
The VPC Trace-Compression Algorithms
Martin Burtscher, Member, IEEE, Ilya Ganusov, Student Member, IEEE, Sandra J. Jackson,

Jian Ke, Paruj Ratanaworabhan, and Nana B. Sam, Student Member, IEEE

Abstract—Execution traces, such as are used to study and analyze program behavior, are often so large that they need to be stored in

compressed form. This paper describes the design and implementation of four value prediction-based compression (VPC) algorithms

for traces that record the PC as well as other information about executed instructions. VPC1 directly compresses traces using value

predictors, VPC2 adds a second compression stage, and VPC3 utilizes value predictors to convert traces into streams that can be

compressed better and more quickly than the original traces. VPC4 introduces further algorithmic enhancements and is automatically

synthesized. Of the 55 SPECcpu2000 traces we evaluate, VPC4 compresses 36 better, decompresses 26 faster, and compresses 53

faster than BZIP2, MACHE, PDATS II, SBC, and SEQUITUR. It delivers the highest geometric-mean compression rate,

decompression speed, and compression speed because of the predictors’ simplicity and their ability to exploit local value locality. Most

other compression algorithms can only exploit global value locality.

Index Terms—Data compaction and compression, performance analysis and design aids.

�

1 INTRODUCTION

EXECUTION traces are widely used in industry and
academia to study the behavior of programs and

processors. The problem is that traces from interesting
applications tend to be very large. For example, collecting
just one byte of information per executed instruction
generates on the order of a gigabyte of data per second of
CPU time on a high-end microprocessor. Moreover, traces
from many different programs are typically collected to
capture a wide variety of workloads. Storing the resulting
multigigabyte traces can be a challenge, even on today’s
large hard disks.

One solution is to regenerate the traces every time they
are needed instead of saving them. For example, tools like
ATOM [11], [44] can create instrumented binaries that
produce a trace every time they are executed. However,
execution-driven approaches are ISA specific and, thus,
hard to port, produce nonrepeatable results for nondeter-
ministic programs, and are undesirable in situations where
trace regeneration is impossible, too expensive, or too slow.

An alternative solution is to generate the traces once and
to store them (in compressed form). The disadvantage of
this approach is that it requires disk space and that the
traces must be decompressed before they can be used. The
VPC trace compression algorithms presented in this paper
aim at minimizing these downsides.

To be useful, a trace compressor has to provide several
benefits in addition to a good compression rate and a fast
decompression speed. For example, a fast compression
speed may also be desirable. Moreover, lossless compres-
sion is almost always required so that the original trace can
be reconstructed precisely. A constant memory footprint
guarantees that a system can handle even the largest and
most complicated traces. Finally, a single-pass algorithm is
necessary to ensure that the large uncompressed trace never

has to exist in its entirety because it can be compressed as it
is generated and decompressed as simulators or other tools
consume it. VPC3 [4] and VPC4 [6], our most advanced
algorithms, possess all these qualities.

Many trace-compression algorithms have been proposed
[2], [4], [10], [15], [16], [23], [24], [25], [28], [29], [32], [33],
[38], [41], [48]. Most of them do an excellent job at
compressing program traces that record the PCs of executed
instructions (PC traces) or the addresses of memory accesses
(address traces). However, extended traces that contain PCs
plus additional information, such as the content of registers,
values on a bus, or even filtered address sequences, are
harder to compress because such data repeat less often,
exhibit fewer patterns, or span larger ranges than the entries
in PC and address traces. Yet, such traces are gaining
importance as more and more researchers investigate the
dynamic activities in computer systems. We designed the
VPC algorithms [4], [5], [6] especially for extended traces.

A comparison with SEQUITUR [29] and SBC [33], two of
the best trace-compression algorithms in the current
literature, on the three types of traces we generated from
the SPECcpu2000 programs yielded the following results.
On average (geometric mean), VPC4 outperforms SBC by
79 percent in compression rate, 1,133 percent in compres-
sion time, and 25 percent in decompression time on PC plus
store-address traces and by 88 percent in compression rate,
850 percent in compression time, and 27 percent in
decompression time on PC plus load-value traces. It
outperforms SEQUITUR on average by 1,356 percent in
compression rate, 668 percent in compression time, and
36 percent in decompression time on the PC plus store-
address traces and by 105 percent in compression rate,
535 percent in compression time, and 6 percent in
decompression time on the PC plus load-value traces.
Section 6 presents more results.

The VPC algorithms all have a set of value predictors at
their core. Value predictors identify patterns in value
sequences and extrapolate those patterns to forecast the
likely next value. In recent years, hardware-based value
predictors have been researched extensively to predict the
content of CPU registers [7], [8], [13], [14], [31], [40], [43], [45],
[47]. Since these predictors are designed to make billions of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005 1

. The authors are with the Computer Systems Laboratory, School of
Electrical and Computer Engineering, Cornell University, Ithaca, NY
14853. E-mail: {burtscher, ilya, sandra, jke, paruj, besema}@csl.cornell.edu.

Manuscript received 9 Aug. 2004; revised 18 Feb. 2005; accepted 6 June 2005;
published online 16 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0265-0804.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

predictions per second, they use simple and fast algorithms.
Moreover, they are good at predicting the kind of values
typically found in program traces, such as jump targets,
effective addresses, etc., because such values are stored in
registers. These features make value predictors great candi-
dates for our purposes. In fact, sincewe are implementing the
predictors in software,we canusemore predictors and larger
tables than are feasible in a hardware implementation,
resulting in even more accurate predictions.

The following simple example illustrates how value
predictors can be used to compress traces. Let us assume
that we have a set of predictors and that our trace contains
eight-byte entries. During compression, the current trace
entry is compared with the predicted values. If at least one of
the predictions is correct, we write only the identification
code of one of the correct predictors to the output, encoded in
aone-byte value. If noneof thepredictions are right,we emit a
one-byte flag followed by the unpredictable eight-byte trace
entry. Then, the predictors are updated and the procedure
repeats until all trace entries have been processed. Note that
the output of this algorithm should be further compressed,
e.g., with a general-purpose compressor.

Decompression proceeds analogously. First, one byte is
read from the compressed input. If it contains the flag, the
next eight bytes are read to obtain the unpredictable trace
entry. If, on the other hand, the byte contains a predictor
identification code, the value from that predictor is used.
Then, the predictors are updated to ensure that their state is
consistent with the corresponding state during compres-
sion. This process iterates until the entire trace has been
reconstructed.

VPC1 essentially embodies the above algorithm. It uses
37 value predictors, compresses the predictor identification
codes with a dynamic Huffman encoder, and employs a
form of differential encoding to compress the unpredictable
trace entries [5]. VPC1 delivers good compression rates on
hard-to-compress extended traces, but is not competitive on
other kinds of traces.

As it turns out, VPC1’s output itself is quite compres-
sible. Thus, VPC2 improves upon VPC1 by adding an
additional compression stage [5]. It delivers good compres-
sion rates on hard-to-compress as well as simple extended
traces. Unfortunately, VPC2’s decompression speed is
almost four times slower than that of other algorithms.

VPC3 capitalizes on the fact that extended traces are
more compressible after processing them with value
predictors. Hence, we changed the purpose of the value
predictors from compressing the traces to converting them
into streams that a general-purpose compressor can quickly
compress well [4]. Using the value predictors in this manner
is more fruitful than using them for the actual compression,
as the compression rates and speeds in Section 6 show.

VPC4 adds several algorithmic enhancements to make it
faster and to improve the compression rate. Moreover, it is
not handcrafted like its predecessors. Instead, it is synthe-
sized out of a simple description of the trace format and the
predictors to be used [6].

Most data compressors are comprised of two general
components, one to recognize patterns and the other to
encode a representation of these patterns into a small
number of bits. The VPC algorithms fit this standard
compression paradigm, where the value predictors repre-
sent the first component and the general-purpose compres-
sor represents the second. The innovation is the use of value
predictors as pattern recognizers, which results in a power-
ful trace compressor for the following reason. Extended

traces consist of records with a PC field and at least one
extended data (ED) field. The value predictors separate the
data component of extended traces into ministreams, one
for each distinct PC (modulo the predictor size). In other
words, the prediction of the next ED entry is not based on
the immediately preceding n trace entries, but on the
preceding n entries with the same PC. This allows VPC to
correlate data from one instruction with data that that same
instruction produced rather than with data from “nearby”
but otherwise unrelated instructions. As a result, the
ministreams exhibit more value locality than the original
trace in which the data are interleaved in complicated ways.
The VPC algorithms are thus able to detect and exploit
patterns that other compressors cannot, which explains
VPC’s performance advantage on extended traces. Note
that the value predictors are essential because they can
easily handle tens of thousands of parallel ministreams.
While other algorithms could also split the traces into
ministreams, it would be impractical, for example, to
simultaneously run ten thousand instances of BZIP2 or to
concurrently generate ten thousand grammars in SEQUI-
TUR. Nevertheless, Zhang and Gupta have been able to
improve the compression rate of SEQUITUR by taking a
step in this direction. They generate a subtrace for each
function and then compress the subtraces individually [49].

