
Discovering and Balancing Fundamental Cycles in Large Signed
Graphs

Ghadeer Alabandi
Texas State University
San Marcos, TX, U.S.A
gaa54@txstate.edu

Jelena Tešić
Texas State University
San Marcos, TX, U.S.A
jtesic@txstate.edu

Lucas Rusnak
Texas State University
San Marcos, TX, U.S.A

lucas.rusnak@txstate.edu

Martin Burtscher
Texas State University
San Marcos, TX, U.S.A
burtscher@txstate.edu

ABSTRACT
Computing consensus states via global sign balancing is a key step
in social network analysis. This paper presents graphB+, a fast
algorithm for balancing signed graphs based on a new vertex and
edge labeling technique, and a parallel implementation thereof for
rapidly detecting and balancing all fundamental cycles. The main
benefits of graphB+ are that the labels can be computed with linear
time complexity, only require a linear amount of memory, and that
the running time for balancing a cycle is linear in the length of
the cycle times the vertex degrees but independent of the size of
the graph. We parallelized graphB+ using OpenMP and CUDA. It
takes 0.85 seconds on a Titan V GPU to balance the signs on the
edges of an Amazon graph with 10 million vertices and 22 million
edges, amounting to over 14 million fundamental cycles identified,
traversed, and balanced per second.

CCS CONCEPTS
• Computing methodologies → Massively parallel algo-
rithms.

KEYWORDS
Fundamental cycles, Signed-graph balancing, Parallelization, GPU
computing

ACM Reference Format:
Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher. 2021.
Discovering and Balancing Fundamental Cycles in Large Signed Graphs. In
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3458817.3476153

1 INTRODUCTION
On-line social networks have become an important mode of human
interaction. For instance, people receive news, participate in sur-
veys, and express opinions via on-line social networks. Thus far, the
field of Social Network Analysis has largely focused on community
discovery [21], topic trending [32], quantifying the influence of a
person [2], and recommender systems [24]. If a decision must be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476153

made in these tasks, majority voting is typically used [35]. How-
ever, this approach ignores any underlying network structure and
is prone to bias due to super-influencers, people trying to game the
system, etc. Statistical parity has been employed to mitigate bias on
large data [15, 45], but it does not consider the more important and
informative network-wide consensus states. Yet, consensus across
social networks has already been well-researched in the field of
psychology [1, 9, 17, 18], albeit at a small scale. This paper describes
the parallelizable graphB+ algorithm that makes it possible to com-
pute nearest consensus states of large real-world social networks
based on this proven balance model from psychology.

Signed social networks are graphs where the edges store the
attitude of a vertex (person) towards another. Two vertices (people)
connected by an edge can be agreeable or antagonistic. A signed
graph is balanced, i.e., in a global consensus state, if every cycle
comprises an even number of antagonistic edges. This is the case
because two antagonistic edges cancel each other out.

Social balance theory [20] and the mathematical foundation of
attitudinal graphs [17] were the first to define and model consensus
in social networks.Wasserman et al. introduced social network anal-
ysis in the form of algebraic graph representations and proposed
a series of statistical tests [42]. Subsequent work mostly focused
on predicting the existence of edges and sentiments in the graph,
recommending products, or identifying unusual trends while rely-
ing on consensus-based models [15, 21]. However, these kinds of
algorithms are rarely scrutinized for equity because consensus and
majority voting are suchwell-established social constructs [25]. The
few works that do scrutinize them have only examined how contro-
versial the outcome is relative to the system-wide consensus [26]
or have measured how subgroups mobilize against other groups
[23]. To improve upon this, Rusnak and Tesic recently proposed the
concept of frustration cloud analysis [33]. Their work considers all
nearest consensus-driven balanced states. However, their approach
does not scale to graphs with more than a few thousand vertices.

Our work focuses on making the needed graph operations effi-
cient, in particular the discovery and balancing of the fundamental
cycles (cf. Section 2). Our graphB+ implementation can handle real-
world inputs [11, 19] with billions of edges on a single CPU or GPU.
This paper makes the following contributions.

• A vertex and edge labeling technique for finding the funda-
mental cycles in large graphs that requires a linear amount
of memory and can be computed in linear time.

• The graphB+ algorithm to traverse and balance each fun-
damental cycle in an amount of time that is linear in the
product of the cycle length and the average vertex degree
but independent of the size of the graph.

https://doi.org/10.1145/3458817.3476153
https://doi.org/10.1145/3458817.3476153

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

Figure 1: (a) signed input graph Σ; (b) all spanning trees and the cor-
responding nearest structurally balanced states of Σ

• A parallelization approach for each step of the graphB+ al-
gorithm for OpenMP and CUDA.

• A performance evaluation that demonstrates the scalability
and efficacy of our implementation.

The rest of the paper is organized as follows. Section 2 provides
background information on balancing the signs of signed graphs.
Section 3 explains the graphB+ algorithm and its parallelization.
Section 4 summarizes related work. Section 5 describes the experi-
mental methodology. Section 6 presents and analyzes the results.
Section 7 concludes the paper with a summary.

2 BACKGROUND
This section explains how the balancing of signed graphs works
and why it is important. It also describes performance issues of
prior implementations and introduces related terminology.

As mentioned, two vertices in a signed graph that are connected
by an edge can be agreeable (positive) or antagonistic (negative)
[17]. The sign of a path in such a graph is the product of the signs
of its edges, and a closed path is a cycle. A signed graph is balanced
if every cycle is positive. Balance is equivalent to the following
agreeability condition: A signed graph is balanced if, and only if,
its vertices can be bipartitioned so that all negative edges occur
between the Harary bipartition [9]. Fig. 1(a) shows a signed graph
Σ with 4 vertices and 5 edges, and Fig. 1(b) summarizes all balanced
states of Σ, where the negative-edge cutsets represent the Harary
cuts. The Harary bipartition separates the vertices of the balanced
graph into two sets such that the vertices in both sets internally
agree with each other but disagree with the vertices from the other
set. The ultimate goal is to identify the vertices and edges of the
resulting balanced majority, i.e., the larger of these two sets.

The frustration index 𝐹𝑟 (Σ) of a signed graph Σ is the minimum
number of edges whose negation results in balance [18, 20]. It
measures the deviation from consensus. A balanced signed graph
has 𝐹𝑟 (Σ) = 0 and all paths between two vertices have the same
sign. The frustration index can be expanded to a frustration cloud
[33] by building a set that includes all nearest balanced states, i.e.,
all balanced signed graphs of Σ that require a minimal number of
edge sign switches to produce a balanced graph. A balanced state
is minimal (nearest) if no subset of the edge sign switches yields a
balanced state. We are not interested in non-nearest balanced states
since, based on social balance theory, we assume the group will
not continue the discussion once it has reached a consensus. Fig. 2
shows the frustration cloud of the signed graph from Fig. 1(a). It
contains 5 balanced states. Note that balancing only affects the signs

Figure 2: The frustration cloud of Σ contains a set of five unique
nearest balanced states

of the edges (it negates a few of them to reach a consensus state); it
never adds or removes graph vertices or edges.

2.1 Tree-based Signed Graph Balancing
Alg. 1 computes a nearest balanced state for the signed input graph
Σ and the spanning tree 𝑇 , as proven elsewhere [33].

Algorithm 1 Tree-based Signed Graph Balancing

Input: Signed graph Σ = (𝐺, 𝜎)
Input: Spanning tree 𝑇 of Σ

for all edges 𝑒 , 𝑒 ∈ Σ \𝑇 do
if fundamental cycle 𝑇 ∪ 𝑒 is negative then

switch edge sign: 𝑒− → 𝑒+; 𝑒+ → 𝑒−

end if
end for

Output: Balanced graph Σ𝑇

If 𝑇 is a spanning tree of a given connected signed graph Σ and
𝑒 is an edge of Σ that does not belong to 𝑇 , then the fundamental
cycle C𝑒 , defined by 𝑒 , is the cycle consisting of 𝑒 together with the
simple path in 𝑇 that connects the endpoints of 𝑒 . If𝑚 denotes the
number of edges and 𝑛 the number of vertices in Σ, there are exactly
𝑚 − (𝑛 − 1) fundamental cycles, one for each edge that does not
belong to 𝑇 . Each C𝑒 is linearly independent from the remaining
cycles because it includes an edge 𝑒 that is not present in any other
fundamental cycle. Different spanning trees can produce the same
or a different nearest balanced state as outlined in Fig. 1, where
the top balanced state is represented more often than the others as
more spanning trees converge to this state.

