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Abstract

There is growing interest in using GPUs to accelerate graph al-
gorithms such as breadth-first search, computing page-ranks, and
finding shortest paths. However, these algorithms do not modify
the graph structure, so their implementation is relatively easy com-
pared to general graph algorithms like mesh generation and refine-
ment, which morph the underlying graph in non-trivial ways by
adding and removing nodes and edges. We know relatively little
about how to implement morph algorithms efficiently on GPUs.

In this paper, we present and study four morph algorithms: (i)
a computational geometry algorithm called Delaunay Mesh Re-
finement (DMR), (ii) an approximate SAT solver called Survey
Propagation (SP), (iii) a compiler analysis called Points-to Anal-
ysis (PTA), and (iv) Boruvka’s Minimum Spanning Tree algorithm
(MST). Each of these algorithms modifies the graph data structure
in different ways and thus poses interesting challenges.

We overcome these challenges using algorithmic and GPU-
specific optimizations. We propose efficient techniques to perform
concurrent subgraph addition, subgraph deletion, conflict detection
and several optimizations to improve the scalability of morph algo-
rithms. For an input mesh with 10 million triangles, our DMR code
achieves an 80x speedup over the highly optimized serial Trian-
gle program and a 2.3 x speedup over a multicore implementation
running with 48 threads. Our SP code is 3 x faster than a multicore
implementation with 48 threads on an input with 1 million literals.
The PTA implementation is able to analyze six SPEC 2000 bench-
mark programs in just 74 milliseconds, achieving a geometric mean
speedup of 9.3 x over a 48-thread multicore version. Our MST code
is slower than a multicore version with 48 threads for sparse graphs
but significantly faster for denser graphs.

This work provides several insights into how other morph algo-
rithms can be efficiently implemented on GPUs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms  Algorithms, Languages, Performance

Keywords Morph Algorithms, Graph Algorithms, Irregular Pro-
grams, GPU, CUDA, Delaunay Mesh Refinement, Survey Propa-
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1. Introduction

Graphics Processing Units (GPUs) have been shown to be very use-
ful in many application domains outside of graphics. GPU hard-
ware is designed to process blocks of pixels at high speed and with
wide parallelism, so it is well suited for executing regular algo-
rithms that operate on dense vectors and matrices. We understand
much less about how to use GPUs effectively to execute irregu-
lar algorithms that use dynamic data structures like graphs and
trees. Harish and Narayanan [10] pioneered this field with their
CUDA implementations of algorithms such as breadth-first search
and single-source shortest paths. BFS has recently received much
attention in the GPU community [9, 12, 17, 20]. Barnat et al. [3]
implemented a GPU algorithm for finding strongly-connected com-
ponents in directed graphs and showed that it achieves significant
speedup with respect to Tarjan’s sequential algorithm. Other irreg-
ular algorithms that have been successfully parallelized for GPUs
are n-body simulations and dataflow analyses [5, 18, 25].

An important characteristic of most of the irregular GPU algo-
rithms implemented to date is that they are graph analysis algo-
rithms that do not modify the structure of the underlying graph [3,
10, 12, 17, 20]. When they do modify the graph structure, the mod-
ifications can be predicted statically and appropriate data structures
can be pre-allocated [5, 25]. However, there are many important
graph algorithms in which edges or nodes are dynamically added
to or removed from the graph in an unpredictable fashion, such
as mesh refinement [7] and compiler optimization [1]. Recently,
Mendez-Lojo et al. described a GPU implementation of Andersen-
style points-to analysis. In this algorithm, the number of edges
strictly increases during the computation. However, we are unaware
of a high-performance GPU implementation of an irregular graph
algorithm that adds and removes nodes and edges. In TAO analy-
sis [24] — an algorithmic classification for irregular codes — these
are called morph algorithms. Implementation of a morph algorithm
on a GPU is challenging because it is unclear how to support dy-
namically changing graphs while still achieving good performance.

In this paper, we describe efficient GPU implementations of
four morph algorithms: (i) Delaunay Mesh Refinement (DMR) [7],
which takes a triangulated mesh as input and modifies it in place
by adding and removing triangles to produce a triangulated mesh
satisfying certain geometric constraints; (ii) Survey Propagation
(SP) [4], an approximate SAT solver that takes a k-SAT formula
as input, constructs a bipartite factor graph over its literals and con-
straints, propagates probabilities along its edges, and occasionally
deletes a node when its associated probability is close enough to 0
or 1; (iii) Points-to Analysis (PTA) [1], which takes a set of points-
to constraints derived from a C program, creates a constraint graph
whose nodes correspond to program variables and whose directed
edges correspond to the flow of points-to information, and itera-
tively computes a fixed-point solution by propagating the points-to
information and adding the corresponding edges; and (iv) Boru-
vka’s Minimum Spanning Tree algorithm (MST), which operates



on an undirected input graph and relies on the process of mini-
mum edge contraction, which involves merging of the adjacency
lists of the edge’s endpoints, until an MST is formed. Each of these
algorithms poses different and varying levels of challenges for a
massively parallel architecture like a GPU, as we discuss next.

¢ In DMR, triangles are added and deleted on the fly, thus requir-
ing careful attention to synchronization. Another challenge is
memory allocation as the number of triangles added or deleted
cannot be predicted a priori. Allocating storage statically may
result in over-allocation whereas dynamic allocation incurs run-
time overhead. Further, the amount of work tends to be differ-
ent in different parts of the mesh, which may lead to work im-
balance. During refinement, new bad triangles may be created,
which can lead to an unpredictable work distribution.

In SP, the situation is simpler as the number of nodes only
decreases. Deletion of a node involves removal of a node and
its edges. However, implementing subgraph deletion in a highly
concurrent setting is costly due to synchronization overhead.

Although the number of nodes is fixed in PTA (it is equal
to the number of variables in the input program), the number
of edges in the constraint graph increases monotonically and
unpredictably. Therefore, we cannot use a statically allocated
storage scheme to represent the dynamically growing graph.

In MST, the adjacency lists of two nodes need to be merged
during each edge contraction. While edge merging can be done
explicitly in small graphs, it is too costly for large graphs,
especially in the later iterations of the algorithm. Edge merging
can also skew the work distribution.

