
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Indigo3: A Parallel Graph Analytics Benchmark Suite for
Exploring Implementation Styles and Common Bugs

YIQIAN LIU, Texas State University, USA
NOUSHIN AZAMI, Texas State University, USA
AVERY R VANAUSDAL, Texas State University, USA
MARTIN BURTSCHER, Texas State University, USA

Graph analytics codes are widely used and tend to exhibit input-dependent behavior, making them particularly
interesting for software verification and validation. This paper presents Indigo3, a labeled benchmark suite
based on 7 graph algorithms that are implemented in different styles, including versions with deliberately
planted bugs. We systematically combine 13 sets of implementation styles and 15 common bug types to create
the 41,790 CUDA, OpenMP, and parallel C programs in the suite. Each code is labeled with the styles and bugs
it incorporates. We used 4 subsets of Indigo3 to test 5 program-verification tools. Our results show that the
tools perform quite differently across the bug types and implementation styles, have distinct strengths and
weaknesses, and generally struggle with graph codes. We discuss the styles and bugs that tend to be the most
challenging as well as the programming patterns that yield false positives.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Computing
methodologies→ Parallel computing methodologies; Parallel algorithms.

Additional Key Words and Phrases: Benchmark-suite design, bug insertion, software verification, graph
analytics, parallel computing

ACM Reference Format:
Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher. 2024. Indigo3: A Parallel Graph
Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs. ACM Trans. Parallel
Comput. 1, 1 (May 2024), 30 pages. https://doi.org/10.1145/3665251

1 INTRODUCTION
With the rise of social networks, recommender systems, GPS navigators, and data science, graph
algorithms for computing communities, centrality, shortest paths, frequent motifs, and so on have
become an important workload. Many of these algorithms exhibit irregular behavior, meaning
their control flow and memory-access patterns are data dependent and tend to change during
program execution [22]. Control-flow irregularity typically stems from variable-iteration loops, and
memory-access irregularity usually comes from pointer-chasing operations.

Such behavior makes it challenging for verification tools to check program correctness, especially
since the observed behavior for one input or time slice may not be representative of the behavior
of the same code for a different input or time slice [21]. Parallelism often exacerbates the problem
as the relative timing of the threads can change from run to run.

Authors’ addresses: Yiqian Liu, y_l120@txstate.edu, Texas State University, 601 University Drive, San Marcos, TX, USA,
78666; Noushin Azami, Texas State University, 601 University Drive, San Marcos, USA, noushin.azami@txstate.edu; Avery
R VanAusdal, Texas State University, 601 University Drive, San Marcos, USA, arv107@txstate.edu; Martin Burtscher, Texas
State University, 601 University Drive, San Marcos, USA, burtscher@txstate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2329-4949/2024/5-ART $15.00
https://doi.org/10.1145/3665251

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1145/3665251
https://doi.org/10.1145/3665251

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

To make things worse, irregularity creates opportunities for implementing the same algorithm in
many different ways. For example, we have written a connected-components (CC) algorithm using
hundreds of different combinations of parallelization and implementation styles (168 CUDA versions,
36 OpenMP versions, and 36 C-threading versions) [45]. The large number of implementation
styles adds yet another dimension of complexity to the program verification problem. In fact, the
community possesses little understanding of how the many possible ways of implementing an
irregular algorithm affect program verification.
Several widely-used benchmark suites with parallel implementations of irregular graph algo-

rithms exist, including Lonestar [38] with 14 parallel implementations of 11 graph algorithms and
Gardenia [69], an extended version of GAP [13], with 126 parallel implementations of 14 graph
algorithms. These and similar suites include a range of interesting algorithms and inputs to study.
However, none of them are designed to provide a large variety of each algorithm, nor do they
include enough inputs to elicit the many different irregular behaviors needed to thoroughly evaluate
the effectiveness of verification tools.

Moreover, since these suites were designed for performance measurements, they do not include
bugs to help with designing and testing program verification tools. Only a few suites contain
defective codes, such as DataRaceBench [43]. Hence, verification developers typically run their
tools on existing open-source code bases [36]. This approach presents several challenges. First, it
requires manual code inspection to verify any reported bugs. Second, it does not help with true or
false negatives. Third, selecting a suitable set of open-source codes and installing them tends to
be time consuming. Fourth, such codes naturally lack documentation of the bugs they contain. In
some cases, tool designers have scanned commit histories to identify older versions of a code base
with known bugs to test their tools [68]. However, this approach is even more time consuming, the
“unfinished” code is even harder to install and run, and true and false negatives remain a problem.
Clearly, the community could benefit from a “calibrated” suite that includes many code samples
with labeled bugs to evaluate and improve their verification tools.

In response to this need, we introduced Indigo [47], a microbenchmark suite capable of automat-
ically generating thousands of bug-free and buggy irregular parallel code patterns. While valuable,
these microbenchmarks are simple in nature and do not compute meaningful results. To address
this limitation, we expanded our efforts with the introduction of Indigo2 [45], which is based on 6
important graph algorithms and includes hundreds of bug-free CUDA, OpenMP, and parallel C++
implementations of each algorithm.

