
PerfExpert: An Easy-to-Use Performance Diagnosis

Tool for HPC Applications

Martin Burtscher
1
, Byoung-Do Kim

2
, Jeff Diamond

3
, John McCalpin

2
, Lars Koesterke

2
, and James Browne

3

1
Institute for Computational Engineering and Sciences, The University of Texas at Austin

2
Texas Advanced Computing Center, The University of Texas at Austin
3
Department of Computer Science, The University of Texas at Austin

Abstract—HPC systems are notorious for operating at a small

fraction of their peak performance, and the ongoing migration to

multi-core and multi-socket compute nodes further complicates

performance optimization. The readily available performance

evaluation tools require considerable effort to learn and utilize.

Hence, most HPC application writers do not use them. As reme-

dy, we have developed PerfExpert, a tool that combines a simple

user interface with a sophisticated analysis engine to detect prob-

able core, socket, and node-level performance bottlenecks in each

important procedure and loop of an application. For each bottle-

neck, PerfExpert provides a concise performance assessment and

suggests steps that can be taken by the programmer to improve

performance. These steps include compiler switches and optimi-

zation strategies with code examples. We have applied PerfEx-

pert to several HPC production codes on the Ranger supercom-

puter. In all cases, it correctly identified the critical code sections

and provided accurate assessments of their performance.

Index Terms—Bottleneck diagnosis, HPC systems, multicore

performance, performance analysis, performance metric

I. INTRODUCTION

Most HPC applications attain only a small fraction of the

potential performance on modern supercomputers. Emerging

multi-core and multi-socket cluster nodes greatly increase the

already high dimensionality and complexity of performance

optimization. Performance optimization requires not only

identification of code segments that are bottlenecks but also

characterization of the causes of the bottlenecks and determi-

nation of code restructurings that will improve performance.

While identification of code segments that may be bottlenecks

can be accomplished with simple timers, characterization of

the cause of the bottleneck requires more sophisticated mea-

surements such as the use of hardware performance counters.

Most modern high-end microprocessors contain multiple

performance counters that can each be programmed to count

one of hundreds of events [4]. Many of these events have

cryptic descriptions that only computer architects understand,

making it difficult to determine the right combination of

events to track down a performance bottleneck. Moreover,

correct interpretation of performance counter results can often

only be accomplished with detailed architectural knowledge.

For example, on Opteron CPUs, L1 cache miss counts exclude

misses to lines that have already been requested but are not yet

in the cache, which may make it appear as though there is no

problem with memory accesses even when memory accesses

are the primary bottleneck. Diagnosing performance problems

thus requires in-depth knowledge of the hardware as well as of

the compiler and the system software. However, most HPC

application writers are domain experts who are not and should

not have to be familiar with the intricacies of each system on

which they want to run their code.

There are several widely available performance measure-

ment tools, including HPCToolkit [28], Open|SpeedShop [20],

PAPI [21], and Tau [26], that can be used to obtain perfor-

mance counter measurements. These tools generally provide

little guidance for selecting which measurements to make or

how to interpret the resulting counter values. Hence, designing

and making sense of the measurements requires considerable

architectural knowledge, which changes from system to sys-

tem. None of these tools provide guidance on how to restruc-

ture code segments to alleviate bottlenecks once they have

been identified. Thus, these tools provide only a part, albeit an

essential part, of the solution. As a result, characterizing and

minimizing performance bottlenecks on multicore HPC sys-

tems with today’s performance tools is an effort-intensive and

difficult task for most application developers. A 2009 survey

of Ranger users showed that fewer than 25% had used any of

the several performance tools available on Ranger.

To make performance optimization more accessible to ap-

plication developers and users, we have designed and imple-

mented PerfExpert, a tool that captures and uses the architec-

tural, system software and compiler knowledge necessary for

effective performance bottleneck diagnosis. Hidden from the

user, PerfExpert employs the existing measurement tool

HPCToolkit [28] to execute a structured sequence of perfor-

mance counter measurements. Then it analyzes the results of

these measurements and computes performance metrics to

identify potential bottlenecks at the granularity of six catego-

ries. For the identified bottlenecks in each key code section, it

recommends a list of possible optimizations, including code

examples and compiler switches that are known to be useful

for speeding up bottlenecks belonging to the same category.

Thus, PerfExpert makes the extensive knowledgebase needed

for bottleneck diagnosis available to HPC application writers.

In summary, PerfExpert is an expert system for automatically

identifying and characterizing intrachip and intranode perfor-

mance bottlenecks and suggesting solutions to alleviate the

bottlenecks, hence the name PerfExpert.

© 2010 IEEE Personal use of this material is permitted. However, per-

mission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other

works must be obtained from the IEEE.

SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-
2/10/$26.00

Fig. 1 compares the workflow of a typical code optimiza-

tion process using performance evaluation tools that only au-

tomate the measurement stage with the corresponding

workflow using PerfExpert. When optimizing an application

with generic profiling tools, users normally follow an iterative

process involving multiple stages, and each stage has to be

conducted manually. Moreover, the decision making is left to

the user and is thus based on his or her (possibly limited) per-

formance evaluation and system knowledge. In contrast, most

of this process is automated with PerfExpert. In particular, the

measurement and bottleneck determination processes (dotted

box) are automatically executed by PerfExpert. Even for the

optimization implementation, PerfExpert guides the user by

suggesting optimizations from its database. This degree of

automation was made possible by confining the domain of

analyses to the core, chip and node level.

Fig. 1. Profiling and optimization workflow with generic measurement tools
(left) and with PerfExpert (right)

The guiding principle behind the design of PerfExpert is to

obtain simplicity of use by automating the complex measure-

ment and analysis tasks and embedding expert knowledge

about the underlying architecture into the diagnosis of the bot-

tlenecks. PerfExpert is launched through a simple command

line (if the job submission system is not used) that only takes

two parameters: one parameter controls the amount of output

to be generated and the other parameter is the command

needed to start the application to be measured. PerfExpert au-

tomatically determines which performance experiments to run,

and its output is simple and graphical. It is intended to make

performance assessment easy, fast, and available to users with

little or no performance optimization expertise. Performance

experts may also find PerfExpert useful because it automates

many otherwise manual steps. However, expert users will

probably also want to see the raw performance data.

To successfully accomplish analysis and characterization of

performance bottlenecks, we found it necessary to develop a

new performance metric. This metric combines performance

counter measurements with architectural parameters to com-

pute upper bounds on local cycle-per-instruction (LCPI) con-

tributions of various instruction categories at the granularity of

loops and procedures. LCPI is designed to naturally lead to

specific bottlenecks, to highlight key performance aspects, and

to hide misleading and unimportant details (Sections II & IV).

PerfExpert has been developed for and implemented on the

Ranger supercomputer at the Texas Advanced Computing

Center. In the current version, the analysis and characteriza-

tion of the performance of each loop and procedure is based

on 15 performance counter measurements and 11 chip- and

architecture-specific resource characteristics. These parame-

ters and counter values, which are defined and discussed in

Section III, are available or derivable for the standard Intel,

AMD, and IBM chips as well as the node structures typical of

current supercomputers, allowing PerfExpert to be ported to

systems that are based on other chips and architectures.