We address these challenges by proposing several mechanisms
that are novel in the context of irregular algorithms; many of them
are applicable to the implementation of other morph and non-
morph algorithms on GPUs. We contrast our approach with alterna-
tive ways of addressing these challenges. The contributions of this
paper are as follows.

e Many morph algorithms have to deal with neighborhood con-
flicts. For efficient execution, the corresponding implementa-
tion needs to be cautious [19]. We propose a GPU-friendly
mechanism for conflict detection and resolution.

Addition and deletion of arbitrary subgraphs can be imple-
mented in several ways. We present a qualitative comparison
of different mechanisms and provide guidelines for choosing
the best implementation.

Neighborhood conflicts lead to aborted work, resulting in
wasted parallelism. We propose an adaptive scheme for chang-
ing the kernel configuration to reduce the abort ratio, thus lead-
ing to improved work efficiency.

Information can be propagated in a directed graph either in a
push or a pull manner, i.e., from a node to its outgoing neigh-
bors or from the incoming neighbors to the node, respectively.
‘We compare the two approaches and observe that a pul/l model
usually results in reduced synchronization.

The amount of parallelism present in morph algorithms often
changes considerably during their execution. A naive work dis-
tribution can lead to load imbalance. We propose better ways to
distribute tasks across threads, which improves system utiliza-
tion and, in turn, performance.

e To avoid the bottleneck of a centralized worklist and to propa-
gate information faster in a graph, we propose using local work-
lists, which can be efficiently implemented in shared memory.

e Our GPU codes, written in CUDA, outperform existing state-
of-the-art multicore implementations. Our DMR code is faster
than a 48-core CPU version of the same algorithm [16], achiev-
ing up to 2.3x speedup. With respect to the highly optimized
and widely-used sequential CPU implementation of the Tri-
angle program [28], our implementation achieves up to 80x
speedup. Our SP code is 3x and the PTA code is 9.3 x faster
than their multicore counterparts. Our GPU implementation of
MST is slower for sparse graphs (like road networks) but sig-
nificantly faster for denser graphs (like RMAT).

The rest of this paper is organized as follows. We introduce De-
launay Mesh Refinement, Survey Propagation, Points-to Analysis
and Boruvka’s Minimum Spanning Tree algorithm and discuss the
sources of parallelism in these algorithms in Sections 2 through 5.
We describe our graph representation and its memory layout in Sec-
tion 6. We discuss efficient implementations of morph algorithms in
Section 7, where we explain generic techniques for subgraph addi-
tion and deletion, conflict detection and resolution, improving work
efficiency, and using local worklists. The experimental evaluation
comparing the performance of the GPU, multicore and sequential
implementations is discussed in Section 8. We compare and con-
trast with related work in Section 9 and conclude in Section 10.

2. Delaunay Mesh Refinement

Mesh generation and refinement are important components of ap-
plications in many areas such as the numerical solution of partial
differential equations and graphics.

DMR Algorithm The goal of mesh generation is to represent a
surface or a volume as a tessellation composed of simple shapes
like triangles, tetrahedra, etc. Although many types of meshes are
in use, Delaunay meshes are particularly important since they have
a number of desirable mathematical properties [7]. The Delaunay
triangulation for a set of points in the plane is the triangulation such
that none of the points lie inside the circumcircle of any triangle.

In practice, the Delaunay property alone is not sufficient, and
it is necessary to impose quality constraints governing the shape
and size of the triangles. For a given Delaunay mesh, this is accom-
plished by iterative mesh refinement, which successively fixes bad
triangles (triangles that do not satisfy the quality constraints) by
adding new points to the mesh and re-triangulating the affected ar-
eas. Figure 1 illustrates this process; the shaded triangle is assumed
to be bad. To fix it, a new point is added at the circumcenter of
this triangle. Adding this point may invalidate the empty circum-
circle property for some neighboring triangles. Therefore, the af-
fected triangles around the bad triangle are determined. This region
is called the cavity of the bad triangle. The cavity is re-triangulated,
as shown in Figure 1(c) (in this figure, all triangles lie in the cavity
of the shaded bad triangle). Re-triangulating a cavity may gener-
ate new bad triangles, but the iterative refinement process will ulti-
mately terminate and produce a guaranteed-quality mesh. Different
orders of processing bad elements lead to different meshes, but all
of them satisfy the quality constraints [7].

Amorphous data-parallelism in DMR The natural unit of work
for parallel execution is the processing of a bad triangle. Because
a cavity is usually just a small neighborhood of triangles around
the bad triangle (typically 4 to 10 triangles), two bad triangles that
are far apart in the mesh typically have cavities that do not over-
lap. Furthermore, the entire refinement process (expansion, retrian-
gulation, and graph updating) for the two triangles is completely
independent. Thus, the two triangles can be processed in parallel.
This approach obviously extends to more than two triangles. How-
ever, if the cavities of two triangles do overlap, the triangles can
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Figure 1. Refinement: Fixing a bad triangle by modifying its cav-
ity. (a) A bad triangle (shaded) and its circumcircle indicating the
overlapping triangles that form the cavity. (b) Cavity of the bad tri-
angle and new point. (c) Refined cavity formed using the new point.
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Figure 2. Parallelism profile of Delaunay Mesh Refinement

be processed in either order but only one of them can be processed
at a time. Whether or not two bad triangles have overlapping cav-
ities depends entirely on the structure of the mesh, which changes
throughout the execution of the algorithm. Figure 2 shows a paral-
lelism profile for DMR produced by the ParaMeter tool [15]. The
profile was obtained by running DMR on a randomly generated
input mesh consisting of 100K triangles, half of which are initially
bad. The amount of parallelism changes significantly during the ex-
ecution of the algorithm, and this has an impact on how we imple-
ment DMR as we discuss in Section 7.4. Initially, there are about
5,000 bad triangles that can be processed in parallel. This num-
ber increases as the computation progresses, peaking at over 7,000
triangles, after which point the available parallelism drops slowly.
The amount of parallelism is higher for larger inputs.

GPU Implementation The DMR algorithm we use on the GPU
is slightly different from the multicore algorithm described above.
The pseudo code of our implementation is shown in Figure 3. The
comments indicate if the relevant code is executed on the CPU or
the GPU, or whether it is a data transfer between the two devices.