2.2 Tree-sampling-based Harary Bipartitioning
The frustration cloud encompasses all nearest balanced states of
a signed graph Σ. To discover each of these states, Alg. 1 must be
run with all spanning trees 𝑇 of Σ. However, the total number of
spanning trees for a graph grows exponentially with the number of
vertices𝑛. For example, the graph Σ in Fig. 1 with only 4 vertices and
5 edges already has 8 spanning trees. The highland tribes graphwith
16 vertices and 58 edges [11] has 402,506,278,163 spanning trees.
Since a small graph with just 16 vertices can have over 400 billion
spanning trees, it is intractable to include all spanning trees in a
graph-balancing computation for real-world social networks. As a
remedy, a tree-sampling approach has been proposed [33]. Since
spanning trees resulting from breadth-first searches (BFS) yield
the maximum number of fundamental cycles of minimal length

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 3: (a) Harary bipartitions of the balanced states produced by
Alg. 1; (b) corresponding status of the vertices of Σ

[34], we adopt the BFS approach to maximize the resolution of the
subsequent metric analysis [33].

Algorithm 2 Tree-sampling-based Harary Bipartitioning

Input: Signed graph Σ = (𝐺, 𝜎)
Input: Spanning-tree sampling method𝑀 (e.g., BFS, DFS, random)

generate set T𝑘 of 𝑘 spanning trees of Σ using𝑀
for all spanning trees 𝑇 , 𝑇 ∈ T𝑘 do

find nearest balanced state Σ𝑇 using Alg. 1 (or Alg. 3)
form Harary bipartition of Σ𝑇

end for
Output: 𝑘 Harary bipartitions of Σ

Alg. 2 outlines how to compute a selection of Harary bipartitions
using tree sampling. Once a nearest balanced state for a spanning
tree is found, we identify the Harary cutset for that state and re-
move all negative edges. Then, we compute the induced bipartition.
For our example graph Σ, the resulting Harary bipartitions are il-
lustrated in Fig. 3(a). We use the bipartitions to derive vertex and
edge attributes that are important for global consensus analysis.

2.3 Balancing-based Graph Attributes
The status of a vertex (person) denotes the probability it will be in
the majority, i.e., the likelihood that a vertex 𝑣 in Σ = (𝐺, 𝜎) belongs
to the larger bipartition over all nearest balanced states of Σ. In
Fig. 3(a), the top left vertex belongs to the larger Harary bipartition
6 out of 8 times, so its status is 6/8 = 0.75, as shown in Fig. 3(b). For
the tree-sampling approach, the status is defined as the normalized
sum over the sampled trees 𝑇 in which 𝑣 ends up in the larger
bipartition: 𝑠𝑡𝑎𝑡𝑢𝑠 (𝑣) = 1

|T𝐺 |
∑
𝑇 ∈T𝐺 𝛿𝑇 (𝑣), where 𝛿𝑇 (𝑣) = 1 if 𝑣 is

in the larger bipartition, 0.5 if the bipartitions have the same size,
and 0 otherwise. Thus, the status measures how likely a vertex is
to contribute to the consensus decision. Other attributes for global
consensus analysis, such as agreement, influence, and authority, can
similarly be computed from the Harary bipartitions [33].

2.4 Benefits of Graph Balancing Attributes
This section illustrates some benefits of using graph-balancing-
based attributes on the example of the Wikipedia Requests for
Administratorship (wiki-Elec) dataset, which contains 7,115 vertices
(either casting a vote or being voted on) and 103,689 edges (positive
or negative votes). Importantly, the dataset also includes the actual
results: 1,200 promotions and 1,500 refusals [25].

Figure 4: wiki-Elec data outcome (blue: won, red: lost) analysis us-
ing spectral clustering and graph balancing: (a) box-plot of spectral
clusters over user IDs; (b) cluster makeup by election outcome; (c)
outcome analysis where x-axis denotes user ID and y-axis denotes
status computed using a sample of 1000 nearest balanced states.

Figure 5: wiki-Elec data analysis in the status-influence graph-
balancing space (x-axis denotes status, y-axis denotes influence): (a)
spectral clustering results for 21 color-coded clusters; (b) actual out-
come results.

Fig. 4 shows the wiki-Elec analysis results for spectral clustering
and graph balancing. Spectral clustering for 𝑘 = 10 clusters pre-
dominantly forms clusters based on users’ adjacency rather than on
their sentiments towards each other, as illustrated in the boxplots
in Fig. 4(a). Note that the user IDs are assigned in temporal order.
Fig. 4(b) shows that spectral clustering does not cluster by election
outcome as the relative number of winners and losers is similar in
each cluster. In contrast, the status derived from graph balancing
discriminates user influence based on the entire signed graph, as
depicted in Fig. 4(c), which exhibits a high correlation between the
status of a person and winning the election, irrespective of user ID.

Fig. 5 presents additional advantages of graph-balancing-based
attribute analysis. The results of spectral clustering and major-
ity voting as well as the actual outcome are plotted in the graph-
balancing status-influence space. Spectral clustering (Fig. 5(a))
yields little relevant information. The outcome plot (Fig. 5(b)) identi-
fies people who are not in line with other, similar people (low-status,
low-influence should lead to rejection whereas high-status, high-
influence should lead to acceptance), and the votes for them should
be examined for possible bias. Note that majority voting by itself
cannot expose these examples of potential outcome bias.

2.5 Complexity Analysis of Prior Work
Tesic and Rusnak’s original graph-balancing code [39], which is
based on Python, stores the spanning trees in h5 files and uses dic-
tionaries to record edge information. Unfortunately, this makes the

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

code too slow and memory intensive to process the large graphs we
are interested in. Its work complexity is 𝑂 (𝑛 ×𝑚) per tree, where
𝑛 is the number of vertices and𝑚 the number of graph edges. The
space complexity is𝑂 (𝑛×𝑛) since the code is based on an adjacency
matrix. Computing 1000 nearest balanced states on the small wiki-
Elec graph takes about 1.5 hours on a 16-node HPC cluster with two
14-core 2.4 GHz Xeon processors per node. Processing the some-
what larger but still relatively small social networks Slashdot and
Epinions with about 500k edges [25] on the same system exceeded
the 60 GB maximum memory utilization per node when using BFS
spanning trees. Switching to random spanning trees with Spark
parallelization made it work but required 40 minutes to compute
just 20 balanced states. Hence, this implementation cannot be used
on social networks with millions of users and edges [28].

3 THE GRAPHB+ ALGORITHM
We designed a new graph-balancing algorithm from scratch, which
we named “graphB+”. It incorporates a novel approach for efficiently
identifying, traversing, and balancing all fundamental cycles of a
graph. Alg. 3 outlines how graphB+ works on the signed graph
Σ = (𝐺, 𝜎) using a provided spanning tree 𝑇 of Σ. The tree can
be generated with any spanning tree algorithm. graphB+ requires
one word of storage per vertex to record the new ID as well as two
words of storage per (tree) edge to record the beginning and end of
the reachable vertex range, i.e., a linear amount of memory.

Algorithm 3 graphB+ Algorithm

Input: Σ = (𝐺, 𝜎)
Input: Spanning tree 𝑇 ∈ Σ

for all vertices 𝑣 , 𝑣 ∈ 𝑇 do ⊲ Vertex relabeling
relabel 𝐼𝐷 of vertex 𝑣 based on a pre-order traversal of 𝑇

end for
for all edges 𝑒 , 𝑒 ∈ 𝑇 do ⊲ Edge labeling

record [𝐼𝐷𝑚𝑖𝑛, 𝐼𝐷𝑚𝑎𝑥]-range of vertices that are reachable
in𝑇 when traversing 𝑒 based on a pre-order and a post-order
traversal of 𝑇

end for
for all edges 𝑒 , 𝑒 ∈ Σ \𝑇 , 𝑒 = (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡) do ⊲ Cycle traversal

set count 𝑐 = 0
set vertex 𝑣 = 𝑣𝑠𝑟𝑐
while 𝑣 ≠ 𝑣𝑑𝑠𝑡 do

find edge 𝑔 = (𝑣, 𝑣𝑛𝑥𝑡) whose range includes 𝑣𝑑𝑠𝑡
increment 𝑐 if 𝑔 is negative
traverse edge 𝑔: set 𝑣 = 𝑣𝑛𝑥𝑡

end while
if 𝑐 is odd then

switch edge sign: 𝑒− → 𝑒+; 𝑒+ → 𝑒−

end if
end for

Output: Balanced graph Σ𝑇

We illustrate the operation of the graphB+ algorithm, including
the preceding and following steps to provide context, on the signed
graph shown in Fig. 6(a). The red pluses and minuses indicate
the signs of the edges and are part of the input. Assume vertex
𝑅 is selected to be the root of the spanning tree as illustrated in

Fig. 6(b). The resulting BFS tree is outlined in Fig. 6(c), where the
tree edges are arrows pointing from the parent to the child and the
non-tree edges are dashed. This constitutes the input of the graphB+
algorithm, which performs the following three computation steps.

