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Abstract – The latency of large messages often leads 
to poor performance of parallel applications. In this 
paper, we investigate a novel latency reduction tech-
nique where message receivers prefetch messages 
from senders before the matching sends are called. 
When the send is finally called, only the parts of the 
message that have changed since the prefetch need to 
be transmitted, resulting in a smaller message. Our 
message prefetching technique initiates communica-
tion while the sender is still in the computation phase 
and thus overlaps computation with communication to 
hide part of the message latency. We implement and 
evaluate our technique in the context of an MPI run-
time library. The results show that the execution speed 
of five MPI applications improves by up to 24% when 
message prefetching is enabled. 

Keywords: MPI, message prefetching, page protec-
tion, page version, latency reduction 

1.0 Introduction 

Utilizing clusters of workstations with high-
speed interconnection networks for parallel com-
putation can deliver supercomputing performance 
on a broad range of applications at a fraction of 
the cost of specialized hardware. 

To enable portability between the wide variety 
of cluster architectures, while at the same time 
taking advantage of the specifics of the underly-
ing network protocol and hardware, several mes-
sage-passing libraries have been designed. The 
Message Passing Interface (MPI) standard [6] is 
one of the most widely used of these libraries. 
MPI provides a rich set of operations for point-

to-point communication, collective communica-
tion, and synchronization operations. 

The basic MPI receive operation has the fol-
lowing syntax: MPI_Recv (buf, count, dtype, 
source, tag, comm, status), where buf specifies 
the receive buffer, count is the number of ele-
ments to be received, dtype is the data type, 
source specifies the message sender and (tag, 
comm) are used to match a send operation with a 
corresponding receive operation. The status re-
turns a success or error code as well as the source 
and tag of the received message if the receiver 
specifies a wildcard source/tag.  

The MPI_Recv call blocks until a matching 
message has completely arrived. The MPI stan-
dard also includes a non-blocking receive opera-
tion, MPI_Irecv, which returns immediately 
whether or not a message has been received. Ap-
plications later call MPI_Wait to wait for mes-
sage completion. This allows useful computation 
to be inserted between the MPI_Irecv and 
MPI_Wait calls, providing the opportunity to 
hide part of the message latency by overlapping 
the communication with necessary computation. 

We introduce a mechanism that allows mes-
sage contents to be prefetched from sending 
processes by receive operations, even before the 
send operation has been posted. Figure 1 visually 
compares our message prefetching approach with 
a conventional receive, where the vertical pattern 
represents the computation phase, the horizontal 
pattern represents the communication phase and 
the grid pattern depicts overlapped communica-
tion and computation phases. When the receiver 
blocks either inside MPI_Recv or MPI_Wait, our 
message prefetching implementation predicts the 



 

data buffer that will be sent by the next send op-
eration, and prefetches a portion of the data from 
the sender even before a matching MPI_Send is 
called. When the matching MPI_Send is finally 
called, a shorter message can be sent since part of 
the message data has already been delivered to 
the receiver. Hence, our message prefetching 
technique has the potential to hide some of the 
message latency and to improve the performance 
of communication-intensive parallel applications. 
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Figure 1. Messaging step comparison 

We have implemented this message prefetch-
ing technique in our pfMPI runtime library. Ap-
plications linked with this library may see per-
formance benefits without recompilation. pfMPI 
currently supports forty commonly-used MPI 
functions, enough to cover the vast majority of 
MPI applications. 

Previous work has investigated various tech-
niques to improve the performance of MPI librar-
ies. TMPI [8] and TOMPI [1] deliver fast mes-
saging between processes co-located on the same 
node via shared memory semantics that are hid-
den from the application programmer. Other MPI 
implementations [5, 7] exploit user-level net-
works such as VIA [2] or InfiniBand [4] to dras-
tically decrease the overhead of sending mes-
sages, thus reducing small-message latency. 
There has also been research on improving the 
efficiency of collective communication opera-
tions [9, 10]. Prior work by the authors employs 
message compression to increase the effective 
network bandwidth and thus improve the overall 
application performance and scalability [11]. 

Prefetching has previously been studied for re-
ducing data access latency in memory hierarchies 
[14, 16], web pages [15], and distributed shared 
memory systems [17, 18]. To our knowledge, this 
paper is the first to present a viable runtime pre-

fetching technique for message-passing environ-
ments. 

The rest of this paper is organized as follows. 
Section 2 introduces our pfMPI library and de-
scribes the implementation of message prefetch-
ing. Section 3 presents the experimental evalua-
tion methodology. Section 4 discusses results 
obtained with our library on a supercomputer 
cluster at the Cornell Theory Center. Section 5 
presents conclusions and avenues for future 
work. 

