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ABSTRACT
In a perfect world, code would only be written once and
would run on different devices with high efficiency. To a de-
gree, that used to be the case in the era of frequency scaling
on a single core. However, due to power limitations, parallel
programming has become necessary to obtain performance
gains. But parallel architectures differ substantially from
each other, often require specialized knowledge to exploit
them, and typically necessitate reimplementation and fine
tuning of programs. These slow tasks frequently result in
situations where most of the time is spent reimplementing
old rather than writing new code.

The goal of our research is to find programming techniques
that increase productivity, maintain high performance, and
provide abstraction to free the programmer from these un-
necessary and time-consuming tasks. However, such tech-
niques usually come at the cost of substantial performance
degradation. This paper investigates current approaches to
portable accelerator programming, seeking to answer whether
they make it possible to combine high efficiency with suffi-
cient algorithm abstraction. It discusses OpenCL as a po-
tential solution and presents three approaches of writing
portable code: GPU-centric, CPU-centric, and combined.
By applying the three approaches to a real-world program,
we show that it is at least sometimes possible to run ex-
actly the same code on many different devices with minimal
performance degradation using parameterization. The main
contributions of this paper are an extensive review of the cur-
rent state-of-the-art and our original approach of addressing
the stated problem with the copious-parallelism technique.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: PROCESSOR
ARCHITECTURES—Single-instruction-stream, multiple-data-
stream processors (SIMD)
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1. INTRODUCTION
Parallel computing has become a necessity as it provides

increased computational performance while reducing the en-
ergy consumption. Hence, the general hardware trend is
towards more parallelism in form of additional cores and
wider vectors (e.g., SSE and AVX instructions). To keep up
with these developments, software needs to be equally par-
allelized. In fact, the advent of multi-core CPUs meant, for
the first time, that existing serial code would only run faster
on new hardware if it was rewritten in a multithreaded way.

The single most important feature of multithreading is
that, if the number of threads is sufficiently high, an arbi-
trary number of processing elements can be utilized. Run-
ning such a program on an older CPU with fewer cores typi-
cally still results in good performance for that CPU. Hence,
it is reasonable to assume that this technique, i.e., providing
enough parallelism, can result in portable high-performance
code. This leads to the now obvious conclusion that if code
written in the year 2000 had been designed in a sufficiently
parallel manner, we would observe speedups to this day.

We are now facing a similar albeit even more complex
problem with Accelerated Processing Units (APUs) such as
FPGAs, GPUs, and MICs. The architectures of these de-
vices differ drastically and greatly affect how a program has
to be written to achieve good performance. Even within
a device family, successive generations often differ substan-
tially, making it unclear how to implement programs that
run efficiently on future accelerators. Yet, one would like
to be able to simply execute previously written programs
on newer accelerators and obtain speedups that are propor-
tional to the hardware development. This would allow pro-
grammers to focus on improving the algorithms rather than
having to reimplement them every time a new version of an
accelerator is released.

As CPUs and APUs are likely to be merged in the future,
simple multithreading will no longer suffice and parallelism
will have to be exploited in a different way. By definition,
APUs accelerate computations outside of the CPU, thus cre-
ating the first obstacle, which is CPU-APU communication
and memory addressing. Currently, CPU/GPU or multi-
GPU execution has to be expressed explicitly. This is espe-
cially worrisome since it ‘stretches’ the concept of uniform
programming quite a bit. Another problem is efficient load



balancing as every device in a heterogeneous system can have
different throughput and latency limitations. If future PCs
are similar to current supercomputers, they may contain en-
tire clusters of physically or virtually separated devices, thus
requiring inter-process communication such as MPI.

Future compute devices may have millions of process-
ing elements in tens of thousands of compute nodes spread
across hundreds of heterogeneous devices. Clearly, such
computers will make the already difficult task of writing
parallel programs only more complicated. This makes it ab-
solutely critical to enable programmers to write code once
and run it on different devices with reasonable efficiency,
that is, the performance on newer hardware should be pro-
portional to the provided compute power without the need
for tuning or reimplementing the code. The goal of our work
is to help make this a reality.

The main contributions of this paper are as follows. (1)
We present an extensive review of the related state-of-the-
art research, i.e., of different ways to provide both perfor-
mance and portability. (2) We describe a novel approach of
addressing this problem using OpenCL, which we call the
copious-parallelism technique. (3) We evaluate our method
on a real application and four distinct devices that require
very different programming models.

