
 

 

 

ABSTRACT 

Due to the increasing generation of massive amounts of 

data by space-based instruments, it has become a chal-

lenge to transmit even a fraction of a typical spacecraft 

data volume back to Earth in a feasible amount of time. 

Thus, improvements in the ability to losslessly compress 
data on-board before transmission represent an important 

method of increasing overall data return rates. We de-

scribe a custom methodology for compressing spacecraft 

data on-board that provides significant improvements in 

both compression ratio and speed. We have used data re-

turned by the five-probe THEMIS/ARTEMIS constella-

tion to quantify the compression ratio and compression 

speed improvements over a variety of data types (e.g., 

time-series and particle data). Our approach results in a 

38% improvement in compression ratio and up to a three-

fold improvement in compression throughput and energy 
efficiency. We argue that such methods should be 

adopted by future space missions to maximize the data 

return to Earth, thus enabling greater insight and scien-

tific discovery. 

1. INTRODUCTION 

Scientific endeavors in space are important in terms of 

exploring and answering questions such as how the uni-

verse came to be and where life began. They also play 

key roles in protecting people by tracking storms, tsuna-

mis, volcanic eruptions, etc. All of them depend on high-
quality data, and high-quality data require advanced in-

struments to collect, process, and return those data. 

Higher resolution instruments are constantly being 

developed for use in space. While such instruments may 

yield higher quality data than previous generations, the 

amount of data to be returned to Earth for processing in-

creases significantly as the resolution improves. The gen-

eral solution to this problem is to compress the data, but 

the challenges to do so well and quickly in the power, 

memory, and compute-capability constrained environ-

ment of spacecraft are significant. Any data that cannot 
be transmitted are typically lost. This is already a major 

problem and will likely get worse in the future. 

To improve this situation, we propose to automati-

cally synthesize customized compression algorithms that 

are tailored to a specific type of data. The resulting loss-

less algorithms not only yield high compression ratios but 

also high throughputs. This approach increases the data 

return rate while simultaneously preserving the resolu-

tion of data when sending them back to Earth. 

At a high level, most data compression algorithms 

comprise two main steps, a data model and a coder. 

Roughly speaking, the goal of the model is to accurately 
predict the data. The residual (i.e., the difference) be-

tween each actual value and its predicted value will be 

close to zero if the model is accurate for the given data. 

This residual sequence of values is then compressed with 

the coder by mapping the residuals in such a way that 

frequently encountered values or patterns produce shorter 

output than infrequently encountered data. The reverse 

operations are performed to decompress the data. For in-

stance, an inverse model takes the residual sequence as 

input and regenerates the original values as output. 

Many existing and proposed spacecraft contain mul-

tiple instruments possibly operating in several modes, 

posing significant challenges when it comes to finding a 

compression algorithm that works well on all the various 

data packets generated by these instruments. Further-

more, transmitting data is relatively slow and consumes 

a significant amount of energy, especially for interplane-

tary missions, so we desire compression algorithms that 

not only minimize the number of bits that need to be 

transmitted but also process data rapidly. The compres-

sion needs to be fast to avoid the time and energy cost of 

sending uncompressed data, or losing data due to being 
unable to send them in the timeframe allocated for trans-

mission. This compression should be done losslessly to 

preserve the full integrity of the data. Since good data 

models are domain and instrument specific, custom de-

signing an efficient algorithm for each packet type is con-

sidered to be overly complex, expensive, and error prone. 

This has led to spacecraft being launched with just a 

few compression algorithms programmed into the hard-

ware or software that need to handle data from many dif-

ferent instruments and modes. However, these algorithms 
are still not tailored to each instrument and mode. This 

results in sub-optimal telemetry throughputs, which in 

turn increases the energy expenditure of transmitting data 

or results in data loss. Moreover, data tend to change over 

time, and sometimes spacecraft are repurposed at the end 
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of their main mission. Preprogrammed compression al-

gorithms are not able to adapt to such changes. What is 

more, current algorithms are not designed for maximum 

processing speed but typically focus more on achieving 

higher compression ratios. This leads to situations where 

not all data can be compressed in the time available be-

fore they need to be transmitted. 

Ultimately, the biggest problem with suboptimal te-

lemetry throughput is that it lowers the cost effectiveness 

of space probes. If a craft cannot return all the data it is 

designed to collect, some of the time and money put into 

building, testing, and launching the craft is wasted. 