The C source code of VPC3 is available online at
http://www.csl.cornell.edu/~burtscher/research/trace
compression/. A sample test trace and a brief description
of the algorithm are also included. TCgen, the tool that
generated VPC4, is available at http://www.csl.cornell.
edu/~burtscher/research/TCgen/. The code has been
successfully tested on 32 and 64-bit Unix and Linux systems
using cc and gcc as well as on Windows under cygwin [19].

The remainder of this paper is organized as follows:
Section 2 summarizes related work. Section 3 introduces
our trace format and the value predictors VPC uses.
Section 4 describes the four VPC algorithms in detail.
Section 5 presents the evaluation methods. Section 6
explains the results, and Section 7 concludes the paper.

2 RELATED WORK

A large number of compression algorithms exist. Due to
space limitations, we mainly discuss lossless algorithms
that have been specifically designed to compress traces. The
algorithms we evaluate in the result section are described in
Section 2.2.

VPC shares many ideas with the related work described
in this section. For example, it exploits sequentiality and
spatiality, predicts values, separates streams, matches
previously seen sequences, converts absolute values into
offsets, and includes a second compression stage.

2.1 Compression Approaches

Larus proposed Abstract Execution (AE) [28], a system
designed mainly for collecting traces of memory addresses
and data. AE starts by instrumenting the program to be
traced. However, instead of instrumenting it to collect a full
trace, it only collects significant events (SE). AE then
generates and compiles a program that creates the complete
trace out of the SE data. Normally, the SE trace size is much
smaller than the size of the full trace and the cost of running
the program to collect the SEs is much lower than the cost of
running the program to collect the complete trace. The AE
system is language and platform specific.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

PDATS [24] compresses address traces in which a
reference type (data read, data write, or instruction fetch)
distinguishes each entry. It converts the absolute addresses
into offsets, which are the differences between successive
references of the same type, and uses the minimum number
of bytes necessary to express each offset. Each entry in the
resulting PDATS file consists of a header byte followed by a
variable-length offset. The header byte includes the refer-
ence type, the number of bytes in the offset, and a repeat
count. The repeat count is used to encode multiple
successive references of the same type and offset. The
result is fed into a second compressor.

Pleszkun designed a two-pass algorithm to compress
traces of instruction and data addresses [38]. The first pass
partially compresses the trace, generates a collection of data
structures, and records the dynamic control flow of the
original program. During the second pass, this information
is used to encode the dynamic basic block successors and
the data offsets using a compact representation. At the end,
the output is passed through a general-purpose compressor.

To handle access pattern irregularities in address traces
due to, for example, operating system calls or context
switches, Hammami [15] proposes to first group the
addresses in a trace into clusters using machine-learning
techniques. Then, the “mean” of each cluster is computed.
This mean forms the base address for that cluster. Finally,
the addresses within each cluster are encoded as offsets to
the corresponding base address. This approach can be used,
for instance, on top of PDATS, but increases the number of
passes over the trace.

Address Trace Compression through Loop Detection
and Reduction [10] is a multipass algorithm that is geared
toward address traces of load/store instructions. This
compression scheme is divided into three phases. In the
first phase, control-flow analysis techniques are used to
identify loops in the trace. In the second phase, the address
references within the identified loops are grouped into three
types: 1) constant references, which do not change from one
iteration to the next, 2) loop varying references, which
change by a constant offset between consecutive iterations,
and 3) chaotic references, which do not follow any
discernible patterns. In the last phase, the first two types
of address references are encoded while the third type is left
unchanged.

Johnson et al. introduce the PDI technique [25], which is
an extension of PDATS for compressing traces that contain
instruction words in addition to addresses. In PDI,
addresses are compressed using the PDATS algorithm,
while the instruction words are compressed using a
dictionary-based approach. The PDI file contains a dic-
tionary of the 256 most common instruction words found in
the trace, which is followed by variable length records that
encode the trace entries. Identifying the most frequent
instruction words requires a separate pass over the trace.
PDI employs a general-purpose compressor to boost the
compression rate.

Ahola proposes RECET [1], a hardware and software
platform to capture and process address traces and to
perform cache simulations in real-time. RECET first sends
the traces through a small cache to filter out hits, stores the
remaining data in the MACHE format, and further
compresses them with the Lempel-Ziv method [50]. The
resulting traces can be used to simulate caches with line
sizes and associativities that are equal to or larger than that
of the filter cache.

Hamou-Lhadj and Lethbridge [16] use common sub-
expression elimination to compress procedure-call traces.
The traces are represented as trees and subtrees that occur
repeatedly are eliminated by noting the number of times
each subtree appears in the place of the first occurrence. A
directed acyclic graph is used to represent the order in
which the calls occur. This method requires a preprocessing
pass to remove simple loops and calls generated by
recursive functions. One benefit of this type of compression
is that it can highlight important information contained in
the trace, thus making it easier to analyze.

STEP [2] provides a standard method of encoding
general trace data to reduce the need for developers to
construct specialized systems. STEP uses a definition
language designed specifically to reuse records and feed
definition objects to its adaptive encoding process, which
employs several strategies to increase the compressibility of
the traces. The traces are then compressed using a general-
purpose compressor. STEP is targeted toward application
and compiler developers and focuses on Java programs
running on JVMs.

The Locality-Based Trace Compression algorithm [32]
was designed to exploit the spatial and temporal locality in
(physical) address traces. It is similar to PDATS except it
stores all attributes that accompany each memory reference
(e.g., the instruction word or the virtual address) in a cache
that is indexed by the address. When the attributes in the
selected cache entry match, a hit bit is recorded in the
compressed trace. In case of a cache miss, the attributes are
written to the compressed trace. This caching captures the
temporal locality of the memory references.

Several papers point out or exploit the close relationship
between prediction and compression. For example, Chen
et al. [9] argue that a two-level branch predictor is an
approximation of the optimal PPM predictor and hypothe-
size that data compression provides an upper limit on the
performance of correlated branch prediction. While we use
prediction techniques to improve compression, Federovsky
et al. [12] use compression methods to improve (branch)
prediction.

2.2 Compression Algorithms

This section describes the compression schemes with which
we compare our approach in Section 6. BZIP2 is a lossless,
general-purpose algorithm that can be used to compress
any kind of file. The remaining algorithms are special-
purpose trace compressors that we modified to include
efficient block I/O operations and to include a second
compression stage to improve the compression rate. They
are all single-pass, lossless compression schemes that
“know” about the PC and extended data fields in our
traces. However, none of these algorithms separate the
extended data into ministreams like VPC does.

BZIP2 [18] is quickly gaining popularity in the Unix
world. It is a general-purpose compressor that operates at
byte granularity. It implements a variant of the block-
sorting algorithm described by Burrows and Wheeler [3].
BZIP2 applies a reversible transformation to a block of
inputs, uses sorting to group bytes with similar contexts
together, and then compresses them with a Huffman coder.
The block size is adjustable. We use the “–best” option
throughout in this paper. According to ps, BZIP2 requires
about 10MB of memory to compress and decompress our
traces. We evaluate BZIP2 version 1.0.2 as a standalone
compressor and as the second stage compressor for all the
other algorithms.

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 3

MACHE [41] was primarily designed to compress
address traces. It distinguishes between three types of
addresses, namely, instruction fetches, memory reads, and
memory writes. A label precedes each address in the trace
to indicate its type. After reading in a label and address
pair, MACHE compares the address with the current base.
There is one base for each possible label. If the difference
between the address and the base can be expressed in a
single byte, the difference is emitted directly. If the
difference is too large, the full address is emitted and this
address becomes the new base for the current label. This
algorithm repeats until the entire trace has been processed.

Our trace format is different from the standard MACHE
format. It consists of pairs of 32-bit PC and 64-bit data
entries. Since PC and data entries alternate, no labels are
necessary to identify their type. MACHE only updates the
base when the full address needs to be emitted. We retain
this policy for the PC entries. However, for the data entries,
we found it better to always update the base due to the
frequently encountered stride behavior. Our implementa-
tion uses 2.3MB of memory to run.

