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ABSTRACT 
Trace files are widely used in research and academia to study the 
behavior of programs.  They are simple to process and guarantee 
repeatability.  Unfortunately, they tend to be very large.  This 
paper describes vpc3, a fundamentally new approach to compress-
ing program traces.  Vpc3 employs value predictors to bring out 
and amplify patterns in the traces so that conventional compres-
sors can compress them more effectively.  In fact, our approach 
not only results in much higher compression rates but also pro-
vides faster compression and decompression.  For example, com-
pared to bzip2, vpc3’s geometric mean compression rate on 
SPECcpu2000 store address traces is 18.4 times higher, compres-
sion is ten times faster, and decompression is three times faster. 
 
Categories and Subject Descriptors 
E.4 [Coding and Information Theory]: Data Compaction and 
Compression.  B.8.2 [Performance and Reliability]: Perform-
ance Analysis and Design Aids. 
 
General Terms 
Algorithms, Performance, Design, Experimentation. 
 
Keywords 
Trace compression, predictor-based compression, trace files. 
 
1. INTRODUCTION 
Program execution traces are widely used to study program and 
processor behavior.  Unfortunately, traces from interesting pro-
grams tend to be very large and storing them can be a challenge, 
even on today’s large hard disks.  One obvious solution is data 
compression. 

Many trace-compression algorithms have been proposed [2, 5, 
6, 16, 17, 20, 21, 27, 30, 37, 38].  Most of them do an excellent 
job at compressing program traces that record the program-
counter values (PCs) of the executed instructions.  However, 
traces that contain additional information such as effective ad-
dresses or the contents of registers are much harder to compress 
because those values repeat less and span larger ranges than PCs.  

Yet, extended traces, as we call them, are gaining importance as 
more and more researchers investigate the dynamic activities in 
computer systems. 

Our initial idea was to use value-prediction techniques to di-
rectly compress extended traces.  Value predictors identify pat-
terns in a sequence of values to forecast the likely next value (Sec-
tion 2.2).  In recent years, a number of value predictors have been 
developed to predict the content of CPU registers [4, 8, 9, 22, 23, 
31, 32, 34, 36].  Hence, they are good candidates for predicting 
the kind of values we are concerned with, i.e., values that span 
large ranges and that do not necessarily repeat often. 

The following greatly simplified example illustrates how value 
predictors can be used to compress traces.  Let us assume we have 
a set of predictors and that the data to be compressed consist of 
eight-byte values.  When compressing a trace, the current entry is 
compared with the predicted values.  If at least one of the predic-
tions is correct, we write only the identification number of one of 
the correct predictors, encoded in a one-byte value, to indicate that 
the predictor is correct.  If none of the predictions are right, we 
write a special code followed by the unpredictable eight-byte 
value.  Then the predictors are updated with the true value and the 
procedure repeats for the remaining trace entries. 

Decompression proceeds analogously.  First, one byte is read 
from the compressed trace.  If it contains the special code, the 
next eight bytes are read to obtain the actual value.  If, on the 
other hand, the byte contains a predictor identification number, 
the value from the corresponding predictor is used.  Then the pre-
dictors are updated.  This process iterates until the entire trace has 
been reconstructed. 

In this example, nine bytes are required to encode an unpre-
dictable value but only one byte for a predictable value.  Hence, if 
the predictors correctly predict more than one out of eight entries, 
the trace will be compressed. 

We found a more sophisticated version of the above algorithm 
(vpc1) to perform quite well, especially once we added a gzip 
postcompression stage (vpc2) [2].  Unfortunately, vpc2’s decom-
pression speed is about four times slower than that of other algo-
rithms, meaning that it is only likely to be used for archiving 
traces. 

Clearly, we needed a faster algorithm.  Moreover, we decided 
to capitalize on the fact that traces seemed to be more compressi-
ble after processing them with value predictors.  Thus, we de-
signed the completely new algorithm vpc3, in which the objective 
of the value predictors is not to compress the traces but rather to 
convert them into a format that is as amenable to the second-stage 
compressor as possible. 

Indeed, using value predictors to preprocess traces is much 
more fruitful than using them for the actual compression.  Vpc3 
not only compresses traces better than vpc2, sequitur, and bzip2 
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but also compresses and decompresses them faster.  Moreover, 
vpc3 meets all of the following criteria. 

 

♦ lossless compression 
♦ single-pass algorithm 
♦ excellent compression rate 
♦ fixed memory requirement 
♦ fast decompression speed 
♦ fast compression speed 

 

We want lossless compression in order to recreate the original 
trace exactly, which is a requirement for many experiments.  A 
single-pass algorithm ensures that the uncompressed trace never 
has to exist as a whole because the trace can be compressed while 
it is generated and stored directly in the compressed format.  Simi-
larly, a single-pass decompression scheme can directly drive 
trace-consuming tools such as simulators, obviating the need to 
first decompress the entire trace.  A good compression rate is 
obviously desirable to save as much disk space as possible and to 
keep transfer times and costs small when sending traces over a 
network.  To be useful, a new compression algorithm has to ex-
ceed the compression rate of preexisting algorithms such as lz77 
[39], lzw [37], bzip2 [1, 11], and sequitur [21, 24, 25, 26].  We 
opted for an algorithm with a fixed memory footprint that is inde-
pendent of the trace content and length so that all computers with 
a reasonable amount of memory can compress and decompress 
vpc3 traces.  (Sequitur’s memory requirement, on the other hand, 
depends on the data to be compressed, which causes problems 
when compressing extended traces.)  Fast decompression is a 
necessity for any trace-compression utility to become widespread.  
Finally, fast compression is also desirable, particularly in real-
time and academic environments. 

Vpc3 runs in a single pass in linear time over the data.  Its 
compression rate and speed are very good, outperforming gzip and 
bzip2 (both with the “--best” option) as well as sequitur.  For ex-
ample, our vpc3 algorithm compresses a 2.28-gigabyte SPEC-
cpu2000 gcc trace of store-instruction PCs and effective addresses 
by a factor of 67.3 in 3.7 minutes on our reference machine.  De-
compression takes 1.8 minutes.  Sequitur compresses the same 
trace by a factor of 42.2 in 31.2 minutes and decompresses it in 
1.6 minutes (slightly faster than vpc3).  Bzip2 achieves a compres-
sion rate of 22.6 and takes 57.3 minutes to compress the trace and 
4.3 minutes to decompress it.  Section 5 presents more results. 