2.0 Implementation 

2.1 The pfMPI Library 

We have implemented a commonly used subset 
of forty MPI functions in our pfMPI library, cov-
ering most point-to-point communications, col-
lective communications, and communicator crea-
tion APIs in the MPI specification [6]. The 
library is written in C and provides an interface 
for linking with FORTRAN applications. pfMPI 
utilizes TCP as the underlying network protocol 
and creates one TCP connection between every 
two communicating MPI processes. Each process 
creates a message thread to handle sending to and 
receiving from all communication channels, as 
well as handling all prefetching requests and re-
plies.  

2.2 Message Prefetching Implementation 

When a receiver blocks on an MPI_Recv call, our 
library attempts to prefetch some message data 
before the matching send is called so that less 
data needs to be transferred once the matching 
MPI_Send is finally executed. If partial message 
data has already started to arrive, no prefetch is 
requested.  

The message communication time can be mod-
eled as l0 + l1*n, where l0 is the message startup 
time, l1 is the per byte transfer time and n is the 
message length. Prefetching reduces the l1*n 
term. For small messages, l0 dominates and 
prefetching does not help much. Therefore, a pre-
fetch is requested only if the message size is lar-



 

ger than a predefined threshold (4 kB in our im-
plementation). 

A prefetch request consists of a virtual address 
and size record that predicts the matching send 
buffer in the sender process. The prediction is 
learned from previous sends for each receive. To 
facilitate the prediction, the send buffer’s virtual 
address is included in every normal MPI mes-
sage. When a receive completes, the information 
of the receive and the matching send is logged in 
a hash table (the prefetch prediction table) so that 
a send buffer prediction can be made later for 
prefetch requests. The hash table key entry is 
<receiveBufferAddress, receiveTag, receive-
Source> and the value entry is <sendBufferAd-
dress, sendSize, count>, where ‘count’  is the 
number of times the same sendBufferAddress and 
sendSize have been observed. We make a send 
buffer prediction only when the count is larger 
than two to suppress unreliable predictions. 

When a message thread receives a prefetch re-
quest, it does not simply return the specified 
buffer data in full. Rather, it first tries to guess 
how much data is already complete and sends 
only the completed portion. The current imple-
mentation utilizes virtual page protection to esti-
mate the amount of completed data. We use a 
hash table to maintain a page version number for 
every page whose protection was ever changed.  

When a page’s protection is changed to Re-
adOnly, a subsequent write to that page triggers a 
page access exception and the exception handler 
increases the page version number and changes 
the page protection back to ReadWrite. At the 
end of each normal MPI_Send, the middle and 
the last page of the send buffer are set to Re-
adOnly and both pages’  versions are recorded in 
the lastSendVersion hash table. If the current 
page version of both the middle and the last page 
of the send buffer are different from the versions 
at the last send (as is determined by looking up 
the lastSendVersion hash table), the entire send 
buffer is pre-sent. If only the middle page version 
has changed, only data up to that page is pre-sent. 
Otherwise, nothing is pre-sent. The lastSendVer-
sion hash table key is <sendBufferAddress, send-
BufferSize, sendDestination>, and the value entry 
is <middlePageVersion, lastPageVersion>. 

For MPI_Send to work correctly without hav-
ing to resend all of the pre-sent data, we need to 
know which, if any, of the pre-sent pages have 

been modified by the application since the time 
of the pre-send. We do this by keeping an array 
of version numbers of the pre-sent pages. Pages 
that have not been modified since the pre-send 
are left out of the “normal”  MPI_Send message, 
thus making it shorter and reducing the transfer 
time. 

The prefetched data is directly written into the 
receive buffer that originated the prefetch unless 
some of the requested message has already ar-
rived (late prefetch). When a prefetch is late, the 
sender will usually notice this event (the current 
page version is equal to the lastSendVersion) and 
drop the prefetch request unless the sender fills 
the send buffer again (e.g., in the next iteration). 
In this scenario, the next MPI_Send could use the 
pre-sent data requested for a previous send. 
Therefore, the prefetched data is buffered at the 
receiver if the prefetch is late. In all cases, the 
prefetched data is kept at the receiver until an 
MPI_Send message that exploits the pre-sent data 
arrives or a new prefetch request reaches the 
sender, guaranteeing that no further MPI_Send 
will use the buffered prefetch data. The pre-sent 
data is used by only one MPI_Send to match the 
one-time use guarantee from the receiver. 

