be complemen-
tary.

Several hardware schemes have been proposed to utilize
idle cores of a CMP to speed up single-threaded programs
[4, 23, 26]. In this paper, we show that prefetching based on
EDHT can provide speedups that are competitive with these
approaches while imposing a significantly smaller hardware
and execution overhead.

7. CONCLUSIONS

This paper explores the idea of exploiting available cores
on a chip multiprocessor to improve the performance of in-
dividual program threads. We propose to use extra cores to
execute prefetching threads that can emulate the behavior of
complex outcome prediction-based prefetching algorithms.
However, for this threading technique to be effective, a low
overhead mechanism for communicating microarchitectural
events is required. To accomplish this, this paper presents
the event-driven helper threading (EDHT) framework, which
uses lightweight hardware support for efficient event com-
munication. EDHT solves many problems that have ham-
pered the introduction of complex outcome-prediction pre-
fetching algorithms into commercial systems. Specifically,
the scheme needs minimal hardware modifications, does not
need specialized hardware storage for prediction tables, and
can be easily reconfigured to tailor prefetching algorithms
for individual applications.

Our performance analysis revealed that EDHT-based pre-
fetching provides essentially the same speedup as pure hard-
ware implementations of prefetching algorithms. We further
demonstrate that running prefetching EDHTs on top of a
baseline with a hardware stride prefetcher yields speedups
between 5% and 100% on a wide range of programs. Finally,
we implement two other recently proposed hardware tech-
niques for multi-core execution and show that even without
customization, EDHT prefetching can provide competitive
performance improvements while executing fewer instruc-
tions and requiring considerably simpler hardware support.
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