With these issues in mind, we propose automatically 

synthesizing custom compression algorithms from a li-
brary of interoperable algorithmic components. These 

components are the result of a thorough analysis of pre-

viously proposed compression algorithms. In particular, 

we broke many prior algorithms down into their constit-

uent parts, rejected all parts that could not be imple-

mented in a simple and fast way, and generalized the re-

maining components as much as possible. We then im-

plemented the components using a common interface 

such that each component can be given a block of data as 

input, which it transforms into an output block of data. 

This makes it possible to chain the components, allowing 

for the generation of a large number of compression al-
gorithm candidates from a given set of components. We 

implemented this approach in a synthesis framework 

called SDcrush, which is capable of automatically deter-

mining the best chain of components (aka compression 

algorithm) for a given set of training data. For each algo-

rithmic component, SDcrush includes an inverse that per-

forms the opposite transformation, enabling it to also au-

tomatically generate the corresponding decompression 

algorithm. Figure 1 illustrates this approach. Section 2 

describes all available algorithmic components in detail. 

For synthesizing a custom algorithm, one possible ap-

proach is to use SDcrush during spacecraft or instrument 

design using training data. How varied the types of data 

are determines how many separate compression algo-

rithms are needed. For instance, if there are m different 

types of data packets, SDcrush can be used to generate m 

algorithms to maximally compress all the data. 

Alternatively, the spacecraft could be launched with a 

software library of compression components akin to 

SDcrush’s database. This way, a custom algorithm can be 

synthesized on the ground based on recent data. For ex-

ample, on Wednesday, the spacecraft gathers data and 

compresses them using an algorithm that had been up-

loaded on Tuesday and was synthesized based on data re-

ceived on Monday. On Thursday, the craft compresses 

the data using an algorithm that had been uploaded 

Wednesday based on the Tuesday data and so on. Figure 

2 illustrates this approach. This allows the craft to adapt 

to changes in the data. 

This paper makes the following main contributions: 

1) It proposes the chaining of compression algorithm 

components to synthesize novel lossless compression al-

gorithms that can significantly improve data reduction, 

compression throughput, and energy efficiency. 

2) It investigates three progressively more adaptive 

approaches for using data compression to improve telem-

etry throughput on spacecraft, each with its own ad-

vantages and drawbacks. 

3) It shows that when the proposed compression tech-
niques are used aboard spacecraft, a 38% increase in 

compression ratio and a three-fold increase in compres-

sion throughput and energy efficiency can be achieved. 

The remainder of this paper is organized as follows: 

Section 2 details the algorithmic components SDcrush 

uses, Section 3 explains our approach, Section 4 dis-
cusses related work, Section 5 describes our evaluation 

methodology, Section 6 presents and analyzes our exper-

imental results, and Section 7 summarizes our findings 

and draws conclusions. 

2. ALGORITHMIC COMPONENTS 

This section describes the 36 algorithmic components 

currently in SDcrush for synthesizing compression algo-

rithms. Each component takes a sequence of values as in-

put, transforms it, and outputs the transformed sequence. 

To organize the description of the components, we 

grouped them into categories. 

2.1 Shufflers 

Shufflers rearrange the order of the values in the se-
quence but perform no computation on the values. Some 

shufflers reorder the bits or bytes within the values. How-

ever, none of them change the length of the sequence. In 

some cases, they operate on chunks of data that encom-

pass multiple words. 



 

 

 

The BIT component groups the values into chunks of 

as many values as there are bits per value. It then trans-

forms each chunk independently by creating and emitting 

a word that contains the most significant bits of the val-

ues, followed by a word that contains the second most 

significant bits, etc. The resulting sequence is easier to 
compress in cases where the bit positions between con-

secutive input values exhibit a higher correlation than the 

values themselves. 

The ROTn component takes a parameter n that spec-

ifies by how many units to rotate the bits of each word in 

the input sequence. There are seven versions of this com-
ponent. This rotation affects the behavior of some of the 

other components. 

The DIMn component takes a parameter n that spec-

ifies the dimensionality of the input sequence and groups 

the values accordingly. For example, a dimension of 

three changes the linear sequence x1, y1, z1, x2, y2, z2, x3, 

y3, z3 into x1, x2, x3, y1, y2, y3, z1, z2, z3. This may be bene-
ficial as values belonging to the same dimension often 

correlate more with each other than with values from 

other dimensions. We use n = 2, 3, 5, 7, 8, 12, and 16. 

