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Abstract - This paper presents a fast GPU implementation 

of a genetic algorithm for synthesizing bimodal predictor 

FSMs of a given size. Bimodal predictors, i.e., predictors 

that make binary yes/no predictions, are ubiquitous in mi-

croprocessors. Many of these predictors are based on fi-

nite-state machines (FSMs). However, there are countless 

possible FSMs and even heuristic searches for finding good 

FSMs can be slow when billions of predictions need to be 

assessed. We designed such a search heuristic that maps 

well onto GPU hardware. It is based on a multi-start genet-

ic algorithm. On our six traces, the resulting FSMs are 1% 

to 29% more accurate than saturating up/down counters. 

On a Kepler-based GTX 680, the CUDA implementation 

evaluates 18 to 73 billion predictions per second, which is 

14 to 18 times faster than a multicore version running on a 

hex-core Xeon X5690 with hyper-threading. 

Keywords: GPGPU, genetic algorithm, automated design, 

finite-state machines, bimodal predictors 

1. Introduction 

Modern processors contain large numbers of finite-state 

machines (FSMs), many of which are used as bimodal pre-

dictors. Such FSMs can be found in branch predictors [13, 

15, 19], memory-disambiguation hardware [20], cache way 

predictors [2], confidence estimators [9], and selectors in 

hybrid predictors [14]. Their purpose is to improve perfor-

mance and/or reduce power consumption [17]. We use 

FSMs to compress program execution traces in real time 

[16]. In nearly all of these applications, the FSM has to 

repeatedly make a 1-bit prediction, i.e., a bimodal predic-

tion, and is then updated with the true 1-bit outcome. E.g., 

for every branch instruction, an FSM might predict whether 

it will be taken or not. After the branch has executed, the 

FSM is updated with the true direction the branch took. The 

goal is to make as many correct predictions as possible. 

However, there are countless choices of FSMs and it is 

generally unknown which FSM is the best for a given task. 

An n-bit FSM holds n bits of internal state, which serves as 

its ‘memory’. The 1-bit prediction is a function of the cur-

rent state, such as choosing one of the n bits. During an 

update, the FSM transitions from the current state to a new 

state based on the input (true outcome) bit. Conceptually, a 

bimodal n-bit FSM implements a transition table like the 

one shown in Figure 1, where the n bits of current state are 

concatenated with the input bit to form an address (index) 

to select a row in the table, which holds the next n-bit state. 

As the boxed-in letters in Figure 1 illustrate, the transition 

table consists of n × 2
n+1

 independent bits, yielding 2 ^ (n × 

2
n+1

) possible n-bit FSMs. Whereas not all bit assignments 

result in meaningful FSMs (e.g., there are redundancies and 

not every FSM can reach all states), the number of possibil-

ities grows super-exponentially with n. There are 16 possi-

ble 1-bit FSMs but 65,536 possible 2-bit and 281.5 trillion 

possible 3-bit bimodal FSMs. Hence, using an exhaustive 

search to determine the best n-bit FSM is not computation-

ally tractable on current workstations for n > 2. 

     

Figure 1. State transition table of an n-bit bimodal FSM 

A saturating up/down counter is a specific bimodal FSM 

that works as follows. Its n-bit state is interpreted as an n-

bit value. When updated, the value is incremented if the 

input bit is 1 and decremented otherwise. However, the 

value is never incremented above 2
n
-1 and never decre-

mented below 0, i.e., it saturates at the minimum and max-

imum. The prediction is the most significant bit (MSB). 

The saturating up/down counter is so called because it 

counts the number of 0 and 1 outcomes that were encoun-

tered in the recent past. If there were many zeros, the count 

is low and the MSB a ‘0’. Conversely, if there were many 

ones, the count is high and the MSB a ‘1’. Hence, this FSM 

essentially makes a majority prediction over the recently 

seen events. The saturating up/down counter works well in 

practice, which is why it is widely used. However, it has 

known weaknesses. For example, it performs poorly on 

sequences of alternating zeroes and ones. Also, it tends to 

make the same prediction after a ‘1 1 0 1’ sequence as it 

does after a ‘1 0 1 1’ sequence. 