1) graphB+ relabels the vertices as outlined in the vertex relabel-
ing step of Alg. 3. It does this by performing a pre-order traversal
of the spanning tree. During this traversal, each reached vertex is
assigned a new ID that is equal to the number of previously visited
vertices. The result of this relabeling is depicted in Fig. 6(d).

2) graphB+ records a range (a pair of values) on each tree edge as
outlined in the edge labeling step of Alg. 3. This range denotes which
vertices, identified by their new IDs, are reachable when traversing
the edge in the parent-to-child direction. The result is illustrated
in Fig. 6(e). Traversing an edge in the opposite (child-to-parent)
direction leads to the inverse of the recorded range, i.e., all vertex
IDs excluding those in the range. The beginning of each range is
determined using a pre-order traversal of the tree and the end using
a post-order traversal. Note that the ranges can always be expressed
by just two values because of the prior vertex relabelling step, which
guarantees each range to be a contiguous set of vertex IDs. This
feature of graphB+ is essential to keep the memory consumption low
and to make the following cycle traversals fast.

3) graphB+ identifies and traverses all cycles that are created
when inserting one non-tree edge at a time as outlined in the cycle
traversal step of Alg. 3. We illustrate how this works on the example
of edge 6 → 7, which requires us to start with vertex 7 and search
for the path in the tree that leads back to vertex 6 to complete the
cycle. With the help of the recorded ranges, this path can be found
efficiently. First, we search the edges in vertex 7’s adjacency list
to find the one that eventually leads to vertex 6. Specifically, we
search the range of each outgoing edge as well as the inverse of the
range of the incoming parent edge. In this case, we find that edge
0 → 7 traversed in the opposite direction lies on the path to vertex
6 as it leads to all vertex IDs other than 7 through 9. We select this
edge and traverse it to reach vertex 0. Second, we search vertex 0’s
edge ranges and find that 6 is in the range of edge 0 → 3. Hence, we
move on to vertex 3. Third, we search vertex 3’s tree-edge ranges
and find that 6 is in the range of edge 3 → 6. Travsersing this edge
to vertex 6 completes the cycle as illustrated in Fig. 6(f). Note that
we never visited a vertex that is not on the cycle. As we process the
cycle, we count the number of traversed edges with a negative sign
(one in the example) and set the sign of the non-tree edge 6 → 7
such that the cycle has an even number of negative signs (negative
in the example). The remaining non-tree edges undergo the same
procedure, ultimately yielding the balanced graph Σ𝑇 with the same
vertices and edges as Σ but possibly different signs on the non-tree
edges. The resulting balanced graph is presented in Fig. 6(g), which
includes two changed signs, one on edge 𝐵 → 𝐹 and the other on
edge 𝐷 → 𝐻 . This concludes the graphB+ computation.

Balancing only the fundamental cycles (e.g., cycles 𝐵 → 𝑅 →
𝐸 → 𝐹 → 𝐵 and 𝑅 → 𝐴 → 𝐷 → 𝐸 → 𝑅 in Fig. 6(g)) guarantees
that all other cycles are also balanced (e.g., cycle 𝐵 → 𝑅 → 𝐴 →
𝐷 → 𝐸 → 𝐹 → 𝐵). This is the case because, based on algebraic
graph theory, all cycles of a graph can be constructed via binary
sums of the 0,1-choice vectors of the fundamental cycles [13, 16].
Once each fundamental cycle is balanced, all paths between two ver-
tices in a cycle have the same sign [17]. Any new cycles formed by

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) (b) (c)

(d) (e) (f)

F
D

A

E

B

G

R

IH

C

F
D

A

E

B

G

R

IH

C

6
2

1

3

7

9

0

54

8

6
2

1

3

7

9

0

54

8
1‒2

2‒2

3‒6

4‒5

5‒5

7‒9 8‒8

6‒6

9‒9

F
D

A

E

B

G

R

IH

C

F
D

A

E

B

G

R

IH

C

6
2

1

3

7

9

0

54

8
1‒2

2‒2

3‒6

4‒5

5‒5

6‒6

7‒9 8‒8

9‒9
?

F
D

A

E

B

G

R

IH

C

(g) (h) (i)

F
D

A

E

B

G

R

IH

C

Figure 6: Example illustrating the steps before (a-c), during (d-g), and after (h-i) the graphB+ computation: (a) signed sample graph, (b) root
selection, (c) spanningBFS tree, (d) graphB+ vertex relabeling, (e) graphB+ tree-edge labeling, (f) graphB+ cycle balancing, (g) resulting balanced
graph, (h) Harary cuts, and (i) Harary bipartitions

overlapping fundamental cycles inherit this property by following
another path in the second cycle, thus forcing global balance.

As outlined in Alg. 2, the output of graphB+ can, for example, be
used to determine the Harary bipartition. This may be done as fol-
lows. First, all negative edges from Σ𝑇 are ignored and the resulting
connected components (CCs) are computed, which are color-coded
in Fig. 6(h). Second, the bipartition is formed by combining all CCs
with an even number of negative edges between them. This can be
done by collapsing each CC into a single vertex, performing a BFS
on the resulting graph, and assigning all vertices in the even levels
of the BFS tree to one bipartition and the remaining vertices to the
other. Fig. 6(i) illustrates the result, where the brown vertices make
up one bipartition and the blue vertices the other.

3.1 Complexity Analysis
Assume Σ to be a connected graph with 𝑛 vertices and 𝑚 edges.
Since Σ is connected, 𝑚 ≥ 𝑛 − 1 and any spanning tree 𝑇 of Σ
has 𝑛 − 1 edges. Step 1 of the graphB+ algorithm performs a pre-
order traversal of𝑇 , which requires𝑂 (𝑛) work as it processes each
vertex and each tree edge. Step 2 also requires 𝑂 (𝑛) work since
it performs both a pre- and a post-order traversal of 𝑇 . Step 3
requires 𝑂 (𝑚 × 𝑘 × 𝑡) work, where 𝑡 is the average tree-degree of
the vertices on a cycle, 𝑘 is the average cycle length, and there are
𝑚 − (𝑛 − 1) = 𝑂 (𝑚) fundamental cycles (i.e., non-tree edges). Since
there exists a path in𝑇 from any vertex 𝑎 to any other vertex 𝑏 that

goes through the root of the tree, and assuming that 𝑑 (𝑥) denotes
the tree depth of vertex 𝑥 , 𝑑 (𝑎) +𝑑 (𝑏) + 1 is an upper bound on the
length of the cycle formed by the edge 𝑎 → 𝑏. Hence, the average
cycle length is linear (or sub-linear) in the average tree depth. For a
randomBFS tree of a random graph, the expected average tree depth
is 𝑂 (𝑙𝑜𝑔(𝑛)). Thus, we expect Step 3 to require 𝑂 (𝑚 × 𝑙𝑜𝑔(𝑛) × 𝑡)
work. Since𝑚 ≥ 𝑛 − 1, Step 3 dominates and determines the work
complexity of the graphB+ algorithm. As mentioned, the space
complexity is 𝑂 (𝑛 +𝑚) because graphB+ stores a constant amount
of information in each vertex and on each edge. In contrast, the
preexisting signed-graph-balancing code (cf. Section 2.5) has a work
complexity of𝑂 (𝑛×𝑚) per tree and a space complexity of𝑂 (𝑛×𝑛).
Hence, graphB+ represents a substantial improvement.

3.2 Implementation
This section discusses key aspects of our graphB+ implementation
that help make it fast. The C++/OpenMP and CUDA codes, which
parallelize the entire graphB+ algorithm, are freely available under
the 3-clause BSD license [3].