Since a dimensionality of k∙m can be represented by com-

bining a DIMk with a DIMm component, we primarily 

use small prime numbers for the parameter n. To capture 

important non-prime values of n in a single component 

(for performance reasons), we also include the following: 

n = 12 is useful because twelve is the least common mul-

tiple of 2, 3, 4, and 6 and therefore works well on 2D, 3D, 

4D, 6D, and 12D data. n = 8 is useful in combination with 
the BIT component because there are eight bits per byte. 

The SWP component reverses the byte order of every 

other value, thus bringing the lower bytes of consecutive 

values closer together as well as the higher bytes of the 

next pair of values and so on, which might improve com-

pressibility as similar data tend to be compressed better 
when they are in close proximity. 

2.2 Predictors 

Predictors guess the current value based on previous val-

ues in the input sequence, subtract the predicted from the 

current value, and emit the result of the subtraction, i.e., 
the residual sequence. If the predictions are close to the 

actual values, the residuals will cluster around zero, mak-

ing them easier to compress than the original sequence. 

Predictors do not change the length of the sequence. 

The LVs and LVx components use the previous value 

in the sequence as a prediction of the current value. This 
is commonly referred to as delta modulation. The sub-

traction to compute the residual can be performed at word 

granularity (using conventional subtraction, denoted by a 

trailing ‘s’) or at bit granularity (using XOR, denoted by 

a trailing ‘x’). 

2.3 Reducers 

Reducers are the only components that can change the 

length of the sequence and therefore compress it. They 

exploit various types of redundancies to do so. The last 

component of a chain must always be a reducer and there 

must be at least one reducer in each chain to form a useful 
compression algorithm. SDcrush enforces this restriction 

and does not consider other chains. 

The ZE component emits a bitmap that contains one 

bit for each input value. Each bit indicates whether the 

corresponding value is zero or not. Following the bitmap, 

ZE emits all non-zero values from the input sequence. 

This component’s effectiveness depends on the number 
of zeros, which is why some of the previously described 

components aim at generating as many zeros as possible. 

The RLE component performs run-length encoding. 

In particular, it counts how many times the current value 

appears in a row. Then it counts how many non-repeating 

values follow. Both counts are recorded in a single word, 

i.e., each count gets half of the bits. This “count” is emit-
ted first, followed by the current value and finally the 

non-repeating values. This procedure repeats until the 

end of the input is reached. 

The LZln component implements a variant of the 

LZ77 algorithm [1]. It uses a hash table to identify the l 

most recent prior occurrences of the current value. Then 

it checks whether the n values immediately before those 

locations match the n values just before the current loca-
tion. If they do not, the current value is emitted and the 

component advances to the next value. If the n values 

match, the component counts how many values following 

the current value match the values following that loca-

tion. The length of the matching substring is emitted and 

the component advances by that many values. Smaller 

values of n yield more matches, which have the potential 

to improve compression but also result in a higher chance 

of zero-length substrings, which hurt compression. 

Larger values of l improve the chance of finding a match 

but results in slower processing. We consider n = 1, 2, 3, 
4, 5, 6 and 7 combined with l = a, b, and c, where a = 1, 

b = 2, and c = 4, which gives us 21 different LZln com-

ponents. They each contain a hash table with 8192 two-

byte elements (i.e., 16 kB). 

2.4 The NUL Component 

The NUL component performs the identity operation, 

that is, it simply outputs the input sequence. Its presence 
ensures that chains with n components can also represent 

all possible algorithms with fewer than n components. 

NUL has the highest priority, i.e., SDcrush gives prefer-

ence to shorter chains over longer chains with the same 

compression ratio. 



 

 

 

2.5 The Cut 

The │ pseudo component, called the Cut and denoted by 

a vertical bar, is a singleton component that converts a 

sequence of words into a sequence of bytes. It is merely 
a type cast and requires no computation or data copying. 

Every chain of components produced by SDcrush con-

tains exactly one Cut, which is included because it is of-

ten more effective to perform compression at byte rather 

than word granularity. Note, however, that the Cut can 

appear before the first component, in which case the data 

are treated as a sequence of bytes, after the last compo-

nent, in which case the data are treated as a sequence of 

words, or between components, in which case the data 

are initially treated as words and then as bytes. 