Building upon this foundation, we now present Indigo3, a fusion of the strengths of Indigo and
Indigo2. Indigo3 extends Indigo2 by incorporating additional programs and versions, including a
minimum spanning tree algorithm and hybrid parallelization of all codes, while also introducing a
broad range of bugs akin to those found in Indigo. The incorporated software defects include data
races, other synchronization issues, livelocks, deadlocks, and memory errors. Indigo3 methodically
and automatically inserts these bugs as well as all possible combinations thereof to generate the
codes in the suite. Since we manually select the applicable styles and bugs for each algorithm, all of
the generated codes can be compiled. The bug-free codes generate identical results to the serial
implementation of a validated algorithm. The file name of each code indicates which bugs, if any,
are present. In total, Indigo3 includes 2516 bug-free codes and 39,274 buggy codes. In this paper,
we use a subset of these codes to evaluate the effectiveness of current program verification tools
and highlight important avenues for future work in the program verification domain.

The paper makes the following main contributions.

• It introduces Indigo3, the first labeled verification benchmark suite that includes a wide
range of full-fledged buggy and bug-free irregular CUDA, OpenMP, and parallel C codes.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 3

• It presents 13 largely orthogonal parallelization and implementation styles for CPUs and
GPUs, yielding the 2516 bug-free versions of 7 key graph algorithms in Indigo3.
• It describes 15 types of common bugs and how they are systematically inserted into the
bug-free base codes to create the 39,274 buggy programs in Indigo3.
• It evaluates 2 GPU and 3 CPU program verification tools on Indigo3 codes to explore how
different implementation styles and bug types affect the tools’ effectiveness.

The Indigo3 benchmark suite is publicly available in open source on Github [46].
The rest of the paper is organized as follows. Section 2 reviews relevant background information.

Section 3 summarizes related work. Section 4 describes the design of the Indigo3 suite in detail.
Section 5 discusses the experimental methodology. Section 6 evaluates several CPU and GPU
program verification tools on buggy and bug-free codes from Indigo3. Section 7 summarizes the
paper and draws conclusions.

2 BACKGROUND
This section provides background information on the main types of verification tools and the graph
format used by the Indigo3 codes. It also presents an example of an irregular program.

2.1 Program verification
As outlined in the introduction, irregularity in programs is caused by input-dependent memory
accesses and control flow. Such behavior makes codes harder to debug because even buggy codes
will execute correctly for inputs that happen to yield (1) control flow that avoids the problematic
code sections or (2) memory-access patterns that exclude the problematic data dependencies. In
other words, only certain inputs may trigger the software defects present in the code. Moreover,
the thread timing in parallel programs similarly only triggers software defects in some but not all
executions of a program, even when using the same input. Together, this makes detecting bugs in
irregular parallel programs particularly challenging.
Verification tools mainly consider the correctness of a program and are not concerned with

performance. There are two main types of tools: static and dynamic. A dynamic tool observes
runtime events while the program is executing [28]. Such tools tend to be relatively fast but only
catch problems that actually occur during the observed run. For example, if the used input does
not result in the code block containing a data race being executed, a dynamic tool will not detect
the race. Hence, dynamic tools cannot prove the absence of data races even if they have not found
any [43]. In other words, they typically produce no false positives but do produce false negatives.
Static verification tools, in contrast, examine the code before the program is run, for instance

by analyzing the dependency graph, control flow, and data flow. Importantly, they consider all
possible program behaviors and, in cases where they cannot prove that certain combinations of
memory accesses or program paths never occur together, also include impossible behaviors. Hence,
they typically produce no false negatives (if the bug lies in their search space) but do produce
false positives. The generally large number and high complexity of code paths and memory-access
patterns in irregular programs can quickly lead to a combinatorial explosion of possibilities to
consider, making static tools potentially very slow on such codes.

In summary, irregular programs tend to be more challenging to verify than regular codes. This is
true for both static and dynamic verification approaches.

2.2 Parallelization and implementation styles
There are numerous ways to parallelize irregular programs. We differentiate code optimizations
from parallelization/implementation styles as follows. Parallelization and implementation styles

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

are broadly applicable to many graph algorithms. In contrast, code optimizations tend to be specific
to individual programs or a particular implementation of an algorithm. Due to this difference,
programmers are more likely to be able to apply a given parallelization or implementation style
when writing an irregular program than they are to apply a given code optimization. An example
of a parallelization style is using thread, warp, or block granularity in GPU codes [73], as described
in Section 4.1.8. An example of an implementation style is push versus pull (i.e., pushing data to
neighboring vertices or pulling data from neighbors), which is common in both CPU and GPU
graph codes [12], as described in Section 4.1.4.
Indigo3 employs numerous parallelization and implementation styles to create thousands of

irregular programs. This multitude of combinations yields a wide range of irregular codes and
behaviors for use in program verification and other domains. The styles present in Indigo3 are
described in Section 4.1.