The C source code of vpc3 is available on-line at http://www. 
csl.cornell.edu/~burtscher/research/tracecompression/.  A sample 
test trace and a brief description on how to use and modify the 
code are also included.  The code has been successfully tested on 
32- and 64-bit UNIX/Linux systems using cc and gcc as well as 
on Windows under cygwin [12]. 

The remainder of this paper is organized as follows.  Section 2 
summarizes related work and introduces the value predictors we 
use.  Section 3 describes the vpc3 algorithm in detail.  Section 4 
explains the evaluation methods.  Section 5 presents the results.  
Section 6 points out directions for future work and Section 7 con-
cludes the paper. 

 
2. RELATED WORK 
Most early trace compression techniques are lossy since they em-
ploy filtering or sampling methods.  The lossless approaches con-
centrate mostly on address traces.  Larus proposed Abstract Exe-
cution [20], where a small amount of runtime data drives the re-
execution of the program slices that generate the program’s ad-

dresses.  Pleszkun designed a two-pass trace compression algo-
rithm that encodes the dynamic basic block successors using a 
dense representation [27].  Other lossless trace-compression algo-
rithms include Mache [30], PDATS [16], PDI [17], and LD&R 
[6].  Mache, PDATS, and PDI work by exploiting spatiality (ad-
dress differences) and sequentiality (repeat counts) of the trace.  
The three algorithms include a postcompression phase with an 
LZ77 [39] or LZW [37] algorithm to boost the compression rate.  
LD&R (Loop-Detection and Reduction) detects loops in address 
traces and extracts the references that are constant or change by a 
constant stride between loop iterations before encoding the re-
mainder of the references.  While our approach shares some of the 
same ideas (it also exploits sequentiality and spatiality and em-
ploys a second compression stage), the above-mentioned algo-
rithms do not reach our algorithm’s compression rate because 
vpc3 exploits a much wider range of patterns and uses the first 
stage exclusively to enhance the performance of the second-stage 
compressor. 

 
2.1 Compression Algorithms 
We now describe the compression schemes with which we com-
pare our approach in Section 5.  The first two are general-purpose 
algorithms that can be used to compress any kind of file.  The last 
one is a special-purpose algorithm tailored to our trace format. 

Gzip: Gzip is a general-purpose compression utility found on 
most UNIX systems [13].  It operates at byte granularity and im-
plements a variant of the LZ77 algorithm [39].  It looks for dupli-
cated sequences of bytes (strings) within a 32kB sliding window.  
The length of the string is limited to 256 bytes, which corresponds 
to the lookahead-buffer size.  Gzip uses two Huffman trees, one to 
compress the distances in the sliding window and another to com-
press the lengths of the strings as well as the individual bytes that 
were not part of any matched sequence.  The algorithm finds du-
plicated strings using a chained hash table where each entry re-
cords three consecutive bytes.  In case of a collision, the hash 
chain is searched beginning with the most recently inserted string.  
A command-line argument determines the maximum length of the 
hash chains and whether lazy evaluation is to be used (we use the 
“--best” option).  With lazy evaluation, the algorithm does not 
immediately utilize the matched sequence for the byte currently 
being processed but first compares it to the matched sequence of 
the next input byte before selecting the longer of the two matches.  
According to ps, gzip requires approximately 2.3MB of memory 
when compressing our traces. 

Bzip2: Bzip2 [11] is quickly gaining popularity in the UNIX 
world.  It is a general-purpose compressor that operates at byte 
granularity.  It implements a variant of the block-sorting algorithm 
described by Burrows and Wheeler [1].  The algorithm applies a 
reversible transformation to a block of inputs, uses sorting to 
group bytes with similar contexts together, and then compresses 
them with a Huffman coder.  The block size is adjustable.  We use 
the “--best” option.  Bzip2 generally compresses better than gzip 
but is slower.  It requires about 10MB of memory to compress our 
traces. 

Sequitur: Sequitur is one of the best trace compression algo-
rithms in the current literature.  It has the unique feature that in-
teresting information about the trace can be derived from the 
compressed format without the need for decompression.  Sequitur 
converts a trace into a context-free grammar and thereby identifies 
hierarchical structures [24, 25, 26].  The algorithm applies two 
constraints while constructing the grammar: each digram (pair of 
consecutive symbols) in the grammar must be unique and every 



 

 

rule must be used more than once.  The biggest drawback of se-
quitur is its memory usage, which is linear in the size of the 
grammar. 

The sequitur algorithm we use is a modified version of Nevill-
Manning and Witten’s implementation [10], which we changed as 
follows.  We manually converted the C++ code into C, removed 
the access functions (i.e., we inlined them), increased the symbol 
table size to 33,554,393 entries, and added code to decompress the 
grammars.  To accommodate 64-bit trace entries, we included a 
function that converts each trace entry into a unique number (in 
expected constant time).  Moreover, we employed a split-stream 
approach, that is, we construct two separate grammars, one for the 
PC entries and one for the extended data entries in our traces.  To 
limit the memory usage, we start new grammars when eight mil-
lion unique symbols have been encountered or 384 megabytes of 
storage have been allocated for rule and symbol descriptors.  We 
found these cutoff points to work well on our traces.  According 
to ps, our implementation of sequitur never exceeds an overall 
memory usage of 951MB, which is crucial for good performance 
on a system with 1GB of main memory.  To prevent sequitur from 
becoming very slow due to hash-table inefficiencies, we also start 
a new grammar whenever the last 65,536 searches required an 
average of more than thirty trials before an entry was found.  Fi-
nally, our version of sequitur includes a bzip2 postcompression 
stage to improve the compression rate.  Because of the postcom-
pression and the slowdown-prevention mechanisms, the sequitur 
algorithm we use in this paper is both faster and compresses better 
than the version we used previously [2]. 

 
2.2 Value Predictors 
Our vpc3 algorithm employs the following predictors, which have 
been experimentally determined to result in good performance on 
the gcc load-value trace with bzip2 as the second-stage compres-
sor.  See also Section 4.4. 

Last-four-value predictor: The first type of predictor we use 
is the last-four-value predictor (L4V) [3, 22, 36].  It stores the four 
most recently seen values in a first-in first-out manner.  All four 
values are provided when a prediction is requested, i.e., the pre-
dictor can be thought of as comprising four components that make 
four independent predictions.  The L4V can accurately predict 
sequences of repeating and alternating values as well as repeating 
sequences of no more than four arbitrary values.  Since PCs infre-
quently exhibit such behavior, we only use the last-four-value 
predictor for the extended data. 