2.6 Component Discussion 

The components described above can all be implemented 

to run in O(n) time, where n is the sequence length. We 

excluded more sophisticated components such as block-

sorting components to make the synthesized algorithms 
as fast as possible. Nevertheless, as the results in this pa-

per demonstrate, the included components suffice to cre-

ate fast algorithms that compress competitively. 

Due to the presence of the Cut, SDcrush needs two 

versions of each component: one for words and one for 

bytes. We implemented all components using C++ tem-
plates to facilitate the generation of these versions. 

Each component requires an inverse component that 

performs the reverse transformation. By chaining the in-

verse components in the opposite direction, SDcrush can 

automatically synthesize the matching decompression al-

gorithm for any given chain of components, i.e., for any 
compression algorithm it can generate. 

Using algorithmic components greatly simplifies test-

ing and verification. Since the components are inde-

pendently implemented, it suffices to validate them in 

isolation, rather than all combinations of components, to 

ensure that any set of components will function properly. 

The 21 LZln components utilize hash tables. For per-

formance reasons, their hash functions only use some of 

the bits from the input values. This is why altering the 

location of bits and bytes by other components affects the 

effectiveness of these components. Note, however, that 

SDcrush is able to optimize which bits to use by the hash 
function, for example, through the inclusion of an appro-

priate ROT component. 

Not counting the Cut, SDcrush has 36 components at 

its disposal, 23 of which are able to reduce the length of 

the data. The purpose of the remaining 13 components is 

to transform the values in such a way that the reducers 
become maximally efficient. Thus, longer chains of com-

ponents have the potential to compress better but make 

the search for a good algorithm take longer and compres-

sion and decompression slower. For an algorithm with k 

stages, that is, a chain with k components, the search 

space encompasses (k+1) ∙ 36k–1 ∙ 23 possible algorithms 

because there are k+1 locations for the Cut, k–1 stages 

that can each hold any one of the 36 components, and a 

final stage that can hold any one of the 23 reducers. For 

example, this amounts to over 231 million possible five-

stage compression and decompression algorithms. 

3. APPROACHES 

We use SDcrush to perform an exhaustive search to deter-
mine the most effective spacecraft-friendly compression 
algorithms that can be created from the available compo-
nents for the following three scenarios, which even work 
on a spacecraft in the outer solar system, where it may 
take several hours for a signal to travel round trip. 

3.1 Unified 

Unified uses a single algorithm for the entire spacecraft. 
The advantage of this approach is that it is the simplest. A 
spacecraft can be launched with just one algorithm, possi-
bly implemented in hardware, which it will use all the 
time no matter what type of data are being compressed. 
Of course, the downside is that it will result in lower com-
pression ratios compared to more specialized approaches. 

3.2 Packet 

Packet is similar to Unified in that it employs fixed algo-
rithms. However, Packet uses a different algorithm for 
each packet type. The advantage of having a custom algo-
rithm per packet type is better compression. The downside 
is that it requires more complex hardware or software to 
implement all the needed algorithms. 

3.3 Adaptive 

Both of the previous approaches assume that the training 
data used to determine an effective fixed algorithm on the 
ground before the spacecraft is launched is highly repre-
sentative of the data that the craft is expected to collect in 
space. If this is not the case, or if the spacecraft is later 
repurposed, the fixed algorithms may not be able to com-
press the data effectively, reducing telemetry throughput 
without the possibility to change the algorithm. 

Adaptive solves this problem. It is a previous n day 

approach, where the data used to determine the compres-

sion algorithm to be used was generated n days ago. In 

this paper, we show results for n = 2. In other words, to-

day we are compressing data using a custom algorithm 

that is synthesized based on actual spacecraft data from 
two days ago. Figure 2 illustrates this. Adaptive requires 

the capability of uploading a new compression algorithm 

for each packet type on a regular basis. Note, however, 

that there is no need to upload the actual algorithm but 

only a short sequence (chain) of component identifiers. 



 

 

 

This amounts to just a few bytes of data per algorithm, 
which is in line with other configuration information that 

is uplinked such as changes to the mode in which the 

onboard instruments operate. Of course, nothing needs to 

be sent if there is no change in the algorithm to be used. 

4. RELATED WORK 

To our knowledge, this is the first study to use algorith-

mic components chained together to synthesize custom 

compression algorithms that are spacecraft friendly. 