3.2.1 Data Structure. We employ the widely-used, compact, and
quick-to-access compressed sparse row (CSR) format [8, 37] to
represent the graph in memory. To keep the memory consumption
low, only a single copy of the graph exists, whichwe use to represent
Σ,𝑇 , and Σ𝑇 . All required dynamic memory is allocated once at the
beginning of the program and reused throughout the processing.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

To speed up the cycle traversal, which is the most performance
critical code section, the edge data is encoded in two words as
follows. The beginning of the range is stored together with a 1-bit
value that indicates whether the range is inverted. The end of the
range is stored together with a 1-bit value that indicates the sign of
the edge. This encoding minimizes the memory footprint, which
boosts in-cache presence and, therefore, performance.

3.2.2 Adjacency Lists. To accelerate the graph traversals and cycle
processing, our implementation partitions the adjacency list of
each vertex such that the tree edges precede the non-tree edges and
moves the parent edge (if present) to the front of the list. Moreover,
it uses a 1-bit flag to mark whether an edge is in the tree or not.
The partitioning is fast and only takes linear time. Its execution
time is easily amortized as it enables the following optimizations.

• All loops that process non-tree edges traverse the adjacency
list from the back to the front and terminate as soon as they
encounter the first tree edge.

• All loops that process tree edges traverse the adjacency list
from the front to the back and stop when they encounter the
first non-tree edge (or reach the end of the list).

• All loops that process tree edges process the parent edge
first, which boosts performance since this is the most likely
edge to be needed when traversing the cycles because, on
average, it leads to the largest number of vertices.

3.3 Parallelization
Parallelizing Alg. 2 is straightforward for distributed-memory sys-
tems. Each compute node gets a copy of the graph and a subset of
the tree roots. The compute nodes then independently generate a
spanning tree, run graphB+, and count how often each vertex ends
up in the larger Harary bipartition. A single MPI_Reduce call at
the end suffices to obtain the status of each vertex. However, most
compute nodes (as well as workstations and laptops) contain multi-
ple CPUs and many include GPUs. Hence, the graphB+ algorithm
should also be parallelized within a compute node for maximum
performance. This is the focus of the rest of the paper.

Within a compute node, the simplest way to parallelize Alg. 2 is
also to process a different given tree on each thread because the 𝑘
trees can be balanced independently. However, this approach does
not scale. On high-end CPUs, which need dozens of threads to keep
their cores busy, it would result in dozens of trees being stored in
memory and accessed at the same time, which limits the maximum
graph size and hurts performance due to poor locality of reference.
On high-end GPUs, which require on the order of 100,000 threads
to unleash their full performance, this parallelization technique
would only work for tiny graphs and would result in far more trees
being processed than needed, thus eliminating any speedup.

We use a different strategy where the threads collaborate to make
the processing of a single tree faster. This requires more complex
techniques but still accelerates the computation while making it
possible to handle large graphs with hundreds of millions of edges
or more on a single CPU or GPU. Whereas both our OpenMP and
CUDA codes fully parallelize the entire graphB+ algorithm, the
following paragraphs describe only the key parallelization aspects
of our implementation.

3.3.1 Vertex and Edge Labeling. Re-labeling the vertex IDs (Step 1)
is based on a pre-order traversal of the tree and labeling the edges
with the ranges (Step 2) is based on a pre- and a post-order traversal.
These traversals are difficult to parallelize. However, the same result
can be obtained with a bottom-up followed by a top-down pass
over the tree levels as outlined in Alg. 4. With this approach, all
vertices at a given level (i.e., tree depth) can be processed in parallel,
meaning the three for-all loops in Alg. 4 are parallel.

First, the code computes the size of the subtree rooted in each
tree node. It starts with a count in each vertex that is initialized to
one. The bottom-up pass atomically adds the count of each vertex
to the count of its parent. The level-by-level order guarantees that
we only use a vertex’s final count (subtree size) to update its parent.

Second, the top-down pass assigns the edge ranges and the new
vertex IDs based on these counts. For each parent 𝑝 , the code tra-
verses the children and assigns them their new ID. The ID of child
𝑐 is the ID of 𝑝 plus 1 plus the counts of all earlier children of 𝑝 .
This value also serves as the beginning of the range stored in the
edge 𝑝 → 𝑐 . The end of the range is the beginning value plus the
count of 𝑐 minus 1, i.e., one less than the new ID of the next child.

Algorithm 4 Parallel Vertex and Tree-edge Labeling

Input: Σ = (𝐺, 𝜎)
Input: Spanning tree 𝑇 ∈ Σ

for all vertices 𝑣 , 𝑣 ∈ Σ do ⊲ Initialization
𝑣𝑐𝑛𝑡 = 1

end for
for level 𝑙 of 𝑇 from bottom to top do ⊲ Bottom-up pass

for all vertices 𝑣 , 𝑣 ∈ 𝑙𝑒𝑣𝑒𝑙 [𝑙] do
𝑝 = 𝑣𝑝𝑎𝑟𝑒𝑛𝑡
atomic add: 𝑝𝑐𝑛𝑡 = 𝑝𝑐𝑛𝑡 + 𝑣𝑐𝑛𝑡

end for
end for
𝑟𝑜𝑜𝑡𝑖𝑑 = 0
for level 𝑙 of 𝑇 from top to bottom do ⊲ Top-down pass

for all vertices 𝑣 , 𝑣 ∈ 𝑙𝑒𝑣𝑒𝑙 [𝑙] do
𝑛 = 𝑣𝑖𝑑 + 1
for vertices 𝑐 , 𝑐 ∈ 𝑐ℎ𝑖𝑙𝑑 [𝑣] do

𝑒 = 𝑒𝑑𝑔𝑒 𝑣 → 𝑐

𝑒𝑚𝑖𝑛 = 𝑛

𝑒𝑚𝑎𝑥 = 𝑛 + 𝑐𝑐𝑛𝑡 − 1
𝑐𝑖𝑑 = 𝑛

𝑛 = 𝑛 + 𝑐𝑐𝑛𝑡
end for

end for
end for

Output: Re-labeled vertex IDs (𝑣𝑖𝑑)
Output: Ranges on edges of 𝑇 (𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥)

Since we target signed social networks, which tend to be scale-
free graphs, we expect the graph diameter to be low. Consequently,
there should only be relatively few tree levels. The results in Section
6.7 confirm this assumption. Hence, level-by-level parallelization
should be efficient and provides ample of parallelism in most levels.

3.3.2 Cycle processing. Processing the cycles (Step 3) is the core
of graphB+. Due to the vertex relabeling and the range information

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

stored in each tree edge, this step requires just 16 statements in
our OpenMP implementation. To maximize the performance, the
code only processes the non-tree edges in one direction. Based
on the range information, it follows the appropriate edge from
vertex to vertex until the cycle is complete. Along the way, it counts
the number of negative edges and, ultimately, sets the sign of the
non-tree edge such that the total number is even.

The cycle processing is parallelized over the vertices. The non-
tree edges of each vertex are processed consecutively in the
OpenMP code. As the number of non-tree edges per vertex and the
cycle lengths vary, we use a dynamic schedule for load balancing.

GPUs require much higher degrees of parallelism than CPUs,
so our CUDA implementation is parallelized not only across the
vertices but also across the edges. In particular, we employ a hier-
archical parallelization scheme where the many warps process the
vertices in parallel and the 32 threads within each warp process the
non-tree edges of the given vertex in parallel.

No synchronization is needed when processing cycles in parallel
since the tree vertices and edges (i.e., the shared data) are only read.
The non-tree edges are read and written but only by one thread
each (i.e., they constitute thread-private data). Processing multiple
non-tree edges of the same vertex in parallel, as is done by the warp
threads in our GPU code, is also safe for the same reason.

4 RELATEDWORK
No prior publications exist on parallelizing the balancing of funda-
mental cycles. Hence, this section discusses other related work not
already covered in Sections 1 and 2.

The frustration index is one of several measures of balance that
have been proposed to analyze real-world signed graphs containing
conflicting observations. Computing it is a key operation in many
fields of research, including physics [4, 7], economics [44], negative
feedback loops in Boolean networks [38], and statistical mechanics
[36], making graphB+ valuable beyond social network analysis.

Computing the frustration index of a signed graph is equivalent
to finding a nearest ground (balanced) state in disordered systems.
This is an NP-hard problem in general, but there exist scenarios
that are solvable in polynomial time and for which exact large-
scale solutions are possible. A survey [4] illustrates and reviews
their applications to physics problems, especially Ising models and
two-dimensional spin glasses. The frustration cloud approach [33]
obviates the need for determining a balanced state with a mini-
mum number of sentiment changes. Instead, it determines a set of
nearest states with possibly varying numbers of sentiment changes.
This redirects the focus from a single balanced state to a family of
ground states. The computational complexity of these algorithms
is bounded by a polynomial function of the size of the underlying
graph. However, the upper bound is still prohibitive for a system
of the size of the social networks we are targeting.