The rest of this paper is organized as follows. Section 2
surveys related work. Sections 3 and 4 present our approach.
Section 5 describes our test application as well as different
ways to parallelize it. Section 6 analyzes the performance
results. Section 7 concludes our study.

2. RELATED WORK

2.1 Halide
Halide demonstrates that both performance and abstrac-

tion can be achieved within a domain by separating the algo-
rithm description, which defines the storage, from the sched-
ule, which defines the order of computation tasks [1]. This
separation allows the same program to behave differently on
different devices simply by altering the execution schedule.
When recompiling code for each platform, the performance
achieved on architectures ranging from ARM-based CPUs
to GPUs is the same as that of hand-tuned assembly uti-
lizing SIMD instructions. However, there is a caveat. The
domain is restricted to image processing, a task that is very
parallel in nature. This limitation allows tuning the com-
piler appropriately. Thus, Halide combines a very impres-
sive compiler for a specific domain with an elegant way to
make code portable and modular. This approach raises in-
teresting questions. Can abstraction and performance only
be achieved together at the cost of domain restriction? How
much a priori knowledge about the underlying algorithms
and data structures is required? What would be the cost of
implementing such a compiler for other domains?

2.2 Phalanx
Phalanx is an architecture-aware C++-like programming

language [2]. It addresses large-scale parallelism, heteroge-
neous devices, and complicated memory hierarchies. The
background of this project is the Echelon processor concept
(NVIDIA’s Extreme-Scale Computing Project) whose archi-
tecture is similar to current supercomputer nodes comprising
both GPU-like throughput and CPU-like latency-optimized
cores. This design reduces energy consumption by putting

both types of cores onto one chip and by reducing data move-
ment costs. The project might indicate that future com-
modity hardware will be similar to current supercomputers
whose programming can be quite difficult. Hence, the main
goal of Phalanx is to simplify the programming by (1) cre-
ating a unified model for heterogeneous parallel machines,
i.e., a single notation that captures all processor types, and
(2) designing it in such a way that it likely works for current
and future machines.

Phalanx is able to obtain information about the under-
lying hardware and memory hierarchy and execute kernels
accordingly. The backend supports CUDA for running on
NVIDIA GPUs, OpenMP for CPUs, and GASNet for multi-
node execution. The preliminary results are very promising.
Algorithms such as MatMul and FFT scale extremely well
on clusters based on CPUs (Cray XE6, IBM Blue Gene/P)
and GPUs (Cray XK6). This concept provides many fea-
tures that we would expect from a programming language
for future accelerators. However, the work is still quite pre-
liminary and the CUDA backend restricts the supported ac-
celerators to NVIDIA GPUs.

2.3 C++ AMP
C++ Accelerated Massive Parallelism (C++ AMP) is a li-

brary implemented on DirectX 11 and an open specification
from Microsoft for implementing data parallelism directly
in C++ [3]. The C++ AMP programming model includes
multidimensional arrays, indexing, memory transfer, tiling,
and a mathematical function library. The most powerful
feature of C++ AMP is hiding all low-level code from the
programmer. Based heavily on C++ and abstraction, an ac-
celerator is represented by a single class and the high-level
code remains the same regardless of the used hardware. Ven-
dors are responsible for providing proper implementations.
Parallel for each statements encapsulate parallel code. No
more than a few lines of code are needed to execute a sim-
ple parallel code section, making it similar to Halide but
domain independent. The schedule is specified as parame-
ters of the parallel for each statement (tiling). In contrast
to Halide, AMP’s performance is far from perfect, suffer-
ing particularly from high latencies. Our experiments have
shown that, although very high performance can be reached
on devices such as Radeon and NVIDIA GPUs, substantial
time is needed to run a small task, making AMP impractical
for accelerating small problems. Another drawback is being
tied to Windows and Visual Studio 2012, which makes the
code platform dependent, and the early development stage,
which causes problems such as a lack of CPU support.