The recognition of the need for adaptive data com-

pression dates back several decades to research con-

ducted by Rice and Plaunt in preparation for a grand-tour 

mission of the outer planets [2]. Their work centers 

around compression of images, but the overarching con-
cept can be applied to other forms of data compression. 

Rice et al. later proposed a very simple algorithm that 

chooses from many “Huffman equivalent” codes. It in-

corporates a built-in preprocessor that acts like the pre-

dictor component outlined in Section 2.4 and can include 

external predictors as well [3]. This work was later rec-

ommended to the Consultative Committee for Space 

Data Systems (CCSDS) as the basis for their standard 

with added low entropy options [4][5][6]. As the com-

pression efficiency of this approach decreases with in-

creasing numbers of outliers in the data, Portell et al. de-
signed the Fully Adaptive Prediction Error Coder, which 

performs well even in the presence of outliers [7]. Algo-

rithms designed for specific instruments such as the Syn-

thetic Aperture Radar (SAR) [8] and plasma detection in-

struments [9] have also been proposed. 

Using SDcrush to generate compression algorithms 

differs from these approaches in that it can synthesize a 

custom algorithm for any given data set. So rather than 

attempting to design an algorithm that is based on a 

model of the data expected to be collected, we find an 

algorithm based on actual collected data. This method 

gives us the freedom to entirely change the basis of the 
compression algorithm if the data require it. We have 

successfully used a very similar approach to generate a 

massively parallel floating-point compressor for GPUs 

[10] as well as tailored floating-point compressors for 

CPUs that can be synthesized in real time [11]. 

5. EVALUTION METHODOLOGY 

5.1 Data 

The data used in our evaluation comes from the THEMIS 

B spacecraft that is part of the five-probe THEMIS/AR-

TEMIS constellation currently in orbit around the moon 

and Earth [12][13]. Each THEMIS probe has six scien-

tific instruments that can operate in multiple modes re-

sulting in 26 distinct types of data packets, which are 
identified by a set of three hexadecimal digits [14]. The 

craft also produces packets that contain spacecraft status 

information. These packets amount to relatively little 

data and are therefore less interesting from a compression 

standpoint. We studied all 26 data packet types but only 

show results for three of them (443, 444, and 44d) as they 

seem to be quite representative of the behavior of the 

other packet types. 

Our Unified and Packet approaches use algorithms 

generated from data collected by THEMIS B in 2013. 

However, the results we show are from data collected by 

the same probe in 2014 to avoid gathering results from 

the same data we used to generate the algorithms. 

5.2 Compression Algorithms 

5.2.1 Baseline 

Each of the packet types we study has their own on-board 

data compression algorithm. 443 uses 3-channel Delta 

modulation, 444 uses standard Delta modulation, and 44d 

uses Huffman compression, respectively. We re-created 

these compression algorithms to obtain an accurate base-

line of comparison to our custom algorithms. We also 
compare our approaches to the commonly used general-

purpose compressors gzip and bzip2 [15][16]. 

 

5.2.2 Gzip 

Gzip is a lossless data compression tool that uses 
Lempel–Ziv coding (LZ77) to reduce the size of files [1]. 

LZ77 algorithms compress by replacing repeated in-

stances of data with references to a single copy of that 

data that was seen earlier in the data stream. 

For gzip, we show results using the --fast and --best 

flags to show its full range of possible compression ra-

tios, compression throughputs, and energy consumption. 



 

 

 

5.2.3 Bzip2 

Bzip2 compresses data using the Burrows-Wheeler block 

sorting algorithm as well as Huffman coding [17]. The 

Burrows-Wheeler transform (BWT) rearranges a charac-

ter string into runs of similar characters [18]. This makes 

the data relatively simple to compress using other meth-

ods such as run-length encoding. Generally speaking, 

bzip2 compresses better than gzip in terms of compres-

sion ratio, but does so at the cost of decreased throughput. 

For bzip2, we only show results using the --fast flag. 

While bzip2 --best yields very good compression ratios, 

the throughput and energy consumption are several hun-

dred times worse than the baseline. Moreover, the 

memory consumption is excessive. For these reasons, we 

exclude the bzip2 --best results from this study. 

 

5.2.4 Custom Algorithms 

For each of the studied packet types, we generate algo-
rithms that consist of five components. We found that us-

ing more than five components only marginally increases 

the compression ratio while, at the same time, greatly de-

creasing the throughput. The NUL component ensures 

that shorter compression algorithms are also included. 