SEQUITUR [29], [35], [36], [37] is one of the most
sophisticated trace compression algorithms in the literature.
It converts a trace into a context-free grammar and applies
two constraints while constructing the grammar: Each
digram (pair of consecutive symbols) in the grammar must
be unique and every rule must be used more than once.
SEQUITUR has the interesting feature that information
about the trace can be derived from the compressed format
without having to decompress it first. The biggest drawback
of SEQUITUR is its memory usage, which depends on the
data to be compressed (it is linear in the size of the
grammar) and can exhaust the system’s resources when
compressing extended traces.

The SEQUITUR algorithm we use is a modified version
of Nevill-Manning and Witten’s implementation [17], which
we changed as follows: We manually converted the
C++ code into C, inlined the access functions, increased
the symbol table size to 33,554,393 entries, and added code
to decompress the grammars. To accommodate 64-bit trace
entries, we included a function that converts each trace
entry into a unique number (in expected constant time).
Moreover, we employ a split-stream approach, that is, we
construct two separate grammars, one for the PC entries
and one for the data entries in our traces. To cap the
memory usage, we start new grammars when eight million
unique symbols have been encountered or 384 megabytes of
storage have been allocated for rule and symbol descriptors.
We found these cutoff points work well on our traces and
system. Our implementation’s memory usage never ex-
ceeds 951MB, thus fitting into the 1GB of main memory in
our system. To prevent SEQUITUR from becoming very
slow due to hash-table inefficiencies, we also start a new
grammar whenever the last 65,536 searches required an
average of more than 30 trials before an entry was found.

PDATS II [23] improves upon PDATS by exploiting
common patterns in program behavior. For example, jump-
initiated sequences are often followed by sequential
sequences. PDATS encodes such patterns using one record
to specify the jump and another record to describe the
sequential references. PDATS II combines the two records
into one. Moreover, when a program writes to a particular
memory location, it is also likely to read from that location.
PDATS separates read and write references, resulting in
two large offsets whenever the location changes. To reduce
the number of large offsets, PDATS II does not treat read

and write references separately. Additionally, common data
offsets are encoded in the header byte and instruction
offsets are stored in units of the default instruction stride
(e.g., four bytes per instruction on most RISC machines).
Thus, PDATS II achieves about twice the compression rate
of PDATS on average.

We modified PDATS II as follows: Since our traces do
not include both read and write accesses, we do not need to
distinguish between them in the header. This makes an
extra bit available, which we use to expand the encoded
data offsets to include �16, �32, and �64. Because our
traces contain offsets greater than 32 bits, we extended
PDATS II to also accommodate six and eight-byte offsets.
Our traces do not exhibit many jump-initiated sequences
that are followed by sequential sequences. Hence, we do not
need the corresponding PDATS II feature. Our implementa-
tion uses 2.2MB of memory.

SBC (Stream-Based Compression) [33], [34] is one of the
best trace compressors in the literature. It splits traces into
segments called instruction streams. An instruction stream
is a dynamic sequence of instructions from the target of a
taken branch to the first taken branch in the sequence. SBC
creates a stream table that records relevant information
such as the starting address, the number of instructions in
the stream, and the instruction words and their types.
During compression, groups of instructions in the original
trace that belong to the same stream are replaced by the
corresponding stream table index. To compress addresses
of memory references, SBC further records information
about the strides and the number of stride repetitions. This
information is attached to the instruction stream. Note that
VPC streams are unrelated to SBC streams as the former
span the entire length of the trace.

We made the following changes to Milenkovics’ SBC
code [20]: Since our traces contain some but not all
instructions (e.g., only instructions that access the memory),
we redefined the notion of an instruction stream as a
sequence in which each subsequent instruction has a higher
PC than the previous instruction and the difference between
subsequent PCs is less than a preset threshold. We
experimented with different thresholds and found a thresh-
old of four instructions to provide the best compression rate
on our traces. SBC uses 10MB of memory to run.

3 BACKGROUND

3.1 Value Predictors

This section describes the operation of the value predictors
that the various VPC algorithms use to predict trace entries.
The exact predictor configurations are detailed in Sections 5.4
and 5.5. All of the presented value predictors extrapolate
their forecasts based on previously seen values, that is, they
predict the next trace entry based on already processed
entries. Note that PC predictions are made based on global
information, while ED predictions are made based on local
information, i.e., based on ministreams whose entries all
have the same PC.

Lastnvaluepredictor:The first typeof predictorVPCuses
is the last n value predictor (LnV) [7], [30], [47]. It predicts the
most likely value among the nmost recently seen values. To
improve the compression rate, all n values are used (and not
just themost likely value), i.e., the predictor can be thought of
as comprising n components that make n independent
predictions. TheLnVpredictor accurately predicts sequences
of repeating and alternating values as well as repeating
sequences of no more than n arbitrary values. Since PCs

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

infrequently exhibit such behavior, the LnV predictor is only
used for predicting data entries.

Stride 2-delta predictor: Stride predictors retain the most
recently seen value along with the difference (stride)
between the most recent and the second most recent values
[13]. Adding this difference to the most recent value yields
the prediction. Stride predictors can therefore predict
sequences of the following pattern:

A;AþB;Aþ 2B;Aþ 3B;Aþ 4B; . . . :

Every time a new value is seen, the difference and the
most recent value in the predictor are updated. To improve
the prediction accuracy, the 2-delta method (ST2D) has been
proposed [43]. It introduces a second stride that is only
updated if the same stride is encountered at least twice in a
row, thus providing some hysteresis before the predictor
switches to a new stride.

Finite context method predictor: The finite context
method predictor (FCMn) [43] computes a hash out of the
n most recently encountered values, where n is referred to
as the order of the predictor. VPC utilizes the select-fold-
shift-xor hash function [39], [40], [42]. During updates, the
predictor puts the new value into its hash table using the
current hash as an index. During predictions, a hash-table
lookup is performed in the hope that the next value will be
equal to the value that followed last time the same sequence
of n previous values (i.e., the same hash) was encountered
[42], [43]. Thus, FCMn predictors can memorize long
arbitrary sequences of values and accurately predict them
when they repeat. This trait makes FCMn predictors ideal
for predicting PCs as well as EDs. Note that the hash table is
shared among the ministreams, making it possible to
communicate information from one ministream to another.

Differential finite context method predictor: The differ-
ential finite context method predictor (DFCMn) [14] works
just like the FCMnpredictor except it predicts and is updated
with differences (strides) between consecutive values rather
than with absolute values. To form the final prediction, the
predicted stride is added to the most recently seen value.
DFCMn predictors are often superior to FCMn predictors
because they warm up faster, can predict never-before-seen
values, and make better use of the hash table.

Global/local last value predictor: The global/local last
value predictor (GLLV) [5] works like the last-value
predictor (i.e., like an LnV predictor with n ¼ 1), with the
exception that each line contains two additional fields: an
index and a counter. The index designates which entry of
the last-value table holds the prediction. The counter
assigns a confidence to this index. Every time a correct
prediction is made, the counter is set to its maximum and
every misprediction decrements it. If the counter is zero and
the indexed value incorrect, the counter is reset to the
maximum and the index is incremented (modulo the table
size) so that a different entry will be checked the next time.
This way, the predictor is able to correlate any ministream
with any other ministream without the need for multiple
comparisons per prediction or update.

3.2 Trace Format

The traces we generated for evaluating the different
compression algorithms consist of pairs of numbers. Each
pair is comprised of a PC and an extended data (ED) field.
The PC field is 32 bits wide and the data field is 64 bits
wide. Thus, our traces have the following format, where the
subscripts indicate bit widths:

PC032;ED064;PC132;ED164;PC232;ED264; . . .:

This formatwas chosen for its simplicity.Weuse 64bits for
the ED fields because this is the nativeword size of theAlpha
system on which we performed our measurements. Thirty-
two bits suffice to represent PCs, especially since we do not
need to store the two least significant bits, which are always
zero because Alphas only support aligned instructions.

4 THE VPC ALGORITHMS

4.1 Prototype

The development of VPC started with a prototype of a
value-predictor-based compression algorithm that only
compresses the extended data and works as follows. The
PC of the current PC/ED pair is copied to the output and is
used to index a set of value predictors to produce 27 (not
necessarily distinct) predictions. The predicted values are
then compared to the ED. If a match is found, the
corresponding predictor identification code is written to
the output using a fixed m-bit encoding. If no prediction is
correct, an m-bit flag is written followed by the unpredict-
able 64-bit extended-data value. Then, the predictors are
updated with the true ED value. The algorithm repeats until
all PC/ED pairs in the trace have been processed.
Decompression is essentially achieved by running the
compression steps in reverse.