Wu and Chen proposed a branch-and-bound algorithm to bal-
ance signed graphs by editing edges and deleting vertices and
demonstrated its efficiency over trivial and heuristic algorithms
on inputs with up to 𝑛 = 40 vertices [43]. In control multi-agent
systems, Altafini analyzed the convergence to a balanced state in
the decision-making process and presented an effective way to com-
pute the average consensus for a network with up to 100 vertices

[5]. Aref et al. developed three binary linear programming models
to compute the frustration index quickly and exactly as the solution
to a global optimization problem. They demonstrated the efficiency
of their techniques for inputs with up to 15,000 edges [6]. Our work
has the same goal, but our solution scales to more than three orders
of magnitude larger signed graphs.

Our graphB+ algorithm requires a spanning tree as input. Com-
puting spanning trees efficiently, especially in parallel, is an active
research area. Early work targeted the theoretical PRAMmodel [10].
More recent work describes parallel multi-core CPU [29, 30, 41],
distributed-memory CPU [22], and GPU [12, 31, 40] algorithms.

5 EXPERIMENTAL METHODOLOGY
The performance comparisons in this paper are based on the
graphB+ runtime, excluding earlier and later computations such
as the tree building and the Harary bipartitioning. We ran each
experiment 5 times and report the best measured runtime. We only
ran the Python code [39] once for each input because it is slow.
On the graphs that can be processed with the Python code, we
compared the results with our results to ensure that they agree.

The system we used is based on a 16-core 3.5 GHz AMD Ryzen
Threadripper 2950X CPU. Hyperthreading is enabled, i.e., the 16
cores can simultaneously run 32 threads. Each core has a 32 kB L1
data cache, a 512 kB L2 cache, and all cores share an 8 MB L3 cache.
The 48 GB main memory has a peak bandwidth of 87.4 GB/s. The
operating system is Fedora 30. The system contains an NVIDIA
Titan V GPU with 5120 processing elements distributed over 80
multiprocessors (SMs). Each SM has 96 kB of L1 data cache. The 80
SMs share a 4.5 MB L2 cache as well as 12 GB of global memory
with a peak bandwidth of 652 GB/s.

The serial C++ CPU code was compiled with g++ 9.3.1 using
the “-O3 -march=native” optimization flags and the OpenMP code
additionally with the “-fopenmp” flag. We compiled the GPU code
with nvcc 11.0 using the “-O3 -arch=sm_70” flags.

We used the 20 graphs from Table 1 as inputs. They are listed by
size within each category. They were obtained from the Stanford
Network Analysis Platform (SNAP) [25] and from Amazon [19, 27].
The table shows the name of each input, the number of vertices,
edges, and fundamental cycles in the largest connected component,
and the maximum and average degree as well as the original size in
terms of ratings or reviews included across all vertices. Note that
we only process the largest connected component with graphB+,
which encompasses nearly the entire input as the small difference
between the number of ratings and the number of edges shows. All
tables and figures in the following sections use A* to refer to the
Amazon datasets and S* to refer to the SNAP datasets.

6 RESULTS
In this section, we first compare the performance of our graphB+
implementation to that of the original Python code. Next, we study
the throughput of our serial, OpenMP, and CUDA codes. Then, we
analyze the dynamic memory usage. We also evaluate the OpenMP
scaling and the CUDA runtime of individual algorithmic steps.
Finally, we investigate some relevant graph properties.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

Largest Connected Component Entire Input graph
Amazon Ratings # vertices # edges # cycles max avg # ratings

degree degree
Books 9,973,735 22,268,630 12,294,896 43,201 2.23 22,507,155
Electronics 4,523,296 7,734,582 3,211,287 18,244 1.71 7,824,482
Clothing, Shoes, and Jewlery 3,796,967 5,484,633 1,687,667 3,047 1.44 5,748,920
Movies and TV 2,236,744 4,573,784 2,337,041 11,906 2.04 4,607,047
CDs and Vinyl 1,959,693 3,684,143 1,724,451 5,755 1.88 3,749,004
Sports and Outdoors 2,147,848 3,075,419 927,572 6,016 1.43 3,268,695
Android App 1,373,018 2,631,009 1,257,992 25,368 1.92 2,638,172
Toys and Games 1,489,764 2,142,593 652,830 10,281 1.44 2,252,771
Automotive 950,831 1,239,450 288,620 2,738 1.30 1,373,768
Patio, Lawn, and Garden 735,815 939,679 203,865 3,180 1.28 993,490
Baby 559,040 892,231 333,192 3,648 1.60 915,446
Digital Music 525,522 702,584 177,063 1,953 1.34 836,006
Instant Video 433,702 572,834 139,133 12,633 1.32 583,993
Musical Instruments 355,507 457,140 101,634 3,523 1.29 500,176
Amazon Reviews # vertices # edges # cycles max avg # reviews

degree degree
Digital Music core5 9,109 64,706 55,598 578 7.10 64,706
Instant Video core5 6,815 37,126 30,312 455 5.45 37,126
Musical Instruments core 5 2,329 10,261 7,933 163 4.41 10,621
SNAP Signed Networks # vertices # edges # cycles max avg # signed

degree degree edges
soc-sign-epinions 119,130 704,267 585,138 3,558 5.91 841,372
soc-sign-Slashdot090221 82,140 500,481 418,342 2,548 6.09 549,202
wiki-Elec 7,539 112,058 104,520 1,079 14.86 114,040

Table 1: Pertinent information about the signed input graphs. The
number of vertices, edges, and cycles reflect the number in the
largest connected component of each dataset.

Graph Serial OpenMP CUDA Python
A*_Instruments_core5 0.73 0.47 0.18 114.2
A*_Music_core5 6.97 1.40 0.47 1039.0
A*_Video_core5 3.31 1.23 0.62 593.7
S*_wiki 12.30 2.19 1.13 1088.5
GEOMEAN 3.79 1.16 0.49 526.2

Table 2: Graph balancing runtime in seconds of our serial, OpenMP,
and CUDA codes as well as the original Python code on four small
input graphs for 1000 breadth-first-search (BFS) trees

6.1 Comparison to Original Python Code
This subsection compares the performance of our serial, OpenMP,
and CUDA implementations of graphB+ to that of the original
graph-balancing code written in Python [39]. Table 2 lists the sum
of the runtimes over 1000 trees. Due to the long runtimes of the
Python code, we only present results for a few small graphs. Fig. 7
shows the corresponding throughputs in millions of fundamental
cycles balanced per second to visualize the performance. Note that
the y-axis is logarithmic and that higher throughputs are better.

The results show that graphB+ is orders of magnitude faster,
even when run serially. This highlights the effectiveness of the new
algorithm we developed for discovering, traversing, and balancing
fundamental cycles. The results also make it clear why the original
code cannot be used on large graphs. Based on the geometric mean
over these four inputs, our serial code is 140 times faster than the
Python code and our GPU code is over 1000 times faster. The Python
code takes almost 9minutes to compute 1000 nearest balanced states
compared to under 0.5 seconds for our CUDA code.

Our parallel code does not scale well on these small inputs. The
geometric-mean speedup of the OpenMP version is under 3.3 and
the speedup of the CUDA version is under 8 relative to serial
graphB+. The reason for these low speedups is that the inputs,
and therefore the runtimes, are so small that parallelization over-
heads dominate. Recall that we parallelize within and not across
the spanning trees, meaning that the runtime of the parallelized
operations is just 1/1000 of the times listed in Table 2. Moreover, on

Figure 7: Throughput in millions of fundamental cycles balanced
per second of our serial, OpenMP, and CUDA codes and the original
Python code

Graph Serial OpenMP CUDA
A*_Android 2812.7 256.1 281.3
A*_Automotive 406.0 54.7 16.0
A*_Baby 310.7 38.2 15.3
A*_Book 38775.0 3193.8 851.2
A*_Electronics 8327.4 768.2 255.0
A*_Games 983.8 111.1 55.1
A*_Garden 256.9 36.7 11.4
A*_Instruments 97.0 16.1 8.3
A*_Jewelry 2990.7 352.3 56.6
A*_Music 163.3 25.7 7.8
A*_Outdoors 1469.8 195.0 42.0
A*_TV 3447.9 342.6 87.4
A*_Video 309.2 53.8 117.9
A*_Vinyl 2302.3 238.6 49.0
S*_eopinion 220.5 22.7 11.9
S*_slashdot 122.7 11.0 6.8
GEOMEAN 881.9 103.2 40.8

Table 3: Graph balancing runtime in seconds of our serial, OpenMP,
and CUDA codes on the larger input graphs for 1000 BFS trees

the GPU, there are many threads that end up with no work because
there are not enough vertices and edges in these small graphs. Yet,
the CUDA code delivers a geometric-mean throughput of 70 million
fundamental cycles balanced per second. In contrast, the Python
code is only able to balance 65,336 fundamental cycles per second.