In our sample applications, messages are sent 
from the source buffers directly to facilitate mes-
sage prefetching. For applications that first pack 
the message data into an intermediate buffer be-
fore sending, the prefetch requests will most 
likely find the buffer is not filled with new data 
and hence the prefetch request will be dropped, 
limiting the potential of starting sends early. A 
possible solution is to pack the message as it is 
generated in the computation phase instead of 
packing the entire message right before the mes-
sage send. 

3.0 Evaluation Methods 

3.1 System 

We performed all measurements on the Velocity+ 
cluster at the Cornell Theory Center [3]. This 
cluster consists of 64 dual-processor nodes with 
733 MHz Intel Pentium III processors, 256 kB 
L2 cache per processor and 2 GB RAM per node. 
The operating system is Microsoft Windows 



 

2000 Advanced Server. The network is 100Mbps 
Ethernet, interconnected by 3Com 3300 24-port 
switches. 

3.2 Applications 

We evaluate the performance of message pre-
fetching on five representative scientific applica-
tions: PES, M3, N-body, FT, and IS. 

PES is an iterative 2-D Poisson solver. Each 
process is assigned an equal number of contigu-
ous rows. In each iteration, every process updates 
its assigned rows, sends the first and last row to 
its top and bottom neighbors, respectively, and 
receives from them two ghost rows that are 
needed for updating the first and last row in the 
next iteration. We fix the two corner elements 
(0,0), (N-1, N-1) to 1.0 and the other two corner 
elements (0, N-1), (N-1, 0) to 0.0 as boundary 
conditions. 

M3 is a matrix-matrix-multiplication applica-
tion. In each iteration, a master process generates 
a random matrix A i (emulating a data collection 
process), distributes slices of the matrix to slave 
processes for computation, and then gathers the 
results from all slave processes. The slave proc-
esses store a transposed transform matrix B, 
which is broadcast once from the master process 
to all slaves when the computation starts. Each 
slave process first receives matrix A ip, which is 
part of matrix A i, then computes matrix Cip = 
A ip*B and sends Cip to the master. Note that this 
parallelization scheme is by no means the most 
efficient algorithm for multiplying matrices.  

N-Body simulates the movement of particles 
under pair-wise forces between them. All parti-
cles are evenly distributed among the available 
processes for the force computations and the po-
sition updates. After updating the states of all as-
signed particles, each process sends its updated 
particle information to all other processes for the 
force computation in next time step. 

FT and IS are the Fourier Transform and Inte-
ger Sort programs from the NAS NPB bench-
mark [12, 13]. The remaining NAS NPB bench-
marks are left out due to the message packing 
effect discussed at the end of Section 2.2. 

The communication patterns of the five appli-
cations for four-process runs are shown in Figure 
2. The circles represent processes and the lines 

represent the communication between processes; 
each PES process only communicates with at 
most two neighboring processes; each M3 slave 
process communicates with the master process; 
and each N-Body, FT and IS process communi-
cates with every other process. The pseudo code 
for PES, M3 and N-Body is given in Appendix I. 

 

 

(a) PES (c) N-Body, FT, IS (b) M3  

Figure 2. Communication patterns 

Table 1 lists the problem size for each applica-
tion. The number before the comma is the matrix 
size for PES, M3 and FT and the number of par-
ticles or integers for N-Body and IS; the number 
after the comma is the number of iterations or 
simulation time steps. 

Table 1. Problem sizes 

Program Problem Size
PES 5120 X 5120, 2000
M3 1024 X 1024, 400

N-Body 10240, 200
FT 512 X 512 X 512, 20
IS 134217728, 10  

4.0 Results 

We run the five applications with 8, 16, 32, and 
64 processes and one process per node. The run-
times are obtained with two MPI libraries, the 
baseline version of our pfMPI library in which 
message prefetching is disabled and the same li-
brary but with message prefetching turned on. 
The average runtimes are listed in Table 2. FT 
and IS scale only to 16 processes, so the runtimes 
for 64 processes were not collected. 

The speedups over the baseline library are 
plotted in Figure 3 for the five applications. Each 
group of bars shows results for runs with 8, 16, 
32, and 64 processes. We see that the speedups 
usually increase as the number of processes in-
creases. This is due to the increasing communica-



 

tion-to-computation ratio as the number of proc-
esses increases, i.e., the same percentage of 
communication time reduction corresponds to a 
larger percentage of the runtime reduction. 