Finite-context-method predictor: The finite-context-method 
predictor (FCM) [31, 32] computes a hash out of the n most re-
cently encountered values.  n is referred to as the order of the 
predictor.  Whenever a new value is seen, the predictor puts it into 
a hash table using the current hash as an index.  To predict the 
next value, a hash-table lookup is performed in the hope that the 
next value will be equal to the value that followed last time the 
same sequence of n previous values (i.e., the same hash) was en-
countered [28, 29, 31].  Thus, the FCM can memorize long arbi-
trary sequences of values and accurately predict them when they 
repeat.  This trait makes FCMs ideal for predicting PCs.  We use 
two FCM predictors with orders one and three (called FCM1 and 
FCM3 henceforth) for predicting PCs.  Both FCMs retain and 
predict the most recent (a) and the second most recent (b) value 
that map to each line in the hash table.  Thus, the FCM1a, 
FCM1b, FCM3a, and FCM3b predictors provide a total of four 
predictions.  For the extended data, we use an FCM1a and an 
FCM1b predictor, which provide two predictions. 

Differential-finite-context-method predictor: The differen-
tial-finite-context-method predictor (DFCM) [9] works just like 
the FCM with the exception that it predicts and is updated with 
differences (strides) between consecutive values rather than abso-
lute values.  To form the final prediction, the predicted stride has 
to be added to the most recently seen value. 

Again, we use different orders of DFCMs to capture a broader 
variety of patterns.  We use a DFCM1a, DFCM1b, DFCM3a, and 
DFCM3b for predicting the extended data.  The “a” and “b” again 
refer to the two most recent values in each line of the hash table.  
DFCMs are often superior to FCMs because they warm up faster, 
can predict never before seen values, and make better use of the 
hash table [9].  Unfortunately, these benefits rarely weigh in with 
PC sequences, which is why we do not use any DFCM predictors 
to predict PCs. 

 
3. ALGORITHM 
3.1 Trace Format 
Our traces consist of pairs of numbers.  Each pair comprises a PC 
and an extended data (ED) field.  The PC field is 32 bits wide and 
the extended data field is 64 bits wide.  Thus, our traces have the 
following format, where the subscripts indicate bit widths. 

PC032, ED064, PC132, ED164, PC232, ED264, … 
This trivial format was deliberately chosen to simplify the follow-
ing presentation of our algorithm.  We chose 64 bits for the ED 
fields because this is the native word size of the Alpha system on 
which we performed our measurements.  32 bits suffice to repre-
sent PCs, especially since we do not need to store the two least 
significant bits, which are always zero because Alphas only sup-
port aligned instructions. 

 
3.2 History 
Our first attempt at a value-predictor-based compression algo-
rithm compresses only the extended data and works as follows.  
The PC of the current PC/ED pair is fed to a set of value predic-
tors that produces n (not necessarily distinct) predictions.  Each 
prediction is compared to the ED from the trace.  If a match is 
found, the corresponding predictor identification code is written to 
the compressed file using a fixed m-bit encoding.  If no predictor 
is correct, a special m-bit code is written followed by the unpre-
dictable 64-bit extended-data value.  Then the predictors are up-
dated.  The algorithm repeats for the remaining PC/ED pairs in the 
trace.  Decompression is achieved by running the compression 
steps in reverse. 

Unfortunately, this algorithm does not work well because the 
PCs are not compressed and because m is too large.  Since we use 
27 predictors plus the special code, five bits are needed to repre-
sent a predictor identification code (i.e., m=5).  Furthermore, un-
predictable entries are not compressed.  Overall, the algorithm 
cannot exceed a compression rate of 2.6 because even assuming 
that every ED entry is predictable, a 96-bit PC/ED pair (32-bit PC 
plus 64-bit extended data) is merely compressed down to 37 bits 
(32-bit PC plus five-bit predictor code). 

Our vpc1 algorithm [2] corrects these shortcomings.  It com-
presses the PCs like the ED using a separate set of ten predictors.  
Moreover, it employs a dynamic Huffman encoder [19, 35] to 
minimize the number of bits required to express the predictor 
identification codes.  If more than one predictor is correct, we 
select the one that has the shortest Huffman code associated with 
it, i.e., the one with the highest usage frequency.  Finally, vpc1 
compresses unpredictable values in the following manner.  In case 



 

 

of PCs, only log2(range) bits are written, where the provided 
range has to be greater or equal to the largest PC in the trace.  In 
case of extended data, the special predictor code is followed by 
the identification code of the predictor whose prediction is closest 
to the actual value in terms of absolute difference.  Vpc1 then 
emits the difference between the predicted value and the actual 
value in encoded sign-magnitude format to save bits. 

We added several enhancements to vpc1 to boost the compres-
sion rate.  First, we included saturating up/down counters in the 
hash table of the FCMs to provide an update hysteresis.  Second, 
we retain only distinct values in all multi-value predictors to 
maximize the number of different predictions and therefore the 
chances of at least one of them being correct.  Third, we keep the 
values in all multi-value predictors in least recently used order to 
skew the usage frequency of the predictor components.  Skewing 
the usage frequencies increases the compression rate because it 
allows the dynamic Huffman encoder to assign shorter identifica-
tion codes to the frequently used components and to use them 
more often.  Fourth, we initialize the dynamic Huffman encoder 
with biased, nonzero frequencies for all predictors.  This allows 
the more sophisticated predictors, which perform poorly in the 
beginning because they take longer to warm up, to stay ahead of 
the simpler predictors.  Thus, biasing the frequencies ensures that 
the most powerful predictors are used whenever they are correct 
and the remaining predictors are only utilized occasionally, result-
ing in shorter Huffman codes and better compression rates. 

Vpc1 outperforms gzip and sequitur on hard-to-compress ex-
tended-data traces but is not competitive on easily compressible 
traces [2].  The reason for this deficiency is that vpc1 cannot com-
press traces by more than a factor of 48.  This is because at least 
one bit is needed to encode a PC and one bit to encode an ex-
tended-data entry.  Since an uncompressed PC/ED pair requires 
32+64=96 bits, the maximum compression rate is 96/2=48.  Inter-
estingly, vpc1 almost reaches this theoretical maximum in several 
cases [2], showing that the dynamic Huffman encoder works well 
and almost always requires only one bit to encode a predictor 
identification number.  This implies that the same PC and ED 
predictors are used most of the time because only one PC and one 
ED predictor can have a one-bit identification code at a time.  
Since PC and ED predictor codes alternate in the compressed 
traces, highly-compressible vpc1 traces contain long bit strings of 
all zeros, all ones, or alternating zeros and ones, depending on the 
two predictors’ identification codes.  This, of course, means that 
the compressed trace is itself highly compressible. 