The main program starts with the host code (on the CPU) read-
ing an input mesh from a file. The mesh is initially stored in the
CPU’s memory and has to be transferred to the GPU via an explicit
call to the cudaMemcpy () function. Then the GPU performs a
few initialization steps. These include resetting the deletion flag of
each triangle, identifying if a triangle is bad, and computing the
neighborhood of each bad triangle. Next, the host code repeatedly
invokes the refinement kernel, which re-triangulates the mesh. In
each invocation, a thread operates on a bad undeleted triangle, cre-
ates a cavity around that triangle, re-triangulates the cavity, marks
the triangles in the old cavity as deleted, and adds the new trian-
gles to the mesh. If any of the new triangles are bad, the thread
sets a flag changed to inform the host that another kernel invo-
cation is necessary. Thus, the host code only stops invoking the
GPU kernel once there are no more bad triangles to process. At this
stage, the refined mesh is transferred back to the CPU using another
call to cudaMemcpy (). We emphasize that all of the refinement
code executes on the GPU. The CPU is responsible only for read-
ing the input mesh, transferring it to the GPU, repeatedly invoking
the GPU kernel, and transferring the refined mesh back.

main () :
read input mesh // CPU
transfer initial mesh // CPU — GPU
initialize_kernel () // GPU
do {
refine_kernel () // GPU
transfer changed // GPU — CPU
} while changed
transfer refined mesh // GPU — CPU

refine_kernel ():
foreach triangle ¢ in my worklist {
if ¢ is bad and not deleted {
create and expand cavity around ¢
mark all triangles in the cavity with my thread id
_-global_sync ()
check and re—mark with priority
_-global_sync ()

// Section 7.3

if all cavity—triangles are marked with my thread id {

create new cavity by retriangulating
delete triangles in old cavity from mesh
add triangles from new cavity to mesh
if any new triangle is bad {

changed = true

} e%se {
changed = true
Y}

// back—off

Figure 3. Pseudo code of our DMR implementation

Our approach is topology-driven [24], i.e., threads process both
good and bad triangles. In contrast to a data-driven approach [24],
which processes only the bad triangles, a topology-driven approach
may perform more work and threads may not have useful work to
do at every step. However, a data-driven approach requires mainte-
nance of a worklist that is accessed by all threads. A naive imple-
mentation of such a worklist severely limits performance because
work elements must be added and removed atomically. There-
fore, we use a topology-driven approach and add optimizations
to improve work efficiency (cf. Section 7.4). Topology-driven ap-
proaches have also been used in GPU implementations of other
algorithms [18].

3. Survey Propagation

Survey Propagation is a heuristic SAT solver based on Bayesian
inference [4]. The algorithm represents a Boolean SAT formula as
a factor graph, which is a bipartite graph with literals on one side
and clauses on the other. An undirected edge connects a literal to
a clause if the literal participates in the clause. The edge is given a
value of -1 if the literal in the clause is negated, and +1 otherwise.
The general strategy of SP is to iteratively update each literal with
the likelihood that it should be assigned a truth value of frue or
false. The amorphous data-parallelism in this algorithm arises from
the literals and clauses that need to be processed. Although there
are no ordering constraints on processing the elements, different
orders may lead to different behavior. An example 3-SAT formula
and the corresponding factor graph are given in Figure 4.

SP has been shown to be quite effective for hard SAT in-
stances [4]. For K = 3, i.e., when the number of literals per clause
is three, a SAT instance becomes hard when the clause-to-literal
ratio is close to 4.2. We focus on hard SAT problems in this work.

SP Algorithm The SP algorithm proceeds as follows. Each phase
of the algorithm first iterates over the clauses and the literals of the
formula updating ‘surveys’ until all updates are below some small
epsilon. Then, the surveys are processed to find the most biased
literals, which are fixed to the appropriate value. The fixed literals
are then removed from the graph. If only trivial surveys remain or



Figure 4. Factor graph of (z1 + T2 + z3)(T2 + ©4 + z5) (21 +
T4+ x5) (T3 + Ta +T5)(z2 + x3 + Ta). Dotted edges are negated.

the number of literals is small enough, the problem is passed on
to a simpler solver. Otherwise, the algorithm starts over with the
reduced graph as input. It performs as many such phases as are
necessary until no more literals can be fixed. If there is no progress
after some number of iterations, the algorithm gives up.

Amorphous data-parallelism in SP The active nodes are the lit-
erals in the factor graph. Initially every literal node is active. If the
surveys on some edges change during processing, the nodes’ neigh-
bors’ neighbors (i.e., other literals in common clauses) become ac-
tive. Thus, the neighborhood of each active node encompasses the
neighbors and neighbors’ neighbors.

Each iteration of SP touches a single node’s neighborhood in
the factor graph. Iterations conflict with one another if their neigh-
borhoods overlap. The structure of the graph is mostly constant, ex-
cept that nodes are removed occasionally when their values become
stable (i.e., biased towards O or 1). Thus, the available parallelism
reflects the connectivity of the graph and remains roughly constant,
dropping infrequently as nodes are removed from the graph. SP is
a heuristic SAT solver, and it behaves non-deterministically.

GPU Implementation Our implementation of SP first generates
a random SAT formula based on the input number of clauses and
literals. After initialization, the surveys are propagated through the
edges in the factor graph until the surveys stabilize or until a fixed
number of iterations has been performed. Next, the literals are
updated to reflect their bias towards their neighbors (the clauses) for
satisfiability. If the kernel updates the bias of any literals, a process
of decimation kicks in, which removes any literals whose bias is
close to true or false. Once the biased literals have been removed,
the reduced factor graph is processed again, continuing with the
current state of the surveys and biases.

4. Points-to Analysis

Points-to analysis is a key static compiler analysis. We implement a
variant of the flow-insensitive, context-insensitive, inclusion-based
points-to analysis [1]. It works on the points-to constraints obtained
from the input program’s statements and computes a fixed-point
points-to solution based on the constraints.

PTA Algorithm PTA operates on a constraint graph in which nodes
correspond to pointers and each directed edge between two nodes
represents a subset relationship between the points-to sets of the
corresponding two pointers. In other words, the points-to informa-
tion flows from the source to the target node along an edge. There
are four kinds of constraints: address-of (p = &q),copy (p = qg),
load (p = xq) and store (xp = q). The address-of constraints
determine the initial points-to information in the constraint graph
and the other three types of constraints add edges. The points-
to information is then propagated along these edges until conver-
gence. Due to the accumulation of new points-to information at
some nodes, the load and the store constraints add more edges to
the constraint graph and create additional opportunities for prop-
agation. This process continues until a fixed-point is reached. The
final points-to information is then available at the pointer nodes. An
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Figure 5. Points-to constraints and states of the constraint graph

example set of constraints and the state of the constraint graph in
different stages of the algorithm are shown in Figure 5.