We have analyzed several HPC production codes on Ranger

using PerfExpert. In all instances, PerfExpert correctly deter-

mined the important code sections along with their perfor-

mance bottlenecks. With help from the original application

writers, we studied and optimized these code sections to verify

that the optimizations suggested by PerfExpert are useful. In

this way, PerfExpert has, for example, been helpful in speed-

ing up a global Earth mantle convection simulation running on

32,768 cores by 40%, even though we “only” performed node-

level optimizations.

This paper makes the following contributions:

 It introduces a new performance bottleneck diagnosis tool

for HPC application writers, called PerfExpert, that is easy

to use because it only requires the command line of the ap-

plication to be measured. It automatically evaluates the

core, chip, and node-level performance, including determin-

ing which performance counters to use, analyzing the re-

sults, determining potential bottlenecks, and outputting only

essential information.

 It presents the novel LCPI metric that combines perfor-

mance counter measurements with architectural parameters

to make the measurements comparable, which is crucial for

determining the relative severity of potential bottlenecks.

LCPI makes it easy to see what aspect of a code section ac-

counts for most of the runtime and therefore represents a

key optimization candidate.

 It evaluates PerfExpert and the LCPI metric on actual HPC

production codes running on Ranger and reports our expe-

riences and findings with these applications.

The rest of this paper is organized as follows. Section II de-

scribes PerfExpert in detail. Section III presents the evaluation

methodology. Section IV discusses the results. Section V

summarizes related work. Section VI concludes with a sum-

mary and future work.

II. DESIGN

This section describes PerfExpert’s operation and use, its

LCPI performance metric, as well as the user interface.

A. Performance Metric

The primary performance metric used in PerfExpert is local

cycles per instruction (LCPI). It is local because separate CPI

Selecting perfor-
mance counters

Running multiple
measurements

Searching for proper
optimization method

Collecting
performance data

Implementing
optimization

Identifying
bottlenecks

Automatic (for
core, chip, & node-
level bottlenecks)

performance
counter selection,

measurement
execution,

data collection,
bottleneck diagnosis,

and optimization
suggestion based

on several categories

Selecting and imple-
menting optimization

[mostly manual] [mostly automated]

Typical optimization work-
flow with profiling tools

Optimization workflow with
PerfExpert

values are computed for each procedure and loop. PerfExpert

computes and reports the total LCPI for each procedure and

loop as well as upper bounds for separate contributions to the

total LCPI from six operation classes or categories: data

memory accesses, instruction memory accesses, floating-point

operations, branches, data Translation Lookaside Buffer

(TLB) accesses, and instruction TLB accesses.

The LCPI is essentially the procedure or loop runtime nor-

malized by the amount of work performed. We found this

normalization to be important when combining measurements

from multiple runs because some timing dependent nondeter-

minism is common in parallel programs. For example, it is

unlikely that multiple balanced threads will reach a synchroni-

zation primitive in the same order every time the program ex-

ecutes. Hence, an application may spend more or fewer cycles

in a code section compared to a previous run, but the instruc-

tion count is likely to increase or decrease concomitantly.

Hence, the (normalized) LCPI metric is more stable between

runs than absolute metrics such as cycle or instruction counts.

Currently, PerfExpert measures 15 different event types

(Section II.A.1) to compute the overall LCPI and the LCPI

contribution of the six categories. Because CPUs only provide

a limited number of performance counters, e.g., an Opteron

core can count four event types simultaneously, PerfExpert

automatically runs the same application multiple times. To be

able to check the variability between runs, one counter is al-

ways programmed to count cycles. The remaining counters are

configured differently in each run to obtain information about

data memory accesses, branch instruction behavior, etc. To

limit the variability and possible resulting inconsistencies,

events whose counts are used together are measured together

if possible. For example, PerfExpert performs all floating-

point related measurements in the same experiment.

Based on the performance counter measurements, PerfEx-

pert computes an (approximate) upper bound of the latency

caused by the measured LCPI contribution for the six catego-

ries to narrow down the possible causes of bottlenecks for the

code sections with a high LCPI. We are interested in compu-

ting upper bounds for the latency, i.e., worst case scenarios,

because if the estimated maximum latency of a category is

sufficiently low, the corresponding category cannot be a sig-

nificant performance bottleneck. For instance, the branch cat-

egory’s LCPI contribution for a given code section is:

(BR_INS * BR_lat + BR_MSP * BR_miss_lat) / TOT_INS

Here, bold print denotes performance counter measurements

for the code section and italicized print indicates system con-

stants. BR_INS, BR_MSP, and TOT_INS are the measured

number of branch instructions, branch mispredictions, and

total instructions executed, respectively. BR_miss_lat and

BR_lat are the CPU’s branch mispredictions latency and

branch latency in cycles. Thus, the above expression in paren-

theses represents an upper bound of cycles due to branching

related activity. It is an upper bound because the latency is

typically not fully exposed in a superscalar CPU like the cur-

rent CPUs from AMD, Intel, IBM, etc., which can execute

multiple instructions in parallel and out-of-order, thereby hid-

ing some of this latency. Dividing the computed number of

cycles by the measured number of executed instructions yields

the LCPI contribution due to branch activity for a given code

section. Upper bounds on the LCPI contribution of the other

categories are computed similarly. For data memory accesses,

PerfExpert uses the following expression:

(L1_DCA*L1_lat+L2_DCA*L2_lat+L2_DCM*Mem_lat)/TOT_INS

This is the number of L1 data cache accesses times the L1

data cache hit latency plus the number of data accesses to the

L2 cache times the L2 cache hit latency plus the number of

data accesses that missed in the L2 cache times the memory

access latency divided by the total number of executed instruc-

tions. L3 accesses will be discussed shortly. Again, this LCPI

contribution represents an upper bound because of CPU and

memory parallelism. Note that Mem_lat is not a constant be-

cause the latency of an individual load can vary greatly de-

pending on the DRAM bank and page rank it accesses and

memory traffic generated by other cores on the same chip, to

name just a few factors. Fortunately, PerfExpert is dealing, at

the very least, with millions of memory accesses, which tend

to average out so that a reasonable upper bound for Mem_lat

can be used. However, this opens up the possibility of unde-

restimating the true memory latency, in which case the LCPI

contribution is not an upper bound. Selecting a conservative

Mem_lat makes this unlikely in practice because experience

with multiple codes on a given architecture enables the

Mem_lat value to be chosen judiciously.

Aside from not being overly susceptible to the inherent

nondeterminism of parallel programs, PerfExpert’s perfor-

mance metric has the following benefits and abilities.

1) Highlighting key aspects. For example, a program with a

small L1 data cache miss ratio can still be impeded by data

accesses. If the program executes mostly dependent load in-

structions, the Opteron’s L1 data cache hit latency of three

cycles will limit execution to one instruction per three cycles,

which is an order of magnitude below peak performance. The

LCPI metric correctly accounts for this possibility.

2) Hiding misleading details. For instance, if a program ex-

ecutes thousands of instructions, two of which are branches

and one of them is mispredicted, the branch mispredictions

ratio is 50%, which is very bad. However, it does not matter

because so few branches are executed. The LCPI contribution

metric will not report a branch problem in this case because

the total number of cycles due to branching is miniscule.

3) Summarization ability. For example, instead of listing a

hit or miss ratio for every cache level, PerfExpert’s perfor-

mance metric can combine this information into a single mea-

ningful metric, i.e., the data access LCPI, to reduce the amount

of output without losing important information.

4) Extensibility. If a future or different CPU generation

supports a new instruction category (as well as countable

events for it), it should be straightforward to define an LCPI

computation for the new category and include it in the output.