2.4 OpenCL
The Open Computing Language (OpenCL) is a well-known

parallel programming framework for heterogeneous platforms
consisting of central processing units (CPUs), graphics pro-
cessing units (GPUs), digital signal processors (DSPs), field-
programmable gate arrays (FPGAs) and other types of pro-
cessors [4]. It is supported by many operating systems and
based on C99, making it very portable. Once written in a
parallel manner, OpenCL code can be executed on a variety
of devices. The underlying implementation of OpenCL calls
relies on so called platforms provided by hardware vendors
like AMD, NVIDIA, Intel, and IBM and is therefore hidden
from the programmer. The way the code is compiled and
executed on a specific device is also handled by the manu-



facturer’s implementation.
OpenCL organizes the programs into workgroups that run

threads. Similar to CUDA, the threads are very lightweight.
Whereas recent research has shown that tweaked OpenCL
code performs no worse than CUDA code [5], our results
show a performance gap of roughly 20% mainly due to loop
unrolling limitations. A big advantage of OpenCL is its
ability to run on CPUs. We have observed speedups on
CPUs from multithreaded execution as well as from auto-
vectorization using Intel’s OpenCL platform. OpenCL de-
termines what device to select for execution at runtime and
compiles the code when needed (or offline). Similar to CUDA,
OpenCL offers full control over the execution, which is why
many calls are low-level in nature, making the code design
cumbersome at times. Being an open and free standard
makes it very portable and widely available. The recently
released Xeon Phi clearly demonstrates that new devices do
and probably will support OpenCL, allowing programmers
to keep the same code and enjoy speedups, which is a perfect
example of portability.

2.5 Shevlin Park
Intel is working on a project called Shevlin Park. It aug-

ments CLANG and LLVM [6] with C++ AMP and uses
OpenCL as its underlying compute backend. The goal of
this project is to combine C++ AMP’s elegant code design
and simplicity with OpenCL’s portability and performance.
Shevlin Park accomplishes this by translating C++ AMP
source code into OpenCL using the CLANG front end and
the LLVM back end. As a result, programs can be imple-
mented in a very abstract way using C++ AMP, yet the
resulting code will be portable OpenCL. Preliminary per-
formance comparisons show a significant improvement over
C++ AMP, but slightly (around 10% on average) worse effi-
ciency compared to native OpenCL. This initiative exploits
code translation to achieve good performance while main-
taining abstraction and providing just a minimal description
of the algorithm as in C++ AMP. Note that Shevlin Park
is a concept project and that Intel has not announced any
release plans for this technology yet.

2.6 OmpSs
OmpSs is another interesting concept that is close to our

goal [8]. It extends OpenMP with new directives to support
asynchronous parallelism and heterogeneity. The objective
is to keep the same sequential code on any platform. It is
based on pragma directives as OpenMP. However, it can also
be understood as new directives extending other accelerator-
based APIs like CUDA or OpenCL. Whereas the project
promises high productivity, the performance bottlenecks and
exact benchmarks are not yet reported. Another limitation
is that the GPU component currently only supports CUDA.

2.7 Pattern Language
The Pattern Language being developed at UC Berkeley [7]

aims at identifying computational patterns and structural
patterns [9]. Computational patterns include problems such
as N-Body, Dense Matrix Algebra, and Dynamic Program-
ming. Structural patterns include approaches such as MapRe-
duce and Pipe-and-Filter. Identifying those patterns and
learning how to solve each of them efficiently leads to a
modular design, possibly resulting in specialized libraries or
methods that can be quickly applied to a given problem.

This approach is different from the ones described above as
it assumes that a single programming language is not able
to perform well. The main idea is that software architecture
is key to the design of parallel programs, and the key to
efficient software implementation is frameworks.

3. PROPOSED APPROACH
The idea of code once, run everywhere is well known and,

as outlined in the previous section, there are many approaches
to the problem. The key question is what a programmer
needs or what kind of tool maximally increases productiv-
ity. This, of course, assumes that three conditions can be
satisfied at the same time: the algorithm implementation is
abstract, code is always fast (though not necessarily running
close to peak performance), and the domain is not restricted.
In our opinion, OpenCL currently represents the best basis
for such an approach. The low-level implementation details
are handled by the vendor and hidden from the user. Thus,
it is easy to achieve the first of the stated goals, i.e., code
portability on a variety of devices. After all, OpenCL was
designed to provide a way of running the same code on dif-
ferent devices. However, being able to execute the code and
actually having portable high-performance code are very dif-
ferent things. This is similar to how code written in C can be
compiled almost anywhere, but careful machine-dependent
optimizations and changes are required to obtain highly effi-
cient implementations. We are assuming, based on the above
survey, that programmers are more likely to put effort into
additional parallelization and maintain only one version of
the code than reimplementing a program for every new de-
vice that is released.