2.3 Irregular code example
Breadth-First Search (BFS) is an important graph traversal algorithm that is used in many appli-
cations, such as finding the shortest path in networks, identifying connected communities, and
web crawling [51]. It labels all vertices with the shortest distance (in number of edges) from a
given source vertex. Section 4 uses BFS as an example to describe different parallelization and
implementation styles.

As shown in Algorithm 1, BFS starts by setting the distance of the source vertex to 0 and all other
distances to∞. For each 𝑒𝑑𝑔𝑒 (𝑣, 𝑛), a new distance is calculated (i.e., 𝑑𝑖𝑠𝑡 [𝑣] + 1) in each iteration.
Vertex 𝑛’s distance is updated if the new distance is shorter. These edge relaxation operations repeat
until the algorithm reaches a fixed point. The three for all loops are parallel assuming dist and
updated are accessed with atomic loads and stores. Whereas more work-efficient BFS algorithms
exist, this version generally yields more parallelism and is often used, especially in GPU codes.
Using the graph from Figure 1 as input and vertex 0 as the source, Table 1 shows the BFS

computation step by step. It initializes the distance of the source to 0 and all other distances to∞.
In the first iteration, every active vertex 𝑣 (i.e., whose distance is not∞) calculates a new distance
(i.e., 𝑑𝑖𝑠𝑡 [𝑣] + 1) to its neighbors. The new distance for vertices 1 and 2 is 1, which is smaller than
their current distances, so they are updated to 1, as shown in the Iter1 column of the table. Similarly,
in the second iteration, vertices 0, 1, and 2 calculate new distances to their neighbors and find
shorter distances for vertices 3 and 4. The next iteration is the final iteration because no new shorter
distances are found.

Table 1. Distance values computed in each step of the BFS algorithm on the example graph

Vertex Init Iter1 Iter2 Iter3
0 0 0 0 0
1 ∞ 1 1 1
2 ∞ 1 1 1
3 ∞ ∞ 2 2
4 ∞ ∞ 2 2

Note that this algorithm is input dependent and has both control-flow (e.g., line 12) and memory-
access (e.g., line 14) irregularity. It is impossible to statically predict the iteration count of the inner
𝑓 𝑜𝑟 -𝑎𝑙𝑙 loop without knowing the input graph. Similarly, it is impossible to statically predict the
order in which the elements of the 𝑑𝑖𝑠𝑡 array will be written unless we know the input graph and
the order of the elements in the adjacency lists.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 5

Algorithm 1 Parallel breadth-first search
Require: Graph 𝐺 = (𝑉 , 𝐸) and source vertex 𝑠
1: for all vertices 𝑣 ∈ 𝑉 do
2: if 𝑣 = 𝑠 then
3: 𝑑𝑖𝑠𝑡 [𝑣] ← 0
4: else
5: 𝑑𝑖𝑠𝑡 [𝑣] ← ∞
6: end if
7: end for
8: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

9: while 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 do
10: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

11: for all vertices 𝑣 ∈ 𝑉 do
12: for all neighbors 𝑛 ∈ 𝑎𝑑 𝑗 [𝑣] do
13: if 𝑑𝑖𝑠𝑡 [𝑛] > 𝑑𝑖𝑠𝑡 [𝑣] + 1 then
14: 𝑑𝑖𝑠𝑡 [𝑛] ← 𝑑𝑖𝑠𝑡 [𝑣] + 1
15: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

16: end if
17: end for
18: end for
19: end while
Ensure: Each vertex is labeled with the shortest distance from 𝑠

Implementing the loop over a vertex’s neighbors (line 12) using the CSR format (see below)
provides the opportunity for out-of-bounds accesses, especially in the presence of vertices with no
neighbors. Moreover, the writes to the 𝑑𝑖𝑠𝑡 array as well as to 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 are likely to yield data races
in a parallel implementation unless proper synchronization primitives are utilized. For example,
assume two threads are processing the graph from Figure 1. Since vertex 4 is a neighbor of vertices
2 and 3, a data race is possible if the two threads processing vertices 2 and 3, respectively, are
allowed to push their updated distance to vertex 4 in an unsynchronized manner. Depending on
internal timing, the distance of vertex 4 may end up as the distance from vertex 2, vertex 3, or some
other value, even a seemingly impossible arbitrary value [18].

2.4 CSR graph format
The Compressed Sparse Row (CSR) format is one of the most widely used graph representations [27].
It is based on two dense arrays: an array of indices and an array of edges. The edge array holds the
concatenated adjacency lists of all vertices. The index array holds the starting position (index) of
each adjacency list. It has an extra element at the end specifying the size of the edge array. Figure 1
shows an example graph and its CSR representation.
For example, Pannotia [23] and Lonestar [38] use CSR inputs. All Indigo2 and, by extension,

Indigo3 input graph generators produce graphs in this format, meaning that every generated graph
can be used as an input for any code in our suites. Moreover, basing Indigo3 on the CSR format
makes it easy for users to use their own graphs. For this purpose, we provide converters from
several common formats (e.g., MatrixMarket, SNAP, and DIMACS) to our CSR format [20].