This prototype algorithm is ineffective because it does not
compress the PCs and because m is too large. Since it uses
27 predictors plus the flag, five bits are needed, i.e., m ¼ 5.
Moreover, unpredictable ED entries are not compressed. The
prototype’s compression rate cannot exceed a factor of 2.6
because, even assuming that every ED entry is predictable, a
96-bit PC/ED pair (32-bit PC plus 64-bit ED) is merely
compressed down to 37 bits (a 32-bit PC plus a 5-bit code).

4.2 VPC1

VPC1 [5] corrects the shortcomings of the prototype. It
includes a separate bank of 10 predictors to compress the
PCs, bringing the total number of predictors to 37. It uses a
dynamic Huffman encoder [27], [46] to compress the
identification codes. If more than one predictor is correct
simultaneously, VPC1 selects the one with the shortest
Huffman code. Moreover, it compresses the unpredictable
trace entries in the following manner: In case of PCs, only
p bits are written, where p is provided by the user and has
to be large enough to express the largest PC in the trace. In
case of unpredictable ED entries, the flag is followed by the
identification code of the predictor whose prediction is
closest to the ED value in terms of absolute difference.
VPC1 then emits the difference between the predicted value
and the actual value in compressed sign-magnitude format.

VPC1 includes several enhancements to boost the
compression rate. First, it incorporates saturating up/down
counters in the hash table of the FCMn predictors so that
only entries that have proven useless at least twice in a row
can be replaced. Second, it retains only distinct values in all
of its predictors to maximize the number of different
predictions and, therefore, the chance of at least one of them
being correct. Third, it keeps the values in the predictors in
least recently used order. Due to the principle of value
locality, sorting the values from most recent to least recent
ensures that components holding more recent values have a
higher probability of providing a correct prediction. This
increases the compression rate because it allows the
dynamic Huffman encoder to assign shorter identification
codes to the components holding more recent values and to

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 5

use them more often. Fourth, VPC1 initializes the dynamic
Huffman encoder with biased, nonzero frequencies for all
predictors to allow the more sophisticated predictors, which
perform poorly in the beginning because they take longer to
warm up, to stay ahead of the simpler predictors. Biasing
the frequencies guarantees that the most powerful pre-
dictors are used whenever they are correct and the
remaining predictors are only utilized occasionally, result-
ing in shorter Huffman codes and better compression rates.

VPC1 only performs well on hard-to-compress traces [5].
The problem is that its compression rate is limited to a
factor of 48. Since at least one bit is needed to encode a PC
and one bit to encode an extended-data entry and an
uncompressed PC/ED pair requires 32þ 64 ¼ 96 bits, the
maximum compression rate is 96=2 ¼ 48. We found VPC1
to almost reach this theoretical maximum in several cases,
showing that the dynamic Huffman encoder indeed often
uses only one bit to encode a predictor identification code.
Because the PC and ED predictor codes alternate in the
compressed traces and because at most one of the PC
predictors and one of the ED predictors can have a one-bit
identification code at any time, highly compressed VPC1
traces contain long bit strings of all zeros, all ones, or
alternating zeros and ones, depending on the two pre-
dictors’ identification codes. As a result, compressed VPC1
traces can be compressed further.

4.3 VPC2

VPC2 exploits the compressibility in VPC1’s output by
adding a second compression stage. In other words, VPC2
is VPC1 plus GZIP [21]. VPC2 outperforms VPC1 in all
studied cases [5]. More importantly, VPC2 also outperforms
other algorithms, including SEQUITUR, on easy-to-com-
press traces. Unfortunately, it is over 3.5 times slower at
decompressing traces.

4.4 VPC3

Analyzing the performance of VPC2, we noticed that
compressing traces as much as possible with the value
predictors often obfuscates patterns and makes the result-
ing traces less amenable to the second stage compressor. In
fact, we found that compressing less in the first stage can
speed up the algorithm and boost the overall compression
rate at the same time. Hence, we designed VPC3 to optimize
this interaction between the two stages, i.e., instead of
maximizing the performance of each stage individually, we
maximized the overall performance. Thus, VPC3’s value
predictors ended up only compressing the traces by a factor
of between 1.4 to close to six (6.0 being the maximum
possible) before they are sent to the second stage.

VPC3 differs from VPC2 in the following ways: We
found that removing infrequently used predictors decreases
the number of distinct predictor codes and increases the
regularity of the emitted identification codes, which results
in better compression rates despite the concomitant increase
in the number of emitted unpredictable values. As a result,
VPC3 incorporates only 4 instead of 10 PC predictors and
only 10 instead of 27 data predictors. Similarly, we
discovered that abolishing the saturating counters and
updating with nondistinct values decreases the prediction
accuracy somewhat, but greatly accelerates the algorithm.
Moreover, emitting values at byte granularity and, thus,
possibly including unnecessary bits increases the amount of
data transferred from the first to the second stage, but
exposes more patterns and makes them easier to detect for
the second stage, which also operates at byte granularity.

Thus, VPC3 functions exclusively at byte granularity (and
integer multiples thereof), which further simplified and
accelerated the code. Finally, VPC3 does not use a
frequency bias or a dynamic Huffman coder because the
second stage is more effective at compressing the predictor
identification codes. For the same reason, unpredictable
values are no longer compressed in the first stage, which
has the pleasant side effect of eliminating the need for the
number of bits (p) required to express the PCs in the trace.

Note that we investigated many more ideas but ended
up implementing only the ones listed above because they
increase the overall compression rate and accelerate the
algorithm. The following is a summary of some of our
experiments that turned out to be disadvantageous. They
are not included in VPC3.

1. The order in which the predictors are accessed and
prioritized appears to have no noticeable effect on
the performance.

2. Interestingly, biasing the initial use counts of the
predictors seems to always hurt the compression rate.

3. Writing differences rather than absolute values
decreases the compression rate.

4. Larger predictor tables than the ones listed in
Section 5.5 do not significantly improve the
compression rate (on our traces) and have a
negative effect on the memory footprint.

5. Dynamically renaming the predictors such that the
predictor with the highest use count always has an
identification code of “0,” the second highest a code
of “1,” etc., lowers the compression rate.

6. Similarly, decaying the use counts with age, i.e.,
weighing recent behavior more, decreases the
compression rate.

VPC3 converts PC/ED traces into four data streams in
the first stage and then compresses each stream individu-
ally using BZIP2. Note that VPC3’s first stage is so much
faster than VPC2’s that we were able to switch from the
faster GZIP to the better compressing BZIP2 in the second
stage. The four streams are generated as follows: The PC of
the current trace entry is read and compared to the four PC
predictions (Sections 3.1 and 5.5 describe the predictors). If
none of the predictions are correct, the special code of “4”
(one byte) representing the flag is written to the first stream
and the unpredictable four-byte PC is written to the second
stream. If at least one of the PC predictions is correct, a one-
byte predictor identification code (“0,” “1,” “2,” or “3”) is
written to the first stream and nothing is written to the
second stream. If more than one predictor is correct, VPC3
selects the predictor with the highest use count. The
predictors are prioritized to break ties. The ED of the
current trace entry is handled analogously. It is read and
compared to the 10 ED predictions (see Sections 3.1 and
5.5). A one-byte predictor identification code (“0,” “1,” ...,
“9”) is written to the third stream if at least one of the ED
predictions is correct. If none are correct, the special code of
“10” representing the flag is written to the third stream and
the unpredictable eight-byte ED is written to the fourth
stream. Then, all predictors are updated with the true PC or
ED and the algorithm repeats until all trace entries have
been processed. Decompression reverses these steps. Note
that VPC3 does not interleave predictor codes and
unpredictable values in the same stream as VPC2 does.
Rather, the codes and the unpredictable values are kept
separate to improve the effectiveness of the second stage.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

4.5 VPC4

VPC4 is the algorithm that is synthesized by TCgen [6]
when TCgen is instructed to “regenerate” VPC3. The two
algorithms are quite similar, but VPC4 is faster and
compresses better primarily due to the following two
modifications: First, we improved the hash function of the
FCMn and DFCMn predictors and accelerated its computa-
tion. Second, we enhanced the predictor’s update policy.
VPC3 always updates all predictor tables, which makes it
very fast because the tables do not first have to be searched
for a matching entry. VPC2, on the other hand, only updates
the predictors with distinct values, which is much slower,
but increases the prediction accuracy. VPC4’s update policy
combines the benefits of both approaches essentially with-
out their downsides. It only performs an update if the
current value is different from the first entry in the selected
line. This way, only one table entry needs to be checked,
which makes updates fast while, at the same time,
guaranteeing that at least the first two entries in each line
are distinct, which improves the prediction accuracy.