The algorithms are represented by a series of compo-

nent identifiers. For example, “DIM3 | BIT RLE” is a 

three-component algorithm composed of DIM with a di-

mensionality of 3, which is followed by the Cut, the BIT 

component, and finally the RLE reducer component. 

The Unified approach concatenates all data from the 

probe for an entire year, runs them through SDcrush to 

find the best compression algorithm for those data, and 

then runs the identified algorithm over the daily data 

from the following year to gauge the range of compres-

sion ratios and throughputs over time if the spacecraft 

only had one algorithm with which to compress all data. 

With Packet, we again concatenate all the data for an 

entire year, but separately for each packet type. We then 

use the resulting algorithms to compress each individual 

data packet from the following year to obtain the range 

of compression ratios and throughputs over time for a 

particular packet type. 

Adaptive uses an on-board software library of algo-

rithmic components as well as some trivial software to 

chain them together into a compression algorithm. The 

spacecraft is sent configuration information telling it 

which components to chain into an algorithm for specific 

packet types. The configuration sent to the spacecraft is 
generated automatically based on recently received data 

that were processed on the ground using SDcrush. 

 

5.2.5 Metrics 

The compression ratios are the uncompressed data size 

divided by the compressed data size. However, we do not 

report the absolute compression ratio but rather relative 

results, i.e., how much more or less the data are reduced 

in size compared to the baseline. Results above 1.0 indi-

cate that the corresponding algorithm compresses better 

than the baseline. 

The throughput is the uncompressed packet size di-

vided by the compression runtime. Again, we report re-

sults relative to the baseline where values above 1.0 indi-

cate that the corresponding algorithm compresses faster 

than the baseline. 

To measure the amount of energy it takes to compress 
any given data packet, we use a custom power tool based 

on the PAPI framework [19]. This tool accesses Model 

Specific Registers in the CPU to obtain the amount of en-

ergy consumed. We normalize these raw energy meas-

urements with respect to the original size of the input data 

to compute the number of bytes compressed per joule of 

energy consumed (bytes/J), i.e., the energy efficiency of 

the approach. As before, the reported values above 1.0 

denote that the corresponding algorithm is more energy 

efficient than the baseline. 

5.3 System Information 

We ran all our experiments on a single core of a system 

that has dual 10-core Xeon E5-2687W v3 CPUs running 

at 3.1 GHz. The host memory size is 128 GB and the op-

erating system is CentOS 6.7. We used the gcc compiler 

version 4.4.7 with the “-O3 -xhost” flags. 

The THEMIS probes use an Intel 8085 CPU. While 

we do not have access to an Intel 8085, we only run a 

single thread to better model the behavior of the Intel 

8085. Moreover, while gzip and especially bzip2 use far 

more memory than is available on the 8085, we limit the 

memory footprint of our customized algorithms to 32 kB, 

i.e., half of the maximum memory capacity of the 8085. 

Furthermore, we only synthesize algorithms that can be 

implemented on an 8-bit processor. 

6. EXPERIMENTAL RESULTS 

Figures 3, 4, and 5 display the compression ratio in terms 

of data reduction, compression throughput, and energy 

efficiency, respectively, for the three studied packets. All 

results are normalized. The x-axis represents an entire 
year’s worth of data, while the y-axis shows the results 

relative to the baseline (the red dotted line at 1.0). Our 

approaches are denoted by solid lines whereas the base-

line, gzip, and bzip2 use dashed lines. Also, the average 

of all the results over the entire year can be found in the 

legend of each figure. 

The fixed algorithms are as follows: 

Unified: “DIM3 LVs | DIM2 RLE LZa3” 

Packet 443: “| DIM12 LZa5 BIT DIM8 LZa3” 

Packet 444: “DIM3 BIT RLE RLE | LZc5” 

Packet 44d: “RLE | ROT3 BIT ZE LZc4” 

Notice that the fixed approaches only use a few of the 

available components. The remaining components are 

used, however, in the Adaptive approach, which shows 



 

 

 

that there exist circumstances where the more specialized 

components are beneficial. In fact, about 65% of the 

Adaptive algorithms for packet type 443, 71% for type 

444, and 84% for type 44d are completely unique and not 

used during the rest of the year. However, some of the 

algorithms do get re-used. The most commonly reused 

algorithms for each packet type are as follows, though 

these are used less than 5% of the time: 

Adaptive 443: “DIM3 LVs BIT RLE | LZa4” 

Adaptive 444: “DIM3 LVs BIT RLE | LZa4” 

Adaptive 44d: “NUL NUL NUL | BIT ZE” 

Interestingly, 443 and 444 both have the same most 

reused algorithm while the mostly commonly used Adap-

tive 44d algorithm uses the NUL component three times, 

meaning it is actually only a two component algorithm 

that compresses as well or better than all 3, 4, and 5 com-

ponent algorithms for that particular day’s data. Also, 

about 45% of all the 44d Adaptive algorithms use the 

NUL component at least once. 