Amorphous data-parallelism in PTA PTA has been shown to ex-
hibit a moderate amount of parallelism [18, 26]. Its source of paral-
lelism is the optimistic propagation of points-to information along
edges that do not have common nodes. Although the amorphous
data-parallelism in PTA is input dependent, it usually increases
gradually at first, remains high for some time and then slowly de-
creases (similar to DMR). Although conflicts can be handled using
atomics, we employ a novel pull-based approach that avoids syn-
chronization (cf. Section 6.4).

GPU Implementation Our PTA implementation first extracts
points-to constraints from an input C/C++ program and transfers
them to the GPU. The initialization kernel initializes each pointer
with a ‘null’ points-to set. Processing of each constraint happens in
two phases. In the first phase, the constraints are evaluated to deter-
mine their source and destination. In the second phase, the points-
to information is actually updated/propagated. First, the address-of
constraints are processed in this two-phase manner. Then, the re-
maining three kinds of constraints are also processed in a two-phase
manner. In the first phase, the constraints add edges to the graph.
In the second phase, the points-to information is propagated along
these edges. This process repeats until a fixed-point is reached.
Finally, the points-to information is copied to the CPU.

5. Boruvka’s Minimum Spanning Tree Algorithm

Boruvka’s algorithm computes a minimum spanning tree of an
edge-weighted undirected graph (without self-loops) through suc-
cessive applications of edge contraction. Edge contraction is a gen-
eral operation on a graph in which an edge is chosen and the two
end points of that edge are fused to form a new node that is con-
nected to all nodes incident on either of the two original nodes.

MST Algorithm Boruvka’s algorithm is an wunordered algo-
rithm [24]: if an edge (a, b) is the lightest edge connecting its end
point a to its end point b, it can be contracted. This is in contrast
to Kruskal’s algorithm, which is an ordered algorithm in which
edge contractions are performed in increasing weight order. For ef-
ficiency, our implementation of edge contraction does not literally
merge the incident edges on the two nodes being fused; instead, we
maintain groups of endpoints that form a partition over nodes. Only
edges whose endpoints lie in distinct components are eligible for
contraction. The number of partitions (which we call components)
decreases and the partition sizes grow as edges are contracted. The
algorithm stops when there is only one component left. The con-
tracted edges form the MST of the original graph.

Amorphous data-parallelism in MST Initially, there is a lot of
parallelism in Boruvka’s minimum spanning tree algorithm as half
the nodes can perform independent edge contractions. After each
edge contraction, the graph becomes denser with fewer nodes, low-
ering the available parallelism. This is why many parallel MST
implementations begin with Boruvka’s algorithm but switch algo-
rithms as the graph becomes dense.



GPU Implementation Initially, each node forms its own com-
ponent in our MST implementation. Then, it repeatedly performs
pseudo edge contractions. The process is divided into multiple ker-
nels. The first kernel identifies the minimum edge of each node
whose other endpoint is in another component. The second ker-
nel isolates the minimum inter-component edge for each compo-
nent. Since the sequence of the identified edges can form cycles
over components (due to common edge weights), the third kernel
finds the partner component with which each component needs to
be merged to break these cycles. This is done by choosing the com-
ponent with minimum ID as a cycle representative. All components
in a cycle are then merged with the cycle representative in the fourth
kernel. The process repeats until there is a single component. The
inter-component minimum-weight edges are the MST.

6. Graph Representation on the GPU

We store the graphs in compressed sparse row (CSR) format. Thus,
all edges are stored contiguously with the edges of a node stored
together. Each graph node records a start offset into the edge array.
This representation makes it easy to find a node’s outgoing neigh-
bors and improves locality since the edges of a node are stored
together. By default, we store outgoing edges, but the same rep-
resentation can be used to store incoming edges (e.g., PTA). This
representation assumes directed edges. For undirected graphs (e.g.,
MST and SP), we store each edge twice, once for each direction.

6.1 Memory Layout Optimization

In many graph algorithms, computation ‘flows’ from a node to its
neighbors. For instance, in DMR, the refinement process works by
identifying a cavity around a bad triangle. Therefore, neighboring
graph elements that are logically close to each other should also
be close to each other in memory to improve spatial locality. We
optimize the memory layout in this way by performing a scan over
the nodes that swaps indices of neighboring nodes in the graph with
those of neighboring nodes in memory. This optimization is similar
in spirit to the data reordering approach by Zhang et al. [33].

6.2 Graph Specialization for DMR

We focus on 2D DMR, which operates on a triangulated mesh
and modifies it in place to produce a refined triangulated mesh.
Each triangle is represented by a set of three coordinates and each
coordinate is simply an ordered pair <x, y>. The triangle vertices
are stored in two associative arrays for the x and y coordinates, and
the n triangles are stored in an n X 3 matrix, where the three entries
per line designate indices into the x and y coordinate arrays.

This simple representation is, in theory, sufficient for perform-
ing mesh refinement. However, for performance reasons, it is es-
sential to also keep connectivity information with each triangle to
accelerate the formation of a cavity, which requires the determina-
tion of the neighbors of a given triangle.

One possible representation for the neighbor information is a
Boolean adjacency matrix in which an entry [i, 7] is true if
triangles i and j are adjacent to each other in the mesh. However,
since meshes are very sparse, an adjacency matrix representation
would waste a lot of space. As is well known, a more compact
way of storing sparse graphs is using adjacency lists or sparse bit
vectors. However, since we are dealing with a triangulated mesh, it
is easy to see that each triangle can have at most three neighbors.
Therefore, the neighborhood information of the n triangles can be
represented by an nx3 matrix. Boundary triangles may have only
one or two neighbors. We further record which edge is common
between a triangle and its neighbor. Additionally, we maintain a
flag with each triangle to denote if it is bad. Note that all of this
information needs to be computed when a new triangle is added to
the mesh during refinement.

6.3 Graph Specialization for SP

SP is based on a factor graph with two kinds of nodes: one for
literals and one for clauses. We split the graph nodes into two arrays
and store the clauses separately from the literals. This simplifies the
processing since one kernel only works on clause nodes whereas
two other kernels only work on literal nodes. Note that the edges
connect both kinds of nodes.