Fig. 1 illustrates VPC4’s operation. The dark arrows mark
the prediction paths, while the light arrows mark the update
paths. The left panel shows how the PC/ED pair 8196/16 is
handled assuming that PC predictor 3 and ED predictor 0
make correct predictions. The right panel shows the
compression of the next PC/ED pair in the trace. This time,
none of the ED predictions are correct and the unpredictable
ED value of 385 is written to the fourth stream.

5 EVALUATION METHODS

This section gives information about the systemand compiler
(Section 5.1), the timing measurements (Section 5.2), and the
traces (Section 5.3) we used for our measurements and
details the predictor configurations in VPC1/2 (Section 5.4)
and VPC3/4 (Section 5.5).

5.1 System and Compiler

Weperformedallmeasurements for this studyonadedicated
64-bit CS20 system with two 833MHz 21264B Alpha CPUs
[26]. Only one of the processors was used. Each CPU has
separate, two-way set-associative, 64kB L1 caches and an

off-chip, unified, direct-mapped 4MBL2 cache. The system is
equipped with 1GB of main memory. The Seagate Cheetah
10K.6Ultra320 SCSIharddrivehas a capacity of 73GB, 8MBof
build-in cache, and spins at 10,000rpm. For maximum disk
performance,we used the advanced file system (AdvFS). The
operating system is Tru64UNIXV5.1B. Tomake the running-
time comparisons as fair as possible, we compiled all
compression algorithms with Compaq’s C compiler V6.3-
025 and the same optimization flags (-O3 -arch host).

5.2 Timing Measurements

All timing measurements in this paper refer to the sum of
the user and the system time reported by the UNIX shell
command time. In other words, we report the CPU time and
ignore any idle time such as waiting for disk operations. We
coded all compression and decompression algorithms so
that they read traces from the hard disk and write traces
back to the hard disk. While these disk operations are
subject to caching, any resulting effect should be minimal
given the large sizes of our traces.

5.3 Traces

We used all integer and all but four of the floating-point
programs from the SPECcpu2000 benchmark suite [22] to
generate the traces for this study. We had to exclude the
four Fortran 90 programs due to the lack of a compiler. The
C programs were compiled with Compaq’s C compiler
V6.3-025 using “-O3 -arch host -non_shared” plus feedback
optimization. The C++ and Fortran 77 programs were
compiled with g++/g77 V3.3 using “-O3 -static.” We used
statically linked binaries to include the instructions from
library functions in our traces. Only system-call code is not
captured. We used the binary instrumentation tool-kit
ATOM [11], [44] to generate traces from complete runs
with the SPEC-provided test inputs. Two programs, eon
and vpr, require multiple runs and perlbmk executes itself
recursively. For each of these programs, we concatenated
the subtraces to form a single trace.

We generated three types of traces from the 22 programs
to evaluate the various compression algorithms. The first
type captures the PC and the effective address of each
executed store instruction. The second type contains the PC

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 7

Fig. 1. Example of the operation of the VPC4 compression algorithm.

and the effective address of all loads and stores that miss in
a simulated 16kB, direct-mapped, 64-byte line, write-
allocate data cache. The third type of trace holds the PC
and the loaded value of every executed load instruction that
is not a prefetch, a NOP, or a load immediate.

We selected the store-effective-address traces because,
historically, many trace-compression approaches have
focused on address traces. Such traces are typically
relatively easy to compress. We picked the cache-miss-
address traces because the simulated cache acts as a filter
and only lets some of the memory accesses through, which
we expect to distort the access patterns, making the traces
harder to compress. Finally, we chose the load-value traces
because load values span large ranges and include floating-
point numbers, addresses, integer numbers, bitmasks, etc.,
which makes them difficult to compress.

Table 1 shows the program name, the programming
language (lang), the type (integer or floating-point), and the
uncompressed size (in megabytes) of the three traces for
each SPECcpu2000 program. We had to exclude all traces
that are larger than 12 gigabytes because they would have
exceeded the available disk space. The corresponding
entries in Table 1 are crossed out. Note that we found no
correlation between the length and the compressibility of
our traces. Hence, we do not believe that omitting the
longest traces distorts our results.

5.4 VPC1 and VPC2 Predictor Configurations

This section lists the sizes and parameters of the predictors
used in VPC1/2. They are the result of experimentation
with the load-value traces to balance the speed and the
compression rate as well as the fact that we wanted to
maximize the sharing of predictor tables.

VPC1/2 makes 10 PC predictions using an ST2D, FCM6,
DFCM4ab, DFCM5abcd, and a DFCM6ab predictor, where
“a,” “b,” “c,” and “d” refer to the up-to-four most recent
values in each line of the hash table. VPC1/2 further makes

27 ED predictions using an L6V, ST2D, GLLV, FCM1,
FCM2, FCM3, FCM6, DFCM1abcd, DFCM2abcd, DFCM3ab,
DFCM4, and a DFCM6abcd predictor.

Since no index is available for the PC predictors, all PC
predictors areglobalpredictors.Accordingly, their first levels
are very small. The ST2D predictor requires only 24 bytes of
storage: eight bytes for the last value plus 16 bytes for the two
stride fields. The FCM6 predictor requires six two-byte fields
to store six hash values in the first level. The second level
requires 4.5MB to hold 524,288 lines of nine bytes each (eight
bytes for the value and one byte for the saturating counter).
All DFCMn predictors use a shared first-level table, which
requires six two-byte fields for retaining hash values. The
most recent value is obtained from the ST2D predictor. The
DFCM4ab has two second-level tables of one megabyte each
(131,072 lines), the DFCM5abcd has four tables of two
megabytes each (262,144 lines), and the DFCM6ab has two
tables of fourmegabytes each (524,288 lines). Since we do not
use saturating counters in the DFCMn predictors, each
second-level entry requires eight bytes to hold a 64-bit value.
Overall, 22.5megabytes are allocated for the 10PCpredictors.

The predictors for the extended data are local and use the
PC modulo the table size as an index into the first-level
table, which allows them to store information on a
ministream basis. The L6V predictor uses six tables of
128kB (16,384 lines). The ST2D predictor requires 256kB of
table space for the strides (16,384 lines). The last-value table
is shared with the L6V predictor. The FCMn predictors
share six first-level, 32kB tables, each of which holds 16,384
two-byte hash values. Similarly, the DFCMn predictors
share a set of six 32kB first-level tables. The second-level
table sizes are as follows: The FCM1 uses a 144kB table
(16,384 lines holding an eight-byte value plus a one-byte
counter), the FCM2 uses a 288kB table (32,768 lines), the
FCM3 has a 576kB table (65,536 lines), and the FCM6
requires 4.5MB (524,288 lines). The DFCM1abcd has four
tables of 128kB (16,384 lines holding an eight-byte value),
the DFCM2abcd uses four 256kB tables (32,768 lines), the
DFCM3ab requires two 512kB tables (65,536 lines), the
DFCM4 has one 1MB table (131,072 lines), and the
DFCM6abcd needs four 4MB tables (524,288 lines). Finally,
the GLLV predictor uses 128kB of storage (16,384 lines
containing a four-byte index and a four-byte counter).
Together, the 27 value predictors use 26.5MB of table space.

Overall, 49 megabytes are allocated for predictor tables.
Including padding, code, libraries, etc., VPC1/2 requires
88MBofmemory to runas reported by theUnix commandps.

5.5 VPC3 and VPC4 Predictor Configurations

This section lists the parameters and table sizes of the
predictors used in VPC3/4. These configurations have been
experimentally determined to yield a good compression
rate and speed on the gcc load-value trace.

VPC3 uses an FCM1ab and an FCM3ab for predicting
PCs, which provide a total of four predictions. For the
extended data, it uses an FCM1ab, DFCM1ab, DFCM3ab,
and an L4V predictor, providing a total of 10 predictions.

The four PC predictors are global and do not need an
index. The FCM3ab predictor requires three four-byte
entries to store three hash values in the first level. These
entries are shared with the FCM1ab predictor. The second-
level of the FCM1ab (the hash table) has 131,072 lines, each
of which holds two four-byte PCs (1MB). The FCM3ab’s
second-level table is four times larger (4MB). Overall, five
megabytes are allocated to the PC predictors.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

TABLE 1
Uncompressed Sizes of the Studied Traces

The predictors for the extended data use the PC modulo
the table size as an index. To enable maximum sharing, all
first-level tables have the same number of lines (65,536). The
L4V predictor retains four eight-byte values per line (2MB).
The FCM1ab predictor stores one four-byte hash value per
line in the first level (256kB) and two eight-byte values in
each of the 524,288 lines in its second-level table (8MB). The
DFCM1ab and DFCM3ab predictors share a first-level table,
which stores three four-byte hash values per line (768kB).
The last value needed to compute the final prediction is
obtained from the L4V predictor. The second-level table of
the DFCM1ab has 131,072 lines, each holding two eight-byte
values (2MB). The DFCM3ab’s second-level table is four
times as large (8MB). The extended data predictors use a
total of 21 megabytes of table space.

