

Higher-Order and Tuple-Based
Massively-Parallel Prefix Sums

Sepideh Maleki

Department of Computer Science

Texas State University

San Marcos, TX, USA

smaleki@txstate.edu

Annie Yang

Department of Computer Science

Texas State University

San Marcos, TX, USA

ayang@txstate.edu

Martin Burtscher

Department of Computer Science

Texas State University

San Marcos, TX, USA

burtscher@txstate.edu

Abstract

Prefix sums are an important parallel primitive, especially in

massively-parallel programs. This paper discusses two or-

thogonal generalizations thereof, which we call higher-order

and tuple-based prefix sums. Moreover, it describes and

evaluates SAM, a GPU-friendly algorithm for computing

prefix sums and other scans that directly supports higher or-

ders and tuple values. Its templated CUDA implementation

unifies all of these computations in a single 100-statement

kernel. SAM is communication-efficient in the sense that it

minimizes main-memory accesses. When computing prefix

sums of a million or more values, it outperforms Thrust and

CUDPP on both a Titan X and a K40 GPU. On the Titan X,

SAM reaches memory-copy speeds for large input sizes,

which cannot be surpassed. SAM outperforms CUB, the cur-

rently fastest conventional prefix sum implementation, by up

to a factor of 2.9 on eighth-order prefix sums and by up to a

factor of 2.6 on eight-tuple prefix sums.

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming - parallel pro-

gramming; G.4 [Mathematical Software]: Algorithm de-

sign and analysis, Efficiency, Parallel and vector implemen-

tations

General Terms Algorithms, Performance, Design

Keywords Higher-order prefix sums, tuple-based prefix

sums, carry propagation, GPU programming

1. Introduction

Prefix sums are a fundamental building block in parallel pro-

gramming because they allow many seemingly serial com-

putations to be expressed in a way that can easily be paral-

lelized. The benefit of prefix sums is proportional to the

amount of parallelism, which is why they are widely used in

programs for massively parallel accelerators like GPUs.

Moreover, prefix sums are likely to become more important

in the future as the amount of hardware parallelism grows.

The prefix sum of a sequence of n values is a new se-

quence of n values where the value at position i is the sum

of all the values in the input sequence up to position i. If the

sum includes the input value at position i, it is an inclusive

prefix sum. Otherwise, it is an exclusive prefix sum. The fol-

lowing serial code computes the inclusive prefix sum of the

values in array A and stores the result back into array A.

for (i = 1; i < n; i++) {

 A[i] = A[i] + A[i - 1];

}

This code performs O(n) computations on O(n) data. Due

to the loop-carried dependency, each iteration can only be

executed after the previous iteration has finished, making the

code inherently sequential. However, several approaches for

computing prefix sums in parallel are known [2][12][14].

They only require O(log n) parallel steps. The total work per-

formed by the most efficient of these approaches is O(n), i.e.,

the same as the serial algorithm.

It is the existence of these work-efficient parallel imple-

mentations that make prefix sums so useful. There are many

computations where every result value is data dependent on

previous values, yet these computations can be mapped to or

expressed in terms of prefix sums and therefore executed in

parallel. Examples include radix sort, quicksort, lexical anal-

ysis, polynomial evaluation, stream compaction, histograms,

and string comparison [2]. The work presented in this paper

is motivated by data compression, another domain with al-

gorithms that appear sequential because many of them de-

compress values based on previously decompressed values.

At a high level, most data-compression algorithms trans-

form a linear sequence of input values, e.g., a file, into a

shorter sequence of output values using two main compo-

nents: a data model and a coder. Roughly speaking, the goal

of the model is to accurately predict the next value in the

input sequence. The residual, i.e., the difference between

each actual value and its predicted value, will be close to

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
c© 2016 ACM. 978-1-4503-4261-2/16/06...

http://dx.doi.org/10.1145/2908080.2908089

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

539

zero if the model is accurate for the given data. Note that the

residual sequence contains as many values as the original se-

quence but tends to be more compressible. The residuals are

then compressed using the coder by mapping them in such a

way that frequently encountered values or patterns produce

a shorter output than infrequently encountered items. The in-

verse operations are performed to decompress the data.

A simple yet effective and widely deployed data model is

delta encoding, which computes the difference sequence,

meaning that it replaces each value with the difference be-

tween it and the previous value in the sequence. Delta en-

coding is, for example, used in image compression and es-

pecially in speech compression, where several international

standards exist that are based on it, e.g., G.726. Since delta

encoding by itself does not compress the sequence of values

but makes it easier to compress by other means, it is always

used in combination with a coder algorithm.

It is trivial to compute the difference sequence in a single

parallel step. In fact, delta encoding is embarrassingly paral-

lel when not done in place, i.e., the result needs to be written

into a separate array. However, this is not the case for delta

decoding, where the decoded prior value is needed to decode

the current value. As it turns out, each decoded value

amounts to the sum of all prior differences. Hence, delta de-

coding is tantamount to computing the prefix sum and can,

therefore, be computed in parallel. The following example

illustrates delta encoding (computing the difference se-

quence) and delta decoding (computing the prefix sum).

input values: 1, 2, 3, 4, 5, 2, 4, 6, 8, 10

differences: 1, 1, 1, 1, 1, -3, 2, 2, 2, 2

prefix sum: 1, 2, 3, 4, 5, 2, 4, 6, 8, 10

The standard delta encoder effectively predicts the cur-

rent value to be the same as the prior value in the sequence

and emits the difference. We call this order one, which uti-

lizes a constant extrapolation to predict the values. Higher-

order predictions are also possible and have the potential to

be more accurate. For instance, a second-order approach lin-

early extrapolates the prediction of the current value from

the previous two values, a third-order prediction computes a

quadratic extrapolation based on the prior three values, and

so on. Unsurprisingly, a simple prefix sum is not sufficient

to decode these higher-order encodings (see below).

Moreover, data often appear in tuples. For example, a se-

quence with tuples of size two might look like this:

x0, y0, x1, y1, x2, y2, …, xn-1, yn-1
In tuple-based linear sequences, it is frequently the case

that the values from the same location within the tuples cor-

relate more with each other than values from different loca-

tions. Effective delta encoders take this into account and

compute the difference sequence using the value from the

same location in the prior tuple rather than the immediately

preceding value. For instance, in the above sequence, it

would subtract xk-1 from xk and yk-1 from yk, thus avoiding

the mixing of x and y values. Hence, for a linear sequence

of values representing s-tuples, we need to simultaneously

compute s independent prefix sums, where the mth such pre-

fix sum is over the values at positions m + j∙s for j = 0, 1, 2,

etc. Again, a conventional prefix sum is insufficient to de-

code such tuple-based encodings.

This paper describes two generalizations of prefix sums

to handle these higher-order and tuple-based cases, respec-

tively. Prefix sums have been generalized before to work

with arbitrary binary associative operations instead of just

with sums. That generalization is called a prefix scan. Our

generalizations are orthogonal to each other and to scans,

i.e., all three of them can be used together, in some combi-

nation, or in isolation. For clarity of exposition, we restrict

the discussion to inclusive prefix sums and present and eval-

uate our implementation of higher-order and tuple-based

prefix sums separately.

Since the conventional prefix sum is a special case of

these generalizations, i.e., order one with a tuple size of one,

we started out by designing a new prefix-sum algorithm that

is more suitable as a baseline for implementing the higher-

order and tuple-based support. Our implementation com-

prises a single stage and reads and writes each sequence

value only once from/to global memory, i.e., it is communi-

cation-optimal in main memory. In contrast, some prior al-

gorithms compute partial prefix sums on multiple data

chunks in parallel, then perform a prefix sum over the last

value of each chunk to compute the carries, and finally add

the appropriate carry to every element of each chunk, i.e.,

they require three stages. This approach is inefficient be-

cause it reads and writes all values twice, once in the first

stage and once in the third stage.