Whereas there is generally only one piece of logic that im-



 

plements the FSM in hardware, the n-bit state itself is often 

replicated, resulting in an array of states, to improve the 

prediction accuracy by retaining separate state for different 

instructions, cache lines, etc. Some of the lower bits of the 

program counter (PC) of the executing instruction are typi-

cally used to select an entry in the state array. 

Since performing an exhaustive search for finding the best 

FSM is computationally intractable for all but the smallest 

problem sizes, heuristic approaches for finding near-

optimal solutions need to be used. Examples include simu-

lated annealing [1], genetic algorithms [8], ant colony op-

timization [3], and multi-start search algorithms [5]. We 

use a combination of a genetic and a multi-start algorithm 

because it maps particularly well to current GPUs. 

Our algorithm generates multiple sets of random transition 

tables (i.e., FSMs) and then attempts to improve each set 

independently using a genetic algorithm (GA) until a local-

ly optimal solution is reached. In each GA step, the FSMs 

of the current ‘population’ are evaluated to determine how 

many correct predictions they make on a given input. (The 

input is a trace of 1-bit events and their corresponding PC 

values to index the state array.) Then, the next generation 

of FSMs is created using mutation and crossover opera-

tions. A quarter of the new population is generated by mu-

tating random bits of the best-performing FSM from the 

previous generation, that is, each bit in the state-transition 

table is randomly flipped with 25% probability. The re-

maining three quarters of the new population is generated 

by combining the best FSM with a randomly selected FSM 

from the previous generation (we chose these values be-

cause they result in a simple implementation and good per-

formance). Each of these crossovers uses a different ran-

dom bit mask to select which bits should be taken from the 

best FSM. Each bit has a 75% chance of coming from the 

better ‘parent’ FSMs. The best FSM is copied over into the 

new generation to ensure that the performance never drops. 

This paper makes the following contributions. 

 It presents the first GPUGA for optimizing predictor FSMs. 

 It describes how to efficiently map this algorithm to GPUs 

and compares its performance to multicore CPU code. 

 It provides results for Fermi- and Kepler-based GPUs. 

 It analyzes, visualizes, and discusses the best FSMs. 

 The CUDA source code is publicly available at 

http://cs.txstate.edu/~burtscher/research/FSM_GA/. 

The rest of this paper is organized as follows. Section 2 

explains the CUDA implementation in detail. Section 3 

summarizes related work. Section 4 presents the evaluation 

methodology. Section 5 evaluates the parameter space and 

discusses the performance results. Section 6 concludes the 

paper with a summary. 

2. CUDA implementation 

The combination of a multi-start search with a genetic algo-

rithm for determining well-performing FSMs was chosen 

because it is particularly well suited for GPU acceleration. 

It avoids potential performance hurdles such as uncoa-

lesced memory accesses, thread divergence, and inter-block 

dependencies. Moreover, it naturally maps to the GPU’s 

block and thread hierarchy and takes advantage of the 

block scheduler for load balancing. 

Each population of FSMs is evaluated in its own block. 

This makes the blocks independent except for a single ato-

micMax operation to determine the globally best FSM. 

Each GA-based search terminates when the performance of 

the best FSM has not improved over the previous genera-

tion. This means that some blocks have to evaluate more 

generations than other blocks do, resulting in load imbal-

ance. However, the GPU’s block scheduler automatically 

launches another block as soon as one block has finished 

executing, thus keeping all SMs busy until the scheduler 

runs out of new blocks towards the end. 

For all but very short inputs, the innermost loop that eva-

luates the prediction accuracy is the most time consuming 

code section. It iterates over the trace entries, contains no 

control transfers in its body and is therefore thread diver-

gence-free, reads the trace data in a fully coalesced manner 

from global memory and also performs fully coalesced 

reads and writes of the state arrays in local memory. The 

code exclusively uses integer data and operations. 

Users can parameterize the implementation along four di-

mensions: (1) the population count, which determines the 

number of blocks, (2) the population size, which deter-

mines the number of threads per block, (3) the number of 

entries per state array, and (4) the size of the FSM. For clar-

ity, we only focus on 3-bit FSMs in this paper. 