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

Fig. 1. Example graph (left) and corresponding CSR representation (right)

3 RELATEDWORK
This section reviews prior benchmark suites of parallel programs (designed for either performance
evaluation or verification), automatic code generation, and verification tools for parallel codes.

3.1 Parallel benchmark suites
Many benchmark suites with parallel codes exist. They target a plethora of program behaviors,
application domains, programming languages, and so on. The early suites that focus on parallel
programs mainly comprise regular high-performance computing (HPC) applications. One of the first
suites not focusing onHPC is PARSEC [16], released in 2008, which contains 12 regular parallel codes.
With accelerators becoming popular, quite a few suites now include GPU code. The Rodinia [24]
suite targets heterogeneous systems. It exhibits different types of parallelization, memory-access
and data-communication patterns, synchronization, and power consumption through 23 regular
parallel codes written in CUDA, OpenMP, and OpenCL. The SHOC [25] suite is designed to test
the performance and stability of heterogeneous systems. It contains 25 regular parallel codes.
Parboil [61] is a suite for evaluating the throughput of a range of applications, which can be
used by programmers as a baseline to improve upon and/or for task-parallel programs. It includes
11 parallel codes. The Chai [32] suite includes 14 parallel codes to evaluate the shared virtual
memory, memory coherence, and system-wide atomics of heterogeneous systems as well as data-
and task-based workload partitioning between the CPU and GPU. Lonestar [38] contains 22 C++
and CUDA implementations of iterative graph algorithms. Pannotia [23] is an OpenCL suite of 8
applications for studying graph algorithms on GPUs. GraphBIG [50] contains implementations of
representative data structures, workloads, and data sets from 21 real-world use cases of multiple
application domains. GAPBS [13] not only specifies graph kernels, input graphs, and evaluation
methodologies but also provides optimized reference implementations for 6 mostly irregular parallel
codes written in OpenMP. GARDENIA [69] is a suite for studying irregular graph algorithms on
accelerators. It includes 9 workloads from graph analytics, sparse linear algebra, and machine
learning. GBBS [26] is a C++ suite of scalable, provably-efficient implementations of 20 graph
problems for shared-memory multicore machines. It extends the Ligra interface with additional
primitives and clearly defined cost bounds. Our Indigo3 suite, which is based on irregular graph
algorithms, is much larger than these prior suites. It contains 2516 bug-free and 39,274 buggy codes.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 7

There are also parallel benchmark suites in other domains. For instance, the NAS Parallel
Benchmarks for GPUs (NPB-GPU) [10] contain larger CFD applications with more complex routines
offloaded to the GPU. SPar [33] is a Domain-Specific Language (DSL) for developing parallel stream
applications. It uses standard C++ attributes to introduce annotations for tagging components
such as the stream sources and processing stages. Stream processing introduces a unique set of
challenges, including ensuring the correct order (e.g., video applications need to keep the order of
the frames). SPBench [30] is a framework for benchmarking such stream processing applications.

Many prior publications present ways to parallelize and optimize irregular graph codes. Several
of them discuss and evaluate at least some implementation styles, but no systematic study of
a large number of styles exists. Becchi et al. propose workload consolidation schemes [67] and
different parallelization templates [41] to increase the GPU utilization of programs with nested
parallelism. Wang et al. characterize dynamically formed parallelism and evaluate codes designed
to exploit them [66]. Nasre et al. present morph algorithms and provide insights into how other
morph algorithms can be efficiently implemented for GPUs [56]. In contrast, Indigo3 systematically
applies 13 general parallelization and implementation styles to a set of 7 key graph algorithms.

Indigo3 not only includes orders of magnitude more codes than other benchmark suites but also
a much larger number of inputs (which is important for data-dependent codes) and supports the
creation of user-defined subsets through configurable code and graph generators. Between the
thousands of codes and the unbounded number of inputs, Indigo3 allows users to run millions of
distinct tests and to create subsets for many different usage scenarios. Furthermore, as described
below, Indigo3 includes versions of its codes with deliberately planted bugs, giving users the ability
to methodically test and analyze program verification tools.