We named our prefix-sum algorithm SAM, implemented

it in CUDA, and successfully ran it on various GPUs, data

types, associative operators, and problem sizes ranging from

210 to 230 items, including non-powers-of-two. We selected

three widely-used libraries that support prefix sums, CUB

[5], CUDPP [6], and Thrust [26], for performance compari-

sons on Kepler and Maxwell GPUs. When computing prefix

sums of 32- or 64-bit integers, our SAM code outperforms

all of these libraries on a Titan X for very large problem

sizes. On the older K40, SAM outperforms CUDPP and

Thrust on medium and large problem sizes, but CUB yields

the best performance. Note, however, that CUB employs

GPU-architecture-specific code to boost its performance

whereas SAM uses a fixed algorithm that is implemented in

a single templated CUDA kernel with 100 statements, in-

cluding the support for higher orders and tuples. For very

large inputs, SAM even matches the memory-copy speed on

the Titan X, which cannot be exceeded. Moreover, SAM de-

livers the highest throughputs on the Titan X for higher-or-

der prefix-sum computations. On order eight, it is up to 2.9

540

times faster. It is also faster than CUB on the K40 but only

above about order five. Similarly, SAM outperforms CUB

on tuple-based prefix sums when the tuple size is above

about five elements. On eight-tuples, SAM is up to a factor

of 2.6 faster.

This paper makes the following main contributions.

1) It describes tuple-based prefix sums as well as an im-

plementation thereof that is more efficient for sufficiently

large tuples than alternative implementations because its

register usage is independent of the tuple size.

2) It describes higher-order prefix sums and an imple-

mentation thereof that outperforms alternative implementa-

tions for sufficiently high orders because its number of main-

memory accesses is independent of the order.

3) It presents a latency-hiding technique for propagating

carries between dependent persistent thread blocks that only

requires a constant amount of auxiliary memory, which is

important for higher -order and tuple-based prefix sums.

4) It makes the CUDA implementation of SAM, which

unifies all of the above in a single 100-statement kernel,

available at http://cs.txstate.edu/~burtscher/research/SAM/.

The rest of this paper is organized as follows. Section 2

describes our SAM algorithm, the two prefix-sum generali-

zations, and efficient CUDA implementations thereof. Sec-

tion 3 discusses related work on prefix sums. Section 4 pre-

sents the evaluation methodology and the testbed. Section 5

studies and analyzes the performance results. Section 6 con-

cludes with a summary and future work.

2. SAM Algorithm and Implementation

CUDA-capable GPUs expose three levels of parallelism to

the programmer. The first level is represented by the warps.

Warps are tightly coupled sets of 32 contiguous threads that

execute in lockstep, that is, a thread is either disabled or ex-

ecutes the same instruction (operating on different data) in

the same clock cycle as the other threads in the warp.

Threads can exchange data within a warp using the shuffle

machine instruction without explicit synchronization.

The second level is represented by the thread blocks, each

of which can hold up to 1024 threads in current GPUs. The

actual number of threads per block is chosen by the program-

mer. All threads in a block have access to a software-con-

trolled data cache called shared memory, which allows them

to exchange data at L1-cache speeds. However, such data

exchanges typically require synchronization. The GPU pro-

vides machine instructions for this purpose that implement

thread-block-wide barriers.

The third level is represented by the grid, which consists

of up to two billion thread blocks on modern GPUs. The pro-

grammer has to choose how many thread blocks to launch.

Threads from different blocks can only communicate via

global (i.e., main) memory. There is no grid-wide barrier, so

programmers must resort to locks and/or memory-fence op-

erations to implement any needed synchronization. How-

ever, there is an implied global barrier at the end of each grid.

Communication through global memory is backed by a

shared L2 cache. Since a fully occupied GPU processes tens

of thousands of active threads, the L2 cache only has enough

capacity to hold a few words per thread on average, i.e., less

than the combined capacity of the register files.

Due to warp-based execution, all active threads in a warp

always access memory at the same time. The GPU’s memory
subsystem attempts to optimize such bulk loads and stores.

For example, if the warp threads simultaneously access

words in main memory that lie in the same aligned 128-byte

segment, the hardware merges the 32 reads or writes into one

coalesced memory transaction that is as fast as accessing a

single word. Warps whose threads touch multiple 128-byte

segments result in correspondingly many memory transac-

tions that are executed serially and are therefore slower.

Whereas all threads in a warp and all warps in a thread

block are simultaneously mapped to the GPU hardware, a

GPU will only map as many thread blocks at the same time

as it has resources for (multiprocessors, registers, shared

memory capacity, block contexts, and thread contexts).

Whenever a block finishes running, the hardware will start

working on the next block until the entire grid has been exe-

cuted. This makes it difficult to exchange data between

blocks because some of the blocks may not be running. To

avoid this situation, some CUDA programs query the under-

lying hardware, only launch as many blocks as can simulta-

neously be active, and assign multiple work items to each

thread [11]. SAM uses this persistent-thread model.

2.1 Standard Prefix Sum Implementation

To keep the discussion concise, we only cover inclusive pre-

fix sums and assume thread blocks with 1024 threads in this

section. GPU implementations of prefix sums are typically

hierarchical to maximally exploit the above-mentioned three

levels of hardware parallelism. In particular, the input array

over which to compute the prefix sum is broken up into

chunks of 1024 elements to match the threads per block, and

each chunk is further subdivided into subchunks of 32 ele-

ments to match the threads per warp.

In phase one, each warp computes an independent prefix

sum on its subchunk using a series of shuffle instructions.

The resulting last element from each warp is recorded in an

auxiliary 32-element array in shared memory. In phase two,

after synchronizing the warps within each thread block using

a barrier instruction, a single warp computes the 32-element

prefix sum of the values in the auxiliary array and writes the

results back to the auxiliary array. In phase three, after an-

other barrier, all the threads in each block grab the appropri-

ate entry from the auxiliary array and add it to their result

541

from phase one, thus completing the prefix-sum computa-

tion of the 1024-value chunk assigned to each block.

Since prefix-sum calculations require only a few registers

per thread and the second phase does not exhibit much par-

allelism, high-performance implementations simultaneously

process several values per thread, i.e., the chunk size is a

multiple of 1024 input elements, which improves resource

utilization. Moreover, this approach increases the amount of

parallel work in phase two and better amortizes the barriers.

The algorithm outlined so far only computes prefix sums

at the chunk level. To combine these partial solutions into

the global solution, the same three-phase approach needs to

be applied again at a coarser level of granularity. The last

prefix-sum element from each chunk needs to be stored in

an auxiliary array, the prefix sum over this array has to be

computed, and the resulting carries need to be added to every

value in each chunk. Figure 1 visualizes these steps.

Figure 1. Hierarchical parallel prefix sum algorithm

Since this calculation is performed across blocks, the aux-

iliary array has to be stored in global memory. Moreover,

due to the lack of an explicit barrier across the entire grid,

each phase at this coarser granularity is typically imple-

mented as a separate kernel call (grid launch) to exploit the

implicit barrier at the end of each grid. Note that the values

held in global memory persist between kernel calls, but not

the values in the shared memory or in the registers. Hence,

the intermediate results need to be written to global memory

at the end of each phase and reloaded at the beginning of the

next phase. Very large inputs may require a third, even

coarser level of granularity to compute the full prefix sum.