Given the above assignments and current GPU specifica-

tions, the population count has to be between 1 and 65,535 

on Fermi and between 1 and 2
31

-1 on Kepler, the popula-

tion size needs to be between 1 and 1024, and the number 

of entries in the state arrays has to be a power of two (for 

efficiency) between 1 and 32,768 due to local-memory size 

limitations. All FSM state arrays are initialized to zero. The 

LSB of the FSM’s state is used for making predictions. 

To maximally exploit the GPU hardware, it is advisable to 

select a population count that is substantially larger than the 

number of blocks the SMs can execute concurrently (to 

fully load the GPU and to allow the scheduler to balance 

the load). The population size should be a multiple of 32 (to 

fill warps entirely) and at least 192 on Fermi (because it 

can run up to 8 blocks per SM) and 128 on Kepler (because 

it can run up to 16 blocks per SM) to reach 1536 and 2048 

threads per SM, respectively. Larger population counts and 

sizes result in longer runtimes but potentially also better 

results. The number of entries in the state arrays is likely 

problem dependent, but shorter arrays result in better data-

cache performance and therefore better overall throughput. 

The input trace consists of a sequence of 2-byte values, one 

value per event, where the least significant bit is the true 

outcome and the remaining 15 bits represent the bottom 15 

bits of the PC (that are not always zero). The only con-

straint is that the trace has to fit into the GPU’s main mem-



 

ory. For example, a GPU with 2 GB of DRAM can process 

traces with up to one billion events. 

Even though the GA is orders of magnitude faster for large 

FSMs than an exhaustive search, it still needs to evaluate 
 

state transitions. Assuming a trace with one million events, 

128 populations, a population size of 512, and an average 

of 5 generations, this amounts to 328 billion state transi-

tions to be evaluated. At 30 billion state transitions per 

second on a fast GPU, this takes about 11 seconds to ex-

ecute. The same parameters but with a one-billion-event 

trace result in a runtime of 3 hours, highlighting the impor-

tance of accelerating even genetic algorithms. Note that 

many and/or long traces are necessary to improve the gene-

rality of the FSM. Large population sizes and large popula-

tion counts in particular are needed to improve the predic-

tion accuracy by allowing the GA to diversify, i.e., not get 

stuck in a local maximum. 

The code uses random numbers to initialize the transition 

tables of the first generation of FSM, to determine the mask 

values for the crossover operations, and to select bits to flip 

for the mutation operations. We use the XORWOW pseu-

do-random number generator from the cuRAND library 

that is included with CUDA 5.0. 

For comparison purposes, we also wrote a multicore CPU 

version of our code. It is largely the same as the CUDA 

implementation. In particular, the most time-consuming 

loop that iterates over the trace entries is identical. The 

CPU code parallelizes the loops that iterate over the FSMs 

of a population using OpenMP parallel for directives with 

a dynamic schedule. Since the code uses the rand_r func-

tion from the standard C library to generate the random 

numbers, the results between the C and the CUDA imple-

mentations are not directly comparable, which is why we 

only compare the throughputs. 

3. Related work 

Fogel et al. first developed evolutionary programming [6] 

and considered using it to evolve FSMs for time-series pre-

dictions [7]. Similar to their approach, we evolve FSMs 

using mutations and crossovers of state transition tables to 

find better machines. Holland furthered the application of 

evolutionary techniques by creating Genetic Algorithms 

(GAs), i.e., a framework of genetic operations on popula-

tions of individuals [10]. 

Since the introduction of CUDA, many genetic algorithms 

have been accelerated using GPUs, in particular the fitness 

evaluation, which generally represents the overwhelming 

majority of the computation (also indicated by our results) 

[12]. However, to the best of our knowledge, there is no 

prior work on GPU acceleration of a genetic algorithm for 

determining good FSMs. The following three projects are 

the most similar to our work in that their goal is also to 

automatically generate well-performing FSMs. 