Since the factor graph is undirected, surveys flow freely from
clause nodes to literal nodes and vice versa. Therefore, it is essen-
tial to be able to easily find the neighbors of a type, given a node
of the other type. To make neighbor enumeration efficient, we store
mappings from each clause to all the literals it contains and from
each literal to all the clauses it appears in. Fortunately, each clause
has a small limit on the number of literals it can contain, which
is the value of K in the K-SAT formula. As in DMR, this allows
accessing literals in a clause using a direct offset calculation in-
stead of first having to read the starting offset. Note, however, that
this optimization is only possible for the clause-to-literal mapping.
Since a literal may appear in an unpredictable number of clauses,
the literal-to-clause mapping uses the standard CSR format.

6.4 Graph Specialization for PTA

In its iterative processing, PTA operates in two synchronized
phases: one to add new directed edges between nodes and another
to propagate information along the edges. There are two ways to
manage propagation: push-based and pull-based. In a push-based
method, a node propagates points-to information from itself to its
outgoing neighbors, whereas in a pull-based method, a node pulls
points-to information to itself from its incoming neighbors. The
advantage of a pull-based approach is that, since only one thread is
processing each node, no synchronization is needed to update the
points-to information. Although some other thread may be read-
ing the points-to information, due to the monotonicity of flow-
insensitive points-to analysis (i.e., new edges may be added but
no edges are deleted), it is okay to read potentially stale points-to
information as long as the up-to-date information is eventually also
read [26]. In contrast, in a push-based approach, multiple threads
may simultaneously propagate information to the same node and,
in general, need to use synchronization.

To implement a pull-based approach, each node keeps a list of
its incoming neighbors. Unfortunately, since the number of edges
is not fixed, we cannot rely on a single static list of incoming edges
but need to maintain a separate list for each node to allow for
dynamic growth (cf. Section 7.1).

6.5 Graph Specialization for MST

The MST algorithm repeatedly merges components (disjoint sets
of nodes) until a single component remains. Conceptually, these
components are similar to the clauses in SP. Thus, our MST im-
plementation also maintains a many-to-one (nodes-to-component)
mapping and a one-to-many (component-to-nodes) mapping. The
key differences are that a literal may be part of multiple clauses
in SP whereas a node is part of only a single component in MST,
which simplifies the implementation. However, in SP, the number
of literals in a clause is bounded by K (a small number) whereas in
MST the size of a component can change in each iteration. These
changes require dynamic updates to the two mappings, which com-
plicate the MST implementation.

7. Accelerating Morph Algorithms on GPUs

Many morph algorithms involve common operations and depend
upon efficient strategies to implement these operations. Such strate-
gies often work across a range of algorithms and can be tailored to



special needs. We now discuss several techniques for different sce-
narios we encountered while implementing our morph algorithms.

7.1 Subgraph Addition

Addition of a subgraph is a basic operation in graph algorithms that
increases the number of graph elements. For instance, in DMR, the
number of triangles in the mesh increases, in PTA, the number of
edges increases, and in MST, the number of nodes in a component
increases. Subgraph addition can be performed in various ways.

Pre-allocation If the maximum size of the final graph is bound
by a reasonably small factor of the original graph size, one may
simply choose to pre-allocate the maximum amount of memory
required. For instance, a PTA implementation may choose to pre-
allocate memory for all the address-taken variables in the input
constraints for each pointer to avoid allocating on the fly. Pre-
allocation often results in a simpler implementation and higher
performance. However, due to wasted space, the implementation
may quickly run out of memory for larger inputs. MST is a special
case: the components are graphs without edges (i.e., sets) and,
although the component sizes grow, the sum of the nodes in all
components is constant. Therefore, the newly formed components
can be handled by reshuffling the nodes in an array.

Host-Only  Another way of identifying additional memory re-
quirements is by pre-calculation, where the host code performs
some computation to determine the amount of memory that will
be needed in the next kernel. It then either allocates the additional
storage (using cudaMalloc ()) or re-allocates the existing plus
additional storage. For example, in each iteration of DMR, our host
code pre-calculates the maximum number of new triangles that can
be added by the next kernel invocation depending upon the cur-
rent number of bad triangles in the mesh and performs the corre-
sponding memory reallocation. Although reallocation can be costly
due to memory copying, by choosing an appropriate over-allocation
factor, the number of reallocations can be greatly reduced. Simi-
larly, in PTA, the host code can compute the additional number of
points-to facts to be propagated in the next iteration and allocate
additional storage accordingly.

Kernel-Host An alternative to host-side pre-calculation is to cal-
culate the future memory requirement in the kernel itself and in-
form the host about it. The host can then either allocate additional
storage or perform a re-allocation. The advantage of Kernel-Host
over Host-Only is that the computation of the amount of memory
needed may be able to piggyback on the main kernel processing.

Kernel-Only The most complicated way of dealing with sub-
graph addition is to allocate memory in the kernel itself. CUDA 2.x
devices support mallocs in kernel code with semantics similar to
CPU heaps. Thus, amalloced region can span kernel invocations,
can be pointed to by pointers from different threads, efc. We em-
ploy this strategy in PTA to allocate storage for the incoming edges
of a node. Each node maintains a linked list of chunks of incoming
neighbors. Each chunk contains several nodes. The best chunk size
is input dependent and, in our experiments, varies between 512 and
4096. Chunking reduces the frequency of memory allocation at the
cost of some internal fragmentation. To enable efficient lookups,
we sort the nodes in the chunks by ID.

Clearly, the best way to perform subgraph addition is applica-
tion dependent. Pre-allocation usually performs better but can suf-
fer from over-allocation. The host-only approach is suitable when
it is relatively easy for the host to compute the additional memory
requirement, which may not be the case because the data often only
reside on the device. If the calculation of the additional memory re-
quires a non-trivial computation based on the current state of the
graph, a kernel-host approach is probably preferable.

The host-only and kernel-host strategies should be used when
memory allocation is global with respect to the graph, as is the case
for DMR. The kernel-only approach is well-suited when memory
allocation is local to a part of the graph. For instance, PTA may
require additional memory for individual pointer nodes.

7.2 Subgraph Deletion

Marking If a morph algorithm operates mostly on a fixed graph
where nodes and edges are only deleted occasionally, it may be
best to simply mark the corresponding nodes and edges as deleted.
We employ this strategy in SP since the decimation process is
called infrequently. The marking approach is simple to implement,
reduces synchronization bugs, and usually performs well as long as
only a small fraction of the entire graph is deleted.