Overall, 26 megabytes are allocated for predictor tables
in VPC3. Including the code, stack, etc., it requires 27MB of
memory to run according to ps. VPC4 uses the same
predictors and the same tables sizes as VPC3 with one
exception. Due to a restriction of TCgen, the second-level
tables of the FCM1ab and DFCM1ab have to have the same
number of lines. Hence, VPC4’s FCM1ab predictor for the
extended data has a hash table with only 131,072 lines,
resulting in a size of 2MB. Overall, VPC4 allocates 20MB of
table space and has a 21MB memory footprint.

6 RESULTS

Section 6.1 discusses the performance of the four VPC
algorithms. Section 6.2 compares the compression rate,
Section 6.3 the decompression speed, and Section 6.4 the
compression speed of BZIP2, MACHE, PDATS II, SBC,
SEQUITUR, and VPC4. Note that we added a second
compression stage using BZIP2 to each of these algorithms
except BZIP2 itself. Section 6.5 investigates GZIP as an
alternative second-stage compressor.

6.1 VPC Comparison

Table 2 lists the geometric-mean compression rate (c.rate),
decompression time (d.time), and compression time (c.time)

of the four VPC algorithms on our three types of traces. The
results for VPC2, VPC3, and VPC4 include the second stage.
The compression and decompression times are in seconds.
Higher numbers are better for the compression rates while
lower numbers are better for the compression and decom-
pression times.

For the reasons explained in Section 4.2, VPC1 com-
presses relatively poorly and is slow. Adding a GZIP
compression stage (VPC2) significantly increases the com-
pression rate, especially on the easy-to-compress store
address traces. At the same time, the extra stage does not
increase the compression and decompression times much.
Nevertheless, VPC2 is the slowest of the VPC algorithms.

The changes we made to VPC3 (see Section 4.4) eliminate
this weakness. It decompresses four to five times faster than
VPC2 and compresses about twice as fast while, at the same
time, boosting the compression rate by 30 to 100 percent.
Clearly, it is more fruitful to use the value predictors to
transform the traces rather than to compress them. Finally,
the enhanced hash function and update policy of VPC4
further increase the compression rate and decrease the
compression and decompression times, making VPC4 the
fastest and most powerful of the VPC algorithms.

6.2 Compression Rate

Fig. 2 depicts the geometric-mean compression rates of six
algorithms from the literature on our three types of traces
normalized to VPC4 (higher numbers are better). For each
trace type, the algorithms are sorted from left to right by
increasing compression rate. The darker section at the

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 9

TABLE 2
Geometric-Mean Performance of the VPC Algorithms

Fig. 2. Geometric-mean compression rates normalized to VPC4.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

TABLE 3
Absolute Compression Rates

bottom of each bar indicates the compression rate after the
first stage. The total bar height represents the overall
compression rate, including the second stage.

VPC4 delivers the best geometric-mean compression rate
on each of the three trace types. SBC, the second best
performer, comes within 0.2 percet of VPC4 on the cache-
miss traces but only reaches slightly over half of VPC4’s
compression rate on the other two types of traces. It appears
that the cache-miss traces contain patterns that are equally
exploitable with SBC and VPC4, while the other two types
of traces include important patterns that only VPC4 can
take advantage of. This makes sense as store addresses
often correlate with the previous addresses produced by the
same store. Similarly, load values correlate with the
previously fetched values of the same load instruction.
Since the ministreams expose these correlations, VPC4 can
exploit them. Filtering out some of the values, as is done in
the cache-miss traces, breaks many of these correlations and
reduces VPC4’s advantage.

SEQUITUR is the next best performer, except on the store-
address traces, where PDATS II and MACHE outperform it.
This is probably because these two algorithmswere designed
for address traces. SEQUITUR, on the other hand, does not
work well on long strided sequences, which are common in
such traces. MACHE and BZIP2’s compression rates are in
the lower half, but they both outperform PDATS II on the
load-value traces.

Looking at the geometric-mean compression rate of the
first stage only, we see that SEQUITUR is dominant,
followed by SBC. Nevertheless, high initial compression
rates do not guarantee good overall performance. In fact,
with the exception of MACHE on the load-value traces (and
BZIP2, which has no first stage), all algorithms have a
higher ratio of first-stage to overall compression rate than
VPC4. VPC4’s first stage provides less than 10 percent of the
compression rate on all three types of traces (only
0.7 percent on the store-address traces). Note that the
second stage (BZIP2) boosts the compression rate by more
than a factor of two in all cases.

Table 3 shows the absolute compression rate achieved by
the six algorithms on each individual trace. Only the total

compression rates over both stages are listed.Wehighlighted
the highest compression rate for each trace in bold print. The
table further includes the harmonic, geometric, and arith-
metic mean of the compression rates for each trace type.

We see that no algorithm is the best for all traces.
However, VPC4 yields the highest compression rate on all
load-value traces. This is most likely because many of the
value predictors VPC4 uses were specifically designed to
predict load values. Moreover, VPC4’s predictor configura-
tion was tuned using one of the load-value traces (gcc).

On the cache-miss traces, SBC outperforms all other
algorithms on six traces, SEQUITUR on two traces, and
VPC4 on 10 traces. BZIP2 provides the best compression
rate on four traces, even though it is the only compressor
that has no knowledge of our trace format and all the other
algorithms use BZIP2 in their second stage. On sixtrack,
SEQUITUR outperforms VPC4 by a factor of 5.5, which is
the largest such factor we found. The cache-miss trace bzip2
is the least compressible trace in our suite. No algorithm
compresses it by more than a factor of 5.8.

On the store-address traces, which are far more
compressible than the other two types of traces, VPC4
yields the highest compression rate on 12 traces, SEQUITUR
and SBC on three traces each, and PDATS II on one trace.
VPC4 surpasses the other algorithms by a factor of 9.7 on
art, which it compresses by a factor 77,161, the highest
compression rate we observed.

Overall, VPC4 provides the best compression rate on
two-thirds of our traces and delivers the highest arithmetic,
geometric, and harmonic-mean compression rates on the
three types of traces, though SBC comes close on the cache-
miss traces.

6.3 Decompression Time

Fig. 3 shows the geometric-mean decompression time of the
six algorithms on our three types of traces normalized to
VPC4 (lower numbers are better). For each trace type, the
algorithms are sorted from left to right by decreasing
decompression time. The darker section at the bottom of
each bar represents the time spent in the first stage. The
lighter top portion of each bar depicts the time spent in the

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 11

Fig. 3. Geometric-mean decompression time normalized to VPC4.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

TABLE 4
Absolute Decompression Time in Seconds

second stage. The total bar height corresponds to the overall
decompression time. Note that, during decompression, the
second stage is invoked first.

VPC4 provides the fastest mean decompression time on
our traces but SBC and SEQUITUR are close seconds. They
are only 5 to 36 percent slower. The remaining three
algorithms are at least 60 percent slower. SEQUITUR is
faster on the load-value traces than SBC. The situation is
reversed on the other two trace types. The majority of the
algorithms that use BZIP2 in their second stage are faster
than BZIP2 alone.

Looking at the two stages separately,we find that the three
fastest decompressors, VPC4, SBC, and SEQUITUR, spend
almost equal amounts of time in the two stages, except on the
store-address traces, where the second stage (BZIP2)
accounts for about a third of the total decompression time.
MACHE and PDATS II, on the other hand, typically spend
more time in the second stage than in the first.

Table 4 gives the absolute decompression time in
seconds of the six algorithms on each individual trace.
Only the total decompression time over both stages is listed.
We highlighted the shortest decompression time for each
trace in bold print. The table further includes the harmonic,
geometric, and arithmetic mean of the decompression times
for each trace type.

SEQUITUR, VPC4, and SBC deliver the fastest decom-
pression times on all traces. On the store-address traces,
SEQUITUR is fastest on eight and VPC4 on 11 traces. On the
cache-miss traces, SBC is fastest on eight and VPC4 and
SEQUITUR on seven traces each. On average (any of the
three means), VPC4 outperforms SBC, but SEQUITUR has
the best overall harmonic-mean decompression time. On
the load-value traces, SBC is fastest on one, SEQUITUR on
five, and VPC4 on eight traces. Again, SEQUITUR outper-
forms VPC4 in the harmonic mean.