Emer and Gloy introduced an algebraic-style notation to 

express state identification and feedback processes [4]. In 

their genetic programming search, they represent individu-

als by a tree that consists of predictor, function, and termin-

al nodes. The predictors contain dedicated memory (used in 

dynamic predictions), size and index information as well as 

conditions for updating the state of the predictor (feedback 

process). Functions are internal relation operations such as 

XOR or SATUR (saturating add). Terminals handle the 

input and updates for each prediction problem. These nodes 

can be modified in the genetic programming process to 

evolve more sophisticated predictors. E.g., by performing a 

crossover they might combine one predictor’s function with 

another predictor (with some constraints) or modify the size 

of memory allotted for that predictor. The result of the ge-

netic programming search is the most successful predictors 

with the smallest misprediction ratio (fitness measure) as 

well as their configurations. Note that Emer and Gloy em-

ploy genetic programming to search for (arbitrarily com-

plex) candidate predictors whereas we explore candidate 

transition tables of fixed-size bimodal FSMs. 

Sherwood and Calder introduced an approach that automat-

ically builds FSM predictors designed to find efficient n
th

-

order Markov model FSMs for small design areas by ana-

lyzing profile information [18]. They do not use a genetic 

algorithm. Rather, they express sets of compact strings in 

form of regular expressions. By mapping these regular ex-

pressions to FSMs, the FSMs can identify the input strings 

of their corresponding language. A key difference between 

their work and ours is the use of an n
th

-order Markov model 

compared to our genetic search. This results in the cost of 

having to maintain a Markov table for the history of proba-

bilities. Moreover, much of their work is not directed to-

wards performance, which is one of our key objectives. 

Jackson and one of us proposed a pure hardware implemen-

tation of a genetically evolving set of bimodal FSMs for 

confidence estimation that does not require intervention 

from the user or profiling [11]. Confining the method to 

hardware allows for dynamic adaptation but restricts the 

population count and size to very small values compared to 

the software solution presented here. 

4. Experimental methodology 

4.1 Systems and compilers 

We evaluate the CUDA code on two GPUs, a Fermi-based 

GeForce GTX 480 and a Kepler-based GeForce GTX 680. 

The GTX 480 has 15 SMs with 480 CUDA cores in total, 

1.5 GB of global memory, is clocked at 1.4 GHz, and sup-

ports compute capability 2.0. The GTX 680 has 8 SMXs 

with 1536 CUDA cores in total, 2 GB of global memory, is 

clocked at 1.05 GHz, and supports compute capability 3.0. 

The compiler is nvcc version 5.0. The CUDA source code 

is the same for both GPUs, but the compiler flags are ‘-O3 

-arch=sm_20’ for the Fermi and ‘-O3 -arch=sm_30’ for the 

Kepler. The code uses 48 kB of L1 data cache and 16 kB of 

shared memory per SM. 

The CPU code is written in C, parallelized with OpenMP, 



 

and run on two hex-core Xeon X5690 CPUs with hyper-

threading, i.e., 24 threads in total. The two processors are 

clocked at 3.47 GHz, have a 12 MB L3 cache each, and 

share 24 GB of main memory. Each CPU core has dual 32 

kB L1 caches and a 256 kB L2 cache. We use gcc version 

4.4.6 with the ‘-O3 -msse4.2 -fopenmp’ switches. The op-

erating system is 64-bit CentOS version 6.3. 

To maximize the performance, we hardcode the user se-

lectable parameters, i.e., the population count, the popula-

tion size, the number of elements in the state arrays, and the 

FSM size in both the C and CUDA codes. This requires a 

recompilation after every parameter change but results in 

faster program execution. Since each of our experiments 

takes several minutes or longer to run, the approximately 

one second of compilation time is easily amortized. 

4.2 Measurements 

All timing and throughput measurements are performed by 

instrumenting the source code, i.e., by adding code to count 

the number of generations and to read a timer before and 

after the measured code section. We measure the wall time 

of the CUDA kernel or the C function that evaluates the 

FSMs and performs the genetic algorithms – which, on our 

traces, represents essentially all of the total runtime. Each 

experiment is conducted once because tests showed the 

runtimes to be quite stable between multiple runs with 

identical parameters. 