Explicit Deletion When an application performs both deletions
and additions of subgraphs, simple marking may rapidly increase
the unused space. In such codes, explicit freeing of the deleted
memory may be necessary (e.g., using free or cudaFree) to
ensure that the deleted memory can be reused for graph additions.
This approach is particularly suitable for local deletions. Other-
wise, the implementation may have to compact the storage to obtain
a contiguous data layout, resulting in high overheads.

Recycle An implementation may also choose to manage its own
memory. It can then reuse the deleted memory of a subgraph for
storing a newly created subgraph. This strategy works well if the
memory layout is such that the new data fit within the memory
of the old data. We use this strategy in DMR. Memory recycling
offers a useful tradeoff between memory-compaction overhead and
the cost of allocating additional storage.

There is no single best subgraph addition and deletion strategy;
the choice should be guided by the application and the scale of
the underlying problem. However, the above classification of these
well-known techniques can help a morph-algorithm implementer
select an appropriate strategy.

7.3 Probabilistic 3-Phase Conflict Resolution

Activities that require disjoint neighborhoods necessitate conflict
resolution mechanisms across threads. One way to deal with con-
flicts is using mutual exclusion (implemented with atomic instruc-
tions), but this approach is ill-suited for GPUs due to the large num-
ber of threads. Therefore, we have developed an efficient 3-phase
strategy to detect and resolve conflicts (cf. Figure 3). We explain it
in the context of DMR, but it is generally applicable.

We exploit the parallelism in DMR by optimistically assuming
that cavities around bad triangles do not overlap. When this as-
sumption is valid, multiple bad triangles can be processed and re-
fined in parallel. However, this strategy requires a mechanism to
check for conflicts between threads and for resolving them.

Conflict checking A naive way to check for conflicts (i.e., cavity
overlap) is to use the two-phase procedure race-and-check. In the
race phase, each thread marks the triangles in the cavity that it
wants to refine, and in the check phase, the thread checks if its
markings still exist. If all markings of thread ¢; exist, t; can go
ahead and refine the cavity. Otherwise, some other thread t2 has
succeeded in marking (part of) the cavity and ¢; must back off. For
correct execution, it is essential that the race phase of all threads
finishes before the check phase of any thread starts. This requires a
global barrier between the two phases.

Barrier implementation Current GPU architectures do not di-
rectly support global barriers in hardware, so barriers need to be
implemented in user code. One way to implement a global barrier
inside a kernel is using atomic operations on a global variable. Each



thread atomically decrements the variable, initially set to the num-
ber of threads, and then spins on the variable until it reaches zero.
Unfortunately, this method is particularly inefficient on GPUs be-
cause of the large number of threads, because atomic operations are
significantly slower than non-atomic accesses [29], and because of
the high memory bandwidth requirement of the spinning code.

A better way of implementing a global barrier is to use a hierar-
chical approach in which threads inside a block synchronize using
the __syncthreads () primitive and block representatives (e.g.,
threads 0) synchronize using atomic operations on a global vari-
able. The hierarchical barrier significantly improves performance
over the naive barrier implementation.

Xiao and Feng developed an even more efficient global barrier
that does not require atomic operations [31]. However, their code
was developed for pre-Fermi GPUs, which do not have caches,
so writes to global variables directly update the global memory.
Fermi GPUs have incoherent L1 caches and a coherent L2 cache,
which may optimize global writes by not writing them through to
global memory. Therefore, Xiao and Feng’s barrier code needs to
be augmented with explicit __threadfence () calls after writes
to global memory to make the writes visible to all threads.

Avoiding live-lock Assuming conflict detection is implemented
using a marking scheme coupled with a global barrier, the detected
conflicts still need to be resolved. This can easily be achieved by
backing off conflicting transactions. Thus, if the cavities created by
two or more threads overlap, all affected threads back off, which
guarantees conflict-free refinement but may result in live-lock.

One way to address live-lock is by reducing the number of
threads, thereby reducing the probability of conflicts. However,
avoiding live-lock cannot be guaranteed unless only one thread
is running. Thus, when live-lock is detected, i.e., when no bad
triangle is refined during a kernel invocation, the next iteration
can be invoked with just a single thread to process the current
bad triangles serially. The following kernel invocation can resume
parallel execution. However, running a single-threaded GPU kernel
to avoid conflicts is an inefficient way of addressing this issue.

A better solution is to avoid live-lock with high probability by
prioritizing the threads, e.g., using their thread IDs. A thread with
a higher ID gets priority over another thread with a lower ID.
This approach changes the two-phase race-and-check procedure
into race-and-prioritycheck. The race phase works as before, i.e.,
each thread marks the triangles in its cavity with its thread ID. In
the prioritycheck phase, thread ¢; checks the marking ¢,,, on each
triangle in its cavity and uses the following priority check.

1. if t; == t,,, then ¢; owns the triangle and can process the cavity
if the remaining triangles in the cavity are also owned by ¢;.

2. if t; < ty, then iy, has priority and ¢; backs off.

3. if t; > t,, then t; has priority and ¢; changes the marking on
the triangle to its thread ID.

Note that it is not necessary for a thread to remove its markings
when it backs off. Whereas the above modification greatly allevi-
ates the probability of live-lock, it introduces another. Two threads
may process overlapping cavities simultaneously due to a race in
the prioritycheck phase. The following scenario illustrates the is-
sue. Two cavities that share a triangle are processed by threads ¢;
and t;. Let t; > t;. In the race phase, both threads mark the com-
mon triangle. Let the lower priority thread ¢; write its ID last. Thus,
the common triangle is marked by ¢; at the end of the race phase.
After the global synchronization, both threads check if they own all
the triangles in their cavities. Let thread ¢; check the marking of the
common triangle first. It finds the triangle marked with its ID. As-
suming that it also owns all the remaining triangles, ¢; is ready to
process its cavity. Now the higher priority thread ¢; starts its priori-

tycheck phase and finds that the common triangle has been marked
by a lower priority thread. Therefore, ¢; changes the marking to its
own ID. Assuming that it owns the remaining triangles, ¢; is also
ready to process its cavity. Thus, both threads start processing their
cavities even though they overlap with one another.

The race condition occurs due to unsynchronized reads and
writes of IDs in the prioritycheck phase. It can be avoided by adding
a third phase. Thus, the two-phase race-and-prioritycheck mecha-
nism becomes the three-phase race-prioritycheck-check procedure.
In the third phase, each thread checks if its markings from the pre-
vious two phases still exist. If a thread owns all the triangles in its
cavity, it is ready to process the cavity, otherwise it backs off. Be-
cause the check phase is read-only, the race condition mentioned
above does not arise, thus guaranteeing correct conflict detection.
As long as overlaps involve only two cavities, this approach is also
guaranteed to avoid live-lock. However, with three or more over-
lapping cavities, it is possible that all conflicting threads abort due
to a race in step 3 of the prioritycheck phase. To handle this rare
instance, one thread may be allowed to continue either in the same
kernel invocation or as a separate kernel launch.