The prefix-sum implementations of libraries like Thrust

and CUDPP are based on a hierarchical approach similar to

the one described above. They launch multiple kernels when

computing prefix sums over large inputs and read and write

every element twice, once in the first phase and then again

in the third phase, yielding a communication-inefficient im-

plementation that accesses global memory twice as often as

in the ideal case.

2.2 SAM Base Implementation

Our SAM algorithm employs the approach outlined above

for computing intra-block prefix sums, that is, it first com-

putes the prefix sums of each subchunk and then combines

them into a block-wide prefix sum. At this point, it is im-

portant to note that GPUs can only run a few dozen thread

blocks simultaneously. Thus, instead of waiting for all thread

blocks to finish before combining their local sums and using

them to correct each value, SAM writes the local sum of each

thread block to an auxiliary array as soon as it has been com-

puted, executes a memory fence, and then writes a ready flag

to a second auxiliary array to indicate the availability of the

sum. Next, it reads the local sums of all prior thread blocks,

waiting for any that are not yet available, adds them up, and

uses the accumulated carry to correct the values in the block

before writing the final result to global memory. This ap-

proach requires only a single kernel call, i.e., a single phase.

More importantly, the values over which the prefix sum is

computed are only read from global memory once, pro-

cessed, and then written back to global memory once.

Since our SAM implementation uses persistent blocks,

the same thread block processes every kth chunk where k is

the number of persistent thread blocks, which is a hardware

dependent constant. This is key because it enables the next

chunk within a block to benefit from the prior chunk’s accu-
mulated carry value. In particular, the thread block only

needs to incrementally update the prior carry by adding in

the local sum it just computed plus the k-1 local sums from

the intervening chunks (that are processed by the other

blocks), as illustrated in Figure 2. Since k is a small constant,

30 and 48 on our GPUs, this technique lowers the cost of

computing a carry to O(1) per chunk. Furthermore, it makes

it possible to implement the two auxiliary arrays as circular

buffers with 3k elements, meaning that the local sums and

ready flags require O(1) storage and should therefore remain

resident in the shared L2 cache. For performance reasons,

SAM allocates a little over 3k elements in the auxiliary ar-

rays to make their size a power of two.

The up to k-1 local sums (there are fewer for the first few

chunks) and the corresponding up to k-1 ready flags are read

in parallel using coalesced load instructions. To further min-

imize memory accesses, only non-ready flags are polled un-

til they are ready. Polling of multiple non-ready flags also

happens in parallel and using coalesced accesses. Once the

local sums are available, they are read in and summed up in

a prefix-sum-like computation in log(k-1) steps.

The polling delays the processing of later chunks until the

local sums of the earlier chunks are available. This has the

effect of staggering the computation of the chunks. For ex-

ample, block b computing chunk c may have to wait for

block b−1 to compute chunk c−1. However, block b−1 will
later compute chunk c+k−1 and block b will compute chunk

c+k, making it unlikely that it will have to wait again since

Initial Array of Arbitrary Values

Final Values

Gather Top Most Values

Compute Prefix Sum

Add Resulting Carry i to all

Values of Chunk i

T
im

e

Break Array into Chunks

Compute Local Prefix Sums

Auxiliary Array

542

it is already running a little behind block b−1. As illustrated
in Figure 2, this results is a pipeline-like processing of the

chunks, which is quite stable because the control flow and

memory-access patterns of prefix-sum computations are not

data dependent, i.e., these computations take the same

amount of time per chunk irrespective of the actual values

over which the prefix sum is computed.

Figure 2. Pipelined processing of chunks in SAM and con-
stant-time carry computation in persistent thread blocks

This carry-propagation scheme trades off redundant com-

putation for improved latency hiding, which is beneficial.

The straight-forward way of computing the carry in each

thread block and propagating it directly to the next block im-

plies a read-modify-write dependence chain through all the

thread blocks. In contrast, our approach employs a write-fol-

lowed-by-independent-reads pattern, which has a signifi-

cantly lower latency on modern GPUs, as the result section

demonstrates. We believe this technique may also be used to

speed up other producer-consumer GPU codes.

Note that CUB employs an even more sophisticated carry

propagation scheme [18]. However, we chose the technique

described in this section because it requires only O(1) auxil-

iary memory. This is important for supporting higher orders

and tuple values (see below), which require multiple such

arrays, one per order and one per tuple element.

In summary, SAM incorporates the following important

performance enhancements. 1) It minimizes main-memory

accesses through its single-pass approach. 2) It employs per-

sistent threads to help accelerate the carry computations and

to minimize the auxiliary array sizes. 3) The “pipelining”

minimizes waiting due to inter-block communication, i.e.,

SAM is able to hide much of the latency of exchanging the

sum information. 4) It concurrently processes multiple val-

ues per thread to maximally utilize the available register and

shared memory space. This increases the chunk size, which

reduces the total number of local sums that have to be com-

municated between thread blocks.

The SAM algorithm performs better on current high-end

GPUs than the conventional three-phase approach. Addi-

tionally, it is a more suitable baseline upon which to imple-

ment higher-order and tuple-based prefix sums, as the fol-

lowing subsections illustrate.

2.3 Tuple-Based Prefix Sums

Computing a tuple-based prefix sum can be accomplished by

first reordering the elements, i.e., grouping them by location

within the tuple, then performing multiple smaller prefix

sums, and finally undoing the reordering. This approach is

shown in the following example with two-element tuples. ݔ, ,ݕ ,ଵݔ ଵݕ , … , ,ଵ−�ݔ ଵ−�ݕ

reordering ݔ, . ,ଵݔ . . , ,ݕ | ଵ−�ݔ , ଵݕ , … , ଵ−�ݕ

computing independent prefix sums ∑ �ݔ
 , ∑ ଵ�ݔ

 , … , ∑ ଵ−��ݔ
 | ∑ �ݕ

 , ∑ ଵ�ݕ
 , … , ∑ ଵ−��ݕ

undoing the reordering ∑ �ݔ

 , ∑ �ݕ
 , ∑ ଵ�ݔ

 , ∑ ଵ�ݕ
 , … , ∑ ଵ−��ݔ

 , ∑ ଵ−��ݕ

This technique works with all prefix-sum codes. How-

ever, since the two reordering steps require extra memory

accesses, it is slow. For codes that support templated input

elements such as CUB, it is possible to compute tuple-based

prefix sums directly by defining a tuple data type as well as

the plus operator for it, thus avoiding the need for any reor-

dering. However, even this approach results in poor perfor-

mance for large enough tuple sizes that cause the threads to

run out of registers for allocating the tuple elements. This is

why SAM goes a step further. It computes tuple-based prefix

sums without reordering and without the need for special

data types or overloaded operators. It reads the input ele-

ments linearly in a fully coalesced manner, directly com-

putes the tuple-based prefix sum, and stores the result back

to global memory using fully coalesced writes.

Internally, it accomplishes this by using a stride s when

summing up the values, where s is the size of the tuples. For

s = 1, this amounts to the conventional prefix-sum algorithm.

The biggest hurdle in implementing this technique is han-

dling sizes that are not powers of two. Since the number of

threads per warp and the number of threads in a block in

SAM are powers of two, any non-power-of-two size compli-

cates the local-sum propagation for the following reasons.