4.3 Trace datasets 

We use six datasets for our evaluation. They were extracted 

from two SPEC programs running on a 64-bit RISC ma-

chine. One program is gcc compiling a 638-line C program 

that implements the Barnes-Hut n-body simulation algo-

rithm. The other program is mcf, a combinatorial optimiza-

tion code running the provided train input. We extracted 

three traces from the user and library code of both pro-

grams (i.e., we did not capture the operating system code, 

which is negligible in SPEC programs). The first trace 

records, for all executed branch instructions, whether they 

were taken or not. The second trace records, for all ex-

ecuted load instructions, whether their effective addresses 

are stride prefetchable. The third trace records, for all ex-

ecuted load and store instructions that hit in a 2-way asso-

ciative data cache, whether the first or the second set holds 

the accessed data. 

Table 1. Trace information 

 

Table 1 summarizes pertinent information about each data-

set. The ‘ones’ column indicates the percentage of the trace 

entries with a true outcome of ‘1’, that is, how biased the 

entries are. The unique PCs reflect how many of the 32,768 

possible PC values occur in the trace. This determines the 

maximum number of state-array entries that will be used. 

However, some PCs occur rarely whereas others are very 

frequent. To account for this variability, we also computed 

the entropy of the PCs: H(PC). Raising 2 to the power of 

this entropy yields a ‘weighted’ number of PCs and there-

fore state-array entries, i.e., a measure of the working-set 

size below which significant aliasing is likely to occur. 

5. Results 

Unless otherwise stated, the default parameters for our ge-

netic algorithm are a population count of 128, a population 

size of 512, and 1024 entries in the state arrays. These pop-

ulation counts and sizes result in good 3-bit FSMs and in 

high throughputs on the GPUs, as they map well to the giv-

en architectures. We picked 1024-entry state arrays because 

that is a reasonable size for hardware tables. 

5.1 FSM quality 

We first evaluate the quality of the best 3-bit bimodal 

FSMs that the genetic algorithm finds by comparing them 

to the 3-bit saturating up/down counter as well as to the 

optimal bimodal 1-bit and 2-bit FSMs, which were deter-

mined with an exhaustive search. Figure 2 plots the mi-

sprediction ratio in percent against the state-array size for 

the four types of FSMs. The left panels refer to gcc and the 

right panels to mcf. The top pair of panels shows the results 

for the branch outcome traces, the middle pair for the stride 

prefetchability traces, and the bottom pair for the cache 

way traces. Note that the y-axes are different for each panel 

and are not zero based to improve readability. 

The optimal 1-bit FSM performs relatively poorly, espe-

cially on the two branch outcome traces, because it retains 

the least amount of state. Nevertheless, it occasionally out-

performs the 3-bit saturating up/down counter on the non-

branch traces, particularly with large state arrays. On mcf’s 

cache way trace, the optimal 1-bit FSM is consistently and 

significantly better than the 3-bit counter, which is the 

worst FSM on that trace. This highlights that saturating 

counters are not always good choices, particularly when 

predicting non-branch events. 

On both branch traces, the optimal 2-bit FSM is, in fact, the 

2-bit saturating up/down counter (with large state arrays). 

Interestingly the 3-bit saturating up/down counter always 

outperforms the 2-bit counter on gcc, but on mcf the 3-bit 

counter is sometimes worse than the 2-bit counter. The 

optimal 2-bit FSM always outperforms the optimal 1-bit 

FSM because the 2-bit FSMs are a superset of all possible 

1-bit FSMs. The optimal 2-bit FSM often beats the 3-bit 

counter except on the gcc branch trace. Yet, the optimal 2-

bit FSM never outperforms the best 3-bit FSM produced by 

the GA, indicating that the genetic algorithm works well. 

In fact, on our traces, the GA always yields the best FSM 

for all state-array sizes tested. These FSMs perform 1% to 

90% better than the optimal 1-bit FSM, 1% to 29% better 

than the optimal 2-bit FSM, and 1% to 41% better than the 

Program Trace type Length [entries] Length [MB] Ones [%] Unique PCs 2H(PC)

gcc branch outcome 60,666,667 115.7 27.0 14,881 2754.7

gcc prefetchability 97,155,132 185.3 48.6 22,631 4476.8

gcc way selection 144,637,560 275.9 50.4 26,420 4900.5

mcf branch outcome 29,474,825 56.2 45.1 943 89.8

mcf prefetchability 38,047,003 72.6 40.0 1,698 142.3

mcf way selection 61,234,883 116.8 51.7 2,562 119.3



 

3-bit saturating counter. Importantly, on all six traces, the 

best 3-bit FSM often outperforms (by up to 26%) the op-

timal 2-bit FSM with twice the state-array entries, making 

the 3-bit FSM the more state-efficient solution. Similarly, 

the best 3-bit FSM often outperforms (by up to 52%) the 

optimal 1-bit FSM with four times as many state-array en-

tries, again making the 3-bit FSM more size efficient. 