Therefore, in order to achieve good performance on many
types of devices, we need to exploit parallelism at all levels.
For example, our experiments show that, by writing code
that is explicitly vectorized (works on vector data types
in OpenCL) and that uses a sufficiently large number of
threads, peak performance can be approached on CPUs and
Intel Xeon Phis as well as NVIDIA and AMD GPUs run-
ning exactly the same code. Since this approach seems very
simple, one might conclude that it is not a substantial im-
provement over existing techniques. Yet, none of the afore-
mentioned works rely on a similar method. In addition to
being straightforward, our technique proves to be portable
and highly efficient. We demonstrate these benefits on a
piece of code that we implemented using our technique and
tuned for a specific type of device before testing it without
changes on hypothetically new and different hardware. Due
to its simplicity, it should be relatively easy to apply our
technique to other problems as well.

4. REDUNDANT/EXPLICIT CODING
Our approach is based on the concept of copious paral-

lel programming. Following the same principle as during
the shift towards multicore CPUs, we explicitly express the
parallel code at the thread and register (vector) level. Ad-
ditionally, we add explicit local memory management, as is
common in GPU programming. Currently, CPUs are not ca-
pable of taking advantage of running thousands of threads.
However, this might change in the future. Similarly, vector
instructions are not (explicitly) used in CUDA code. In the
following section, we show how to write code in the proposed
copious parallelism style so that it will likely run efficiently
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Figure 1: Abstraction vs. performance

on future hardware. We include several intermediate steps
to better illustrate how this is done.

4.1 Runtime/compile-time adjustment
The key aspect of our approach is to let the device ignore

any redundant parallelism that it does not support. To en-
able that, the code should be parameterized to allow changes
at compile time (using definitions and macros) or at runtime
(using variables). This approach mitigates the overhead of
the copious parallelism on devices such as CPUs, decreases
register usage on GPUs, and increases the flexibility with
regard to future hardware. This includes the:

• Number of processors/units

• Number of cores per processor

• Global memory (accessible by all processors)

• Local memory (accessible by one processor or thread)

• Cache (size and hierarchy)

• Clock frequency

4.2 Parallelization
We refer to parallelization as a set of operations being

executed simultaneously in an independent manner by more
than one thread (a.k.a. Multiple Instruction Multiple Data
(MIMD) execution). For example, pthreads and OpenMP
can easily express this kind of parallelism.

b 0 c 0 a 0 + 

b 1 c 1 a 1 + 

b 2 c 2 a 2 + 

b 3 c 3 a 3 + 

Figure 2: Parallel addition - 4 elements at once, 4 instruc-
tions in parallel

4.3 Vectorization
We refer to vectorization as one instruction performing

the same operation on more than one element at the same
time (a.k.a. Single Instruction Multiple Data (SIMD) exe-
cution). For example, SSE registers and instructions allow
these kinds of operations (a 128-bit register can hold up to
4 single-precision values).

b b b b 0 1 2 3 c c c c 0 1 2 3 

a a a a 0 1 2 3 

+ 

Figure 3: Vector addition - 4 elements at once, 1 instruction

4.4 Explicit memory management
Aside from the number of cores, the main difference be-

tween CPUs and GPUs is the distinct approach to local
memory management. The off-chip memory (DRAM) has a
high latency compared to cache memory. Therefore, to fully
utilize GPUs, it is often necessary to perform explicit loads
into fast (so-called shared) memory and reuse the stored
data. This is similar to how CPU caches operate except the
shared memory is controlled by software. Modern GPUs
do have caches, but they are not as big as those found on
CPUs. CPUs also employ mechanism such as prefetching to
preload data into the caches. It is important to exploit the
memory hierarchy, and we believe that the techniques de-
veloped to program GPUs are also suitable for current and
future CPUs as well as other accelerators. As presented in
Figure 4, data can be accessed through the cache (typical
for CPUs), directly from the memory, or through fast lo-
cal on-chip memory (typical for GPUs). The usual size of
the fast memory (L1 data cache or shared GPU memory is
16-64 kB). An obvious disadvantage of this concept is the ne-
cessity to decompose the problem, which might not always
be possible.