VPC4 is maximally 68 percent faster than the other
algorithms on the load-value trace swim. SEQUITUR is
125 percent faster than VPC4 on the cache-miss trace
sixtrack. In other words, the range from one extreme to the
other is relatively narrow, meaning that VPC4’s decom-
pression time and that of the fastest other algorithm are
fairly close on all traces.

6.4 Compression Time

Fig. 4 shows the geometric-mean compression time of the
six algorithms on our three types of traces normalized to
VPC4 (lower numbers are better). Again, the algorithms are
sorted from left to right by decreasing time. The darker
section at the bottom of each bar represents the time spent
in the first stage and the lighter top portion depicts the time
spent in the second stage. The total bar height corresponds
to the overall compression time. On the cache-miss traces,
SBC’s first stage takes 13.9 and the second stage 2.3 times as
long as VPC4’s total compression time.

VPC4’s geometric-mean compression time is over three
times shorter than that of the other algorithms we
evaluated. This is particularly surprising as VPC4 also
achieves the highest mean compression rates (Section 6.2).
Typically, one would expect longer computation times to
result in higher compression rates, but not the other way
around. SBC, the otherwise best non-VPC algorithm, takes
9.5 to 16.2 times as long as VPC4 to compress the traces. The
SBC authors verified that the current version of their
algorithm has not been optimized to provide fast compres-
sion. SEQUITUR is 3.6 to 7.7 times slower than VPC4.

SEQUITUR’s algorithm is quite asymmetric, i.e., con-
structing the grammar (compression) is a much slower
process than recursively traversing it (decompression). The
average (geometric mean for the three trace types)
compression over decompression time ratio for SEQUITUR
is 8.8 to 17.7. For BZIP2, it is 5.9 to 11.5, for MACHE, 4.0 to
8.7, for PDATS II, 3.7 to 10.6, and, for SBC 19.3, to 43.4.
VPC4 is the most symmetric of the six algorithms, which
explains its fast compression speed. It basically performs
the same operations during compression and decompres-
sion. The only asymmetry in VPC4 is that, during
compression, it needs to check each predictor for a match,
which makes compression 2.6 to 3.1 times slower than
decompression.

Looking at the time spent in the two stages, we notice a
striking difference between SBC and SEQUITUR on the one
hand and VPC4 on the other hand. Both SBC and
SEQUITUR spend most of the total compression time in
the first stage. In VPC4, the first stage only contributes 18 to
22 percent of the compression time, meaning that the

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 13

Fig. 4. Geometric-mean compression time normalized to VPC4.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

TABLE 5
Absolute Compression Time in Seconds

separation of the traces into the four streams happens very
quickly. Only SEQUITUR spends less time in the second
stage than VPC4 (on the cache-miss and the load-value
traces). All other algorithms (and SEQUITUR on the store-
address traces) spend more time in BZIP2 than VPC4 does.
This is the result of our efforts to tune VPC4’s first stage to
convert the traces into a very amenable form for the second
stage (see Sections 4.4 and 4.5).

Table 5 lists the absolute compression time in seconds for
the six algorithms on each individual trace. Only the total
compression time over both stages is included. We high-
lighted the shortest compression time for each trace in bold
print. The table also shows the harmonic, geometric, and the
arithmeticmean of the compression times for each trace type.

VPC4 compresses 53 of the 55 traces faster than the other
five algorithms and is also the fastest compressor on
average. MACHE is 13 percent faster on the mgrid cache-
miss trace and PDATS II is 29 percent faster on the vpr
cache-miss trace. VPC4 compresses the store-address trace
art 1,569 percent faster than the other algorithms do.

6.5 Second Stage Compressor

Table 6 shows the geometric-mean compression rate,
decompression time, and compression time of SBC and
VPC4, the two best-performing trace compressors in the
previous sections, over our three trace types when GZIP is
used as the second stage instead of BZIP2. We use GZIP
version 1.3.3 with the “–best” option.

As the results show, VPC4 roughly retains its perfor-
mance advantage with the GZIP stage. It is faster and
delivers a higher mean compression rate than SBC except
on the store-address traces, which SBC with GZIP com-
presses 1.5 percent more than VPC4 with GZIP. Comparing
the VPC4 results from Table 6 with those from Table 2, we
find that VPC4 compresses better and faster with BZIP2, but
decompresses faster with GZIP.

7 SUMMARY AND CONCLUSIONS

This paper presents the four VPC trace-compression algo-
rithms, all of which employ value predictors to compress
program traces that comprisePCsandother information such
as register values or memory addresses. VPC4, our most
sophisticated approach, converts traces into streams that are
more compressible than the original trace and that can be
compressed and decompressed faster. For example, it
compresses SPECcpu2000 traces of store-instruction PCs
and effective addresses, traces of thePCs and the addresses of
loads and stores that miss in a simulated cache, and traces of
load instruction PCs and load values better and compresses
and decompresses them more quickly than SEQUITUR,
BZIP2, MACHE, SBC, and PDATS II. Based on these results,
we believe VPC4 to be a good choice for trace databases,
where good compression rates are paramount, as well as
trace-based research and teaching environments, where a
fast decompression speed is as essential as a good
compression rate.

VPC4 features a single-pass linear-time algorithm with a
fixed memory requirement. It is automatically synthesized
out of a simple user-provided description, making it easy to
adapt VPC4 to other trace formats and to tune it.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under Grant Nos. 0208567 and 0312966. The
authors would like to thank Metha Jeeradit for his
contributions to VPC1 and the anonymous reviewers for
their helpful feedback.

REFERENCES

[1] J. Ahola, “Compressing Address Traces with RECET,” Proc. 2001
IEEE Int’l Workshop Workload Characterization, pp. 120-126, Dec.
2001.

[2] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, C.
Verbrugge, and Q. Wang, “STEP: A Framework for the Efficient
Encoding of General Trace Data,” Proc. Workshop Program Analysis
for Software Tools and Eng., pp. 27-34, Nov. 2002.

[3] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless Data
Compression Algorithm,” Digital SRC Research Report 124, May
1994.

[4] M. Burtscher, “VPC3: A Fast and Effective Trace-Compression
Algorithm,” Proc. Joint Int’l Conf. Measurement and Modeling of
Computer Systems, pp. 167-176, June 2004.

[5] M. Burtscher and M. Jeeradit, “Compressing Extended Program
Traces Using Value Predictors,” Proc. Int’l Conf. Parallel Architec-
tures and Compilation Techniques, pp. 159-169, Sept. 2003.

[6] M. Burtscher and N.B. Sam, “Automatic Generation of High-
Performance Trace Compressors,” Proc. 2005 Int’l Symp. Code
Generation and Optimization, pp. 229-240, Mar. 2005.

[7] M. Burtscher and B.G. Zorn, “Exploring Last n Value Prediction,”
Proc. Int’l Conf. Parallel Architectures and Compilation Techniques,
pp. 66-76, Oct. 1999.

[8] M. Burtscher and B.G. Zorn, “Hybrid Load-Value Predictors,”
IEEE Trans. Computers, vol. 51, no. 7, pp. 759-774, July 2002.

[9] I.K. Chen, J.T. Coffey, and T.N. Mudge, “Analysis of Branch
Prediction via Data Compression,” Proc. Seventh Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 128-137, Oct. 1996.

[10] E.N. Elnozahy, “Address Trace Compression through Loop
Detection and Reduction,” Proc. Int’l Conf. Measurement and
Modeling of Computer Systems, pp. 214-215, May 1999.

[11] A. Eustace and A. Srivastava, “ATOM: A Flexible Interface for
Building High Performance Program Analysis Tools,” WRL
Technical Note TN-44, Digital Western Research Laboratory, Palo
Alto, Calif., July 1994.

[12] E. Federovsky, M. Feder, and S. Weiss, “Branch Prediction Based
on Universal Data Compression Algorithms,” Proc. 25th Int’l
Symp. Computer Architecture, pp. 62-72, June 1998.

[13] F. Gabbay, “Speculative Execution Based on Value Prediction,”
Electrical Eng. Dept. Technical Report #1080, Technion-Israel Inst.
of Technology, Nov. 1996.

[14] B. Goeman, H. Vandierendonck, and K. Bosschere, “Differential
FCM: Increasing Value Prediction Accuracy by Improving Table
Usage Efficiency,” Proc. Seventh Int’l Symp. High Performance
Computer Architecture, pp. 207-216, Jan. 2001.

[15] O. Hammami, “Taking into Account Access Pattern Irregularity
when Compressing Address Traces,” Proc. Southeastcon, pp. 74-77,
Mar. 1995.