To exploit this fact, we created vpc2, which is vpc1 with a gzip 
post-compression stage.  Vpc2 works very well and improves 
upon vpc1 in all studied cases [2].  More importantly, vpc2’s 
geometric-mean compression rate is almost twice that of sequitur 
and more than twice that of other schemes we tested (the arithme-
tic mean is even higher).  On the downside, vpc2 is over 3.5 times 
slower at decompressing traces, which may render it uninteresting 
for potential users. 

 
3.3 The VPC3 Algorithm 
Based on our experiences with vpc1 and vpc2, we created a brand 
new algorithm called vpc3 that is not only much faster but also 
compresses traces better.  Vpc3 is still based on value predictors, 
but the innovation is that it does not compress the traces per se.  
Instead, the purpose of the value predictors is to expose and en-
hance the patterns in the trace to make the second (compression) 
stage as effective as possible. 

To make vpc3 faster than vpc2, we decided to remove the pre-
dictors that did not provide many useful predictions.  Thus, we 
reduced the total number of predictors from 37 to 14.  Moreover, 
we abolished the saturating up/down counters and eliminated the 
frequency bias and the dynamic Huffman coder, assuming that the 
compressor in the second stage could do a better job at compress-
ing the predictor identification codes.  To further speed up the 
algorithm, we reverted back to updating the predictors with all 
values, not just distinct ones.  Also, we no longer attempt to com-
press the unpredictable values in the first stage, which has the 
pleasant side effect of eliminating the need for the PC range in-
formation that had to be provided to vpc2.  Finally, we converted 
from bit to byte granularity, which simplified and sped up the 
code substantially because no more bit shifting is necessary. 

Note that we investigated many more enhancements to acceler-
ate vpc3 but ended up implementing only the ones listed above 
because they not only make vpc3 faster but also boost the overall 
compression rate.  For instance, removing infrequently used pre-
dictors decreases the number of distinct predictor codes and thus 
increases the regularity of the emitted codes, resulting in a better 
compression rate despite the concomitant increase in the number 
of emitted unpredictable values.  Similarly, removing the saturat-
ing counters and not updating with distinct values only slightly 
decreases the prediction accuracy but greatly increases the uni-
formity of the resulting patterns.  Finally, emitting values at byte 
granularity and thus possibly including unnecessary bits increases 
the amount of data transferred from the first stage to the second 
stage but at the same time exposes more patterns and makes them 
easier to detect for the second stage, which also operates at byte 
granularity. 

The final vpc3 algorithm converts a trace into four data streams 
and then compresses the four streams individually using bzip2 
(except where noted otherwise).  The four streams are generated 
as follows.  The PC of the current trace entry is read and com-
pared to the four PC predictions (Sections 2.2 and 4.4 describe the 
predictors).  If none of the predictions are correct, a “4” (one byte) 
is written to the first stream and the unpredictable four-byte PC is 
written to the second stream.  If at least one of the PC predictions 
is correct, a one-byte predictor identification number (“0”, “1”, 
“2”, or “3”) is written to the first stream and nothing is written to 
the second stream.  If more than one predictor is correct, vpc3 
picks the predictor with the highest use count.  The predictors are 
prioritized to break ties.  The ED of the current trace entry is han-
dled analogously.  It is read and compared to the ten ED predic-
tions (see Sections 2.2 and 4.4).  A one-byte predictor identifica-
tion number (“0”, “1”, …, “9”) is written to the third stream if at 
least one of the ED predictions is correct.  If none are correct, a 
“10” is written to the third stream and the unpredictable eight-byte 
ED is written to the fourth stream.  Then all predictors are updated 
with the true PC or ED and the algorithm repeats until all trace 
entries have been consumed.  Figure 1 illustrates vpc3’s operation.  
The dark arrows in the figure mark the prediction paths while the 
light arrows mark the update paths.  To decompress a trace, vpc3 
essentially runs the compression steps in reverse. 

The following is a summary of some ideas we experimented 
with that turned out to be disadvantageous.  They are not included 
in vpc3.  (1) The order in which the predictors are accessed and 
prioritized appears to have no noticeable effect on the perform-
ance.  (2) Interestingly, biasing the initial use counts of the predic-
tors seems to always hurt the compression rate.  (3) Writing dif-
ferences rather than absolute values to the four streams decreases 
the compression rate.  (4) Larger predictor tables than the ones 



 

 

listed in Section 4.4 do not significantly improve the compression 
rate (on our traces) and have a negative effect on the memory 
footprint.  (5) Dynamically renaming the predictors such that the 
predictor with the highest use count always has an identification 
code of “0”, the second highest a code of “1”, etc., lowers the 
compression rate.  (6) Similarly, decaying the use counts with age, 
that is, giving more weight to recent behavior, decreases the com-
pression rate. 
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Figure 1: The vpc3 compression algorithm. 

 
4. EVALUATION METHODS 
4.1 System 
We performed all measurements for this paper on a dedicated 64-
bit CS20 system with two 833MHz 21264B Alpha CPUs [18].  
Only one of the processors was used.  Each CPU has separate, 
two-way set-associative, 64kB L1 caches and an off-chip, unified, 
direct-mapped 4MB L2 cache.  The system is equipped with 1GB 
of main memory.  The Ultra2/LDV SCSI hard drive has a capacity 
of 73GB and spins at 10,000rpm.  For maximum disk perform-
ance, we used the advanced file system (AdvFS).  The operating 
system is Tru64 UNIX V5.1A. 

 
4.2 Traces 
We used all integer programs and all but four of the floating-point 
programs from the SPECcpu2000 benchmark suite [15] to gener-
ate the traces for this study.  We had to exclude the four Fortran 
90 programs due to the lack of a compiler.  The C programs were 
compiled with Compaq’s C compiler V6.3-025 using “-O3 -arch 
host -non_shared” plus feedback optimization.  The C++ and For-
tran 77 programs were compiled with g++/g77 V3.3 using “-O3 
-static”.  We used statically linked binaries to include instructions 
from library calls in the traces.  Only system-call code is not cap-
tured.  To generate the traces, we used the binary instrumentation 
tool-kit ATOM [7, 33] and ran the programs to completion with 
the SPEC-provided test inputs.  Two programs, eon and vpr, re-
quire multiple runs and perlbmk executes itself recursively.  For 
each of these programs, we concatenated the subtraces into a sin-
gle trace. 