5. ANALYZED PROBLEM
To evaluate our technique, we chose the well-known n-

body problem. This problem has been studied throughout
the history of computing [12]. It involves predicting the
motion of celestial objects under mutual gravitation. Solving
it has been motivated by the desire to understand the motion
of the sun, planets, and visible stars. With many objects,
n-body simulation can be computationally taxing due to the
n2 force calculations. The parallelism of the n-body problem
has also been studied since the advent of parallel computers.

We selected this problem as a test case for several reasons.
Due to its relative simplicity, it is easy to identify the de-
grees of parallelism. Moreover, its results are reproducible, it
exhibits significant computational complexity, and the prob-
lem size can trivially be adjusted. For these reasons, it is
widely used as a benchmark and is, for example, included in
the CUDA SDK. The performance is typically expressed in
number of interactions calculated per unit time.
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Figure 4: Data access - CPU vs. GPU preferred way

A direct O(n2) force calculation algorithm computes the
interaction of each object with every other object in the
system. An interaction comprises roughly 20 to 30 floating-
point operations (FLOPs), depending on the implementa-
tion. The performance can be presented in FLOP/s (FLOPs
per second). Typically, performance grows with increasing
problems size (number of bodies). However, due to finite
cache sizes, CPUs do not handle large instances well. A
method called cache blocking is used to solve this problem.
Our approach employs a generalization of this technique.

There are additional reasons for our choice that are worth
pointing out. Although being a simple problem, implement-
ing nbody is not as trivial as it may seem. In particular, re-
cent memory bandwidth/latency limited hardware presents
a considerable obstacle. Writing code that performs at 50%
of the possible peak performance is very hard. Another rea-
son is that nbody is simple enough to illustrate our method-
ology without requiring a large number of statements. Fi-
nally, this choice makes it easy to compare our results to
other implementations.

5.1 All-pairs n-body simulation
The total force Fi on body i, due to its interactions with

the other n− 1 bodies, is the sum of all interactions:

Fi =
∑
j

Fij = G ∗mi ∗
∑
j

mj ∗ r(i, j)
r(i, j)3

(1)

where r(i, j) is the distance between bodies i and j, and mk

is the mass of body k. To integrate over time, the accelera-
tion ai = Fi

mi
needs to be computed to update the position

and velocity of body i, which can be simplified to the fol-
lowing formula [14, 13]:

ai = G ∗
∑
j

mj ∗ r(i, j)
(r(i, j)2 + ε2)

3
2

(2)

where ε is a constant (a softening parameter to improve the
accuracy in the presence of discrete time steps).

5.2 Original serial code

The serial code primarily consists of an outer and an inner
loop to iterate over the interactions. Then, it updates the
acceleration acc(i) and velocity vel(i) based on the calcu-
lated force F (i).

for i← 1, n do
A← position(i) . Read position of i (x,y,z)
for j ← 1, n do

B ← position(j) . Read position of j (x,y,z)
M ← mass(j) . Read mass of j
F (i)← F (i) + Force(A,B,M) . Equation (2)

end for
Update acc(i), vel(i)

end for

Force(A,B,M) comprises 19 floating-point instructions in
our implementation (6 additions, 6 multiplications, 6 sub-
tractions, and 1 reciprocal square root; some devices sup-
port FMA (Fused-Multiply-Add) instructions that are able
to execute the code with as little as 13 floating-point instruc-
tions). This implies a high memory throughput and necessi-
tates using cache or shared memory to utilize the arithmetic
units efficiently.

5.3 CPU-centric implementation - Inner-loop
Vectorization

Perhaps the most straight-forward approach to parallelize
the presented code is to divide the outer loop among the
available threads and to execute the operations in the in-
ner loop using vector registers and instructions (vector load,
vector store, vector add, vector multiply, and vector square
root). The inner loop’s increment changes according to the
vector width. Here, N elements are being processed at the
same time (including loads and stores). This also requires
the use of vector registers in the outer loop. However, an
entire vector can easily be initialized with a single value.

for i← 1, n do . In Parallel . N = Vector Length
A[1, N ]← position(i) . Read 1 element, set N
for j ← 1, n do