First, the ith thread in a block does not necessarily process a

Block 0 Block 1 Block 2 Block 3

Flag

array

Local

sum

array

Chunk 0

F0 S0 Sum0 Chunk 1

F1 S1 Carry0 = 0 Sum1 Chunk 2

F2 S2 Carry1 = S0 Sum2 Chunk 3

T
im

e

F3 S3 Chunk 4 Carry2 = S0+S1 Sum3

F4 S4 Sum4 Chunk 5
Carry3 =

 S0+S1+S2

F5 S5
Carry4 =

Carry0+Sum0

+S1+S2+S3

Sum5 Chunk 6

F6 S6
Carry5 =

Carry1+Sum1

+S2+S3+S4

Sum6 Chunk 7

F7 S7
Carry6 =

Carry2+Sum2

+S3+S4+S5

Sum7

Carry7 =

Carry3+Sum3

+S4+S5+S6

543

value that belongs to the same location within a tuple as the

value processed by the ith thread in a different block. Second,

after a thread block has processed a chunk of data and moves

on to processing the next chunk of data, the next value as-

signed to thread i belongs to a different tuple location than

the corresponding value from the prior chunk. To correctly

handle these situations, SAM employs a total of s sum ar-

rays, all of which are implemented as circular buffers. Since

a thread block always computes all of its sums together, a

single ready-flag array is sufficient to indicate whether the s

sums are available. Modulo operations are employed to de-

termine which sum each thread needs to use.

2.4 Higher-Order Prefix Sums

No single-step solution exists that we are aware of for di-

rectly computing higher-order prefix sums. Until such a so-

lution is found, we have to resort to an iterative approach.

Recall that we need higher-order prefix sums to decode

difference sequences above order one. There are closed-form

solutions for generating higher-order difference sequences

in a single step and in parallel. For example, the second-or-

der difference sequence can be directly computed by sub-

tracting the previous element twice and adding the second

previous element to each element in the sequence.

outk = ink - 2∙ink-1 + ink-2
The following numeric example illustrates this computa-

tion. “Missing” values are assumed to be zero.

input values: 1, 2, 3, 4, 5, 2, 4, 6, 8, 10

2nd-order diff: 1, 0, 0, 0, 0, -4, 5, 0, 0, 0

Alternatively, higher-order difference sequences can also

be computed by repeatedly applying 1st-order (the “normal”)
differencing, where outk = ink - ink-1. For instance, the

2nd-order difference sequence is the normal difference se-

quence of the normal difference sequence, as shown here.

input values: 1, 2, 3, 4, 5, 2, 4, 6, 8, 10

differences: 1, 1, 1, 1, 1, -3, 2, 2, 2, 2

diff of diffs: 1, 0, 0, 0, 0, -4, 5, 0, 0, 0

Note that the second sequence, the difference of the dif-

ferences, is the same as the directly computed second-order

difference sequence above. In general, the qth-order differ-

ence sequence is identical to the sequence obtained when ap-

plying first-order differencing q times in a row. Since a con-

ventional prefix sum is the inverse operation of first-order

differencing, it follows that iteratively computing q prefix

sums will decode a qth-order difference sequence.

Utilizing this iterative approach in conjunction with the

conventional three-phase prefix-sum algorithm results in 2q

global memory reads and 2q global memory writes for each

input element, making it quite inefficient. The baseline SAM

implementation only reads each value once, computes the

results, and writes each value once. This makes it possible to

merely iterate the computation stage q times, which does not

increase the number of global memory accesses. Thus, SAM

is well suited for higher-order prefix sums because it retains

its main-memory communication-optimality for higher-or-

der prefix sums. Hence, SAM’s performance advantage over
other implementations increases with higher orders.

As is the case for tuple-based prefix sums, the higher-or-

der support in SAM uses additional auxiliary sum arrays, one

per order. Moreover, the ready “flags” no longer hold Bool-

ean values but a count that is incremented in each iteration

and thus indicates which iterations’ local sums have already
been computed. Employing counts instead of Booleans

means that only one count array is needed, regardless of the

order. It is, in fact, also possible to implement higher-order

prefix sums with just one sum array. However, this approach

would incur additional dependences and latencies as each

block would have to wait until the later blocks have read the

sum information before it can safely be overwritten with the

sum produced by the next iteration.

2.5 Algorithmic Complexity of Carry Propagation

The SAM algorithm incorporates a work-efficient parallel

prefix sum computation. This is straightforward to see as the

amount of computation per chunk is constant and the algo-

rithm processes O(n) chunks.

However, the amount of work for processing the carries

depends on hardware parameters, making it worthwhile to

study the algorithmic complexity of SAM’s carry-propaga-

tion approach in more detail. Since hardware parameters are

fixed, this work is constant for a given GPU, but it can vary

between different types and generations of GPUs.

The complexity of processing the carries is O(af∙n),

where af is an architectural factor that captures the average

amount of carry-propagation work per input element. To cal-

culate af, we first need to determine c, the total number of

carries. As mentioned earlier, each chunk of data requires k

carries, where k is the number of executing thread blocks.

Assuming that each chunk contains e elements, there will be

n over e chunks. Thus, we obtain c = k∙n / e.

The number of concurrently executing thread blocks (k)

is, in turn, determined by m, the number of streaming multi-

processors (SMs) in the GPU, and b, the number of thread

blocks needed per SM to fully occupy the GPU. So, k = m∙b.

The number of elements per chunk (e) is determined by

how many input elements a thread block can simultaneously

process. This depends on t, the number of threads per thread

block, and r, the number of registers available to each thread.

Hence, e = t∙O(r). We use O(r) rather than r because some

registers are needed for performing computations and are not

available for holding input elements.

By substitution, we get c = k∙n / e = m∙b∙n / (t∙O(r)). In

words, this means the total number of carries that SAM has

544

to process is proportional to the number of SMs in the GPU,

the number of thread blocks running on each SM, and the

number of elements in the input; it is inversely proportional

to the number of threads per thread block and the number of

registers per thread. Since af is proportional to the amount of

work per input item for processing the carries, i.e., af ≈ c / n,

we find that af = O(m∙b / (t∙r)).

To gain insight into how the architectural factor af might

change in the future, we studied the four existing generations

of compute-capable GPUs from NVIDIA. The four genera-

tions, from oldest to youngest, are called Tesla, Fermi, Kep-

ler, and Maxwell. For each generation, we selected the best-

performing single-chip compute GPU. Since there are no

Maxwell-based compute GPUs yet, we use the best-perform-

ing graphics GPU in this case. The pertinent hardware pa-

rameters for each GPU, along with the corresponding archi-

tectural factor, are listed in Table 1.

Table 1. Hardware parameters of the best-performing sin-

gle-chip NVIDIA GPUs from different generations (m =

number of SMs, b = minimum number of thread blocks per

SM to fully occupy GPU, t = threads per block, r = number

of registers available per thread, af = resulting architectural

factor scaled by a thousand for better readability)

The trend over time is clearly towards more registers per

thread and more threads per thread block. The minimum

number of thread blocks per SM to reach maximum occu-

pancy has remained constant so far. The number of SMs per

GPU has been decreasing except for the latest generation,

where it increased again. Overall, the architectural factor has

been dropping rapidly over the first three generations of

GPUs but increased again in the current generation. Note,

however, that the Titan X is not a compute GPU.

We conclude that it is unclear how the architectural factor

will develop in the future. If it decreases, the relative perfor-

mance of SAM’s carry-propagation scheme over approaches

that propagate a single carry from chunk to chunk should in-

crease in the future. If it increases, SAM’s carry-propagation

scheme may have to be replaced by a more efficient O(n)

scheme (cf. Section 5.4), which would trivially make the en-

tire SAM algorithm O(n), regardless of the GPU used.