7.4 Adaptive Parallelism

In some morph algorithms, the degree of parallelism changes con-
siderably during execution. For example, Figure 2 shows that the
amount of parallelism in DMR increases at first and then gradu-
ally decreases. Boruvka’s MST algorithm exhibits high parallelism
initially, but the parallelism drops quickly. To be able to track the
amount of parallelism at different stages of an algorithm, we em-
ploy an adaptive scheme rather than fixed kernel configurations.

For DMR and PTA, we double the number of threads per block
in every iteration (starting from an initial value of 64 and 128,
respectively) for the first three iterations. This improves the work
efficiency as well as the overall performance (by 14% and 17%).
In SP, the number of threads per block is fixed at 1024 because the
graph size mostly remains constant.

The number of thread blocks is set once per program run for all
kernel invocations. It is proportional to the input size. Depending
upon the algorithm and the input, we use a value between 3xSM
and 50x SM, where SM is the number of streaming multiprocessors
in the GPU. Note that these are manually tuned parameters.

7.5 Local Worklists

For large inputs, performance increases when each thread processes
more than one graph element per iteration (bad triangles in DMR,
pointer nodes in PTA, clause nodes in SP, and components in MST).
However, due to the large number of threads, it is inefficient to
obtain these graph elements from a centralized work queue. Hence,
we use a local work queue per thread.

In local queues, work items can be dequeued and newly gen-
erated work enqueued without synchronization, which improves
performance. Local work queues can be implemented by partition-
ing the graph elements into equal-sized chunks and assigning each
chunk to a thread. It is often possible to store the local work queues
in the fast shared memory of GPUs. Due to the memory layout opti-
mization discussed in Section 6.1, neighboring graph elements tend
to be near one another in memory. Thus, when assigning a range of
consecutive triangles to a thread in DMR, the cavity of a bad tri-
angle has a good chance of falling entirely into this range, which
reduces conflicts. Intuitively, the combination of the memory layout
optimization and the local work queues forms a pseudo-partitioning
of the graph that helps reduce conflicts and boosts performance.

7.6 Reducing Thread Divergence

To minimize thread divergence in DMR, we try to ensure that all
threads in a warp perform roughly the same amount of work by
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Triangles Speedup
Total x10° Bad x10° | Galois-48 GPU
0.5 0.26 27.6 80.5
1 0.48 28.6 54.6
2 0.95 27.2 54.8
10 475 26.5 60.6

Figure 7. Speedup obtained using multicore (Galois) and GPU
implementations of DMR over the sequential version (Triangle)

moving the bad triangles to one side of the triangle array and the
good triangles to the other side. This way, the threads in each warp
(except one) will either all process bad triangles or not process
any triangles. Note that this distribution is not perfect since the
amount of work depends upon the cavity size. Nevertheless, the
sorting assigns roughly equal amounts of work to each warp-thread.
We perform sorting at the thread-block level in each iteration. In
PTA, we similarly move all pointer nodes with enabled incoming
edges to one side of the array. An edge is enabled if the points-to
information of its source has changed, thus requiring its destination
to be processed. Since each clause node is connected to a fixed
number of literal nodes in SP, the work distribution is largely
uniform even without sorting. There is also no sorting in MST.

8. Experimental Evaluation

We evaluate the performance of our CUDA implementations on a
1.15 GHz NVIDIA Tesla C2070 GPU with 14 SMs (448 process-
ing elements, i.e., CUDA cores) and 6 GB of main memory. This
Fermi GPU has a 64 KB L1 cache per SM. We dedicate 48 KB to
shared memory (user-managed cache) and 16 KB to the hardware-
managed cache. The SMs share an L2 cache of 768 KB. We com-
piled the code with nvce v4.1 RC2 using the -arch=sm_20 flag.

To execute the CPU codes, we used a Nehalem-based Intel Xeon
E7540 running Ubuntu 10 with 8 hex-core 2 GHz processors. The
48 CPU cores share 128 GB of main memory. Each core has two
32KB L1 caches and a 256 KB L2 cache. Each processor has a
18 MB L3 cache that is shared among its six cores.

8.1 Delaunay Mesh Refinement

We compare the GPU DMR performance to two CPU implementa-
tions: the sequential Triangle program [28] and the multicore Ga-
lois version 2.1.4 [16].

The input meshes are randomly generated. We use the quality
constraint that no triangle can have an angle of less than 30 degrees.
The mesh sizes range from 0.5 million to 10 million triangles, and
roughly half of the initial triangles are bad.

The relative performance of the three implementations for four
different inputs is depicted in Figure 6. The x-axes show the num-
ber of threads used in the multicore version and the y-axes give the

Optimization Time (ms)
1 | Topology-driven with mesh-partitioning 68,000
2 | 3-phase marking 10,000
3 | 2+ Atomic-free global barrier 6,360
4 | 3 + Optimized memory layout 5,380
5 | 4+ Adaptive parallelism 2,200
6 | 5+ Reduced thread-divergence 2,020
7 | 6+ Single-precision arithmetic 1,020
8 | 7+ On-demand memory allocation 1,140

Figure 8. Effect of optimizations on the running time of DMR
using an input mesh with 10 million triangles

running time in milliseconds on a logarithmic scale. The two hori-
zontal flat lines correspond to the sequential and the GPU runtime.
The reported GPU runtime is for the execution of the do-while
loop in Figure 3. Similarly, we only report the mesh-refinement
runtime for the sequential and multicore codes.

It is evident that our GPU implementation is significantly faster
than the serial and multicore codes are. It takes the GPU 1.14
seconds to refine the largest mesh consisting of 10 million triangles,
out of which 4.7 million triangles are initially bad.

The speedups of the multicore and GPU implementations over
the sequential implementation are shown in Figure 7. The multicore
version running with 48 threads achieves a speedup between 26.5
and 28.6 on our data sets. The GPU version is 2 to 4 x faster and
achieves a speedup between 54.6 and 80.5 over the sequential code.
Figure 8 shows the effect of individual optimizations on DMR.