3.2 Benchmark suites for data-race detection
DataRaceBench [43] is a relatively recent suite of regular programs designed to evaluate CPU
data-race detection tools. It includes a set of kernels, some of which contain bugs. It comes with a
script to evaluate verifiers such as Helgrind, Archer, ThreadSanitizer, Intel Inspector, and Coderrect
Scanner. Verma et al. enhanced the suite by adding kernels that represent additional patterns
and include FORTRAN code [64]. RMARaceBench [59] is a microbenchmark suite to evaluate the
capabilities of RMA (Remote Memory Access) race detection tools for MPI RMA, OpenSHMEM,
and GASPI. It consists of about 100 synthetic race test cases for each programming model, aiming
to cover all possible race scenarios. In our prior work [48], we introduced the Indigo benchmark
suite, which contains common irregular code patterns. We systematically built variations of these
patterns to alter the control-flow and memory-access behavior and/or to introduce bugs, yielding
the thousands of OpenMP and CUDA microbenchmarks in the suite. In contrast, Indigo3 includes
full-fledged graph algorithms instead of only short parallel code patterns. This enabled us to
introduce additional parallelization bugs, yielding over 41,000 codes for verification-tool evaluation.
There are also benchmark suites for other parallel programming languages such as Go. Tu et

al. analyzed the causes, detection, and fixes of 171 concurrency bugs from 6 popular Go software
applications [62]. GoBench [71], the first suite for Go concurrency bugs, was introduced in 2021. It
contains 82 real bugs from 9 open source applications and 103 bug kernels. It covers traditional
and Go-specific concurrency issues. It uses configuration files in json format that record the type
of bugs and describe how to generate the corresponding Docker files. Indigo3’s configuration file
similarly defines the types of codes and inputs to be included in the generated suite.

3.3 Automatic code generation
The source code annotation and variation in CREST [63] and DLBENCH [58] inspired the code
generation process in the Indigo suites. DLBENCH consists of a kernel generator, a profiler, and a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

performance analyzer to generate parameterized variants of a synthetic microbenchmark. CREST is
a software framework that analyzes dependencies among GPU threads and performs source-level
restructuring. It uses source-code annotations in the code restructurer to control optimizations. In
our prior work on parallelization and implementation styles for graph algorithms, we took 6 key
graph algorithms, generated hundreds of CUDA, OpenMP, and parallel C++ versions of each of
them, and published them in the Indigo2 suite [45]. To determine which styles work well and under
what circumstances, we evaluated 1106 of the Indigo2 programs on various systems and inputs.
Most if not all of these styles have separately been described before. For example, Hong et al. [35]
propose a warp-centric programming method to improve the performance of applications with
heavily imbalanced workloads. Nasre et al. study data-driven and topology-driven implementations
to understand the tradeoffs [54] and investigate high-level methods to eliminate atomics in irregular
programs [52]. Pingali et al. discuss different styles to process nodes (e.g., topology-driven and
data-driven) and operators that modify the graph (e.g., morphs and local computations) [57]. Indigo2
combines these styles in hundreds of different ways, most of which have never been studied before.
Indigo3 goes a step further by introducing bugs into the codes of Indigo2 to enable the evaluation
of verification tools. Moreover, we ported the C++ codes from Indigo2 to C code in Indigo3 because
many program verification tools do not yet support C++.

3.4 Program verifiers
GKLEE [42] searches for correctness and performance bugs in GPU codes. It includes 40 benchmarks
that cover many CUDA program behaviors and problems such as thread divergence, bank conflicts,
deadlock, and data races. GPUVerify [15] comes with a suite of 163 CUDA and OpenCL kernels
drawn from public and commercial resources. Barracuda [29] is a concurrency bug detector for
CUDA programs. It handles a wide range of parallelism constructs including branch operations,
low-level atomics, and memory fences. It includes a concurrency bug suite with 53 programs, 12 of
which have data races. Since essentially no third-party verification suites with buggy GPU codes
exist, all of these tools include their own. ThreadSanitizer [8] is a dynamic data-race detector for
C/C++ programs and is part of Clang 3.2 and gcc 4.8. Archer [1] is a data-race detector for OpenMP
codes that combines static and dynamic techniques. CIVL [60] is a verification platform for parallel
C programs. Its intermediate language, CIVL-C, employs a general model of concurrency that can
represent OpenMP, CUDA, MPI, and Pthreads programs. CIVL includes front-ends to translate code
to CIVL-C and a back-end that uses symbolic execution and model-checking techniques to verify
CIVL-C programs. Compute-sanitizer (formerly cuda-memcheck) is a correctness-checking suite
for CUDA. It includes the memory access error and leak detection tool Memcheck [5], the shared
memory data access hazard detection tool Racecheck [6], the unitialized global memory access
detection tool Initcheck [4], and the thread synchronization hazard detection tool Synccheck [7].
We evaluate several of these CPU and GPU program verification tools in the result section.

4 INDIGO3 DESIGN
The following subsections describe the various parallelization and implementation styles included in
the Indigo3 programs. We illustrate each style on the example of the breadth-first-search algorithm
described in Section 2.3. Note that, throughout this paper, we assume the shared data values (e.g.,
the distances) to be scalars and assume load and store instructions to atomically read and write
these values [19].
We wrote our graph codes using three parallel programming models: CUDA, OpenMP, and C

threads. CUDA programs operate at multiple levels of parallelism. 32 contiguous threads form
a warp and execute the same instruction in the same cycle (or are disabled). Sets of up to 32
warps (up to 1024 threads) form a block, and the blocks are grouped into a grid. CUDA provides

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 9

built-in variables for the thread and block indices as well as the block and grid dimensions. These
values are often combined by computing 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 to form a global
index for assigning work to each thread, which we call 𝑔𝑖𝑑𝑥 in our codes. OpenMP is based on
𝑝𝑟𝑎𝑔𝑚𝑎 compiler directives. Each such directive consists of a name followed by optional clauses.
For example, a clause can specify the scheduling to be used or a reduction operation. In Listing 11b
below, it selects dynamic scheduling. Since C11, C supports multithreading in the standard library.
It includes built-in types and functions for threads, atomics, mutual exclusion, and more.