It should be noted, however, that the O(af∙n) complexity

analysis in this section still omits some constant factors and

therefore does not fully capture the actual runtime. For ex-

ample, the computation-over-memory-access-speed ratio is

also important as SAM’s carry-propagation scheme trades

off extra computation for reduced memory latency.

3. Related Work

Scan operations were first proposed by Iverson as part of the

APL programming language [16]. Blelloch is one of the pri-

mary researchers to have worked extensively on prefix sums.

He describes scans as an important primitive in parallel com-

puting and how they can be used to simplify the description

of algorithms [1]. He investigated the effect of including cer-

tain scan operations as “unit-time” primitives in P-RAM

models. The study concludes that scans improve the asymp-

totic running time of many algorithms by an O(log n) factor,

greatly simplify the description of many algorithms, and are

significantly easier to implement than alternative techniques.

He also defines the all-prefix-sums operation (which we

simply call “prefix sum”), shows how to implement it in P-

RAM, and illustrates various applications thereof, including

sorting, lexical analysis, string comparison, polynomial

evaluation, and stream compaction [2].

A number of studies about parallel prefix sums and their

applications have been published. For example, Blelloch de-

veloped many efficient algorithms that are based on scans

such as radix sort [1]. Ladner and Fischer introduced a gen-

eral method for deriving efficient parallel solutions to the

fixed-length problems solved by a finite-state transducer,

which they simulate using prefix scans [17].

The earliest GPU implementations of scans were written

using pixel shaders for “non-uniform stream compaction”

[15] and “summed-area table generation” [13]. Sengupta et

al. developed the first CUDA program of a segmented scan

by extending some of their earlier work [24]. Dotsenko et al.

[7] ported to CUDA the algorithm written by Chatterjee et

al. for a Cray Y-MP supercomputer [3].

Sengupta et al. were the first to publish a work-efficient

O(n) GPU implementation of a scan [25]. Together with

other co-authors, he then introduced a block-level parallel

scan algorithm for GPUs that simplifies earlier methods con-

siderably [22]. Later, they produced some of the most effi-

cient scan and segmented scan implementations for GPUs by

tailoring their algorithm to the natural granularity of the ma-

chine and minimizing synchronization [23]. Greß et al. in-

troduced an alternative scan implementation for steam com-

paction that also exhibits O(n) work complexity [9][10].

To the best of our knowledge, no prior study on tuple-

based prefix sums or their implementation exists. Whereas

the higher-order prefix sums discussed in this paper have

also not been published before, they are a form of a linear

recursive filter [8]. Several optimized GPU versions of linear

recursive filters, which represent a generalized prefix scan,

exist [4][21]. However, these implementations are based on

the communication-inefficient three-phase approach.

3.1 Recent Prefix-Sum Implementations for GPUs

There have been quite a few studies of parallel prefix scans

in recent years, and there exists a number of libraries that

GPU generation m b t r af * 1000

C1060 Tesla 30 2 512 16 7.32

M2090 Fermi 16 2 768 21.3 1.96

K40 Kepler 15 2 1024 32 0.92

Titan X Maxwell 24 2 1024 32 1.46

545

support this primitive. Merry studied several of these librar-

ies and compared their performance [19]. Of the libraries he

investigated, he found CUB to provide the most efficient im-

plementation of prefix sums on GPUs (see below).

The CUDA Data Parallel Primitives (CUDPP) library im-

plements the classic three-phase approach described in Sec-

tion 2.1 [6]. As such, it performs 4n global memory accesses

when processing an input with n elements. Similarly, the

Thrust library, which is part of the CUDA Toolkit, employs

a two-pass scan-then-propagate technique that also requires

4n data movement [26]. As a consequence, both of these li-

braries do not perform well on large inputs.

MGPU is more efficient and only performs 3n global

memory accesses [20]. It achieves this because the first pass

of its two-pass reduce-then-scan strategy is read-only.

StreamScan implements a matrix-based intra-block scan

approach that is communication efficient and only requires

2n data movement [27]. It runs in a single computation phase

and, therefore, does not need any global barriers and only a

single kernel invocation. Its implementation is optimized to

fully utilize the available register space. Moreover, the au-

thors designed an auto-tuning framework to optimize the im-

plementation for both AMD and NVIDIA GPUs, which they

can do as StreamScan is written in OpenCL. SAM adopts all

of these ideas, including the auto-tuner, which runs when

SAM is installed and determines the optimal number of input

elements to allocate to each thread for different ranges of

problem sizes. However, SAM is implemented in CUDA

and uses a different algorithm.

As mentioned above, the CUB library from NVIDIA cur-

rently provides the fastest GPU implementation of prefix

sums. It also incorporates a work-efficient, single-pass

method with 2n data movement [18]. It performs very well

across different GPU types because it comprises multiple al-

gorithms. In particular, it employs different kernel speciali-

zations, grain sizes, local scan algorithms, and strategies for

rearranging data between threads for each GPU architecture.

Moreover, parts of it are implemented in PTX assembly. As

a consequence, CUB’s code base is much larger, more com-

plex, and less portable than SAM’s single 100-statement ker-

nel that is written entirely in CUDA. It should be noted,

though, that SAM uses auto-tuning, which CUB does not re-

quire. However, this auto-tuning makes it likely that SAM

will perform well on future GPUs whereas CUB may need

to be updated with appropriate specializations.

CUB uses a variable look-back strategy for propagating

the carries to hide the communication latency. This decou-

pled chaining, which performs redundant carry computa-

tions similar to SAM’s approach, includes an opportunistic

short-circuit in the event that the full carry is already availa-

ble. In other words, SAM actively propagates the carries

through each thread block whereas CUB laggardly pulls the

running carry along in global memory. While CUB’s ap-

proach may result in fewer redundant computations, it adds

a timing dependency. As a consequence, SAM computes a

deterministic result on a given GPU and input even for

pseudo-associative operators such as floating-point addition

whereas the precise order in which the prefix-sum operators

are applied by CUB may vary from one run to the next.

4. Experimental Methodology

In addition to SAM 1.1, we evaluate the following three

widely-used implementations of prefix sums. The first is

from the Thrust library, which is included in the CUDA

Toolkit 7.5 [26]. The second is from the CUDPP library 2.2

[6]. The third is from the CUB library 1.5.1 [5].

We evaluate the four codes on prefix sums over 32-bit

and 64-bit integer sequences with between one thousand and

one billion elements. We only measure the kernel runtime,

from which we compute the throughput (items processed per

second). We repeated each experiment three times and report

the average performance.

We present results for two GPUs. The first is a GeForce

GTX Titan X, which is based on the Maxwell architecture.

The second is a Tesla K40c, which is based on the Kepler

architecture. The Titan X has 3072 processing elements dis-

tributed over 24 multiprocessors that can hold the contexts

of 49,152 threads. Each multiprocessor has 96 kB of shared

memory and 48 kB of L1/texture cache. The 24 multiproces-

sors share a 2 MB L2 cache as well as 12 GB of global

memory with a theoretical peak bandwidth of 336 GB/s. We

use the default clock frequencies of 1.1 GHz for the pro-

cessing elements and 3.5 GHz for the GDDR5 memory. The

K40 has 2880 processing elements distributed over 15 mul-

tiprocessors that can hold the contexts of 30,720 threads.

Each multiprocessor has 48 kB of texture memory as well as

64 kB of cache that is split between the shared memory and

the L1 data cache. The 15 multiprocessors share a 1.5 MB

L2 cache as well as 12 GB of global memory with a peak

bandwidth of 288 GB/s. We disabled ECC protection of the

main memory and use the default clock frequencies of 745

MHz for the processing elements and 3 GHz for the GDDR5

memory. Both GPUs are plugged into 16x PCIe 3.0 slots in

the same system, which has dual 10-core Xeon E5-2687W

v3 CPUs running at 3.1 GHz. The host memory size is 128

GB and the operating system is CentOS 6.7.