We generated three types of real-world traces from the 22 pro-
grams to evaluate the compression algorithms.  The first type of 
trace captures the PC and the effective address of each executed 
store instruction.  The second type of trace contains the PC and 
the effective address of all loads and stores that miss in a simu-
lated 16kB, direct-mapped, 64-byte line, write-allocate data cache.  
The third type of trace records the PC and the loaded value of 
every executed load instruction (that is not a prefetch, a NOP, or a 
load immediate). 

We selected the store-effective-address traces because, histori-
cally, many trace-compression approaches have focused on ad-
dress traces.  We picked the cache-miss-address traces because the 
simulated cache acts as a filter and only lets some of the memory 
accesses through, which we expect to distort the access patterns, 
making the traces harder to compress.  Finally, we chose the load-
value traces because load values span large ranges and include 
floating-point numbers, addresses, and integer numbers, which 
may make them difficult to compress.  After all, a good new com-
pression scheme is particularly important for hard-to-compress 
traces. 

Table 1 shows the program name, the programming language 
(lang), the type (integer or floating point), and the uncompressed 
size (in megabytes) of the three traces for each SPECcpu2000 
program as well as which traces we excluded.  We excluded all 
traces with more than one billion entries, i.e., the traces that are 
larger than twelve gigabytes, because they would have slowed 
down our experiments needlessly.  The corresponding entries in 
Table 1 are crossed out. 

 
Table 1: Sizes of the studied traces. 

store cache miss load
program lang type addresses addresses values
eon C++ 2,086.1 MB 94.6 MB 2,164.6 MB 
bzip2 C 16,769.9 MB 726.1 MB 23,947.4 MB 
crafty C 3,368.0 MB 1,967.8 MB 14,227.6 MB 
gap C 1,269.2 MB 255.5 MB 3,141.6 MB 
gcc C 2,280.9 MB 366.6 MB 4,523.2 MB 
gzip C 2,836.0 MB 731.3 MB 8,070.1 MB 
mcf C 400.4 MB 150.1 MB 455.7 MB 
parser C 4,224.2 MB 821.2 MB 9,805.9 MB 
perlbmk C 570.3 MB 86.1 MB 1,089.4 MB 
twolf C 239.8 MB 73.4 MB 827.6 MB 
vortex C 16,770.6 MB 2,185.2 MB 26,571.4 MB 
vpr C 1,984.9 MB 644.0 MB 7,167.0 MB 
ammp C 5,159.2 MB 3,442.0 MB 16,406.9 MB 
art C 1,781.8 MB 2,381.8 MB 11,249.9 MB 
equake C 1,229.8 MB 418.8 MB 4,323.0 MB 
mesa C 3,671.1 MB 266.8 MB 6,055.2 MB 
applu F77 522.7 MB 77.1 MB 1,002.7 MB 
apsi F77 8,058.2 MB 3,018.9 MB 15,911.5 MB 
mgrid F77 5,110.0 MB 6,377.0 MB 102,794.6 MB 
sixtrack F77 18,735.9 MB 2,224.5 MB 38,889.2 MB 
swim F77 452.0 MB 149.3 MB 1,985.5 MB 
wupwise F77 10,829.6 MB 889.9 MB 22,628.8 MB 
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4.3 Compressors 
To make the running-time comparisons as fair as possible, we 
compiled all compressors with the same compiler (Compaq’s C 
compiler V6.3-025) and the same optimization flags (-O3 -arch 
host).  Doing so made bzip2 4% faster relative to using the default 
compiler (gcc) and optimization flags, and gzip ended up 8.5% 



 

 

faster than the preinstalled version.  We use bzip2 version 1.0.2 
and gzip version 1.3.3.  Both programs are exclusively used with 
the “--best” option. 

 
4.4 Predictor Configurations 
This section lists the parameters and table sizes of the predictors 
used by vpc3.  These configurations have been experimentally 
determined to yield a good compression rate and speed on the gcc 
load-value trace.  We found the following parameters to work 
well and use them throughout this paper. 

The four PC predictors are global predictors and therefore have 
no index.  The FCM3ab predictor requires three four-byte entries 
to store three hash values in the first level.  These entries are 
shared with the FCM1ab predictor.  The second-level of the 
FCM1ab (the hash table) has 131,072 lines, each of which holds 
two four-byte PCs (1MB).  The FCM3ab’s second-level table is 
four times larger (4MB).  Overall, five megabytes are allocated to 
the PC predictors. 

The predictors for the extended data use the PC modulo the ta-
ble size as an index, which allows them to store information on a 
per instruction basis.  To enable maximum sharing, all first-level 
tables have the same number of lines (65,536).  The last-four-
value predictor retains four eight-byte values per line (2MB).  The 
FCM1ab predictor stores one four-byte hash value per line in the 
first level (256kB) and two eight-byte values in each of the 
524,288 lines in its second-level table (8MB).  The DFCM1ab and 
DFCM3ab predictors share a first-level table, which stores three 
four-byte hash values per line (768kB).  The last value needed to 
compute the final prediction is obtained from the last-four-value 
predictor.  The second-level table of the DFCM1ab has 131,072 
lines, each holding two eight-byte values (2MB).  The 
DFCM3ab’s second-level table is four times as large (8MB).  The 
extended data predictors use a total of 21 megabytes of table 
space. 

Overall, 26 megabytes are allocated to the predictor tables in 
our compression algorithm.  Including the code, stack, etc., our 
compression utility requires 27MB of memory to run as reported 
by the UNIX command ps. 

 
5. RESULTS 
The following sections describe the results.  Section 5.1 discusses 
the compression rate, Section 5.2 studies the decompression 
speed, Section 5.3 investigates the compression speed, and Sec-
tion 5.4 takes a look at the value-predictor performance. 

 
5.1 Compression Rate 
Table 2 shows the compression rates of gzip, bzip2, sequitur (seq), 
vpc2, and vpc3 on the three sets of traces we generated (higher 
numbers are better).  For each type of trace, we highlighted the 
best compression rate in bold print.  Three stars mark excluded 
traces. 

On the store-effective-address traces, vpc3 exceeds the com-
pression rate of the other algorithms for the majority of the traces.  
It compresses art almost seven hundred times more than sequitur 
does and reaches a compression rate of over 36,000, the highest 
we observed.  Sequitur outperforms vpc3 on eon, crafty, twolf, and 
vpr, though never by more than a factor of three.  Vpc3’s geomet-
ric mean compression rate is over eight times that of sequitur, and 
the general-purpose algorithms gzip and bzip2 fare even worse.  
Vpc3 is about twice as effective on average as its predecessor 
vpc2.  The latter is superior to the former in two cases, notably on 

mgrid, which it compresses over six times more than any of the 
other schemes.  Evidently, this trace greatly benefits from a pre-
dictor in vpc2 that is not included in vpc3.  There is no case where 
gzip or bzip2 exceeds vpc3’s compression rate.  However, bzip2 
outperforms sequitur on seven store-effective-address traces.  
Note how much more compressible the floating-point traces are 
than the integer traces, especially with the two vpc algorithms. 