4.1 Parallelization and implementation styles
This section describes the parallelization and implementation styles available in Indigo3.

4.1.1 Vertex-based vs. edge-based.
Graphs can be processed by iterating across either their vertices or their edges [72]. Listing 1a
shows vertex-based code, where every thread processes a different vertex 𝑣 based on the unique
global thread index (𝑔𝑖𝑑𝑥) and iterates over all neighbors 𝑛 of 𝑣 . Listing 1b shows edge-based code
that assigns a different edge 𝑒 = (𝑣, 𝑛) to each thread.

The algorithm to be implemented and the graph representation (e.g., CSR format [31]) typically
determine which style is preferable. For instance, if the graph is represented by a set of adjacency
lists, it is often more natural to employ the vertex-based style. To streamline the discussion, we use
this style in the following subsections.

(a) Vertex-based

v = g idx ;
i f (v < nodes) {

beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg ; i < end ; i ++) {

n = n b r _ l i s t [i] ;
. . .

} }

(b) Edge-based

e = g idx ;
i f (e < edges) {

v = s r c _ l i s t [e] ;
n = d s t _ l i s t [e] ;
. . .

}

Listing 1. Vertex- and edge-based computations

4.1.2 Topology-driven vs. data-driven.
This style describes two ways to determine which data-structure elements to process [57]. The
topology-driven approach in Listing 2a simply processes all elements. In contrast, the data-driven
approach in Listing 2b only processes the elements that likely need to be updated, which are stored
in a worklist (𝑤𝑙). For example, topology-driven BFS applies the relaxation function to all vertices of
the graph in each iteration. Data-driven BFS only applies the relaxation function to the vertices in
the worklist. Those vertices are in the worklist because their distance changed in the prior iteration.

The topology-driven style tends to yield more parallelism and is easier to implement. The data-
driven style is more work efficient and, therefore, often results in better performance, especially
for iterative algorithms that operate on high-diameter graphs.

4.1.3 Duplicates in worklist vs. no duplicates in worklist.
This style, which only applies to data-driven implementations, specifies whether or not duplicate
items are allowed on the worklist [55]. In codes that allow duplicates, as shown in Listing 3a, each
thread can push a vertex onto the worklist regardless of whether the worklist already contains that
vertex. In programs that do not allow duplicates, as shown in Listing 3b (where 𝑖𝑡𝑟 denotes the
current iteration), the threads may only add a vertex to the worklist if it is not already there.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

(a) Topology-driven

v = g idx ;
i f (v < nodes) {

. . .
}

(b) Data-driven

i d x = g idx ;
i f (i d x < w o r k l i s t _ s i z e) {

v = wo r k l i s t [i dx]
. . .

}

Listing 2. Topology- and data-driven computations

Disallowing duplicates eliminates redundant work in the next iteration. Moreover, it caps the
size of the worklist. However, it incurs additional synchronization overhead and requires extra
state tracking (𝑠𝑡𝑎𝑡) to determine whether a vertex is already on the worklist.

(a) Duplicates in worklist

i d x = atomicAdd (& wo r k l i s t _ s i z e , 1) ;
w o r k l i s t [i dx] = v ;

(b) No duplicates in worklist

i f (atomicMax (& s t a t [v] , i t r) != i t r) {
i d x = atomicAdd (& wo r k l i s t _ s i z e , 1) ;
w o r k l i s t [i dx] = v ;

}

Listing 3. Duplicates and no duplicates in worklist

4.1.4 Push vs. pull.
The data flow in programs that update vertex data can be either push-based, where data is pushed
from a vertex to its neighbors, or pull-based, where data is pulled from the neighbors to the
vertex [14]. For example, in push-style BFS, shown in Listing 4a, a thread reads the vertex distance,
adds 1, and updates the neighbor if the new distance is shorter. In pull-style BFS, shown in Listing 4b,
the thread reads the neighbor’s distance, adds 1, and updates the vertex distance if it is shorter.
Using the push style, different threads may update the same neighboring vertex. In contrast,

the pull style guarantees that there is only a single writer per vertex. Moreover, it allows the
update to be factored out of the loop (not done in Listing 4b), thus reducing memory accesses.
Having said that, push is sometimes a more natural fit for the underlying algorithm and preferred
in combination with a data-driven approach because only the neighbors that were actually updated
need to be placed on the worklist.