6.2 Performance on Larger Graphs
This subsection presents the performance of our serial, OpenMP,
and CUDA graphB+ implementations on the 16 larger inputs. Table
3 lists the sum of the runtimes over 1000 trees and Fig. 8 shows
the corresponding throughputs in millions of fundamental cycles
balanced per second. Again, the y-axis is logarithmic.

These results show that, even on the largest input with 10M
vertices and 22M edges, it takes the GPU code less than 15 minutes
to compute 1000 nearest balanced states, i.e., under 1 second per
sample. Since the runtime is roughly proportional to the input size,
our graphB+ implementation should be able to balance inputs that

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 8: Throughput in millions of fundamental cycles balanced per second of our serial, OpenMP, and CUDA code on the larger graphs

are 10 times larger in a few seconds per sample, making it tractable
to analyze graphs with 100s of millions of vertices and edges.

The geometric-mean throughput of the CUDA code on these
larger graphs is 16.8 million fundamental cycles balanced per sec-
ond. This is about four times lower than the throughput on the
small inputs shown in Fig. 7. The primary reason for this drop
is the large difference in average degree (cf. Table 1). The small
graphs have between 3.4 and 13.9 fundamental cycles per tree edge
whereas most of the large graphs have fewer than than one.

Fig. 9 shows the speedup of our OpenMP and CUDA codes over
the serial code. Higher speedups are better. The GPU code is 2.6
to 53 times faster than the serial code (the geometric mean is 21.6)
and up to 6.2 times faster than the OpenMP code (the geometric
mean is 2.5). On two inputs, the CPU outperforms the GPU. The
OpenMP code is 5.7 to 12.1 times faster on 16 cores than the serial
code (the geometric mean is 8.5). These results highlight the benefit
of parallelization and, in particular, of using an accelerator.

We correlated the runtime of our GPU code with the graph
properties from Table 1 and found a strong linear correlation (𝑟 >

0.9) with the number of vertices, edges, and cycles and a particularly
strong correlation (𝑟 = 0.96) with the maximum degree, meaning
that the CUDA code takes longer to run for graphs that have a high
maximum degree. Section 6.6 explains why.

6.3 OpenMP Scalability
This subsection investigates the strong scaling of our OpenMP code.
Fig. 10 shows the speedups relative to the serial code (not relative
to the OpenMP code running with one thread) for all 20 inputs.
Unlike the previous charts, this chart lists the inputs sorted by the
number of fundamental cycles to better visualize the trends. The
results are once again obtained when processing 1000 trees.

For all investigated thread counts, the speedups tend to be higher
for larger inputs. On our 16-core platform, the maximum speedups
range from about 2 to 8 on the smaller inputs and from about 8 to 12
on the larger inputs. They are not higher due to the short runtimes
of under one second per tree for all but the A*_Book input. Depend-
ing on the number of BFS-tree levels, the code executes between
about 20 and 60 parallelized OpenMP regions during this fraction
of a second. The runtimes per parallel code region are so short,

especially for the smaller inputs, that the parallelization overhead
(e.g., the forking and joining of the threads) substantially impacts
performance. Hence, we expect the speedup to be significantly
higher for larger inputs with 100s of millions or more vertices.

Fig. 10 illustrates that hyperthreading (using 32 threads on our
16-core machine) helps only little and hurts on some inputs, partic-
ularly on the smallest inputs. This is expected as hyperthreading
tends to not be effective on data-parallel codes (which is why su-
percomputers like Frontera [14] have it disabled). Moreover, hyper-
threading is often especially ineffective on irregular memory-bound
codes like graphB+ because the extra thread contexts only provide
additional computation resources but no additional memory band-
width or cache capacity.

6.4 Dynamic Memory Usage
This subsection studies the amount of dynamically allocated mem-
ory in our CPU and GPU codes for storing the data needed by
graphB+ as well as for the Harary bipartitioning and the vertex
status computation. The memory usage is fixed and independent of
the number of trees processed. Table 4 lists the megabytes allocated
in the OpenMP and CUDA codes. For CUDA, we separately list the
host (CPU) and device (GPU) amounts.

The results confirm that the memory usage is linear in the graph
size, i.e.,𝑂 (𝑛+𝑚). Note that the CUDA host memory usage is about
two thirds of that of the OpenMP code as some data only resides on
the GPU. The CUDA device memory usage is 22% higher than the
OpenMP memory usage due to two worklists that are not present
in the OpenMP code. We use the two worklists to store alternating
tree levels when computing the Harary bipartitions.

Based on these results, our CUDA code running on a GPU with
12 GB of memory should be able to process graphs with up to 150
million edges. Our OpenMP code running on a system with 128 GB
of memory should support graphs with up to 2 billion edges.

6.5 Kernel Breakdown
This subsection investigates the fraction of the runtime spent in
the various kernels of our CUDA code. For reference, we include
results for computing the spanning trees and the Harary biparti-
tions, which are not part of graphB+. Fig. 11 shows the breakdown.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

Figure 9: Speedup of the OpenMP and CUDA codes over the serial code on the larger graphs

Figure 10: Speedup of the OpenMP code over the serial code for different thread counts (inputs sorted by cycle count)

The rightmost bar reflects the average over the 20 inputs. The bars
are stacked, from bottom to top, according to the average runtime.

The general trends are quite similar across the different inputs,
so we focus our discussion on the averages. In all cases, the funda-
mental cycle processing takes more time than any other operation.
On average, it accounts for 64% of the overall runtime. Next is the
labeling of the tree vertices and edges, which accounts for nearly
20% of the runtime. The Harary bipartitioning takes less than 10%
and the spanning tree generation 6%. Hence, graphB+, which en-
tails the tree labeling and the cycle processing, takes 5.5 times as
long as computing the spanning tree and the bipartitions. In other
words, even our optimized implementation takes several times as
long as the rest of the operations needed to compute a metric such
as the status of each vertex. This highlights the need for fast signed
graph balancing, which is the premise of our work.

6.6 Fundamental Cycle Properties
This subsection studies the fundamental cycles in more detail. Ta-
ble 5 lists the average length of the fundamental cycles as well as
the average degree of the vertices on each cycle. The averages are
based on 1000 BFS spanning trees.

The average cycle length is between 5.0 and 10.6, which is sur-
prisingly short. In contrast, the average vertex degree encountered
on a cycle is 147.7, which is surprisingly high for graphs with an
average degree of just 3.3. Note, however, that these are power-law
social network graphs with several high-degree vertices (cf. Table
1). Evidently, most fundamental cycles include at least one of these
high-degree vertices. This makes sense in the context of BFS trees.
Whenever such a vertex is reached during tree building, its high
fan-out leads to a very shallow but wide tree. (The results of the
next subsection corroborate this fact.) Hence, the fundamental cycle
processing in graphB+ is primarily bottlenecked by determining
which edge to follow.

6.7 Spanning Tree Properties
This subsection investigates the depth of the BFS spanning trees.
Table 6 lists, for each input, the minimum and maximum depth of
any of the 1000 trees and the average depth over all 1000 trees.