Looking at the cache-miss-address traces, we find that the 
compression rates are generally much lower, which is what we 
expected.  While there is still no case where gzip outperforms 
vpc3, there are now five instances (all integer program traces) 
where bzip2 yields a better compression rate than vpc3.  However, 
the difference between bzip2 and vpc3 is less than a factor of two 
in each case.  Surprisingly, bzip2 exceeds sequitur’s compression 
rate on almost half of the cache-miss-address traces.  Vpc3 is infe-
rior to sequitur on six traces, three of which are most compressi-
ble by sequitur.  In fact, sequitur compresses sixtrack almost six 
times better than any of the other algorithms.  Vpc3 underper-
forms vpc2 in three instances by less than 7% (including eon) and 
in two more instances by less than a factor of two.  Overall, vpc3 
exceeds sequitur, bzip2, and gzip’s compression rates on two 
thirds of the cache-miss-address traces and by a factor of 1.8 on 
average (geometric mean).  Again, the floating-point traces are 
more compressible by all schemes than the integer traces, al-
though the discrepancy is not as high as with the store-effective-
address traces. 

On the load-value traces, vpc3 outperforms all the other algo-
rithms we evaluated on every trace with the exception of twolf 
(where sequitur is 7% better) and swim (where vpc2 is 30% bet-
ter).  We surmise that vpc3 works so well on these traces because 
we used one of them, gcc, to tune our algorithm.  Maybe this indi-
cates that with finer tuning, vpc3 could perform even better on the 
other types of traces.  Vpc3’s geometric mean compression rate is 
1.7 times that of sequitur, the best non-vpc algorithm, on the load-
value traces.  One interesting point to note is that, with the excep-
tion of mesa (and to a much smaller degree art), the load-value 
floating-point traces are less compressible than their integer coun-
terparts. 
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Figure 2: Gmean compression rates relative to vpc3. 

 
Figure 2 depicts the geometric mean compression rates over the 
three types of traces relative to vpc3, whose compression rate is 
normalized to one hundred.  The figure includes results from two 
additional algorithms, vpc1 and vpc3(gzip), the latter of which 
uses gzip instead of bzip2 as the second-stage compressor. 



 

Table 2: Compression rates. 

gzip bzip2 seq vpc2 vpc3 gzip bzip2 seq vpc2 vpc3 gzip bzip2 seq vpc2 vpc3
eon 6.8 24.3 793.4 92.9 366.9 13.1 30.0 22.3 17.4 17.4 7.3 10.8 14.5 16.0 23.8
bzip2 *** *** *** *** *** 3.9 5.1 4.0 4.6 5.8 *** *** *** *** *** 
crafty 15.3 37.1 102.7 58.8 82.9 9.1 19.2 14.2 12.9 14.8 *** *** *** *** *** 
gap 9.2 17.8 15.5 70.9 76.3 7.1 10.6 6.5 8.2 11.0 11.1 21.7 26.9 35.3 51.0
gcc 10.9 22.6 42.2 53.1 67.3 5.4 7.2 6.3 5.2 9.0 8.3 15.7 22.6 24.6 28.9
gzip 11.3 20.5 19.6 60.8 64.0 5.4 7.3 7.9 7.0 8.4 8.8 13.8 12.1 12.9 19.6
mcf 6.4 22.7 14.2 74.1 131.1 5.1 9.8 12.5 12.0 17.1 6.8 13.7 18.4 13.7 20.3
parser 9.1 14.2 18.4 57.9 56.6 5.6 6.3 7.3 8.0 11.5 11.9 18.8 21.2 33.1 34.5
perlbmk 13.6 25.5 47.9 73.0 117.2 10.1 17.3 13.2 12.5 17.0 11.7 24.7 42.1 40.9 62.4
twolf 11.8 34.5 126.9 25.3 42.7 6.6 15.9 11.7 6.7 10.5 6.9 14.8 21.9 16.2 20.5
vortex *** *** *** *** *** 10.3 20.1 22.4 22.3 21.2 *** *** *** *** *** 
vpr 9.2 21.1 43.9 20.4 34.9 4.2 7.6 6.9 3.7 6.7 9.6 18.0 19.2 17.5 27.6
ammp 20.0 33.1 38.8 473.4 980.4 5.7 18.1 42.0 64.9 65.0 *** *** *** *** *** 
art 9.0 22.9 52.0 4017.8 36248.6 6.3 9.1 218.6 413.5 6088.7 21.4 30.7 55.2 58.9 85.9
equake 27.6 50.5 48.7 331.2 383.4 7.8 9.4 24.3 30.0 28.2 8.3 11.0 13.2 20.7 25.6
mesa 17.8 53.5 134.0 1540.6 4341.1 27.1 67.5 78.3 189.3 304.8 41.2 117.9 293.0 1996.4 2750.5
applu 9.9 14.0 500.8 856.5 1787.4 5.1 5.9 176.5 37.9 66.2 3.2 3.4 4.3 5.5 6.6
apsi 25.7 39.0 226.0 398.0 13123.5 6.4 9.9 285.8 163.4 789.3 *** *** *** *** *** 
mgrid 8.1 14.2 13.3 3407.0 557.8 6.0 7.8 6.9 208.3 108.5 *** *** *** *** *** 
sixtrack *** *** *** *** *** 7.9 11.4 175.0 26.4 29.8 *** *** *** *** *** 
swim 7.5 11.6 9.6 7544.2 18638.4 5.9 8.4 21.0 206.9 359.3 2.9 3.3 4.0 8.6 6.7
wupwise 44.8 118.8 101.0 779.1 5645.3 6.5 10.2 6.2 80.2 50.8 *** *** *** *** *** 
a mean 14.4 31.5 123.6 1049.2 4355.0 7.8 14.3 53.2 70.1 365.5 11.4 22.7 40.6 164.3 226.0
g mean 12.4 26.3 55.5 237.2 484.7 7.0 11.5 21.0 26.3 38.2 9.1 15.3 20.7 27.0 35.2
h mean 11.1 23.1 31.9 85.7 126.0 6.5 10.0 12.0 12.9 17.6 7.5 10.8 13.6 17.1 20.6

store effective addresses cache miss addresses load values

 
 