(a) Push

for (i = beg ; i < end ; i ++) {
n = n b r _ l i s t [i] ;
new_d i s t = d i s t [v] + 1 ;
atomicMin (& d i s t [n] , new_d i s t) ;

}

(b) Pull

for (i = beg ; i < end ; i ++) {
n = n b r _ l i s t [i] ;
new_d i s t = d i s t [n] + 1 ;
atomicMin (& d i s t [v] , new_d i s t) ;

}

Listing 4. Push and pull data flow

4.1.5 Read-write vs. read-modify-write.
Many graph algorithms conditionally update vertex data, where a thread reads the current value,
performs a computation with it, and writes the new value if it meets a certain condition. For
example, in BFS, the vertex distance is only updated if the new distance is shorter. This read-write
approach works in certain situations, such as in Listing 5a, because the updates are monotonic

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 11

and the algorithm is resilient to temporary priority inversions [53]. The read-modify-write style
shown in Listing 5b is more general as it does not suffer from this problem, but it requires an atomic
read-modify-write operation, which tends to be slower and hampers parallelism.

(a) Read-write

o l d _ d i s t = d i s t [v] ;
i f (new_d i s t < o l d _ d i s t)

d i s t [v] = new_d i s t ;

(b) Read-modify-write

atomicMin (& d i s t [v] , new_d i s t) ;

Listing 5. Read and write operations

4.1.6 Non-deterministic vs. deterministic.
The unpredictable timing of threads can introduce internal non-determinism in some parallel
codes [17]. In Listing 6a, multiple threads may write an element of the 𝑑𝑖𝑠𝑡 array that is read by
another thread. Depending on which thread performed the last write before the read, a different
value may be read, leading to the computation of a different new distance. Any non-final distance
value will be overwritten in subsequent iterations, meaning the ultimate result is deterministic,
but the number of iterations may differ from run to run. Note that we only study programs in this
paper where the final result is deterministic.

To make the code internally deterministic, Listing 6b uses two arrays, one that is only read (𝑑𝑖𝑠𝑡1)
and another that is updated (𝑑𝑖𝑠𝑡2). However, in this approach, the computation can no longer take
advantage of results generated in the same iteration, which may slow down the execution. On the
upside, the deterministic code will always require the same number of iterations for a given input,
which can simplify debugging [11].

(a) Non-deterministic

new_d i s t = d i s t [v] + edge_weight ;
atomicMin (& d i s t [n] , new_d i s t) ;

(b) Deterministic

new_d i s t = d i s t 1 [v] + edge_weight ;
atomicMin (& d i s t 2 [n] , new_d i s t) ;

Listing 6. Non-deterministic and deterministic updates

4.1.7 Persistent vs. non-persistent.
This style only applies to GPU codes. The persistent style, shown in Listing 7a, uses as many
threads as the GPU can concurrently schedule on its SMs [34], meaning a thread may need to
process multiple vertices (as is done in CPU codes). In contrast, the non-persistent style in Listing 7b
launches at least as many threads as the input has vertices and assigns no more than one vertex
to each thread. For graphs where the number of vertices exceeds the number of threads that
can concurrently run on the SMs, the GPU will automatically schedule batches of threads until
all threads have executed. The persistent style is a little more complex to implement but may
improve performance in cases where common subexpressions can be precomputed or common
data preloaded and then reused.

4.1.8 Thread vs. warp vs. block.
This variation only applies to GPU codes. It refers to the granularity at which the program processes
the vertices. Threads, warps, and blocks are the three hardware-supported granularities. In thread-
based BFS, each thread processes all neighbors of a vertex as shown in Listing 8a. In warp- or
block-based BFS, the entire warp or block processes the neighbors of a single vertex, respectively, as

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

(a) Persistent

t h r e a d s = blockDim . x ∗ gridDim . x ;
for (v = g idx ; v < nodes ; v += t h r e a d s)

. . .

(b) Non-persistent

v = g idx ;
i f (v < nodes)

. . .

Listing 7. Persistent and non-persistent threads

shown in Listings 8b and 8c. Bothwarp- and block-based processing yields a two-level parallelization
scheme: the vertices are distributed across the warps or blocks while the neighbors are distributed
across the threads within the warp or block. This approach is useful for reducing load imbalance
when processing high-degree vertices in power-law graphs [9]. However, it is typically not useful
for low-degree graphs such as road networks.

(a) Thread

beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg ; i < end ; i ++)

. . .

(b) Warp

l a n e = t h r e a d I d x . x % warpS ize ;
beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg + l ane ; i < end ; i += warpS ize)

. . .

(c) Block

beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg + t h r e a d I d x . x ; i < end ; i += blockDim . x)

. . .

Listing 8. Thread, warp, and block parallelization

4.1.9 Global-add vs. block-add vs. reduction-add.
Reductions are widely used in parallel computing to combine multiple independently computed
partial results into a single global result using a binary associative operator [44]. For example,
multiple threads may need to add the partial sums they computed to a global sum.