5) Refinability. If more diagnostically effective perfor-

mance counter events become available, the existing LCPI

calculations can be improved to make the upper bounds more

accurate. For example, with hit and miss counts for the shared

L3 cache due to individual cores, the above LCPI computation

for data accesses can be refined by replacing the term

L2_DCM*Mem_lat with L3_DCA*L3_lat+L3_DCM*Mem_lat.

1. Performance counters and system parameters

PerfExpert currently measures the following 15 perfor-

mance counter events on each core for the executed proce-

dures and loops: total cycles, total instructions, L1 data cache

accesses, L1 instruction cache accesses, L2 cache data ac-

cesses, L2 cache instruction accesses, L2 cache data misses,

L2 cache instruction misses, data TLB misses, instruction

TLB misses, branch instructions, branch mispredictions, float-

ing-point instructions, floating-point additions and subtrac-

tions, and floating-point multiplications.

The LCPI metric combines these measurements with 11

system parameters to make them comparable, which is crucial

for determining the relative severity of potential bottlenecks.

CPU cycles have successfully been used in other analyzes as

unifying metric to compare results [11]. The eleven system

parameters and their values for Ranger are: L1 data cache hit

latency (3), L1 instruction cache hit latency (2), L2 cache hit

latency (9), floating-point add/sub/mul latency (4), maximum

floating-point div/sqrt latency (31), branch latency (2), maxi-

mum branch misprediction penalty (10), CPU clock frequency

(2,300,000,000), TLB miss latency (50), memory access la-

tency (310). It further uses a “good CPI threshold” (0.5),

which is used for scaling the performance bars in the output.

The first eight parameters are constant or vary little, so the

maximum values are chosen. The TLB miss latency and the

memory access latency are highly variable and system depen-

dent. PerfExpert uses conservative values that are not guaran-

teed but likely to result in an upper bound for most applica-

tions. The values are based on the expert opinions of the au-

thors and may well be adjusted as we gain more experience.

More information about Ranger is provided in Section III.A.

B. Operation

In part because of the job submission systems common to

most supercomputers and in part to make it possible to repeat

the analysis with different thresholds (see below), PerfExpert

comprises two stages: a measurement stage and a diagnosis

stage. The measurements are passed through a single file from

the first to the second stage, making it easy to preserve the

results. The diagnosis stage supports correlating multiple mea-

surements from the same application. This is useful for detect-

ing bottlenecks in on-chip resources that are shared by mul-

tiple cores (Section II.C.2) and for tracking the optimization

progress as application code is being improved (Section IV.C).

1. Measurement stage

On Ranger, PerfExpert’s measurement stage consists of

slightly modifying a provided job submission script, where the

user has to specify the project name, the path to the executa-

ble, the command line, the number of threads and tasks, and

an estimate of the runtime. This information is also required in

regular submission scripts. Once the submitted job starts, Perf-

Expert automatically runs the application several times on top

of HPCToolkit to gather the necessary performance counter

data. At the end, it stores the measurements in a file.

HPCToolkit [13] uses performance counter sampling to

measure program performance at the procedure and loop level

and correlates these measurements with the program’s source

code. It works with unmodified, multilingual, and optimized

binaries, incurs low overhead, and scales to large systems.

2. Diagnosis stage

PerfExpert’s diagnosis stage requires two or three inputs

from the user: 1) a threshold, 2) the path to a measurement file

produced by the first stage, and, optionally, 3) the path to a

second measurement file for comparison. The diagnosis stage

first checks the variability, runtime, and consistency of the

data in the measurement file, which typically contains results

from multiple cores and multiple HPCToolkit experiments.

PerfExpert emits a warning if the runtime is too short to gather

reliable results or if the runtime of important procedures or

loops varies too much between experiments. Furthermore,

PerfExpert checks the consistency of the data to validate the

assumed semantic meaning of the performance counters, e.g.,

the number of floating-point additions must not exceed the

number of floating-point operations.

Once the data are deemed reliable, PerfExpert determines

the hottest procedures and loops, computes the LCPI perfor-

mance metrics for them, and outputs the resulting performance

assessment. To help the user focus on important code regions,

PerfExpert only generates assessments for the top few longest

running code sections. The user can control for how many

code sections an assessment should be output by changing the

threshold. A lower threshold will result in more code sections

being assessed, which is useful when multiple important code

sections have similar runtimes or when users cannot or do not

want to optimize the top few code sections. For example, the

HOMME benchmark (Section III.B.2) has ten procedures that

represent between 5% and 13% of the total runtime, and we

found the bottom five of them, which account for 28% of the

application’s runtime, to be easier to optimize.

C. Output

1. Analyzing a single input

Fig. 2 shows the output generated by PerfExpert for a sim-

ple 2000 by 2000 element matrix-matrix multiplication

(MMM) that uses a bad loop order. The output first lists the

name of the measurement file (mmm) and the total runtime.

The next two lines specify where the suggested code optimiza-

tions, compiler flags, and examples for bottleneck remediation

for each category can be found. The suggestions are not direct-

ly included so as not to clutter the output. The rest of the out-

put is the performance assessment.

total runtime in mmm is 166.00 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

matrixproduct (99.9% of the total runtime)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>>

- floating-point instr >>>

- branch instructions >>

- data TLB >>>

- instruction TLB >

Fig. 2. Output for MMM

For each critical procedure and loop (only the top procedure

is shown in this example), PerfExpert lists its name (matrix-

product) and the fraction of the total runtime that it represents,

followed by the performance assessment below the dashed

line. The length of the bar made of “>” symbols specifies how

bad the performance is. The overall assessment for MMM is

“problematic”. The remaining assessments list the upper

bounds on the LCPI contribution of six categories: data mem-

ory accesses, instruction memory accesses, floating-point in-

structions, branch instructions, data TLB accesses, and in-

struction TLB accesses. In the example, branch instructions as

well as instruction memory and TLB accesses are not a prob-

lem, as one might expect from the small MMM kernel. The

kernel executes mostly memory accesses that miss in the

cache and TLB as well as dependent (and therefore slow) mul-

ti-cycle floating-point instructions. The corresponding catego-

ries and the overall performance are correctly assessed as

problematic. Note that PerfExpert users do not have to know,

e.g., what a TLB is. The category names can simply be used as

labels for identifying which suggested optimizations the user

may want to consider applying.

2. Correlating two inputs

Fig. 3 shows the output for DGELASTIC, a global earth-

quake simulation code based on the MANGLL library (Section

III.B.1), with two inputs, one with one thread per chip and one

with four threads per chip, to illustrate PerfExpert’s correla-

tion ability to detect bottlenecks in shared resources. Compari-

son between executions has been pioneered by eGprof [25].

total runtime in dgelastic_4 is 196.22 seconds

total runtime in dgelastic_16 is 75.70 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

dgae_RHS (runtimes are 136.93s and 45.27s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>>>>>>>>>>2222222

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>>>>

- floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>1

- branch instructions >>

- data TLB >

- instruction TLB >

Fig. 3. Output for DGELASTIC correlating two runs

The format of the correlated output is almost identical to the

format with one input except that both database paths and their

total runtimes are listed and that absolute runtimes are given

for each critical code section. The difference in the metrics

between the two inputs is expressed with 1’s and 2’s at the end

of the performance bars. The number of 1’s indicates how

much worse the first input is than the second input. Similarly,

2’s indicate that the second input is worse than the first. In

Fig. 3, the upper LCPI bound for floating-point instructions in

the dgae_RHS procedure is slightly worse with four threads

per node than with 16 threads per node. More importantly, the

overall performance is substantially worse with 16 threads per

node, which highlights a known problem with many multi-

core processors, including the quad-core Opteron: they do not

provide enough memory bandwidth for all cores when running

memory intensive codes. This performance problem is borne

out by the row of 2’s. The upper bound estimates are basically

the same between the two runs, which they should be because

upper bounds are independent of processor load.