6.1 Normalized Compression Ratio 

Figure 3 shows the amount of data reduction (higher is 

better) relative to the baseline for each of the three stud-

ied packet types. We can see that, while Unified does 

slightly better than baseline on 44d, it does significantly 

worse than baseline on 443 and 444. This is to be ex-

pected as Unified is not specialized to the data in different 

packets but rather to all the data the craft produces. 

Looking at the Packet results, we find that packet-spe-

cific compression improves the 44d compression ratios 

by an average of about 36% and 444 by roughly 12% over 

the baseline. However, the Unified 443 compression ra-

tios are over 12% worse than the baseline. 

We further see that there is less variation in the results 
with Packet. This makes sense as having a specialized al-

gorithm per packet type generally creates fewer outliers 

than having just one algorithm for the entire craft. The 

consistency provided by Packet could be important by 

providing a smaller margin of error when estimating the 

expected compression ratio for a certain packet type 

while the craft is still in the design and planning phase. 

Adaptive performs on par with Packet on average. 

However, there are many individual days where Adaptive 

is much better than Packet. Unfortunately, these days are 

usually immediately followed by a day where the com-

pressed data size is much worse than that of Packet. This 
shows that when Adaptive identifies a specialized, atypi-

cal algorithm that performs very well, a few days later the 

compression ratio is negatively affected when the data re-

turn to a more typical behavior. We discuss a possible 

solution to this problem in the Future Work section. 



 

 

 

Gzip performs slightly better than our custom algo-

rithms for 44d, but worse than both Packet and Adaptive 

for 444 and 443. This is despite gzip using more memory 

and a more complex algorithm. Furthermore, gzip --best 

is only slightly better than gzip --fast. bzip2, however, 

compresses better than any of our custom algorithms. 

Judging strictly from the size of the compressed pack-

ets, bzip2 and gzip are superior to the other approaches. 

However, we cannot necessarily say they are the best al-

gorithms for compression on a spacecraft because of their 
relatively complex and memory hungry nature when 

compared to the baseline or our custom algorithms. 

Out of our algorithms, Packet and Adaptive perform 

the best for 44d and 444, but Adaptive has the advantage 

of being able to adapt to changing space conditions. For 

443, the current baseline compresses better overall than 

any of the other approaches. 

6.2 Normalized Compression Throughput 

Figure 4 shows normalized compression throughput re-
sults relative to the baseline. This is measured in terms of 

the number of megabytes compressed per second, so 

again larger numbers are better. Note that the y-axis is 

logarithmic. We do not show raw runtime figures be-

cause those are different on different systems. However, 

we expect the normalized throughputs to at least be sim-

ilar across platforms. 

Both Packet and Unified yield a high throughput, with 

Unified outperforming the baseline by roughly a factor of 

two on all studied packet types. Packet and Unified are 

also quite consistent, especially compared to Adaptive. 

Of course, a hardware implementation is likely to result 

in even higher throughputs. 

Surprisingly, Adaptive is overall about as fast as the 

baseline for 44d, but almost 1.5 times worse than the 
baseline and about four times worse than Unified or 

Packet for 444 and 443. We believe this unexpected re-

sult is because Unified and Packet are forced to use sim-

ple and general components that work well across many 

different types of data, while Adaptive has the freedom to 

use more specialized components that reduce throughput 

in favor of a better compression ratio. 

Gzip and bzip2 perform anywhere from 55% to over 

nine times worse than the baseline in all cases. Again, this 

is expected as these algorithms are designed to maximize 

compression at the cost of speed. The outliers on the right 

side of Figure 4 for 44d show that, for just two days out 
of the year, the baseline took much longer to compress 

the data. These outliers do not appear in Figure 3 because 

the longer runtime does not affect the size of the com-

pressed packet. Clearly, Unified is the best approach in 

terms of consistent throughput, followed closely by 



 

 

 

Packet. So if an improvement in throughput is more im-

portant than a high compression ratio, Unified or Packet 

is the best approach. 