Table 3: Decompression time in minutes. 

gzip bzip2 seq vpc2 vpc3 gzip bzip2 seq vpc2 vpc3 gzip bzip2 seq vpc2 vpc3
eon 0.8 3.9 0.7 7.6 1.4 0.03 0.19 0.12 0.57 0.15 0.8 4.7 2.7 10.4 2.6
bzip2 *** *** *** *** *** 0.36 2.02 2.51 5.69 2.71 *** *** *** *** *** 
crafty 1.0 6.1 2.1 12.7 2.5 0.68 4.21 3.63 12.77 3.14 *** *** *** *** *** 
gap 0.4 2.7 2.1 4.8 1.0 0.10 0.59 0.65 1.67 0.47 1.0 6.0 3.1 14.1 3.1
gcc 0.7 4.3 1.6 9.0 1.8 0.16 0.91 0.96 2.77 0.79 1.6 8.9 5.1 23.1 5.2
gzip 0.9 5.9 3.1 9.7 2.2 0.31 1.85 1.57 4.61 1.68 2.8 17.8 12.4 40.2 10.8
mcf 0.2 0.9 1.3 1.4 0.3 0.07 0.33 0.32 0.92 0.24 0.2 0.9 0.6 2.7 0.6
parser 1.5 8.5 4.9 15.5 3.3 0.37 1.97 1.90 5.35 1.46 3.2 18.1 10.6 41.3 9.4
perlbmk 0.2 1.1 0.5 2.3 0.5 0.03 0.19 0.14 0.53 0.14 0.4 2.1 0.9 4.8 1.1
twolf 0.1 0.4 0.1 1.1 0.3 0.03 0.16 0.14 0.59 0.16 0.3 1.7 1.0 4.8 1.1
vortex *** *** *** *** *** 0.72 4.69 2.88 12.50 3.27 *** *** *** *** *** 
vpr 0.7 4.0 1.6 9.4 2.1 0.30 1.67 1.72 6.09 1.93 2.5 14.1 8.8 34.1 8.1
ammp 1.4 9.5 3.8 13.3 2.9 1.50 7.08 3.12 13.76 2.93 *** *** *** *** *** 
art 0.7 2.9 1.4 4.7 0.9 1.08 4.96 1.15 7.99 1.55 3.1 21.1 6.6 36.4 7.9
equake 0.3 2.3 0.7 3.7 0.7 0.15 0.98 0.41 1.78 0.45 1.5 9.8 5.5 17.1 4.4
mesa 1.1 7.1 1.6 10.6 1.9 0.07 0.41 0.15 0.69 0.13 1.5 10.7 2.2 19.5 3.5
applu 0.2 1.1 0.2 1.7 0.3 0.03 0.19 0.04 0.38 0.08 0.5 3.4 2.7 5.3 2.1
apsi 2.2 13.4 3.6 22.2 3.8 1.22 5.97 1.54 9.00 1.91 *** *** *** *** *** 
mgrid 2.3 12.3 14.5 15.5 3.1 2.90 16.04 16.02 24.69 5.85 *** *** *** *** *** 
sixtrack *** *** *** *** *** 0.81 5.18 1.25 13.05 2.93 *** *** *** *** *** 
swim 0.2 1.1 1.4 1.4 0.2 0.07 0.40 0.17 0.57 0.09 1.1 7.2 6.2 8.9 4.0
wupwise 2.8 18.6 6.5 29.0 6.0 0.39 2.23 2.89 3.52 0.84 *** *** *** *** *** 
a mean 0.93 5.59 2.72 9.23 1.86 0.52 2.83 1.97 5.89 1.50 1.46 9.03 4.89 18.76 4.56
g mean 0.60 3.61 1.56 6.20 1.25 0.23 1.30 0.80 3.00 0.76 1.06 6.42 3.44 13.53 3.39
h mean 0.36 2.13 0.77 3.80 0.76 0.10 0.59 0.28 1.43 0.33 0.69 4.00 2.18 9.27 2.32

store effective addresses cache miss addresses load values

 
 
* The stars mark excluded traces. 



 

 

Overall, vpc3 is clearly dominant and delivers the best com-
pression rates by a large margin.  Sequitur, the best non-vpc algo-
rithm we studied, reaches roughly half the compression rate of 
vpc3 on the cache-miss-address and the load-value traces but only 
reaches 11.5% of vpc3’s compression rate on the store-effective-
address traces.  Because we tuned vpc3 to perform well in combi-
nation with bzip2 and because of bzip2’s general advantage over 
gzip (there is no trace on which gzip outperforms bzip2), we ex-
pect vpc3(gzip) to be inferior to vpc3.  Nevertheless, vpc3(gzip) 
has its merits, as we will see in Section 5.2.  Also, it is interesting 
to compare vpc3(gzip) with vpc2 because both algorithms use gzip 
in their second stage.  In fact, vpc2 compresses all three types of 
address traces better than vpc3(gzip).  In a sense, this loss in com-
pression rate relative to vpc2 is the price we have to pay for the 
much faster speed (see next section). 

 
5.2 Decompression Speed 
Table 3 shows the time it takes gzip, bzip2, sequitur (seq), vpc2, 
and vpc3 to decompress the traces and write the resulting (uncom-
pressed) traces back to disk (lower numbers are better).  The times 
listed are in minutes and represent the sum of the user and the 
system time as reported by the UNIX shell command time. 

Note that the results listed in this and the next section include 
the effects of caching disk data.  Hence, part of an input file may 
be sourced from the disk cache, and it is likely that not all of the 
generated data will actually have been written back to the disk at 
the time the algorithms terminate.  However, this effect should be 
limited due to the large sizes of our traces. 
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Figure 3: Geometric mean decompression time. 

 
Vpc3 is four to five times faster than vpc2 on average and over 
twice as fast on every trace.  Moreover, it is about 1.7 to three 
times as fast as bzip2.  This is somewhat surprising since vpc3 
uses bzip2 in its second stage.  Obviously, our idea of using value 
predictors to bring out and enhance the patterns in the traces not 
only drastically improves the compressibility but also makes it 
possible to decompress the traces faster.  Bzip2 exceeds vpc3’s 
decompression speed somewhat on three of our 55 traces (on the 
bzip2, twolf and vpr cache-miss-address traces).  Sequitur’s de-
compression speed is largely comparable to that of vpc3 but is 
slightly worse on the store-effective-address traces.  Gzip is gen-
erally two to three times as fast at decompression as vpc3 but does 
not deliver competitive compression rates. 