Given PerfExpert’s assessment of DGELASTIC, it is easy to

see that shared resources (i.e., scaling), data accesses, and

floating-point instructions are potential performance bottle-

necks in the critical dgae_RHS procedure. Note that this in-

formation alone is already valuable. For example, the authors

of DGELASTIC assumed their code to be compute bound until

we performed our analysis. Based on our assessment, they

refocused their optimization efforts to target memory accesses,

which yielded substantial speedups.

3. Optimization suggestions

PerfExpert goes an important step further by providing an

extensive list of possible optimizations to help users remedy

the detected bottlenecks. These optimizations are accessible

through a web page, which catalogs code transformations and

compiler switches for each performance assessment category.

A much simplified version of the floating-point instruction

category is given in Fig. 4. For each category, there are several

subcategories that list multiple suggested remedies. The sug-

gestions include code examples (a through d) or Intel compiler

switches (e) to assist the user. For example, an application

writer may not remember what the distributivity law is (a), but

upon seeing the code example, it should be clear what pattern

to look for in the code and how to make it faster.

If floating-point instructions are a problem
Reduce the number of floating-point instructions
 a) eliminate floating-point operations through distributivity

 d[i] = a[i] * b[i] + a[i] * c[i]; → d[i] = a[i] * (b[i] + c[i]);

Avoid divides
 b) compute the reciprocal outside of loop and use multiplication inside the loop

 loop i {a[i] = b[i] / c;} → cinv = 1.0 / c; loop i {a[i] = b[i] * cinv;}

Avoid square roots
 c) compare squared values instead of computing the square root

 if (x < sqrt(y)) {} → if ((x < 0.0) || (x*x < y)) {}

Speed up divide and square-root operations

 d) use float instead of double data type if loss of precision is acceptable
 double a[n]; → float a[n];

 e) allow the compiler to trade off precision for speed

 use the “-prec-div”, “-prec-sqrt”, and “-pc32” compiler flags

Fig. 4. Simplified list of optimizations with examples

We envision the following usage of this information. For

example, after running PerfExpert on DGELASTIC, the pro-

grammer would know that data memory accesses are the prob-

lem but may not know how to go about fixing this problem.

The web page provides many suggestions for optimizing data

memory accesses, thus guiding the programmer and helping

him or her get started with the performance optimization. A

simplified version of this section of the web page (without

code examples for brevity) is provided in Fig. 5. Studying the

code of the dgae_RHS procedure will reveal that suggestions

(a), (b), and (e) do not apply because the code linearly streams

through large amounts of data. Suggestions (g) and (i) also do

not apply because the code only uses a few large arrays. We

believe eliminating inapplicable suggestions in this way can

be done by someone familiar with the code who is not a per-

formance expert.

If data accesses are a problem
Reduce the number of memory accesses

 a) copy data into local scalar variables and operate on the local copies

 b) recompute values rather than loading them if doable with few operations
 c) vectorize the code

Improve the data locality

 d) componentize important loops by factoring them into their own procedures
 e) employ loop blocking and interchange (change the order of memory accesses)

 f) reduce the number of memory areas (e.g., arrays) accessed simultaneously

 g) split structs into hot and cold parts and add pointer from hot to cold part
Other

 h) use smaller types (e.g., float instead of double or short instead of int)

 i) for small elements, allocate an array of elements instead of individual elements
 j) align data, especially arrays and structs

 k) pad memory areas so that temporal elements do not map to same cache set

Fig. 5. Simplified list of optimizations without examples

The next step is to test the remaining suggestions. We have

experimentally verified suggestions (c), (j), and (k) to improve

the performance substantially. We were unable to apply sug-

gestion (f) without breaking suggestion (c). However, sugges-

tion (f) aims at reducing cache conflict misses and DRAM

bank conflicts, which were already addressed by applying

suggestion (k). We have not yet tried suggestions (d) and (h)

but believe that they will help speed up the code further.

While the user has to try out the suggested optimizations to

see which ones apply and work, PerfExpert’s suggestions can

be invaluable in helping an otherwise lost application devel-

oper getting started with the performance tuning.

D. Performance Metric Discussion

PerfExpert explicitly targets intra-node performance to help

users with problems related to multi-core and multi-socket

issues. Optimizing such problems can have a large perfor-

mance impact on a parallel application, even when running on

many nodes. For example, the intra-node optimizations we

applied to DGADVEC (Section III.B.1) resulted in a combined

speedup of around 40% on a 32,768-core run, which is akin to

having over 13,000 additional cores. Note that PerfExpert also

assesses the procedures in the communication library if they

represent a sufficient fraction of the total runtime.

Like any performance evaluation tool, PerfExpert may pro-

duce incorrect assessments. For example, a false positive can

be produced for a code section that misses in the L1 data

cache a lot but contains enough independent instructions to

fully hide the L2 access latency. In this case, PerfExpert may

list the code section as having a data access problem, even

though optimizing the data accesses will not improve perfor-

mance. False negatives, i.e., missing actual or potential bottle-

necks, are also possible but unlikely because the upper bounds

have a tendency to overestimate the severity. Finally, it is

possible that an application has a performance bottleneck that

is not captured by PerfExpert’s categories. The current mea-

surements and analyses target what our experience has taught

us is important and what the performance counters can meas-

ure. We expect to improve the effectiveness of the assessment

as more experience with PerfExpert accumulates.

PerfExpert indicates whether the performance metrics are in

the good, bad, etc. range, but deliberately does not output ex-

act values. Rather, it prints bars that allow the user to quickly

see which category is the worst so he or she can focus on that.

In this sense, the performance assessment is relative instead of

absolute, meaning that the value-to-range assignment does not

have to be precise. This way, we avoid having to define exact-

ly what constitutes a “good” CPI, which is application depen-

dent, and can instead use a fixed value per system.

In some cases, it may be of interest to subdivide the data

access category to separate out the individual cache levels. For

example, the array blocking optimization requires a blocking

factor that depends on the cache size and is therefore different

depending on which cache level represents the main bottle-

neck. However, most of our recommended optimizations help

no matter which level of the memory hierarchy is the problem.

For this reason and to keep PerfExpert simple, we currently

provide only one data access category. Of course, resolution of

data accesses to multiple levels can be readily added if this

addition leads to worthwhile improvement in optimizations.

III. EVALUATION METHODOLOGY

A. System

PerfExpert is installed on the Ranger supercomputer [24], a

Sun Constellation Linux cluster at the Texas Advanced Com-

puting Center (TACC). Ranger consists of 3,936 quad-socket,

quad-core SMP compute nodes built from 15,744 AMD Opte-

ron processors. In total, the system includes 62,976 compute

cores and 123 TB of main memory. Ranger has a theoretical

peak performance of 579 TFLOPS. All compute nodes are

interconnected using InfiniBand in a seven-stage full-CLOS

fat-tree topology providing 1 GB/s point-to-point bandwidth.