Every single random BFS spanning tree of these social networks
is shallow as the largest depth over all graphs and trees is just 21
and the average depth is under 18 in all cases. As mentioned, this is
a consequence of the inputs containing some high-degree vertices,
as is common for social networks. Consequently, there are only few

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 11: Relative GPU kernel runtime breakdown in percent (bipartitioning and tree generation are not part of graphB+)

Graph OpenMP CUDA CUDA
host(MB) device(MB) host(MB)

A*_Android 162.1 197.0 106.5
A*_Automotive 84.5 99.8 56
A*_Baby 57.5 69.0 37.9
A*_Book 1,328.2 1629.9 869.8
A*_Electronics 489.6 590.4 322.3
A*_Games 141.9 169.0 93.8
A*_Garden 64.5 76.0 42.7
A*_Instruments 362.9 36.9 20.7
A*_Instruments_core5 0.6 0.7 0.4
A*_Jewelry 362.9 432.1 239.8
A*_Music 47.5 56.3 31.5
A*_Music_core5 3.3 4.3 2.1
A*_Outdoors 204.0 242.7 134.8
A*_TV 277.8 339.1 182.2
A*_Video 38.9 46.0 25.8
A*_Video_core5 2.0 2.5 1.3
A*_Vinyl 228.0 276.7 149.8
S*_eopinion 36.1 47.1 23.8
S*_slashdot 26.1 33.4 16.8
S*_wiki 5.5 7.2 3.6
Table 4: Dynamic memory usage of our OpenMP and CUDA codes

BFS levels and most levels contain many vertices and edges. This
makes our level-by-level parallelization strategy effective.

The results in this and the previous subsection provide empirical
evidence that the average cycle length is linear in the average tree
depth and that the expected average tree depth is 𝑂 (𝑙𝑜𝑔(𝑛)) as
assumed in Section 3.1.

7 SUMMARY AND FUTUREWORK
This paper describes an efficient algorithm called graphB+ for bal-
ancing the signs on the edges of signed graphs. It runs in expected
𝑂 (𝑚 × 𝑙𝑜𝑔(𝑛) × 𝑡) time and requires 𝑂 (𝑛 +𝑚) storage, where𝑚 is
the number of edges, 𝑛 the number of vertices, and 𝑡 the average
spanning-tree degree of the vertices on each cycle (cf. Section 3.1).
graphB+ is based on a new vertex and edge labeling technique

Graph Avg cycle Avg degree
length on cycles

A*_Android 7.15 432.01
A*_Automotive 10.63 76.37
A*_Baby 8.54 95.67
A*_Book 8.21 492.34
A*_Electronics 8.37 364.59
A*_Games 9.91 104.99
A*_Garden 10.19 79.25
A*_Instruments 10.15 66.03
A*_Instruments_core5 7.84 5.84
A*_Jewelry 10.60 96.32
A*_Music 8.90 64.34
A*_Music_core5 7.05 16.08
A*_Outdoors 9.85 108.77
A*_TV 7.09 238.59
A*_Video 8.40 351.73
A*_Video_core5 7.62 10.68
A*_Vinyl 8.11 151.57
S*_eopinion 5.21 103.25
S*_slashdot 5.55 66.33
S*_wiki 5.03 29.01
AVERAGE 8.22 147.69

Table 5: Average length of the fundamental cycles and average de-
gree of the vertices on the cycles based on 1000 spanning trees

for rapidly determining and balancing all fundamental cycles of a
graph. This is a key step in social network analysis algorithms.

We parallelized graphB+ using both OpenMP and CUDA. The
source code is freely available under the 3-clause BSD licence [3].
The GPU code detects, traverses, and balances tens of millions of
fundamental cycles per second and easily scales to graphs with
tens of millions of vertices and edges on a single device. Even when
run serially, our graphB+ implementation is orders of magnitude
faster than the preexisting Python code, which demonstrates the
benefit of our algorithm. The parallelization boosts the performance
by another factor of 20 on average. Good speedup only manifests
itself on larger graphs because inputs with fewer than about 10,000
vertices are too small to fully load the GPU.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

Graph Min depth Max depth Avg depth
A*_Android 10 13 12.2
A*_Automotive 15 19 17.3
A*_Baby 11 15 12.9
A*_Book 15 19 17.1
A*_Electronics 11 12 11.7
A*_Games 15 18 16.8
A*_Garden 12 15 13.6
A*_Instruments 14 21 17.2
A*_Instruments_core5 5 6 5.7
A*_Jewelry 14 16 15.7
A*_Music 14 18 15.8
A*_Music_core5 5 7 6.0
A*_Outdoors 14 17 15.2
A*_TV 12 15 13.9
A*_Video 11 15 12.9
A*_Video_core5 5 7 5.8
A*_Vinyl 13 15 13.7
S*_eopinion 8 11 9.5
S*_slashdot 7 9 7.9
S*_wiki 4 5 4.9
AVERAGE 10.8 13.7 12.3

Table 6: Minimum, maximum, and average tree depth of 1000 trees

Despite the high performance of graphB+, graph balancing still
accounts for 84% of the overall runtime in a social network analysis
application that computes the status of all vertices. This illustrates
the need for fast signed graph balancing algorithms.

We found the fundamental cycles to be surprisingly short, under
11 vertices on average, and the average vertex degree on the cycles
to be surprisingly large, about 150 on average. This information
may prove useful to further enhance the performance of graphB+.

As expected for power-law graphs like signed social networks,
the employed level-by-level parallelization strategy is effective be-
cause the BFS spanning trees used by graphB+ tend to only have a
few levels, under 18 on average for our twenty inputs.

In future work, we are planning to apply graphB+ in the field
for actual studies of attitudinal social networks. We also intend to
analyze the choice of spanning trees and the sampling frequency.
Finally, we want to quantify how various graph characteristics,
such as sparsity and the percentage of negative signs, affect the
algorithm’s performance.

ACKNOWLEDGMENTS
This work has been supported in part by the National Science
Foundation under Award Number 1955367, by the Department of
Energy, National Nuclear Security Administration under Award
Number DE-NA0003969, and by a hardware donation from NVIDIA
Corporation.

REFERENCES
[1] Robert P. Abelson and Milton J. Rosenberg. 1958. Symbolic psycho-logic: A model

of attitudinal cognition. Behavioral Science 3, 1 (1958), 1–13.
[2] S. Al-Yazidi, J. Berri, M. Al-Qurishi, and M. Al-Alrubaian. 2020. Measuring

Reputation and Influence in Online Social Networks: A Systematic Literature
Review. IEEE Access 8 (2020), 105824–105851. https://doi.org/10.1109/ACCESS.
2020.2999033

[3] Ghadeer Alabandi and Martin Burtscher. 2021. graphB+ code. https://cs.txstate.
edu/~burtscher/research/graphBplus/.

[4] M.J. Alava, P.M. Duxbury, C.F. Moukarzel, and H. Rieger. 2001. Exact combina-
torial algorithms: Ground states of disordered systems. In In: C. Domb and J.L.
Lebowitz, eds., Phase Transitions and Critical Phenomena, Vol. 18. Academic Press,
San Diego.

[5] C. Altafini. 2019. A dynamical approach to privacy preserving average consensus.
In 2019 IEEE 58th Conference on Decision and Control (CDC). 4501–4506. https:
//doi.org/10.1109/CDC40024.2019.9029712

[6] Samin Aref, Andrew J. Mason, and Mark C. Wilson. 2016. An exact method for
computing the frustration index in signed networks using binary programming.
CoRR abs/1611.09030 (2016). arXiv:1611.09030 http://arxiv.org/abs/1611.09030

[7] F. Barahona. 1982. On the computational complexity of Ising spin glass models.
J. Phys. A: Math. Gen. 15 (1982), 3241–3253.

[8] Aydın Buluç, John Gilbert, and Viral B Shah. 2011. Implementing sparse matrices
for graph algorithms. In Graph Algorithms in the Language of Linear Algebra.
SIAM, 287–313.

[9] D. Cartwright and F. Harary. 1956. Structural balance: a generalization of Heider’s
theory. Psychological Rev. 63 (1956), 277–293.

[10] Ka Wong Chong, Yijie Han, Yoshihide Igarashi, and Tak Wah Lam. 2003. Improv-
ing the efficiency of parallel minimum spanning tree algorithms. Discrete Applied
Mathematics 126, 1 (2003), 33–54. https://doi.org/10.1016/S0166-218X(02)00560-7
5th Annual International Computing and combinatorics Conference.

[11] Tim Davis, Yifan Hu, and Scott Kolodziej. 2020. SuiteSparse Matrix Collection.
Website: https://sparse.tamu.edu/.

[12] Jucele França de Alencar Vasconcellos, Edson Norberto Cáceres, Henrique
Mongelli, and Siang Wun Song. 2017. A Parallel Algorithm for Minimum
Spanning Tree on GPU. In 2017 International Symposium on Computer Ar-
chitecture and High Performance Computing Workshops (SBAC-PADW). 67–72.
https://doi.org/10.1109/SBAC-PADW.2017.20

[13] Reinhard Diestel. 2010. Graph theory. Graduate Texts in Mathematics, Vol. 173.
Springer, Heidelberg.