B[1, N ]← position([j, j +N ]) . Read N elements
M [1, N ]← mass([j, j +N ]) . Read N elements
F (i)← F (i) + Force(A,B,M) . N Operations

end for
Update acc(i), vel(i)

end for

vectorization vectorization vectorization vectorization

parallelization

sub

add

mul

sqrt

Figure 5: CPU-centric implementation



5.4 CPU-centric implementation - Outer-loop
Vectorization

The alternate, less obvious way is to vectorize the loads
in the outer loop. This approach minimizes the memory
turnaround as the vector loads are performed only N times
instead of N2 times when vectorizing the inner loop. How-
ever, there are still 4 ∗ N2 single memory accesses in the
inner loop to set the values of the vector the registers.

for i← 1, n do . In Parallel . N = Vector Length
A[1, N ]← position([j, j +N ]) . Read N elements
for j ← 1, n do

B[1, N ]← position(j) . Read 1 element, set N
M [1, N ]← mass(j) . Read 1 element, set N
F (i)← F (i) + Force(A,B,M) . N Operations

end for
Update acc(i), vel(i)

end for

5.5 GPU-centric implementation
A well-known GPU implementations of the O(n2) n-body

algorithm was presented by Nyland et al. [13]. Their imple-
mentation completely omits the outer loop and instead uses
the thread index as the i value. An important change is the
blocking of the inner loop, which preloads chunks of data
from the off-chip memory into the on-chip shared memory,
enabling the calculations in the inner loop to quickly access
and reuse the preloaded data. The block size depends on
the size of the shared memory.

i← Thread ID
A← position(i) . Read position of i (x,y,z)
for j ← 1, n do . Increment by BlockSize

Read [j, j+BlockSize] into local memory
for k ← 1, BlockSize do

Read from local memory
B ← position(k + j) . Read position of k + j
M ← mass(k + j) . Read mass of k + j
F (i)← F (i) + Force(A,B,M)

end for
Update acc(i), vel(i)

end for

012...

i

Thousands

Figure 6: GPU-centric implementation

5.6 Combined approach - Redundant paral-
lelism and explicit memory management

This method combines the outer-loop vectorization with
GPU-like blocking to preload the data into fast memory.
Each thread again runs one iteration of the outer loop.

i← Thread ID . N = Vector Length
A[1, N ]← position([j, j +N ]) . Read N elements
for j ← 1, n do . Increment by BlockSize

Read [j, j+BlockSize] into local memory
for k ← 1, BlockSize do

Read from local memory
B[1, N ]← position(k + j)
M [1, N ]← mass(k + j)
F (i)← F (i) + Force(A,B,M) . N Operations

end for
Update acc(i), vel(i)

end for

5.7 Constraints and possible future obstacles
We identified several problems related to our approach

that are caused by current limitations of OpenCL. The na-
tive CUDA, AVX, and Xeon Phi implementations provide
slightly better performance than their OpenCL counterparts.
For instance, CUDA allows better control over the regis-
ter usage and enables control of the L1 cache/shared mem-
ory size. In addition, it is able to perform better loop un-
rolling. Moreover, not all OpenCL drivers translate instruc-
tions into machine code in the same way. Specifically, we
found that operations such as square root or reciprocal are
not always converted in the desired manner. Another lim-
itation of OpenCL when compiling CPU code is the lack
of prefetching. Since memory hierarchies will only become
more complex, it is important to exploit them well.

Even for our simple program, a large number of param-
eters describing the cache hierarchy and memory manage-
ment schemes, which are the primary sources of difficulty
in performance portable programming, must be configured.
However, as mentioned, we believe programmers are likely to
put effort into additional parallelization if it means that they
only have to maintain one version of the code. Parametriza-
tion is therefore a key aspect of our method.

6. RESULTS AND ANALYSIS
We tested our copious-parallelism technique by compar-

ing fast hardware-optimized implementations of the n-body
algorithm to our general OpenCL version that is capable of
running on all tested devices. We used four disparate de-
vices for this experiment: an NVIDIA GeForce Titan GPU
(CUDA/OpenCL), an AMD Radeon 7970 GPU (OpenCL),
an Intel Xeon E5-2690 CPU (Intel Compiler and OpenCL),
and an Intel Xeon Phi 5110P MIC accelerator (Intel Com-
piler and OpenCL). Table 1 lists pertinent information about
each tested device. The hardware-specific implementations
are carefully tuned for each device. We use their perfor-
mance as reference results, which are shown in Table 2.
The NVIDIA implementation uses CUDA whereas the AMD
GPU runs a straight OpenCL port of this code. We tested
both Intel devices using implicit (the compiler is capable
of vectorizing the code to some extent automatically) and
explicit vectorization. Table 2 shows that our hardware-
specific implementations achieve over 80% of the possible
peak performance. The codes execute 7 normal floating-