The quad-core 64-bit AMD Opteron (Barcelona) processors

are clocked at 2.3 GHz. Each core has a theoretical peak per-

formance of 4 FLOPS/cycle, two 128-bit loads/cycle from the

L1 cache, and one 128-bit load/cycle from the L2 cache. This

amounts to 9.2 GFLOPS per core, 73.6 GB/s L1 cache band-

width, and 36.8 GB/s L2 cache bandwidth. The cores are

equipped with four 48-bit performance counters and a hard-

ware prefetcher that prefetches directly into the L1 data cache.

Each core has separate 2-way associative 64 kB L1 instruction

and data caches, a unified 8-way associative 512 kB L2 cache,

and each processor has one 32-way associative 2 MB L3

cache that is shared among the four cores.

B. Applications

We have tested PerfExpert on the following production

codes that represent various application domains and pro-

gramming languages. They were all compiled with the Intel

compiler version 10.1.

1. MANGLL/DGADVEC

MANGLL is a scalable adaptive high-order discretization li-

brary. It supports dynamic parallel adaptive mesh refinement

and coarsening (AMR), which is essential for the numerical

solution of the partial differential equations (PDEs) arising in

many multiscale physical problems. MANGLL provides nodal

finite elements on domains that are covered by a distributed

hexahedral adaptive mesh with 2:1 split faces and implements

the associated interpolation and parallel communication opera-

tions on the discretized fields. The library has been weakly

scaled to 32,768 cores on Ranger, delivering a sustained per-

formance of 145 TFLOPS. DGADVEC [6] is an application

built on MANGLL for the numerical solution of the energy

equation that is part of the coupled system of PDEs arising in

convection simulations, describing the viscous flow and tem-

perature distribution in Earth’s mantle. MANGLL and DGAD-

VEC are written in C.

2. HOMME

HOMME (High Order Method Modeling Environment) is

an atmospheric general circulation model (AGCM) consisting

of a dynamic core based on the hydrostatic equations, coupled

to a sub-grid scale model of physical processes [31]. We use

the benchmark version of HOMME, which was one of NSF’s

acceptance benchmark programs for Ranger. It solves a mod-

ified form of the hydrostatic primitive equations with analyti-

cally specified initial conditions in the form of a baroclinically

unstable mid-latitude jet for a period of twelve days, following

an initial perturbation [23]. Whereas the general version is

designed for using hybrid parallel runs (both MPI and

OpenMP), the benchmark version uses MPI-only parallelism.

Although a semi-implicit scheme is used for time integration,

the benchmark version is simplified and spends most of its

time in explicit finite difference computation on a static regu-

lar grid. It is written in Fortran 95.

3. LIBMESH/EX18

The LIBMESH library [15] provides a framework for the

numerical approximation of partial differential equations using

continuous and discontinuous Galerkin methods on unstruc-

tured hybrid meshes. It supports parallel adaptive mesh re-

finement (AMR) computations as well as 1D, 2D, and 3D

steady and transient simulations on a variety of popular geo-

metric and finite element types. The library includes interfaces

to solvers such as PETSc for the solution of the resulting li-

near and nonlinear algebraic systems. We use example 18

(EX18) of the LIBMESH release [17], which solves an unstea-

dy nonlinear system of Navier-Stokes equations for low-speed

incompressible fluid flow. EX18 performs a large amount of

linear algebra computations and solves the transient nonlinear

problem using the heavily object-oriented FEMSystem class

framework. LIBMESH and EX18 are written in C++.

4. ASSET

ASSET (Advanced Spectrum Synthesis 3D Tool) is an as-

trophysical application that allows computing spectra from 3-

dimensional input models as they are provided by hydrody-

namical (CFD) simulations of the Sun and other stars. ASSET

is fully parallelized with OpenMP and MPI. On clusters and

on multi-socket workstations, a hybrid setup usually results in

the best performance. A single MPI task is started on every

socket and OpenMP threads are spawned according to the

number of cores per socket. Scaling with OpenMP on quad-

core CPUs is good. No domain decomposition is applied for

the MPI parallelization, and different MPI tasks handle differ-

ent and independent frequencies. Information is only commu-

nicated at the beginning and at the end of a calculation. Con-

sequently, the MPI scaling is very good and only limited by

load balancing because the amount of work per frequency

varies slightly. ASSET is written in Fortran 90.

IV. RESULTS

We determined the most frequently executed procedures

(and loops) of the applications described in the previous sec-

tion using Tau [30], PAPI [21], HPCToolkit [13], and PIN

[22] and assessed the performance of a selection of them to

validate PerfExpert. The tools agreed on the top procedures

(and loops) and the relative assessment of the performance

bottlenecks but differed in some of the details, such as the

absolute number of cache misses.

This section presents the results of applying PerfExpert to

the four Ranger production codes, which demonstrate the var-

ious features of PerfExpert and highlight some interesting per-

formance aspects of the four HPC production codes. To estab-

lish the usefulness of PerfExpert’s suggestions, we optimized

the key code sections of several of these applications and

compared what we had to do to improve performance with

PerfExpert’s recommendations. To keep the output small, we

only show the assessment for procedures (no loops) that ac-

count for at least 10% of the runtime.

A. DGADVEC

DGADVEC is dominated by two procedures that together

account for over half of the total runtime. They contain several

important loops that perform a large number of small dense

matrix-vector operations. Even though these loops touch hun-

dreds of megabytes of data, they have L1 data-cache miss ra-

tios below 2% in part because of the hardware prefetcher,

which is able to prefetch the data directly into the L1 cache.

Yet, the loops execute only half an instruction or less per

cycle, which is quite low.

Our analysis identified the L1 load-to-use hit latency of

three cycles to be the main culprit for this poor performance.

This latency cannot be hidden because there are not enough

independent instructions available to execute. In other words,

DGADVEC is memory bound and the primary performance

bottleneck is accesses to the L1 data cache. Because of its low

L1 miss ratio, this application was previously believed to be

compute bound.

Since the L1 load-to-use hit latency is fixed in hardware, we

can only reduce the average load-to-use latency by increasing

the bandwidth, i.e., reading and writing multiple data items per

memory transaction through the use of SSE instructions. Un-

fortunately, neither the Intel nor the PGI compiler vectorizes

the memory accesses in these loops. Hence, we rewrote the

loops so that the compiler emits SSE instructions. The full set

of code modifications we made is described elsewhere [12].

total runtime in dgadvec is 681.74 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

dgadvec_volume_rhs (29.4% of the total runtime)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>>>

- floating-point instr >>>

- branch instructions >

- data TLB >

- instruction TLB >

dgadvecRHS (27.0% of the total runtime)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>>>>

- floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

- branch instructions >>

- data TLB >

- instruction TLB >

mangll_tensor_IAIx_apply_elem (14.9% of the total runtime)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>

upper bound by category

- data accesses >>>>>>>>>>>>>>>>>

- instruction accesses >>>>>>>>>>

- floating-point instr >>>>>>>>>>>>>>>>

- branch instructions >>>>>>>

- data TLB >

- instruction TLB >

Fig. 6. Assessment of DGADVEC

Comparing the old and new loop implementations, we

found that the number of executed instructions is 44% lower

and the number of L1 data-cache accesses is 33% lower due to

the vectorization. Note, however, that we did not rewrite

DGADVEC to fully incorporate our changes because the au-

thors had moved on to write DGELASTIC, a new application

that simulates the global propagation of earthquake waves. As

DGELASTIC is also based on the MANGLL library, we im-

plemented our changes in the new application. While this

work has not yet been completed, we already see great bene-

fits. For example, the key loop in DGELASTIC, which ac-

counts for over 60% of the total execution time (Fig. 3), is

vectorized by the compiler and executes 1.4 instructions per

cycle, representing a more than two-fold improvement over

the DGADVEC loop performance. Note, however, that the two

MANGLL-based applications solve different problems and are

therefore not entirely comparable.