Table 2. Runtime in seconds 

Appl. MPI Lib. 8 16 32 64
Baseline 737 387 207.5 117.0
Prefetch 735 385 204.1 114.0
Baseline 1491 1142 793 738
Prefetch 1339 939 675 593
Baseline 944 551 483 336
Prefetch 950 554 447 312
Baseline 2451 1378 1475 --
Prefetch 2382 1296 1305 --
Baseline 130.7 91.0 143.9 --
Prefetch 133.0 81.2 127.0 --

IS

PES

M3

N-Body

FT

 

The PES process communicates with only two 
neighbors and its communication-to-computation 
ratio is the lowest of all applications. This ex-
plains why its speedup is relatively small. 
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Figure 3. Speedups due to message prefetching 

M3 has a communication-to-computation ratio 
that is larger than PES’ but smaller than that of 
the other three applications. When the first slave 
process finishes the current iteration, it sends the 
result to the master process (the MPI_Gather call 
in the pseudo code), and then proceeds to wait for 
the next iteration (the MPI_Scatter call in the 
pseudo code). This wait triggers a message-
prefetching request to the master process whose 
prefetch request handler pre-sends the data while 
the application thread waits to gather the results 
from all the slave processes. 

N-Body, FT and IS have a message count per 
communication phase that is proportional to the 
square of the number of total processes, i.e., eve-
ryone sends and receives from every other proc-
ess. Thus, the message prefetching interactions 
are much more complex. Overall, message pre-
fetching delivers a runtime improvement of 6% 
to 12% in most cases. The slowdowns due to 
message prefetching in smaller runs are 0.5% for 
N-Body’s 8- and 16-process runs and 1.7% for 
IS’  8-process run, which is much smaller than the 
performance improvement of 8.1% for N-Body’s 
32-process run and 12.1% for IS’  16-process run. 

 

5.0 Conclusions and Future Work 

In this paper, we present and evaluate a message 
prefetching technique for message-passing sys-
tems. Our MPI library starts the communication 
early, i.e., before MPI_Send is called, thus over-
lapping the computation with useful communica-
tion to hide some of the message latency. The 
performance improvement depends on the com-
munication-to-computation ratio, the load balanc-
ing, and the communication pattern of the appli-
cation. Measurements with our library show 
speedups between 2.6% and 24% on five applica-
tions running on a cluster with 64 nodes. 

In future work, we plan to add heuristics to 
stop sending prefetches for receives that tend to 
prefetch late or where the pre-sent send buffer is 
written by the sender again before the MPI_Send. 
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8.0 Appendix I 

PES Pseudo Code: 
MPI _Comm_r ank ( MPI _COMM_WORLD,  & myRank) ;  
MPI _Comm_si ze ( MPI _COMM_WORLD,  & numPr ocesses) ;  
 
f or  ( i nt  i  = 0;  i  < numI t er at i ons;  i  ++)  
{  

 / /  post  nonbl ocki ng r ecei ves 
 i f  ( myRank > 0)  
  r equest 1 = MPI _I r ecv ( sour ce = myRank -  1) ;  
 i f  ( myRank < numPr ocesses –1)  
  r equest 2 = MPI _I r ecv ( sour ce = myRank + 1) ;  
 
 / /  send t o t wo nei ghbor  pr ocesses 
 i f  ( myRank > 0)  
  MPI _Send ( dest  = myRank – 1) ;  
 i f  ( myRank < numPr ocesses – 1)   
  MPI _Send ( dest  = myRank + 1) ;   
 
 / /  wai t  f or  t he r ecei ve compl et i on 
 i f  ( myRank > 0)  MPI _Wai t  ( r equest 1) ;  
 i f  ( myRank < numPr ocesses – 1)  MPI _Wai t  ( r equest 2) ;  
 
 Comput e ( ) ;  
}  

 

M3 Pseudo Code: 

f or  ( i nt  i  = 0;  i  < numI t er at i ons;  i  ++)  
{  
 MPI _Scat t er  ( ) ;  / /  mast er  di st r i but es wor k t o s l aves 
 
 i f  ( myRank == r oot )  
  Fi l l Mat r i xAWi t hNewDat a ( ) ;  / /  mast er  
 el se 
  Comput e ( ) ;  / /  s l aves 
 
 / /  mast er  col l ect s r esul t s f r om sl aves 
 MPI _Gat her  ( ) ;  
 i f  ( myRank == r oot )  Wr i t eResul t s ( ) ;  
}  

 

N-Body Pseudo Code: 

f or  ( i nt  i  = 0;  i  < numI t er at i ons;  i  ++)  
{  
 MPI _Al l gat her  ( ) ;  / /  exchange l ocal  par t i c l es 
 Updat eLocal Par t i c l es ( ) ;  
}  