We compiled all codes with nvcc 7.5. Even though the

Titan X supports compute capability 5.2, we used the

“-O3 -arch=sm_35” compiler flags for both GPUs as this re-

sulted in slightly faster code on the Titan X. This is not the

case for CUB, so we used “-O3 -arch=sm_52” instead.

5. Results and Analysis

We first investigate SAM’s performance on conventional
prefix sums, which is tantamount to a tuple size of one and

an order of one. Then we separately evaluate its performance

546

for orders above one and tuple sizes above one. Note, how-

ever, that SAM also fully supports higher-order prefix sums

and scans with tuple sizes above one.

5.1 Conventional Prefix Sums

This subsection investigates the throughput of normal pre-

fix-sum computations on inputs with power-of-two sizes be-

tween 210 and 230 as well as with power-of-ten sizes between

103 and 109. Powers of two are frequently used in practice.

We include the powers of ten to show how well the various

codes perform on some other sizes. Note that none of the

tested codes support input sizes above 4 GB, i.e., 230 items

for 32-bit integers and 229 items for 64-bit longs.

Figure 3 shows the throughput in billions of 32-bit words

processed per second on the Titan X for Thrust, CUDPP,

CUB, and our implementation of SAM.

Figure 3. Prefix-sum throughput of 32-bit integers for dif-

ferent problem sizes on the Titan X

SAM and CUB outperform the other two approaches on

medium and large inputs because of their communication

optimality, i.e., the 2n versus 4n main-memory accesses.

Hence, for problem sizes above about 222, they provide about

twice the throughput of Thrust and CUDPP. Note that

CUDPP does not support problem sizes above 225. Thrust

performs better than SAM on inputs of up to 212 items,

CUDPP on inputs of up to 219 items, and CUB on inputs of

up to 227 items. These codes are expected to perform better

than SAM because SAM includes support for higher orders

and tuple values, which the other implementations do not.

The algorithm used by CUB is superior to SAM on small and

medium inputs, but CUB includes assembly instructions.

SAM delivers throughputs of up to 33 billion integers

processed per second, which is higher than the maximum

throughput of the other codes. We surmise that this good per-

formance is a consequence of SAM’s constant amount of

auxiliary memory. While SAM accesses its auxiliary

memory O(n) times just like the other algorithms do, using

O(1) sized circular buffers results in better locality and thus

more cache hits. As a result, the benefit of SAM’s approach

increases for larger inputs compared to other implementa-

tions that require a linear amount of auxiliary memory. Since

every four-byte item is read and written once, this amounts

to 264 GB/s of global memory throughput, which is 78.6%

of the theoretical peak bandwidth of the Titan X’s main
memory. Interestingly, simply copying the input array to the

output array using cudaMemcpy, i.e., without performing

any computation, delivers the same throughput. This demon-

strates that SAM is truly communication optimal (as well as

fully memory bound) for large inputs. It is also worth noting

that 264 GB/s is several times higher than the theoretical

peak memory bandwidth of current CPU systems, meaning

that GPUs can compute prefix sums over large inputs faster

than multicore CPUs.

Figure 4 shows the throughput in billions of 64-bit words

processed per second on the Titan X for Thrust, CUDPP,

CUB, and SAM.

Figure 4. Prefix-sum throughput of 64-bit integers for dif-

ferent problem sizes on the Titan X

The performance behavior on 64-bit longs shown in Fig-

ure 4 and the resulting findings are nearly identical to those

of the 32-bit integers from Figure 3. However, the absolute

throughputs in items per second are about half as high. This

is expected since twice as many bytes need to be accessed

and processed per word. In fact, SAM again matches the

cudaMemcpy throughput for the largest inputs.

Figure 5 shows the throughput in billions of 32-bit words

processed per second on the K40 for Thrust, CUDPP, CUB,

and SAM.

The K40 throughputs are substantially lower for all four

algorithms than those of the newer Titan X. SAM is faster

than Thrust and CUDPP on medium and large inputs on the

K40. However, CUB exceeds SAM’s performance by about
50% on the large inputs. Relatively speaking, the SAM im-

plementation appears less suited for this older GPU than the

other three algorithms. We believe this is at least in part due

to SAM’s carry-propagation scheme, which trades extra

computation for improved memory latency hiding. Since the

K40’s memory is clocked 4.0 times faster than its processing

547

elements (PEs) but the Titan X’s memory is only clocked 3.2
times faster than its PEs, trading off extra computation is

more advantageous on the Titan X.

Figure 5. Prefix-sum throughput of 32-bit integers for dif-

ferent problem sizes on the K40

Figure 6 shows the throughput in billions of 64-bit words

processed per second on the K40 for the four algorithms.

Again, the general trends for the 64-bit data are similar to

those of the 32-bit data, including SAM’s drop in relative
performance. The absolute throughputs are about a factor of

two lower due to the aforementioned reasons.

Figure 6. Prefix-sum throughput of 64-bit integers for dif-

ferent problem sizes on the K40

For the most part, the performance behavior as a function

of the problem size is similar for all tested prefix-sum imple-

mentations, both word sizes, and the two GPUs. In particu-

lar, the throughput is low for small problem sizes, increases

rapidly for medium problem sizes, and is high and remains

fairly stable for large problem sizes. Since our GPUs require

over 30,000 and 49,000 threads, respectively, to fully occupy

the hardware, the throughput is low for problem sizes that

are too small to even allocate a single input element to each

thread. Above that threshold, the performance increases

quickly with increasing problem size as more and more input

elements can be assigned to each thread, which results in bet-

ter utilization of the hardware, most notably the 32 registers

per thread. Above problem sizes of about 223, the hardware

utilization starts to saturate and the throughput plateaus.

In summary, SAM performs well across different word

sizes and GPU architectures. On medium and large inputs, it

outperforms Thrust and CUDPP by a significant margin. In

a few cases, it even beats CUB. This is particularly surpris-

ing given that we designed SAM as a baseline algorithm to

simplify the implementation of higher-order and tuple-based

prefix sums, whose performance we evaluate next.

5.2 Higher-Order Prefix Sums

This subsection investigates the throughput of higher-order

prefix-sum computations. Since CUB is the currently fastest

GPU implementation of conventional prefix sums, we only

show results for CUB and SAM. As described in Section 2.5,

SAM implements higher-order prefix sums by internally it-

erating over the computation code while only reading the in-

put from and writing the output to main memory once. In

contrast, using CUB necessitates iterating over all of its code

to compute higher-order prefix sums.

Figure 7 shows the throughputs in billions of 32-bit words

processed per second on the Titan X for orders two, five, and

eight. The single digit after the algorithm name in the legend

indicates the order. The conventional prefix sum has order

one. We focus on small orders as larger orders are less likely

to be used in practice. For improved readability, we do not

include results for orders 3, 4, 6, and 7 in the figure. How-

ever, we verified that those results follow the same trends.

Figure 7. Higher-order prefix-sum throughput of 32-bit in-

tegers for different problem sizes on the Titan X

In general, the throughputs decrease as the order increases

due to the growing number of iterations. Since SAM iterates

over only part of its code, it is superior to CUB. The perfor-

mance advantage increases with higher orders because SAM

always executes the same number of global-memory ac-

cesses whereas CUB accesses main memory more often for

higher orders. For example, with 227 items, SAM outper-

forms CUB by 52% on order two, 78% on order five, and

548

87% on order eight. On some small input sizes with order

eight, SAM is almost three times faster than CUB.