Looking at PerfExpert’s assessment of DGADVEC shown

in Fig. 6, we find that it correctly identifies the main proce-

dures. Moreover, it correctly points to a memory access prob-

lem in the top two procedures despite their low L1 data-cache

miss ratios. These two procedures perform so many memory

accesses (almost one out of every two executed instructions

accesses memory) that the estimated upper bound on the LCPI

contribution is high enough to make memory accesses the

most likely bottleneck. PerfExpert’s suggested optimizations

include vectorization as well as other optimizations that have

helped boost the performance (Section II.C.3). In summary,

PerfExpert correctly diagnosed the performance bottleneck

and suggested several optimizations that have resulted in sig-

nificant speedup.

B. HOMME

HOMME exhibits near perfect weak scaling. During accep-

tance testing of Ranger, HOMME was run on 16,384 cores

with linear speedup. The benchmark version of HOMME con-

tains roughly ten procedures that combined represent 90% of

the total execution time. PerfExpert correctly identified that

about half of these procedures are severely memory bound,

with a CPI above four, and illustrated HOMME’s poor per-

formance when utilizing more than two cores per chip.

total runtime in homme-4x64 is 356.73 seconds

total runtime in homme-16x16 is 555.43 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

prim_advance_mod_mp_preq_advance_exp_ (runtimes are 86.35s and 159.20s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>2222222222222222222

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>>>>>

- floating-point instr >>>1

- branch instructions >

- data TLB >

- instruction TLB >

Fig. 7. Assessment of HOMME with 1 and 4 threads/chip

Fig. 7 shows how dramatically performance drops when

running the same workload with 16 threads per node instead

of just 4 threads per node, and that the single largest problem

is data accesses. All the problematic functions have little data

reuse but reasonably high cache hit ratios. Because perfor-

mance drops in these functions when the thread density in-

creases, the primary issue must lie with shared on-chip re-

sources. Because of the small L1 and L2 miss ratios, we as-

sume that the L3 cache capacity and L3 conflict misses are not

the issue. The primary issue appears to be DRAM page con-

flicts. On a Ranger node, only 32 DRAM pages can be open at

once, each covering 32 kilobytes of contiguous memory. With

16 threads operating, each thread can access at most two dif-

ferent memory areas simultaneously without severe perfor-

mance losses. We corrected this problem by applying loop

fission so that each loop only processes two arrays. However,

because the compiler automatically fused the loops, we had to

take the additional step of breaking out each loop into a sepa-

rate procedure, which results in great speedup despite the call

overhead. Applying the loop fission optimization to the

preq_robert procedure resulted in a 62% performance increase

and much better utilization of four cores. We still have to ap-

ply loop fission to other functions in HOMME. Note that Perf-

Expert users do not have to know about DRAM page conflicts.

They can just follow PerfExpert’s recommendation to fission

loops and factor them into separate procedures to improve

performance, without necessarily understanding why this op-

timization helps.

C. LIBMESH

The EX18 application of LIBMESH contains 22 procedures

that represent one percent of the total runtime or more but only

one procedure that represents over 10% of the runtime. Fig. 8

compares the performance of this procedure before and after

we optimized it, thus providing an example of how PerfExpert

can be used to track code optimization progress.

total runtime in ex18 is 144.78 seconds

total runtime in ex18-cse is 137.91 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

NavierSystem::element_time_derivative (runtimes are 33.29s and 25.24s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>>>>222

upper bound by category

- data accesses >>2

- instruction accesses >>>>>>>

- floating-point instr >>>>>>>>>>>>>>>>>1111111111

- branch instructions >

- data TLB >

- instruction TLB >

Fig. 8. Assessment of EX18 before and after optimization

The element_time_derivative procedure has somewhat poor

floating-point performance and quite poor data access perfor-

mance. We were able to improve the floating-point perfor-

mance by factoring out common subexpressions and moving

loop invariant code. Based on simple tests, the author of EX18

assumed that the compiler would do this. However, several of

the common subexpressions we found involve C++ templates

and most of them involve pointer indirections, which appar-

ently makes the code too complex for the compiler to analyze

and perform these optimizations.

The runtimes in Fig. 8 show that these relatively simple op-

timizations (for a human) made element_time_derivative 32%

faster. Because this procedure represents roughly 20% of the

total runtime, this node-level code modification yielded an

application-wide speedup of 5%. We have not yet tried to per-

form the other optimizations PerfExpert suggests nor have we

attempted to optimize any of the other procedures in EX18.

As Fig. 8 highlights, our optimizations substantially reduce

the upper LCPI bound of the floating-point instructions (be-

cause so many fewer floating-point instructions are executed).

However, the overall assessment is worse for the optimized

procedure, even though the runtimes clearly show that it ex-

ecutes much faster. The reason is that reducing one bottleneck

emphasizes the remaining bottlenecks, in this case the memory

accesses. Thus, PerfExpert’s assessment correctly reflects that

instructions execute more slowly on average in the optimized

code (but the optimized code executes a lot fewer instructions,

resulting in a speedup).

D. ASSET

Fig. 9 shows the performance assessment of the OpenMP-

based ASSET application. The top two procedures represent

about half of the total runtime. They calculate the flux that is

emitted from the volume at a given frequency by integrating

intensities along rays pointing inwards starting at the outer-

most layer of the computational domain. The second proce-

dure, which is called by the first procedure, is a hand-coded

exponentiation function that provides a 50% speedup com-

pared to the built-in exp function for a limited argument range.

PerfExpert’s assessment shows that the second procedure

scales perfectly to 16 threads per node and performs well. This

part of the calculation is performed in double precision.

The other half of the CPU time is spent in cubic interpola-

tions in 1, 2, or 3 dimensions, which are (mainly) needed to

populate a ray with data provided at the grid points of the

computational mesh. The interpolation procedure

bez3_mono_r4_l2d2_iosg is one of the many single-precision

procedures that are hand-tuned for slightly different purposes.

It scales poorly because of data accesses that exhaust the pro-

cessors’ memory bandwidth.

total runtime in asset_4 is 140.78 seconds

total runtime in asset_16 is 52.25 seconds

Suggestions on how to alleviate performance bottlenecks are available at:

http://www.tacc.utexas.edu/perfexpert/

calc_intens3s_vec_mexp (runtimes are 45.96s and 14.44s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>>2222

upper bound by category

- data accesses >>

- instruction accesses >>>>>>>>>

- floating-point instr >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>2

- branch instructions >

- data TLB >

- instruction TLB >

rt_exp_opt5_1024_4 (runtimes are 27.72s and 7.11s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>

upper bound by category

- data accesses >>>>>>>>>>>>>>>>>>>>1

- instruction accesses >>>>>>>>1

- floating-point instr >>>>>>>>>>>>1

- branch instructions >>>>

- data TLB >

- instruction TLB >

bez3_mono_r4_l2d2_iosg (runtimes are 21.67s and 9.52s)

--

performance assessment great.....good......okay......bad.......problematic

- overall >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>222222222222222222222

upper bound by category

- data accesses >>>

- instruction accesses >>>>>>

- floating-point instr >>>

- branch instructions >

- data TLB >

- instruction TLB >

Fig. 9. Assessment of ASSET with 1 and 4 threads/chip

ASSET was developed and heavily optimized by a member

of TACC’s High-Performance Computing group (Lars Koes-

terke) before we analyzed it with PerfExpert. For instance,

many of the most demanding loops are manually blocked and

unrolled. Data are aligned to 128-bit boundaries to enable the

use of SSE instructions. Consequently, all performance opti-

mizations that PerfExpert suggests for this code are already

included or do not apply.