[16] A. Hamou-Lhadj and T.C. Lethbridge, “Compression Techniques
to Simplify the Analysis of Large Execution Traces,” Proc. 10th
Int’l Workshop Program Comprehension, pp. 159-168, June 2002.

[17] http://sequence.rutgers.edu/sequitur/sequitur.cc, 2005.
[18] http://sources.redhat.com/bzip2/, 2005.
[19] http://www.cygwin.com/, 2005.
[20] http://www.ece.uah.edu/lacasa/sbc/sbc.html, 2005.
[21] http://www.gzip.org/, 2005.
[22] http://www.spec.org/osg/cpu2000/, 2005.
[23] E.E. Johnson, “PDATS II: Improved Compression of Address

Traces,” Proc. Int’l Performance, Computing, and Comm. Conf., pp. 72-
78, Feb. 1999.

BURTSCHER ET AL.: THE VPC TRACE-COMPRESSION ALGORITHMS 15

TABLE 6
Geometric-Mean Performance of SBC and VPC4 with GZIP

[24] E.E. Johnson and J. Ha, “PDATS: Lossless Address Trace
Compression for Reducing File Size and Access Time,” Proc. IEEE
Int’l Phoenix Conf. Computers and Comm., pp. 213-219, Apr. 1994.

[25] E.E. Johnson, J. Ha, and M.B. Zaidi, “Lossless Trace Compres-
sion,” IEEE Trans. Computers, vol. 50, no. 2, pp. 158-173, Feb. 2001.

[26] R.E. Kessler, E.J. McLellan, and D.A. Webb, “The Alpha 21264
Microprocessor Architecture,” Proc. Int’l Conf. Computer Design,
pp. 90-95, Oct. 1998.

[27] D.E. Knuth, “Dynamic Huffman Coding,” J. Algorithms, vol. 6,
pp. 163-180, 1985.

[28] J.R. Larus, “Abstract Execution: A Technique for Efficiently
Tracing Programs,” Software-Practice and Experience, vol. 20,
no. 12, pp. 1241-1258, Dec. 1990.

[29] J.R. Larus, “Whole Program Paths,” Proc. Conf. Programming
Language Design and Implementation, pp. 259-269, May 1999.

[30] M.H. Lipasti and J.P. Shen, “Exceeding the Dataflow Limit via
Value Prediction,” Proc. 29th Int’l Symp. Microarchitecture, pp. 226-
237, Dec. 1996.

[31] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen, “Value Locality and
Load Value Prediction,” Proc. Seventh Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 138-
147, Oct. 1996.

[32] Y. Luo and L.K. John, “Locality-Based Online Trace Compres-
sion,” IEEE Trans. Computers, vol. 53, no. 6, pp. 723-731, June 2004.

[33] A. Milenkovic and M. Milenkovic, “Stream-Based Trace Compres-
sion,” Computer Architecture Letters, vol. 2, Sept. 2003.

[34] A. Milenkovic and M. Milenkovic, “Exploiting Streams in
Instruction and Data Address Trace Compression,” Proc. Sixth
Ann. Workshop Workload Characterization, pp. 99-107, Oct. 2003.

[35] C.G. Nevill-Manning and I.H. Witten, “Linear-Time, Incremental
Hierarchy Interference for Compression,” Proc. Data Compression
Conf., pp. 3-11, Mar. 1997.

[36] C.G. Nevill-Manning and I.H. Witten, “Identifying Hierarchical
Structure in Sequences: A Linear-Time Algorithm,” J. Artificial
Intelligence Research, vol. 7, pp. 67-82, Sept. 1997.

[37] C.G. Nevill-Manning and I.H. Witten, “Compression and Ex-
planation Using Hierarchical Grammars,” The Computer J., vol. 40,
pp. 103-116, 1997.

[38] A.R. Pleszkun, “Techniques for Compressing Program Address
Traces,” Proc. 27th Ann. IEEE/ACM Int’l Symp. Microarchitecture,
pp. 32-40, Nov. 1994.

[39] G. Reinman and B. Calder, “Predictive Techniques for Aggressive
Load Speculation,” Proc. 31st Int’l Symp. Microarchitecture, pp. 127-
137, Dec. 1998.

[40] B. Rychlik, J.W. Faistl, B.P. Krug, and J.P. Shen, “Efficacy and
Performance Impact of Value Prediction,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 148-154, Oct. 1998.

[41] A.D. Samples, “Mache: No-Loss Trace Compaction,” Proc. Int’l
Conf. Measurement and Modeling of Computer Systems, vol. 17, no. 1,
pp. 89-97, Apr. 1989.

[42] Y. Sazeides and J.E. Smith, “Implementations of Context Based
Value Predictors,” Technical Report ECE-97-8, Univ. of Wiscon-
sin-Madison, Dec. 1997.

[43] Y. Sazeides and J.E. Smith, “The Predictability of Data Values,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 248-258, Dec. 1997.

[44] A. Srivastava and A. Eustace, “ATOM: A System for Building
Customized Program Analysis Tools,” Proc. Conf. Programming
Language Design and Implementation, pp. 196-205, June 1994.

[45] D. Tullsen and J. Seng, “Storageless Value Prediction Using Prior
Register Values,” Proc. 26th Int’l Symp. Computer Architecture,
pp. 270-279, May 1999.

[46] J.S. Vitter, “Design and Analysis of Dynamic Huffman Codes,”
J. ACM, vol. 34, no. 4, pp. 825-845, Oct. 1987.

[47] K. Wang and M. Franklin, “Highly Accurate Data Value
Prediction Using Hybrid Predictors,” Proc. 30th Int’l Symp.
Microarchitecture, pp. 281-290, Dec. 1997.

[48] T.A. Welch, “A Technique for High-Performance Data Compres-
sion,” Computer, pp. 8-19, June 1984.

[49] Y. Zhang and R. Gupta, “Timestamped Whole Program Path
Representation and Its Applications,” Proc. Conf. Programming
Language Design and Implementation, pp. 180-190, June 2001.

[50] J. Ziv and A. Lempel, “A Universal Algorithm for Data
Compression,” IEEE Trans. Information Theory, vol. 23, no. 3,
pp. 337-343, May 1977.

Martin Burtscher received the combined BS/
MS degree in computer science from the Swiss
Federal Institute of Technology (ETH) Zurich in
1996 and the PhD degree in computer science
from the University of Colorado at Boulder in
2000. He is an assistant professor in the School
of Electrical and Computer Engineering at
Cornell University, where he leads the High-
Performance Microprocessor Systems Group.
His current research focuses on hardware-

based prefetching, trace compression, self-tuning hardware, MPI
libraries, value-based compiler optimizations, energy and complexity
efficient architectures, and brain injury simulation. He is a member of the
IEEE, the IEEE Computer Society, and the ACM.

Ilya Ganusov received the Electronics Engineer
degree from Ivanovo State Power University,
Russian Federation, in 2001 and the MS degree
in electrical and computer engineering from
Cornell University in 2005. He is currently a
PhD candidate in electrical and computer
engineering at Cornell University. His research
interests focus on high-performance micropro-
cessor architectures, spanning prediction and
speculation, prefetching techniques, multi-

threading, and compiler technology. He is a student member of the
IEEE and the ACM.

Sandra J. Jackson received the BS degree in
computer science from Cornell University in
1999. She is an MS/PhD student in electrical
and computer engineering at Cornell University.
Her research interests include genetic algo-
rithms, value prediction, and asynchronous VLSI.

Jian Ke received the BS degree in physics from
the University of Science and Technology of
China in 1995. He is a PhD candidate in the
School of Electrical and Computer Engineering
at Cornell University. His research interests are
in parallel and distributed computing systems
and high-performance computer architectures.

Paruj Ratanaworabhan received the BEng and
MEng degrees in electrical engineering from
Kasetsart University and Cornell University,
respectively. He joined the PhD program in
computer engineering at the Georgia Institute of
Technology in the fall of 2002. His research
focus then was on microprocessor verification.
After a year at Georgia Tech, he returned to
Cornell University. Since then, his research
focus has been on value prediction and its

applications to compiler optimization.

Nana B. Sam received the BSc degree in
electrical and electronic engineering from the
University of Science and Technology, Ghana,
in 2000 and the MS degree in electrical and
computer engineering from Cornell University in
2003. She is a PhD student in electrical and
computer engineering at Cornell University and
is currently an intern at the IBM T.J. Watson
Research Center. Her research interests include
energy-aware microprocessor design and math-

ematical modeling for design complexity analyses. She is a student
member of the IEEE and the IEEE Computer Society.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