Interestingly, on five of the six traces, the best FSMs some-

times perform worse with larger state arrays. This generally 

happens at the low end, where the aliasing in the state array 

is high. Apparently, increased aliasing does not always hurt 

the prediction accuracy. In fact, the mcf cache-way trace is 

best predicted by all four FSM types when they are only 

given one entry in the state array. Clearly, there is a sub-

stantial amount of correlation between the selected cache 

way in this trace, which, overall, is the most difficult-to-

predict of our six traces. 

Notwithstanding the constructive aliasing in very small 

state arrays with 16 or fewer entries, we find that the entro-

py-based minimal number of needed entries (cf. the last 

column in Table 1) accurately indicate the state-array size 

above which the performance improvement flattens out in 

all six panels of Figure 2. 

 

Figure 2. Percent misses (y-axes) for different state-array sizes (x-axes) of four bimodal FSMs on the six traces 
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5.2 Throughput comparison 

This subsection compares the throughput (in billion state 

transitions evaluated per second) of the CUDA code run-

ning on two different GPUs and the OpenMP code running 

on a system with dual hex-core X5690 CPUs and hyper-

threading. For clarity, we only show results for the stride 

prefetchability trace from mcf. 

 

Figure 3. Throughput as a function of the number of state-

array entries 

Figure 3 shows the throughput for different state-array siz-

es. On all three processors, a single state yields the highest 

throughput because the compilers scalarize the 1-entry ar-

rays. The Kepler evaluates 73.6 billion state transitions per 

second (Gtr/s) in this configuration, the Fermi reaches 35.5 

billion, and the two CPUs together peak at 6.9 billion. All 

larger state-array sizes result in lower but relatively stable 

throughputs. The Kepler’s throughput drops to under 40 

Gtr/s for larger array sizes. The Fermi’s throughput hovers 

around 23 Gtr/s. The CPUs’ throughput is very stable at 5.3 

Gtr/s. Thus, the Kepler outperforms the Fermi by about a 

factor of 1.5 to 2 and the CPUs by a factor of 7 to 9 or, in a 

chip-to-chip comparison, one CPU by a factor of 14 to 18. 

 

Figure 4. Throughput as a function of the population size 

Figure 4 compares the throughputs for different population 

sizes. Beyond a population size of 32, the CPUs’ through-

put is almost constant, but the GPUs need a population size 

of at least 512 to reach their full potential. Since the popu-

lation size equals the number of threads in a block, it ap-

pears that a block size under 512 threads results in ineffi-

cient utilization of the GPU hardware. 

 

Figure 5. Throughput as a function of the population count 

Figure 5 shows the throughputs for different population 

counts. Because the OpenMP code is parallelized over the 

FSMs within a population, there is no difference in its 

throughput when varying the number of populations. How-

ever, the CUDA code uses a hierarchical parallelization 

approach to match the GPU hardware. At least 128 popula-

tions (i.e., thread blocks) are necessary to saturate the 

GPUs. Their performance keeps increasing beyond 128 

blocks because larger numbers of blocks result in relatively 

less load imbalance towards the end when the scheduler 

runs out of blocks to allocate to the SMs. Note that the 

Fermi has 15 SMs, which means that a population count of 

8 leaves almost half of the SMs with no work. Because 

SMs can run multiple blocks simultaneously, the Fermi 

needs at least 45 blocks with 512 threads each to fully load 

its SMs and the Kepler needs at least 32 blocks. However, 

at these numbers of blocks, no load balancing is possible as 

all blocks immediately start running. This is why the 

throughput only starts to flatten out at about 128 blocks. 