Figure 8 shows the higher-order throughputs in billions

of 64-bit words processed per second on the Titan X. Again,

the single digit after the algorithm name indicates the order.

Expectedly, the throughputs on 64-bit values are about

half of the throughputs with 32-bit values. The relative be-

havior and trends are nearly identical to those discussed

above for the 32-bit words. Even the speedup factors of

SAM over CUB are very similar.

Figure 8. Higher-order prefix-sum throughput of 64-bit in-

tegers for different problem sizes on the Titan X

Figure 9 shows the throughputs in billions of 32-bit words

processed per second on the K40 for orders two, five, and

eight. The throughputs are substantially lower on this older

GPU than on the Titan X. Moreover, CUB clearly outper-

forms SAM on order two, outperforms it a little on order

five, and is tied on order eight. The reason for SAM’s poorer
performance relative to CUB on the K40 is that the baseline

performance of CUB is much higher than that of SAM (cf.

Figure 5). Hence, it takes more iterations, i.e., higher orders,

before SAM starts to exceed CUB’s performance.

Figure 9. Higher-order prefix-sum throughput of 32-bit in-

tegers for different problem sizes on the K40

Figure 10 shows the higher-order throughputs in billions

of 64-bit words processed per second on the K40. Again, the

throughputs are much lower for 64-bit values than they are

for 32-bit values. However, SAM’s relative performance
over CUB is higher because the baseline performance ad-

vantage of CUB over SAM is a little smaller for 64-bit val-

ues than for 32-bit values (cf. Figure 6). As a consequence,

on order eight, SAM is already faster than CUB.

Figure 10. Higher-order prefix-sum throughput of 64-bit

integers for different problem sizes on the K40

In summary, SAM delivers the highest throughputs on the

Titan X for higher-order prefix-sum computations. It is also

faster than CUB on the K40 but only above a certain order.

Due to its communication-efficient design, SAM’s perfor-
mance advantage increases with higher orders over CUB.

5.3 Tuple-Based Prefix Sums

This subsection investigates the throughput of tuple-based

prefix-sum computations. Since the input size needs to be an

integer multiple of the tuple size, some of the inputs are ac-

tually a few elements shorter than indicated in the figures.

Again, we only show results for CUB and SAM in this sub-

section. SAM implements tuple-based prefix sums by inter-

nally computing multiple strided prefix sums. To perform

tuple-based prefix-sum computations using CUB, we de-

clared a tuple data type and a corresponding plus operator.

Figure 11 shows the throughputs in billions of 32-bit

words processed per second on the Titan X for tuples holding

two, five, and eight words. The single digit after the algo-

rithm name in the legend indicates the tuple size. The con-

ventional prefix sum has one word per tuple. We focus on

small tuple sizes as they are more frequently used in practice.

For improved readability, we do not include results for 3, 4,

6, and 7 words per tuple. However, we verified that these

results are in line with the results shown.

Both CUB’s and SAM’s performance decreases with
larger tuple sizes. In case of SAM, this is primarily due to

the larger number of carries that need to be maintained.

549

However, SAM’s throughput decreases more slowly with in-
creasing tuple size, which is why, on the large inputs, it is

17% slower than CUB on two-tuples but 20% faster on five-

tuples and 34% faster on eight-tuples. In other words,

SAM’s direct approach of computing tuple-based prefix

sums becomes more beneficial with larger tuple sizes. There

are two main reasons for this. First, larger tuple sizes in-

crease the register pressure in CUB as entire tuples are as-

signed to each thread. SAM’s approach allocates the same
number of values per thread independent of the tuple size.

Second, larger tuple sizes result in progressively less coa-

lesced memory accesses in CUB as multiple consecutive val-

ues are accessed by the same thread. In contrast, SAM al-

ways accesses consecutive values by contiguous threads,

i.e., in a fully coalesced fashion, regardless of the tuple size.

Figure 11. Tuple-based prefix-sum throughput of 32-bit in-

tegers for different problem sizes on the Titan X

Figure 12. Tuple-based prefix-sum throughput of 64-bit in-

tegers for different problem sizes on the Titan X

Figure 12 shows the tuple-based throughputs in billions

of 64-bit words processed per second on the Titan X. Ex-

pectedly, the performance is again roughly half of the per-

formance with 32-bit values. Interestingly, the throughput on

the 64-bit words is nearly the same for two, five, and eight

words per tuple. We are not sure why this happens for 64-bit

inputs on the Titan X but not on the K40 or for 32-bit inputs,

but we consistently obtain these results. Nevertheless, SAM

is again slower than CUB on two-tuples but faster on five-

tuples and much faster on eight-tuples for the large inputs.

Figure 13 shows the throughputs in billions of 32-bit

words processed per second on the K40 for two-, five-, and

eight-tuples. Unsurprisingly, the throughputs are signifi-

cantly lower than those on the Titan X. Moreover, the rela-

tive performance of SAM over CUB is again noticeably

smaller on the K40 since the baseline performance of CUB

is so much higher on this GPU. As a consequence, CUB is

faster on both two- and five-tuples. Nevertheless, SAM still

outperforms the CUB-based code on the eight-tuples.

Figure 13. Tuple-based prefix-sum throughput of 32-bit in-

tegers for different problem sizes on the K40

Figure 14 shows the tuple-based throughputs in billions

of 64-bit words processed per second on the K40, which are

about half that of the 32-bit values. Moreover, the benefit of

SAM over CUB is a little higher, and SAM now outperforms

CUB already on the five-tuples.

Figure 14. Tuple-based prefix-sum throughput of 64-bit in-

tegers for different problem sizes on the K40

In summary, SAM’s performance is generally lower for

larger tuples as more carries need to be maintained. How-

ever, its algorithm results in smaller throughput decreases

550

for larger tuple sizes than that of CUB and therefore eventu-

ally exceeds CUB’s performance, which happens around
five elements per tuple.

5.4 Carry Propagation

This subsection investigates SAM’s throughput with two

different carry-propagation schemes on conventional prefix

sums. For brevity, we only show results for 32-bit values.

As discussed in Section 2.2, SAM’s approach trades off
extra computations for better latency hiding. To study the

effectiveness of this approach, we also evaluate SAM with a

simple carry chain, which we refer to as “chained”. In the
chained implementation, every thread block writes the total

carry to the auxiliary array rather than just its local sum. This

increases the latency until the carry becomes available but

means the next block only needs to read one value instead of

k-1 values that have to be added up. Note that the chained

approach has O(n) complexity.

Figure 15 shows the throughputs in billions of 32-bit

words processed per second on the Titan X for the chained

and SAM’s carry-propagation scheme. Figure 16 shows the

throughputs in billions of 32-bit words processed per second

on the K40 for the same two carry-propagation schemes.

Figure 15. Prefix-sum throughput of 32-bit integers for two

carry-propagation schemes on the Titan X

Figure 16. Prefix-sum throughput of 32-bit integers for two

carry-propagation schemes on the K40

SAM’s write-followed-by-independent-reads technique

clearly outperforms the basic read-modify-write chained ap-

proach. On large inputs, it is up to 64% faster on the Titan X

and up to 39% faster on the K40. SAM’s approach helps

more on the Titan X than on the K40 because the Titan X is

better at trading off extra computations for reduced latency.

This is due to architectural differences such as its higher

computation-to-memory-speed ratio. In summary, trading

off extra computations for improved latency hiding is bene-

ficial and crucial to the overall performance of SAM on both

of the tested GPUs.

6. Summary and Future Work

Prefix sums are an essential parallel-programming primitive.