V. RELATED WORK

Many performance measurement tools exist. We discuss on-

ly those that incorporate automated analysis and diagnosis.

The IBM PERCS project is building an automated system

targeting the identification and analysis of performance bottle-

necks [9] in application codes and providing automated re-

mediation [10] for each bottleneck. The discovery and analysis

framework has a control GUI, which allows the user to control

the tuning process and presents hotspot and bottleneck infor-

mation back to the user. The Bottleneck Detection Engine

(BDE), which is the core of the framework, utilizes a database

of rules to detect bottlenecks in the given application. The

BDE compiles, executes and controls modules via a scheduler

and feeds the information on bottleneck locations, including

metrics associated with the bottlenecks, to the user. It may

also suggest how much improvement could be obtained by the

optimization of a given bottleneck. Data is collected by both

performance estimates derived from static analysis and from

execution measurements conducted with the IBM High Per-

formance Computing Toolkit [32]. In addition to suggestions

to the user, IBM’s tool also supports directly modifying the

source code and applying standard transformations through the

compiler [3], a feature that we hope to add to PerfExpert in the

future. The major differences between our approach and that

of the IBM group are the following. 1) We are targeting per-

formance bottlenecks originating in single core, multicore

chip, and multi-socket nodes of large-scale clusters, including

in communication library code, whereas the IBM project is

attempting diagnosis and optimization of both intra-node and

inter-node bottlenecks including inter-node communication

and load balancing. PerfExpert is focused on making intra-

node optimization as automated and simple as possible. We

have chosen this narrower target because it enables simpler

user interactions and more focused solutions. 2) The user in-

terface of PerfExpert provides a higher degree of automation

for bottleneck identification and analysis. 3) The internal use

of HPCToolkit allows a wider range of measurement methods

spanning sampling, dynamic monitoring, and event tracing. 4)

The implementation of PerfExpert is open source and adapta-

ble to composition with a variety of tools.

Acumem AG [1] sells the commercial products ThreadSpot-

ter (multithreaded applications) and SlowSpotter (single-

threaded applications), which capture information about data

access patterns and offer advice on related losses, specifically

latency exposed due to poor locality, competition for band-

width, and false sharing. SlowSpotter and ThreadSpotter also

recommend possible optimizations. While good data access

patterns are essential for performance, other things also mat-

ter. PerfExpert attempts a comprehensive diagnosis of bottle-

necks, targeting not only data locality but also instruction lo-

cality, floating-point performance, etc. Acumem’s tools do not

attempt automated optimizations.

Continuous program optimization (CPO) [7] is another IBM

conducted project. CPO provides a unifying framework to

support a whole system approach to program optimization that

cuts across all layers of the execution stack opening up new

optimization opportunities. CPO is a very broad effort com-

bining runtime adaptation through dynamic compilation with

diagnosis of hardware/software interactions.

The Performance Engineering Research Institute (PERI) has

many performance optimization projects. The project most

closely related to PerfExpert is the PERI Autotuning project

[1], which combines measurement and search-directed auto-

tuning in a multistep process. It can be viewed as a special

case of an expert system where one flexible solution method is

applied to all types of bottlenecks. However, it is unclear

whether autotuning by itself can effectively optimize the wide

spectrum of bottlenecks that arise when executing complex

codes on multi-core chips and multi-socket nodes. Neverthe-

less, we hope to be able to incorporate methods from this

project in a future version of PerfExpert.

The Parallel Performance Wizard [27] has goals similar to

PerfExpert. It attempts automatic diagnosis as well as auto-

mated optimization. It is based on event trace analysis and

requires program instrumentation. Its primary applications

have been problems associated with the partitioned global

address space (PGAS) programming model, although it ap-

plies to other performance bottleneck issues as well.

Paradyn [18], based on Dyninst [5], is a performance mea-

surement tool for parallel and distributed programs. Instru-

mentation code is inserted into the application and modified at

runtime. The instrumentation is controlled by a Performance

Consultant module. Its goal is to associate bottlenecks with

causes and program parts similar to the diagnostics of our tool.

KOJAK (Kit for Objective Judgment and Knowledge-based

Detection of Performance Bottlenecks) [19] is a collaborative

research project aiming at the development of a generic auto-

matic performance analysis environment for parallel pro-

grams. It includes a set of tools performing program analysis,

tracing, and visualization. In terms of analysis, KOJAK pro-

vides several options including tree-style hotspot analysis. The

user can identify performance bottlenecks by exploring the

tree. KOJAK is based on event trace analysis. It requires user

interactions in its evaluation process.

Active Harmony [8], [29] is a framework that supports run-

time adaptation of algorithms, data distribution, and load ba-

lancing. It exports a detailed metric interface to applications,

allowing them to access processor, network, and operating

system parameters. Applications export tuning options to the

system, which can then automatically optimize resource allo-

cation. Measurement and tuning can therefore become first-

class objects in the programming model. Programmers can

write applications that include ways to adapt computation to

observed performance and changing conditions. Active Har-

mony requires adaptation of the application and is mostly con-

cerned with distributed resource environments.

MAQAO [13] is a performance analysis tool that works at

the assembly level. Like PerfExpert, it combines performance

counter measurements with static information to generate di-

agnoses. However, MAQAO derives the static information

from the assembly code. It contains a knowledge base of im-

portant assembly patterns, which can be associated with hints

for possible code optimizations.

One of the earliest tools with similar goals to PerfExpert is

Cray’s ATExpert [16]. It graphically displays the performance

of parallel programs. It also uses an expert system, but it uses

it to simulate parallel execution to gain insights into the paral-

lel performance. ATExpert also points the user to specific

problem areas in the source code, tries to explain why the

problems are occurring, and suggests actions to resolve them.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents and describes PerfExpert, a novel tool

that can automatically diagnose core, socket, and node per-

formance bottlenecks in parallel HPC applications at the pro-

cedure and loop level. PerfExpert features a simple user inter-

face and a sophisticated new performance analysis metric. We

believe simple input and easy-to-understand output are essen-

tial for a tool to be useful to the community. PerfExpert’s

analysis stage combines performance counter measurements

with system parameters to compute upper bounds on the LCPI

(local CPI) contribution of various instruction categories. The

upper bounds instantly eliminate categories that are not per-

formance bottlenecks and can therefore safely be ignored

when optimizing the corresponding code section.

For each important procedure and loop, PerfExpert assesses

the performance of the supported categories with the LCPI

metric and ranks the categories as well as the procedures and

loops to help the user focus on the biggest bottlenecks in the

most critical code sections. Because HPC application writers

are typically domain experts and not performance experts,

PerfExpert suggests performance optimizations (with code

examples) and compiler switches for each identified bottle-

neck. We have populated this database of suggestions with

code transformation that we have found useful to improve

performance during many years of optimizing programs.