In summary, the number of entries in the state arrays does 

not affect the throughput much, but the population count 

and size do. On both of our GPUs, the population size 

should be at least 512 and the population count 128 to fully 

exploit the hardware. At these sizes, the Kepler GPU is 

roughly nine times faster than our two high-end CPUs. 

5.3 Parameter-space exploration 

Figure 6 illustrates how the throughput on the Kepler and 

the misprediction ratio of the best 3-bit bimodal FSM de-

pend on the population size, the population count, and the 

number of entries in the state arrays for the six traces. 

Increasing the population size or count greatly improves the 

throughput but only minimally reduces the misprediction 

ratio. This is expected as genetic algorithms generally al-

ready produce a good solution on a single population. The 

purpose of the multiple populations (i.e., the random res-

tarts) is to provide variability to escape local maxima. For 

instance, going from 8 to 1024 populations improves the 

best FSM by 1.3% to 3.8%, and going from a population 

size of 32 to a population size of 1024 improves the best 

FSM by 1.7% to 3.7%. 
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Since the average number of generations is consistently 

between 4 and 6.5 in almost all of our experiments (not 

shown) and the runtime is proportional to the population 

size and count, the runtime can be drastically reduced by 

lowering the population count or the population size while 

only hurting the performance of the best FSM a little. 

The throughput drops above 32 entries in the state arrays 

for the mcf branch outcome trace and especially for the 

three gcc traces. This is the result of the L1 data cache not 

being large enough to hold the active state-array elements. 

Mcf only has a few frequently executed load and store in-

structions, which is why its prefetchability and cache-way 

traces do not suffer from a similar drop in throughput. 

5.4 Best FSMs 

This section visualizes and discusses three of the FSMs that 

our genetic algorithm generated and compares them with 

the saturating up/down counter. We plot the states in square 

boxes and mark them with a ‘P’ in case of a positive (yes, 

true, ‘1’) prediction and an ‘N’ for a negative (no, false, 

‘0’) prediction. The states are numbered for identification 

purposes only. The P states are completely interchangeable, 

as are the N states except for N0, which is the initial state. 

 

Figure 6. Throughput and misprediction ratio on the six traces as a function of different parameters 
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The state transitions are displayed by arrows labeled with 

the frequency of occurrence as a percentage of the total 

number of transitions. Negative labels indicate transitions 

on a ‘0’ input and positive labels on a ‘1’ input. Thus, all 

states have two outgoing edges. 

The first FSM we want to discuss is the best 3-bit FSM for 

the mcf cache-way trace. This FSM is peculiar because it 

outperforms all other FSMs with just one entry in the state 

array. On every other trace, the largest state array yields the 

best results. Figure 7 shows how this FSM operates. 

The most prominent feature of the FSM is its big cycle. 

This is a fundamental difference from a saturating up/down 

counter, which has a linear structure that looks like a doub-

ly-linked list with loops (self edges) at the head and tail. 

The big cycle has several segments that are directional, i.e., 

they have to be traversed in a specific direction (counter-

clockwise in the figure). 

Quite a few states have loops that allow the FSM to stay in 

the same state. The two most frequently used states with 

loops are P3 and N3. The FSM stays in N3 as long as the 

input is ‘0’ but switches to P3 upon encountering a ‘1’. 

However, the reverse is not true. After seeing a ‘0’ in P3, 

the FSM first transitions to N1 before either going to N3 or 

P1. If it goes to P1, it has to traverse the entire cycle to get 

back to P3. N3, P3, and N1 form a small cycle, which is 

traversed about twice as frequently (3.1%) as the big cycle 

(1.5%). N1, P0, and N0 are transitional states that always 

force a transition to a different state. 

The ‘0’ transitions out of P1 and P2 are interesting in that 

they need to be followed by another ‘0’ before the FSM 

starts predicting zero. Similarly, N2 needs to be followed 

by two ‘1’ inputs before the FSM predicts one. The other 

five states provide no such hysteresis and immediately 

switch the prediction as soon as the opposite bit is seen. 