Motivated by an important data decompression algorithm,

we discuss two generalizations of prefix sums, one to tuple

values and the other to higher orders. Moreover, we present

and evaluate SAM, a new massively-parallel algorithm for

computing prefix sums and scans that natively supports

higher orders and tuple values as well as using both at the

same time. All of these generalized prefix sums are imple-

mented in a single, compact, templated CUDA kernel. SAM

minimizes main-memory accesses, i.e., it reads and writes

every element just once irrespective of the problem size,

even when computing higher-order prefix sums. Addition-

ally, it maintains full coalescing of the memory accesses and

a fixed register usage even for tuple-based prefix sums. As a

consequence, SAM’s relative performance increases with in-

creasing orders and tuple sizes in comparison to other ap-

proaches. SAM employs a carry-propagation scheme that

trades off redundant computations for improved latency hid-

ing and that only requires O(1) auxiliary memory. On large

inputs, SAM’s prefix-sum throughput on a Titan X matches

that of cudaMemcpy, which cannot be exceeded.

We successfully tested SAM on different GPUs, data

types, binary associative operators, tuple sizes, orders, and

problem sizes ranging from 103 to 109. Performance compar-

isons on Maxwell- and Kepler-based GPUs show that our

code outperforms the prefix-sum implementations of popu-

lar libraries like CUDPP and Thrust on large inputs. On the

generalized prefix sums, SAM even outperforms CUB by up

to 2.9 times on orders and tuple sizes of eight. The open-

source CUDA implementation of SAM is publicly available

at http://cs.txstate.edu/~burtscher/research/SAM/.

There are several avenues for future work. For example,

we could remove the higher-order or tuple-value support

from the code to see if that improves the performance, we

could expand our study to include more GPUs, or we could

study and present measurements for the combined case of

higher-order tuple-based prefix sums. It might also be inter-

esting to measure the energy consumption to determine

whether the improved performance also results in improved

energy efficiency. Moreover, we could evaluate SAM with

551

other associative operators (i.e., scans instead of prefix

sums), which we have already done with built-in primitives

like max and xor but not described in this paper. Looking

further into the future, it may make sense to add support for

problem sizes above 4 GB as well as support for parallel ker-

nel execution and virtualization environments where not all

SMs of a GPU are always available.

We hope that our work will help others accelerate their

codes and maybe even enable the parallelization of algo-

rithms with complex data dependencies that have not yet

been successfully parallelized. Furthermore, we believe that

our technique of communicating data between dependent

persistent thread blocks is also applicable to other codes.

Acknowledgments

We would like to thank the anonymous reviewers for their

valuable feedback and especially Duane Merrill for his in-

sights and help in getting the most performance out of CUB.

The authors’ research is supported by the U.S. National Sci-

ence Foundation under grants 1217231, 1406304, and

1438963, a REP grant from Texas State University, and

hardware donations from NVIDIA Corporation.

References

[1] G.E. Blelloch. “Scans as Primitive Parallel Operations.”
IEEE Transactions on Computers, C-38(ll):1526-1538,
1989.

[2] G.E. Blelloch. “Prefix Sums and Their Applications.” In
John H. Reif (Ed.), Synthesis of Parallel Algorithms,
Morgan Kaufmann, 1990.

[3] S. Chatterjee, G.E. Blelloch, and M. Zagha. “Scan prim-
itives for vector computers.” Proceedings of the 1990
Conference on Supercomputing, pp. 666–675, 1990.

[4] G. Chaurasia, J.R. Kelley, S. Paris, G. Drettakis, and F.
Durand. “Compiling High Performance Recursive Fil-
ters.” Proceedings of the 7th Conference on High-Per-
formance Graphics, pp 85–94, 2015.

[5] CUB: https://github.com/NVlabs/cub

[6] CUDPP: https://github.com/cudpp

[7] Y. Dotsenko, N.K. Govindaraju, P.-P. Sloan, C. Boyd,
and J. Manferdelli. “Fast scan algorithms on graphics
processors.” Proceedings of the 22nd Annual Int. Con-
ference on Supercomputing, pp. 205–213, 2008.

[8] G. Gautam and S. Rajopadhye. “Simplifying Reduc-
tions.” Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pp. 30–41, 2006.

[9] A. Greß, M. Guthe, and R. Klein. “GPU-based Collision
Detection for Deformable Parameterized Surfaces.”
Computer Graphics Forum 25, 2006.

[10] A. Greß and G. Zachmann. “GPUABiSort: Optimal Par-
allel Sorting on Stream Architectures.” Proceedings of
the 20th IEEE International Parallel and Distributed
Processing Symposium, 2006.

[11] K. Gupta, J.A. Stuart, and J.D. Owens. “A Study of Per-
sistent Threads Style GPU Programming for GPGPU
Workloads.” Proceedings of Innovative Parallel Com-
puting, 2012.

[12] M. Harris, S. Sengupta, and J.D. Owens, “Parallel prefix
sum (scan) with CUDA.” GPU Gems 3, 2007.

[13] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra. “Fast summed-area table generation and its
applications.” Computer Graphics Forum, 24(3):547–
555, 2005.

[14] W.D. Hillis and G.L. Steele Jr. “Data Parallel Algo-
rithms.” Communications of the ACM: 29(12), pp.
1170–1183. 1986.

[15] D. Horn. “Stream reduction operations for GPGPU ap-
plications.” In M. Pharr (Ed.), GPU Gems 2, chapter 36,
pp. 573–589. Addison Wesley, 2005.

[16] K.E. Iverson. “A Programming Language.” Wiley,
1962.

[17] R.E. Ladner and M.J. Fischer. “Parallel prefix computa-
tion.” Journal of the ACM, 27(4):831–838, 1980.

[18] D. Merrill and M. Garland. “Single-pass Parallel Prefix
Scan with Decoupled Look-back.” NVIDIA Technical
Report NVR-2016-002, NVIDIA Corporation. 2016.

[19] B. Merry. “A performance comparison of sort and scan
libraries for GPUs.” World Scientific Publishing Com-
pany, 2014.

[20] MGPU: http://nvlabs.github.io/moderngpu/

[21] D. Nehab, A. Maximo, R. Lima, and H. Hoppe. “GPU-
efficient Recursive Filtering and Summed-area Tables.”
ACM Transactions on Graphics (SIGGRAPH Asia),
30:6, 2011.

[22] S. Sengupta, M. Harris, and M. Garland. “Efficient par-
allel scan algorithms for GPUs.” In NVIDIA, Santa
Clara, CA, 2008 - gpucomputing.net.

[23] S. Sengupta, M. Harris, M. Garland, and J.D. Owens.
“Efficient Parallel Scan Algorithms for many-core
GPUs”. In J. Kurzak, D.A. Bader, and J. Dongarra
(Eds.), Scientific Computing with Multicore and Accel-
erators, Chapman & Hall/CRC Computational Science,
chapter 19, pp. 413–442, 2011.

[24] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.
“Scan primitives for GPU computing.” Graphics Hard-
ware 2007, pp. 97–106, 2007.

[25] S. Sengupta, A.E. Lefohn, and J.D. Owens. “A Work-
Efficient Step-Efficient Prefix Sum Algorithm.” Pro-
ceedings of the Workshop on Edge Computing Using
New Commodity Architectures, pp. D-26–27, 2006.

[26] Thrust: https://developer.nvidia.com/thrust

[27] S. Yan, G. Long, and Y. Zhang. “StreamScan: Fast Scan
Algorithms for GPUs without Global Barrier Synchro-
nization.” Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 229–238, 2013.

552