8.2 Survey Propagation

Figure 9 shows the SP runtimes for K = 3 and a clause-to-literal
ratio of 4.2 (i.e., hard SAT problems). The number of literals ranges
from 1 million to 4 million. The GPU code is almost 3 x faster than
the 48-thread Galois code.

Both codes implement the same algorithm with one exception.
The GPU code caches computations along the edges to avoid some
repeated graph traversals. The importance of this optimization is
more pronounced for larger K, as Figure 9 shows. Note that the
hard SAT ratios differ (we obtained them from Mertens et al. [21]).
The multicore version does not scale with the problem size and
requires hours to complete. In contrast, the GPU version scales
linearly and successfully completes within a few minutes.

8.3 Points-to Analysis

The PTA runtimes on six SPEC 2000 inputs are shown in Figure 10.
The CPU codes perform optimizations like online cycle elimination
and topological sort that are not included in our GPU code. Yet, the
GPU implementation is 1.9 to 34.7 times faster. Major performance
gains are obtained by separating the phases for constraint evalua-
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Figure 9. Performance of Survey Propagation

tion and propagation and by transforming the code from a push- to
a pull-based approach to avoid costly synchronization.

8.4 Boruvka’s Minimum Spanning Tree

We evaluate the GPU and multicore Galois MST codes on a range
of graphs as shown in Figure 11. The graphs other than the road
networks are randomly generated. The Galois version 2.1.4 imple-
ments edge contraction by explicitly merging adjacency lists. The
GPU code implements it using components as discussed above.
Note that we run the multicore MST version with up to 48 threads
and report the runtime for the best-performing number of threads.

For road networks and grids, the multicore code achieves up to
7.0 million edges/sec and generally outperforms our GPU code,
which only reaches up to 2.5 million edges/sec. For the RMAT
and random graphs, however, the multicore rate drops to 0.014 mil-
lion edges/sec, whereas the GPU achieves 0.85 million edges/sec,
greatly outperforming the CPUs. This behavior is due to differing
graph densities that affect the edge-contraction performance. Road
networks and grids are relatively sparse, i.e., have small degrees,
whereas the RMAT and random graphs are denser. The cost of
merging adjacency lists in the Galois version is directly propor-
tional to the node degrees. Therefore, denser graphs are processed
more slowly. Moreover, the cost increases for later iterations as the
graph becomes smaller and denser. In contrast, the GPU implemen-
tation maintains the original adjacency list for each node and per-
forms edge traversals per node. The cost of merging increases with
the number of nodes rather than with the number of edges because
each component only contains nodes, and component merging re-
quires node merging rather than edge merging.

Based on this observation, we modified the Galois implemen-
tation (in version 2.1.5) to also use a component-based approach.
Additionally, the new multicore code incorporates a fast union-find
data structure that maintains groups of nodes, keeps the graph un-
modified, and employs a bulk-synchronous executor. The resulting
CPU code is much faster and, in fact, outperforms the GPU code. It
would be interesting to see whether including these optimizations
in the GPU code would result in a similar performance boost.

9. Related Work

There are many implementations of parallel graph algorithms on
a variety of architectures, including distributed-memory supercom-
puters [32], shared-memory supercomputers [2], and multicore ma-
chines [16]. DMR in particular has been extensively studied in se-
quential [8], multicore [6] and distributed-memory settings [14].
Irregular programs have only recently been parallelized for
GPUs. Harish and Narayanan [10] describe CUDA implementa-
tions of graph algorithms such as BFS and single-source shortest
paths computation. BES has received significant attention [9, 12,
17, 20]. In these algorithms, the structure of the graph remains un-
changed, simplifying the implementation. Hong et al. [11] propose
a warp-centric approach for implementing BFS, which is related to

Time (ms)
Benchmark Vars Cons | Serial Galois-48 GPU
186.crafty 6,126 6,768 595 86 44.4
164.gzip 1,595 1,773 456 73 7.1
256.bzip2 1,147 1,081 396 94 2.7
181.mcf 1,230 1,509 382 59 8.7
183.equake 1,317 1,279 436 49 3.3
179.art 586 603 485 72 7.4

Figure 10. Performance of Points-to Analysis

our solution for distributing work among threads. Vineet et al. [30]
and Nobari et al. [23] propose computing the minimum spanning
tree and forest, respectively, on GPUs. Both implementations use
statically allocated memory.

There are relatively few GPU implementations of morph algo-
rithms. Burtscher and Pingali [S] describe an implementation of
an n-body simulation (Barnes Hut algorithm) based on unbalanced
octrees. Whereas tree building is a morph operation, the vast major-
ity of the runtime is spent in the force calculation, which does not
modify the octree. Prabhu ef al. [25] describe a GPU implementa-
tion of a 0-CFA analysis and Mendez-Lojo et al. [18] implemented
an Andersen-style points-to analysis on the GPU. In these two algo-
rithms, the number of nodes in the graph is invariant, and the num-
ber of edges grows monotonically until a fixed-point is reached.
Our work deals with more general morph algorithms.

Our conflict-detection scheme has some similarity to the color-
ing heuristic of Jones et al. [13]. However, their distributed memory
algorithm involves no aborting threads; hence, there is no issue with
live-lock. Delaunay triangulation (not refinement) has been studied
by several researchers [27]. A refinement algorithm based on edge-
flipping has been proposed by Navarro et al. [22]. Although itis a
morph algorithm, it does not exhibit the same challenges because
the number of nodes and edges in the mesh do not change during
execution. Instead, edges are flipped to obtain a better triangulation.

To the best of our knowledge, ours is the first paper on gen-
eral morph algorithms for GPUs that describes efficient arbitrary
subgraph addition and deletion and provides general techniques for
implementing other morph algorithms.

10. Conclusions

Using a GPU to accelerate morph algorithms is very challeng-
ing. In this paper, we describe various aspects of efficiently im-
plementing such algorithms on GPUs and discuss techniques for
subgraph addition and deletion, conflict detection and resolution,
and improving load distribution and work efficiency. We illustrate
our techniques on efficient GPU implementations of four graph al-
gorithms that modify the underlying graph in different ways: De-
launay Mesh Refinement, Survey Propagation, Points-to Analysis,
and Boruvka’s MST algorithm. We evaluate the effectiveness of our
implementations on a range of inputs and show that our techniques
lead to large speedups compared to multicore and sequential ver-
sions of these algorithms. We hope that this work proves useful for
other GPU implementations of general morph algorithms.
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