6.3 Normalized Compression Energy 

Figure 5 shows the energy efficiency of each of the com-

pression approaches relative to the baseline in megabytes 

per joule. We use this metric because it is independent of 

the packet size. Again, the y-axis is logarithmic and 
higher numbers are better. 

We find that the general trend of the graphs is the 

same as in Figure 4, i.e., runtime and energy are corre-

lated. While Unified and Packet behave roughly the same 

in terms of energy as they do in terms of throughput (rel-
ative to the baseline), Adaptive does better, meaning that 

Adaptive runs at a lower average wattage than the base-

line, but Unified and Packet run at about the same watt-

age as the baseline. Conversely, gzip and bzip2 are much 

worse and draw much more power than the baseline. This 

is expected as gzip and bzip2 use much more memory 

and comprise more complicated algorithms than the 

baseline or our custom algorithms. 

Unified is best in terms of consuming the least amount 

of energy to compress data, followed closely by Packet. 

However, if the goal of lowering the energy is to reduce 

the power draw (i.e., the wattage), Adaptive is better than 

any of the other approaches including the baseline. 

7. CONCLUSIONS & FUTURE WORK 

In this paper, we study a method of generating fixed and 

adaptive compression algorithms for use on spacecraft, 

where hardware limitations restrict the complexity and 

memory usage of these algorithms. For this purpose, we 

wrote a tool called SDcrush that automatically synthe-

sizes compression algorithms from training data. 

By breaking existing compression algorithms down 

into their constituent algorithmic components, rejecting 

those components that are too complex, too slow, and/or 

use too much memory, we derive a set of components that 

can be chained together to form custom compression al-

gorithms that are tuned to perform well on a specific data 

packet. We study the effects of using one fixed algorithm 
for an entire spacecraft (Unified), one fixed algorithm per 

data packet type (Packet), and using an algorithm that is 

adaptive based on recently received data (Adaptive). We 

compare our custom approaches to the baseline (the al-

gorithms THEMIS B is currently using) as well as to 

commonly used compression algorithms. 

We found that our Unified approach performs about 

twice as well as the baseline in terms of throughput and 



 

 

 

energy consumption but performs the worst out of all our 

studied approaches in terms of compression ratio. 

By adding a layer of specialization with our Packet 

approach, we improve the overall compression ratio over 

Unified by 9% to 45%, depending on the packet type. 

However, doing so sacrifices throughput by between 
10% to 40% and similar amounts of energy. 

Adaptive performs on par with Packet in terms of 

compression ratio but is much worse for energy and es-

pecially throughput. Interestingly, Adaptive runs at a 

lower wattage than any of the other approaches. The main 

strength of Adaptive lies in its ability to be reconfigured 

to adjust to changing space conditions, though. 

The general-purpose algorithms gzip and bzip2 de-

liver the highest compression ratios but perform poorly 

in terms of throughput and especially energy. Further-

more, their advantage in compression ratio is in part due 

to their large memory usage, which greatly exceeds the 
amount of memory available on THEMIS B. 

We conclude that significant improvements in com-

pression ratio, throughput, and energy can be obtained by 

generating custom compression algorithms from sets of 

chainable compression components. 

SDcrush is currently using algorithm components that 

we extracted from floating-point and trace compressors, 

i.e., domains that are very different from space data. In 

the future, we plan to include components that are specif-

ically tailored to space data as well as instrument-specific 

components, which should boost the compression ratio 
and may make compression even faster. 

We also plan to generate custom compression algo-

rithms using data from THEMIS C as it resides in a sim-

ilar plasma environment as the probe used in this study. 

This will give us insight into how the algorithms may dif-

fer between probes in the same space environment. Sim-

ilarly, we plan to synthesize custom algorithms for THE-

MIS A, D, and E, which reside in fairly different plasma 

environments than B and C. We expect their algorithms 

to be quite different, which should shed light on how im-

portant adaptivity is. 

To address the problem of Adaptive negatively affect-
ing compression ratios over Packet, we plan to develop a 

method for eliminating the “rebound” that appears after 

a highly effective algorithm has been used on an atypical 

data packet. One such method would be to design a dou-

bly adaptive approach that also varies the number of prior 

days that are considered when synthesizing the next al-

gorithm to use. 
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