This may explain why saturating counters do not perform 

better on this trace. After all, n-bit counters with n ≥ 2 al-

ways provide some hysteresis when leaving their looping 

states. However, providing no hysteresis, as the simple last-

value predictor does, also does not perform well because 

the optimal 1-bit FSM (cf. Figure 2), which outperforms the 

last-value predictor, is noticeably worse than the best 3-bit 

FSM that the GA found. So this combination of some states 

with and some without hysteresis appears to be important 

for this hard-to-predict trace. 

Moreover, there are several looping states that are followed 

by two forced transitions before reaching the next looping 

state, which also seems to be an important characteristic. In 

fact, the chain P1, P0, and N2 is essentially the inverse of 

the chain N2, N0, and P2, and even the traversal frequen-

cies are similar. The exceptions are P2 and N3. 

Since there is maximal aliasing in this FSM, nothing can be 

derived from it about the behavior of individual instructions 

other than that the correlation between instructions is ap-

parently stronger than any self correlation. 

The second FSM we studied is the best 3-bit FSM for the 

gcc stride-prefetchability trace with 32,768 state-array en-

tries. This FSM is interesting because it has the highest 

accuracy of all the FSMs we tested. Since the optimal 1- 

and 2-bit FSMs and the 3-bit saturating counter also per-

form well, this trace appears to be easy to predict. Looking 

at Figure 8, we observe that the best 3-bit FSM only uses 

six of the eight possible states. P0 and P3 are never visited, 

indicating that this trace is, indeed, simple in structure. Al-

so, folding P2 into P1 would essentially yield a saturating 

counter that only provides hysteresis after seeing many 

zeros in N3 but not after encountering many ones in P1 or 

many zeros in N0. Thus, this FSM has two looping zero 

states, one with (N3) and the other without (N0) hysteresis. 

The third FSM we investigated is the best 3-bit FSM for the 

mcf branch-outcome trace with 32,768 state-array entries. 

It is noteworthy in that it barely performs better than the 3-

bit counter and the optimal 2-bit FSM, but much better than 

the optimal 1-bit FSM. Figure 9 displays its operation. 

Aside from the two very frequent looping states N0 and P1, 

this FSM is quite strange. However, given that the odd 

parts are infrequently traversed and that the FSM does not 

perform much better than the best 2-bit FSM, we surmise 

that the oddities are not particularly important. Neverthe-

less, there are a few interesting observations. It takes four 

transitions to go from one to the other looping state, which 

 

Figure 7. Best 3-bit FSM on the mcf 

cache-way trace 

 

Figure 8. Best 3-bit FSM on the gcc pre-

fetchability trace 

 

 

Figure 9. Best 3-bit FSM on the mcf 

branch-outcome trace 

 



 

is one more than in a 2-bit saturating counter. Both looping 

states provide a hysteresis of one state just like the 2-bit 

counter does. However, N3 also provides a hysteresis on a 

one input and, very strangely, N1 provides a hysteresis on 

either input. In other words, when a ‘0’ is seen in N1, the 

FSM predicts a one next and if a ‘1’ is seen, it predicts a 

zero next. Clearly, the hystereses are important and explain 

why the optimal 1-bit FSM, which cannot provide any hys-

teresis, does not perform well. 

6. Summary and conclusions 

This paper describes a multi-start genetic algorithm for the 

synthesis of well-performing bimodal FSMs for designing 

hardware predictors. The implementation of this algorithm 

is GPU friendly in that it avoids potential performance bot-

tlenecks and exploits the GPU’s capabilities well. 

It takes about a dozen cycles per GPU core to evaluate a 

state transition, i.e., to make a prediction, check its correct-

ness, and update the FSM’s state based on the true out-

come. On a GTX 680, our code assesses up to 73 billion 

state transitions per second. On our six traces with tens to 

hundreds of millions of entries, it takes just seconds to gen-

erate FSMs that outperform the saturating up/down counter, 

a widely-used FSM, in many cases by a large margin. 

Compared to OpenMP code running on a high-end hex-

core Xeon X5690 with hyper-threading, the GPU code is 

14 to 18 times faster. 

We conclude that GPU acceleration is very useful in this 

domain and that our implementation exploits the GPU 

hardware well. Moreover, studying the resulting FSMs can 

provide insight into the structure of the traces, i.e., the na-

ture of the events being predicted, that explains why satu-

rating up/down counters sometimes do not perform well. 
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