point operations and 6 Fused-Multiply-Adds (FMADs), for
a total of 19 FLOPs per interaction. Given the ability of
certain devices to run an FMAD instruction in every cycle,
we can only achieve approximately 73% of the theoretical
peak performance (which assumes executing FMADs exclu-
sively) of the Intel Xeon Phi, NVIDIA GTX Titan, and
AMD Radeon. Just like the GPU-based OpenCL imple-
mentation is a translation of the optimized CUDA code, the
CPU-based OpenCL implementation is a port of the CPU
native implementation.

Table 3 presents results for the GPU-based OpenCL im-
plementation running on each device. The table shows the
performance in FLOP/s as we want a measure of relative
efficiency (runtime does not reflect how well a program per-
forms compared to the maximum possible speed). Oper-
ations not related to the kernel execution have negligible
impact on the runtime. Whereas the code performs well on
both GPUs, it does not on the Intel devices. Apparently,
it can be efficiently parallelized by substituting the outer
loop with thread indexing even without vectorization. Ta-
ble 4 shows the results of translating the CPU code with
inner-loop vectorization to OpenCL.

Outer-loop vectorization combined with local memory block-
ing appears to be the best solution, running well on all tested
devices, as highlighted in Table 5. Surprisingly, the perfor-
mance of this implementation on the Radeon GPU is even
better than using the code ported from CUDA. One GPU
limitation appears to be the increased register usage when
using explicit vectorization (such as float16, float8, or float4
data types). This causes the compiler to reserve more re-
sources and the GPU is not able to run as many threads in
parallel. Therefore, code parameterization is important in
this case to change the vector size. We have also noticed
that the OpenCL version is inferior compared to the native
CPU code when fast approximate instruction such as 23-bit
reciprocal vector square root can be used (Table 5). OpenCL
does not seem to be capable of utilizing such instructions.

7. CONCLUSIONS
This paper investigates current approaches to portable

accelerator programming, seeking to answer whether it is
possible to combine high efficiency with algorithm abstrac-
tion or not. Our main contributions are an extensive review
of the current state-of-the-art and our original approach of
addressing the issue with a generalized copious-parallelism
technique using OpenCL. Parallel architectures can differ
substantially from one another and often require specialized
knowledge to exploit them. Sometimes, complete reimple-
mentation and fine tuning of code is necessary for a specific
device. This often leads to a situation where most of the
time is spent reimplementing old rather than writing new
code. Whereas the OpenCL language provides portability,
its efficiency still heavily depends on the implementation.

This paper shows three approaches of writing portable
OpenCL code: GPU-centric, CPU-centric, and combined.
All three approaches have been tested on a real application.
The results indicate that it is possible to run exactly the
same code on many different devices with minimal perfor-
mance degradation. We present a high-performance imple-
mentation of the classic n-body algorithm using CUDA on
a NVIDIA GPU, OpenCL on AMD GPU as well as native
Intel instructions on Xeon and Xeon Phi devices. We show
the intermediate steps of obtaining a portable implementa-

tion using our copious parallel programming technique and
describe how to write such code so that it will likely run
efficiently on future hardware. We are assuming (based on
the survey presented earlier) that programmers are more
likely to put effort into additional parallelization and main-
tain only one version of their code rather than reimplement
a program for every new device. We believe there is a
group of invariants, such as the memory hierarchy, the num-
ber of cores, and the clock frequency, whose values can be
parametrized. Therefore, assuming that future devices do
not fundamentally change, code written using our technique
should remain portable.

Since our method seems simple, one might conclude that
it is not a substantial improvement over the existing tech-
niques. However, Halide, Phalanx, C++ AMP, Shelvin Park,
and OmpSs do not use or rely on a similar approach. More-
over, our method proves to be very effective, meaning it is
portable and highly efficiently, in addition to being relatively
simple. In all cases, we are able to achieve over 80-90 per-
cent of peak performance for the given mix of floating-point
operations using native implementation and over 75 percent
with our portable OpenCL source code. This shows that it
is possible to achieve high performance with portable code.

Our future plans include testing a wider set of problems,
including irregular applications and data-intensive codes.
We would also like to test our proposed method on more
devices supporting OpenCL such as FPGAs and DSPs.
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