If decompression speed is more important than an excellent 
compression rate, vpc3(gzip) should be considered.  As Figure 3 
shows, it is significantly faster than vpc3 (almost twice as fast on 
the load-value and the cache-miss-address traces), but still com-
presses the traces substantially more than gzip, bzip2, and sequitur 
(see Figure 2). 

Note that vpc3 regenerates the store-effective-address traces at 
an average speed of 25 MB/s (megabytes per second), the cache-
miss-address traces at 14 MB/s, and the load-value traces at 15 
MB/s.  These rates exceed the throughput of a 100 megabit per 
second network connection and the transfer rates of many hard 
disks.  Moreover, note that these rates are probably limited by the 
speed at which the decompressed trace can be written back to the 
disk.  This suggests that it may well be faster to read and decom-
press a compressed trace than to read the corresponding uncom-
pressed trace when driving simulators or other trace-consumption 
tools. 

 

5.3 Compression Speed 
Figure 4 shows the geometric mean time it takes the various algo-
rithms to compress the traces and write the compressed traces 
back to disk (lower numbers are better). 
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Figure 4: Geometric mean compression time. 

 
Vpc3 is the fastest compressor for all three types of traces.  This is 
surprising because it usually takes longer to achieve higher com-
pression rates.  While fast compression is generally not as critical 
as a good compression rate and decompression speed, it is cer-
tainly an added bonus.  Once again, our value-prediction-based 
technique appears to be the right approach.  On average, vpc3 is 
3.5 to ten times as fast at compressing the traces as bzip2 and 3.3 
to 6.6 times as fast as sequitur.  It compresses traces at an unsur-
passed rate of five to 7.5 megabytes per second. 

 

5.4 Predictor Usage 
Table 4 lists the usage distribution of the various predictor com-
ponents in vpc3.  The top portion of the table shows results for the 
PC predictors and the bottom portion for the ED predictors.  The 
numbers are arithmetic means over the traces in each set. 

In all cases, the PC trace entries are more predictable than the 
extended data, despite the smaller number of predictors.  This 
indirectly shows that extended traces are harder to compress than 
PC-only traces.  The PC predictability is very high for the store-
effective-address and the load-value traces, where we trace every 



 

 

executed store or load instruction, respectively.  The PC predic-
tions for the cache-miss-address traces, on the other hand, are 
more spread across the four predictors and a six times larger frac-
tion of the PCs is not predicted in these traces than with the other 
two types of traces.  This verifies our assumption that the simu-
lated cache filters out many of the patterns in the store-effective-
address traces. 

The cache-miss-address traces are also the least predictable on 
the extended-data side.  However, there the load-value traces 
cause the widest spread of predictor usage.  This is probably due 
to the large variety of data that load instructions fetch, which in-
cludes addresses as well as floating-point and integer values. 

Overall, vpc3 correctly predicts between about 82% and 96% 
of the ED trace entries and all predictors contribute predictions. 

 
Table 4: Predictor usage (in percent). 

strore cache load
predictor addrs addrs values
FCM1a 93.0 63.0 94.2
FCM1b 3.1 6.0 3.0
FCM3a 0.3 9.9 0.1
FCM3b 1.0 5.6 0.5
not predicted 2.7 15.5 2.3
DFCM1a 88.3 60.0 20.1
DFCM1b 0.5 1.0 0.2
DFCM3a 1.9 2.4 4.2
DFCM3b 0.3 2.6 2.1
L4Va 0.5 0.3 40.2
L4Vb 0.2 2.6 1.7
L4Vc 0.3 1.2 1.0
L4Vd 0.4 0.6 1.2
FCM1a 3.2 8.1 9.9
FCM1b 0.7 3.2 2.7
not predicted 3.9 18.1 16.6
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6. FUTURE WORK 
In the future, we intend to study traces from other programs, 
traces containing different information, and traces from non-
Alpha-based platforms to further evaluate and improve our com-
pression algorithm.  We also plan to investigate additional 
compression schemes, both generic ones and ones that we adapt to 
take advantage of our trace format.  For example, lzop [14] is of 
interest because of its high compression and decompression 
speed.  Moreover, we would like to investigate whether our ap-
proach is useful in contexts outside of instruction traces. 

Zhang and Gupta improved the compression rate of sequitur by 
splitting traces up by functions, i.e., they generate a subtrace for 
each function in the program (called a path trace) and then com-
press the subtraces individually [38].  We believe the same ap-
proach can be used to further improve the compression rate of 
vpc3. 

Another interesting idea, whose applicability to our algorithm 
we would like to investigate, is Chilimbi’s hot data streams [5].  
He uses sequitur to produce a series of traces with increasing 
compactness but lower precision.  We will study the usefulness of 
our traces when certain trace entries, e.g., all the last-value pre-
dictable ones, are omitted. 

Another possible extension of this work is to study the useful-
ness of special instructions to support compression and decom-
pression in hardware, which could make our algorithm even 
faster. 

Finally, we believe a hybrid scheme that uses one algorithm to 
compress the PCs and a different algorithm to compress the ex-
tended data would likely result in the best overall compression 
rates.  In particular, it seems like sequitur should be used to com-
press the PCs and our algorithm for the extended data.  We will 
investigate such an approach. 

 
7. CONCLUSIONS 
This paper presents a novel approach to compressing program 
traces, in particular traces that contain extended data such as 
register values or effective addresses.  Our approach, called vpc3, 
uses a set of value predictors to convert the trace into four data 
streams that are much more compressible than the original trace.  
Moreover, the streams can be compressed and decompressed 
faster.  For example, our scheme compresses SPECcpu2000 traces 
of store-instruction PCs and effective addresses up to 1600 times 
(8.7 times geometric mean) as much as gzip, bzip2, and sequitur, 
even though we modified sequitur to take advantage of our trace 
format.  Additionally, our algorithm compresses the traces faster 
than the other three algorithms and decompresses them faster than 
bzip2 and sequitur.  Based on these results, we feel our approach 
is ideal for trace databases as well as any research and teaching 
environment where traces are used. 

In addition to the above-mentioned qualities, vpc3 features a 
single-pass linear-time algorithm and a fixed memory require-
ment.  It is modular and extensible, making it easy to add and 
remove predictor components, allowing users to adapt the scheme 
to exploit additional patterns.  The source code of our compres-
sion algorithm and a brief tutorial are available at http://www. 
csl.cornell.edu/~burtscher/research/tracecompression/. 
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