We tested PerfExpert on four production codes on the Ran-

ger supercomputer. In all cases, the performance assessment

was in agreement with an assessment by performance experts

who used other tools. In two cases, PerfExpert’s automatic

assessment correctly identified a key bottleneck that the appli-

cation developers were not aware of. We found many of Perf-

Expert’s suggested optimizations to be useful and improve the

intra-node as well as the overall performance of HPC applica-

tions running on thousands of cores.

In the future, we intend to perform more case studies, espe-

cially with applications where the bottleneck is not memory

accesses, and to expand the capabilities of PerfExpert by in-

cluding non-standard performance counters and non-

performance-counter-based measurements. We will increase

the number of performance categories so that finer-grained

optimization recommendations can be made that are more

specific and better tailored to each assessed code section. We

will continue to grow our optimization and example database

and plan to port PerfExpert to other systems. The most chal-

lenging goal we have is to extend PerfExpert to automatically

implement the suggested solutions for the most common core-,

socket-, and node-level performance bottlenecks. In the longer

term, we plan to develop separate implementations of PerfEx-

pert for I/O optimization and communication optimization.

ACKNOWLEDGMENT

This project is funded in part by the National Science Foun-

dation under OCI award #0622780. We are grateful to Omar

Ghattas, Carsten Burstedde, Georg Stadler, and Lucas Wilcox

for providing the MANGLL code base and working with us,

John Mellor-Crummey, Laksono Adhianto, and Nathan Tal-

lent for their help and support with HPCToolkit, and Chris

Simmons and Roy Stogner for providing and helping with

LIBMESH. The results reported in this paper have been ob-

tained on HPC resources provided by the Texas Advanced

Computing Center at the University of Texas at Austin.

RERERENCES

[1] ACUMEM: http://www.acumem.com/. April 12, 2010.

[2] D. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. Hollingsworth, P.
Hovland, S. Moore, K. Seymour, J. Shin, A. Tiwari, S. Williams, and H.

You. “PERI Auto-Tuning.” Journal of Physics: Conference Series,
125(1):012089, 2008.

[3] C. Bastoul. “Code generation in the polyhedral model is easier than you
think.” Proc. 13th Int. Conference on Parallel Architecture and Compi-

lation Techniques, pp. 7-16, 2004.

[4] BKDG: http://support.amd.com/us/Processor_TechDocs/ 31116.pdf.
Last accesses April 12, 2010.

[5] B. R. Buck and J. K. Hollingsworth. “An API for Runtime Code Patch-
ing.” Journal of High Performance Computing Applications, 14:317-

329, 2000.

[6] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C.
Wilcox, and S. Zhong, “Scalable Adaptive Mantle Convection Simula-

tion on Petascale Supercomputers.” Proc. SC’08, 2008.

[7] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski.

“Performance and environment monitoring for continuous program op-

timization.” IBM J. Res. Dev., 50(2/3):239–248, 2006.

[8] I.-H. Chung and J. K. Hollingsworth. “Automated Cluster-Based Web

Service Performance Tuning.” Proc. 13th IEEE International Symposium
on High Performance Distributed Computing, pp. 36-44. 2004.

[9] I. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and H-F. Wen.
“A Framework for Automated Performance Bottleneck Detection.” 13th

Int. Workshop on High-Level Parallel Progr. Models and Supportive

Environments. 2008.

[10] G. Cong, I-H. Chung, H. Wen, D. Klepacki, H. Murata, Y. Negishi, and

T. Moriyama. “A Holistic Approach towards Automated Performance
Analysis and Tuning.” Proc. Euro-Par 2009 (Parallel Processing Lec-

ture Notes in Computer Science 5704, Springer-Verlag). 2009.

[11] M. E. Crovella and T. J. LeBlanc. “Parallel Performance Prediction
using Lost Cycles Analysis.” Supercomputing Conference, pp. 600-609.

1994.

[12] J. Diamond, B. D. Kim, M. Burtscher, S. Keckler, and K. Pingali. “Mul-

ticore Optimization for Ranger.” 2009 TeraGrid Conference. 2009.

[13] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and
W. Jalby. “Exploring Application Performance: a New Tool for a Stat-

ic/Dynamic Approach.” The Sixth Los Alamos Computer Science Insti-
tute Symposium. 2005.

[14] HPCToolkit: http://www.hpctoolkit.org/. April 12, 2010.

[15] B. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. “libMesh: A

C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simu-

lations.” Engineering with Computers, 22(3/4):237-254. 2006.

[16] J. Kohn and W. Wiliams. “ATExpert.” Journal of Parallel and Distri-
buted Computing, 18:2, pp. 205-222. 1993.

[17] LIBMESH: http://libmesh.sourceforge.net/. April 12, 2010.

[18] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.
Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall. “The Pa-

radyn Parallel Performance Measurement Tool.” IEEE Computer, 28:37-
46. 1995.

[19] B. Mohr and F. Wolf. “KOJAK - A Tool Set for Automatic Performance
Analysis of Parallel Applications.” Proc. International Conf. on Parallel

and Distributed Computing. 2003.

[20] Open|SpeedShop: http://www.openspeedshop.org/wp/. Last accessed
April 12, 2010.

[21] PAPI: http://icl.cs.utk.edu/papi/. April 12, 2010.

[22] PIN: http://www.pintool.org/. Last accessed April 12, 2010.

[23] L. M. Polvani, R. K. Scott, and S. J. Thomas, “Numerically Converged
Solutions of the Global Primitive Equations for Testing the Dynamical

Core of Atmospheric GCMs.” American Meteorological Society,
132(11):2539-2552. 2004.

[24] Ranger: http://www.tacc.utexas.edu/resources/hpc/#

constellation. Last accessed April 12, 2010.

[25] M. Schulz and B. R. de Supinski. “Practical Differential Profiling.”

Euro-Par Conference, pp. 97-106. 2007.

[26] S. Shende and A. Malony. “The Tau Parallel Performance System.”

International Journal of High Performance Computing Applications,
20(2): 287-311.

[27] H-H. Su, M. Billingsley, and A. D. George. “Parallel Performance Wi-

zard: A Performance Analysis Tool for Partitioned Global-Address-
Space Programming.” 9th IEEE International Workshop on Parallel &

Distributed Scientific and Engineering Computing. 2008.

[28] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W. Fagan, and M.
Krentel. “HPCToolkit: performance tools for scientific computing.”

Journal of Physics: Conference Series, 125. 2008.

[29] C. Tapus, I.-H. Chung, and J. K. Hollingsworth. “Active harmony: to-

wards automated performance tuning.” Proc. ACM/IEEE Conference on
Supercomputing, pp. 1–11. 2002.

[30] Tau: http://www.cs.uoregon.edu/research/tau/home.php. Last accessed
April 12, 2010.

[31] S. J. Thomas and R. D. Loft, “The NCAR Spectral Element Climate

Dynamical Core: Semi-Implicit Eulerian Formulation.” Journal of
Scientific Computing, 25(1/2). 2005.

[32] H. Wen, S. Sbaraglia, S. Seelam, I. Chung, G. Cong, and D. Klepacki.
“A productivity centered tools framework for application performance

tuning.” Proc. Fourth International Conference on the Quantitative

Evaluation of Systems, pp. 273-274. 2007.