[14] Frontera. 2021. https://frontera-portal.tacc.utexas.edu/user-guide/system/.
[15] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2017. Reducing Controversy by Connecting Opposing Views. In
Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining (Cambridge, United Kingdom) (WSDM ’17). 81–90.

[16] Chris Godsil and Gordon Royle. 2001. Algebraic graph theory. Graduate Texts in
Mathematics, Vol. 207. Springer-Verlag, New York. xx+439 pages.

[17] F. Harary. 1953. On the notion of balance of a signed graph. Michigan Math. J.
2(2) (1953), 143–146.

[18] F. Harary. 1959. On the measurement of structural balance. Behavioral Sci. 4
(1959), 316–323.

[19] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual Evo-
lution of Fashion Trends with One-Class Collaborative Filtering. In Proceedings
of the 25th International Conference on WWW. 507–517.

[20] F. Heider. 1946. Attitudes and cognitive organization. J. Psychology 21 (1946),
107–112.

[21] M.A. Javed, M.S. Younis, S. Latif, J. Qadir, and A. Baig. 2018. Community detection
in networks: A multidisciplinary review. Journal of Network and Computer
Applications 108 (2018).

[22] Yuede Ji, Hang Liu, and H. Howie Huang. 2018. Parallel Identification of Strongly
Connected Components with Spanning Trees. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(Dallas, Texas) (SC ’18). IEEE Press, Article 58, 12 pages. https://doi.org/10.1109/
SC.2018.00061

[23] Srijan Kumar, William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity Interaction and Conflict on the Web. In Proceedings of the WWW (Lyon,
France). 933–943.

[24] Jure Leskovec. 2015. New Directions in Recommender Systems. In Proceedings
of the Eighth ACM International Conference on Web Search and Data Mining
(Shanghai, China) (WSDM ’15). ACM, 3–4.

[25] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[26] K W Li, D M Kilgour, and K W Hipel. 2005. Status quo analysis in the
graph model for conflict resolution. Journal of the Operational Research
Society 56, 6 (2005), 699–707. https://doi.org/10.1057/palgrave.jors.2601870
arXiv:https://doi.org/10.1057/palgrave.jors.2601870

[27] Julian McAuley. 2015. Amazon product data. https://jmcauley.ucsd.edu/data/
amazon/.

[28] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing
Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[29] Badri Munier, Muhammad Aleem, Muhammad Arshad Islam, Muhammad Azhar
Iqbal, and Waqar Mehmood. 2017. A Fast Implementation of Minimum Spanning
Tree Method and Applying it to Kruskal’s and Prim’s Algorithms. Sukkur IBA
Journal of Computing and Mathematical Sciences 1, 1 (2017), 58–66. https://doi.
org/10.30537/sjcms.v1i1.8

https://doi.org/10.1109/ACCESS.2020.2999033
https://doi.org/10.1109/ACCESS.2020.2999033
https://cs.txstate.edu/~burtscher/research/graphBplus/
https://cs.txstate.edu/~burtscher/research/graphBplus/
https://doi.org/10.1109/CDC40024.2019.9029712
https://doi.org/10.1109/CDC40024.2019.9029712
https://arxiv.org/abs/1611.09030
http://arxiv.org/abs/1611.09030
https://doi.org/10.1016/S0166-218X(02)00560-7
https://sparse.tamu.edu/
https://doi.org/10.1109/SBAC-PADW.2017.20
https://frontera-portal.tacc.utexas.edu/user-guide/system/
https://doi.org/10.1109/SC.2018.00061
https://doi.org/10.1109/SC.2018.00061
http://snap.stanford.edu/data
https://doi.org/10.1057/palgrave.jors.2601870
https://arxiv.org/abs/https://doi.org/10.1057/palgrave.jors.2601870
https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.30537/sjcms.v1i1.8
https://doi.org/10.30537/sjcms.v1i1.8

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14–19, 2021, St. Louis, MO, USA

[30] Suryanarayana Murthy Durbhakula. 2020. Parallel Minimum Spanning Tree
Algorithms and Evaluation. arXiv e-prints, Article arXiv:2005.06913 (May 2020),
arXiv:2005.06913 pages. arXiv:2005.06913 [cs.DC]

[31] Wen-Bao Qiao and Jean-Charles Créput. 2019. GPU implementation of Borůvka’s
algorithm to Euclidean minimum spanning tree based on Elias method. Applied
Soft Computing 76 (2019), 105–120. https://doi.org/10.1016/j.asoc.2018.10.046

[32] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the
space of topic coherence measures. In Proceedings of the eighth ACM international
conference on Web search and data mining. 399–408.

[33] Lucas Rusnak and Jelena Tešić. 2020. Characterizing Attitudinal Net-
work Graphs through Frustration Cloud. https://arxiv.org/abs/2009.07776.
arXiv:2009.07776 [cs.SI]

[34] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, USA.

[35] Farah Saab, Imad H. Elhajj, Ayman Kayssi, and Ali Chehab. 2019. Modelling
Cognitive Bias in Crowdsourcing Systems. Cognitive Systems Research 58 (2019),
1 – 18. https://doi.org/10.1016/j.cogsys.2019.04.004

[36] James P. Sethna. 2006. Statistical Mechanics: Entropy, Order Parameters, and
Complexity. Master Ser. in Physics, Vol. 14. Oxford Univ. Press, Oxford.

[37] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and
Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 1–35.

[38] Eduardo Sontag, Alan Veliz-Cuba, Reinhard Laubenbacher, and Abdul Salam
Jarrah. 2008. The Effect of Negative Feedback Loops on the Dynamics of Boolean
Networks. Biophysical Journal 95, 2 (2008), 518 – 526. https://doi.org/10.1529/

biophysj.107.125021
[39] Jelena Tešić, Joshua Mitchell, Eric Hull, and Lucas Rusnak. 2020. graphB: Python

software package for graph analysis. https://github.com/DataLab12/graphB.
[40] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan. 2009.

Fast Minimum Spanning Tree for Large Graphs on the GPU. In Proceedings of
the Conference on High Performance Graphics 2009 (New Orleans, Louisiana)
(HPG ’09). Association for Computing Machinery, New York, NY, USA, 167–171.
https://doi.org/10.1145/1572769.1572796

[41] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast Parallel Algorithms
for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New
York, NY, USA, 1982–1995. https://doi.org/10.1145/3448016.3457296

[42] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

[43] Bang Ye Wu and Jia-Fen Chen. 2013. Balancing a Complete Signed Graph by
Editing Edges and Deleting Nodes. In Advances in Intelligent Systems and Appli-
cations - Volume 1, Ruay-Shiung Chang, Lakhmi C. Jain, and Sheng-Lung Peng
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–88.

[44] Takeo Yoshikawa, Takashi Iino, and Hiroshi Iyetomi. 2011. Market Structure as a
Network with Positively and Negatively Weighted Links. In Intelligent Decision
Technologies, Junzo Watada, Gloria Phillips-Wren, Lakhmi C. Jain, and Robert J.
Howlett (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 511–518.

[45] J. Zhou, L. Li, A. Zeng, Y. Fan, and Z. Di. 2018. Random walk on signed networks.
Physica A: Statistical Mechanics and its Applications 508 (2018), 558–566.

https://arxiv.org/abs/2005.06913
https://doi.org/10.1016/j.asoc.2018.10.046
https://arxiv.org/abs/2009.07776
https://doi.org/10.1016/j.cogsys.2019.04.004
https://doi.org/10.1529/biophysj.107.125021
https://doi.org/10.1529/biophysj.107.125021
https://github.com/DataLab12/graphB
https://doi.org/10.1145/1572769.1572796
https://doi.org/10.1145/3448016.3457296

	Abstract
	1 Introduction
	2 Background
	2.1 Tree-based Signed Graph Balancing
	2.2 Tree-sampling-based Harary Bipartitioning
	2.3 Balancing-based Graph Attributes
	2.4 Benefits of Graph Balancing Attributes
	2.5 Complexity Analysis of Prior Work

	3 The graphB+ Algorithm
	3.1 Complexity Analysis
	3.2 Implementation
	3.3 Parallelization

	4 Related Work
	5 Experimental Methodology
	6 Results
	6.1 Comparison to Original Python Code
	6.2 Performance on Larger Graphs
	6.3 OpenMP Scalability
	6.4 Dynamic Memory Usage
	6.5 Kernel Breakdown
	6.6 Fundamental Cycle Properties
	6.7 Spanning Tree Properties

	7 Summary and Future Work
	References