We employ three reduction styles in our GPU codes. The first approach directly updates a shared
global variable using atomic operations, as shown in Listing 9a. The second approach makes use
of faster block-level atomics. All threads of a block first compute a block-local solution in the
GPU’s “shared memory”, and only one thread updates the global solution as shown in Listing 9b.
This minimizes the number of slower global atomics. The third approach utilizes not only shared-
memory buffers for local results but also warp-level primitives to quickly perform warp and block
reductions as outlined in Listing 9c. This implementation is more complex but tends to be faster as
it avoids most memory accesses.

4.1.10 Atomic-reduction vs. critical-reduction vs. clause-reduction.
We also employ three reduction styles in our CPU codes. OpenMP and C provide atomic operations,
enabling each thread to atomically update a shared variable, as shown in Listing 10a. Mutexes are
also supported, allowing the programmer to update shared variables in critical sections, as shown
in Listing 10b. Additionally, OpenMP provides a reduction clause, as shown in Listing 10c. Using a
critical section typically results in substantial overhead and poor performance, but it is the most
general of the three approaches. The reduction clause tends to produce the fastest code.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 13

(a) Global-add

atomicAdd (& c t r , v a l) ;

(b) Block-add

atomicAdd_b lock (& b l o c k _ c t r , v a l) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
i f (t h r e a d I d x . x == 0)

atomicAdd (& c t r , b l o c k _ c t r) ;

(c) Reduction-add

warp_c t r = warp_reduc t i on (v a l) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
b l o c k _ c t r = b l o c k _ r e du c t i o n (warp_c t r) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
i f (t h r e a d I d x . x == 0)

atomicAdd (& c t r , b l o c k _ c t r) ;

Listing 9. Different reductions in CUDA

(a) Atomic reduction

#pragma omp p a r a l l e l for
for (i = beg ; i < end ; i ++) {

. . .
pragma omp atomic
sum += va l ;

}

(b) Critical reduction

#pragma omp p a r a l l e l for
for (i = beg ; i < end ; i ++) {

. . .
pragma omp c r i t i c a l
sum += va l ;

}

(c) Clause reduction

#pragma omp p a r a l l e l for r e du c t i o n (+ : sum)
for (i = beg ; i < end ; i ++) {

. . .
sum += va l ;

}

Listing 10. Different reductions in OpenMP

4.1.11 Default scheduling vs. dynamic scheduling.
OpenMP provides a convenient way to parallelize certain for loops using a 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓 𝑜𝑟 directive.
By default, as shown in Listing 11a, this directive statically assigns each thread a contiguous chunk
of loop iterations. In contrast, the dynamic schedule in Listing 11b assigns iterations at runtime
whenever a thread is ready to execute another iteration. This improves the load balance but incurs
overhead.

(a) Default scheduling

#pragma omp p a r a l l e l for
for (v = 0 ; v < nodes ; v ++) {

. . .
}

(b) Dynamic scheduling

#pragma omp p a r a l l e l for s ch edu l e (dynamic)
for (v = 0 ; v < nodes ; v ++) {

. . .
}

Listing 11. Default and dynamic loop scheduling

4.1.12 Blocked vs. cyclic.
When parallelizing the iterations of a for loop, a blocked schedule assigns a contiguous chunk of
iterations to each thread, as shown in Listing 12a. If the iterations’ running times correlate with
their loop index, a block distribution can lead to load imbalance. The cyclic schedule in Listing 12b
assigns the iterations in a round-robin fashion to the threads, which improves the load balance
in this scenario. A blocked schedule usually has better data locality in CPUs because each thread

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

accesses contiguous memory locations. However, a cyclic schedule yields better data locality in
GPUs because of coalesced memory accesses, i.e., combining multiple memory accesses into a
single memory transaction.

(a) Blocked scheduling

beg = t i d ∗ nodes / t h r e a d s ;
end = (t i d + 1) ∗ nodes / t h r e a d s ;
for (v = beg ; v < end ; v ++) {

. . .
}

(b) Cyclic scheduling

for (v = t i d ; v < nodes ; v += t h r e a d s) {
. . .

}

Listing 12. Blocked and cyclic scheduling

4.2 Common bugs
As discussed in the background section, the input-dependent behavior makes bug detection par-
ticularly challenging in irregular codes. Additionally, certain parallelization bugs, such as data
races, can be difficult to find because they are thread-timing dependent and may not manifest every
time the code is executed. To help the community develop better tools and techniques to identify
such bugs, Indigo3 contains versions of all its codes with intentionally planted software defects,
including parallelism bugs (e.g., data races, missing barriers, livelock, and deadlock), memory bugs,
and other serial bugs. Table 2 lists the parallelism-related bug types, Table 3 the memory bug types,
and Table 4 the remaining bug types available in Indigo3.

Table 2. Parallelism bug types

Name Description Bug-free example Buggy example
RaceBug Missing atomic operation atomicAdd(val, 1); val++;
SyncBug Missing barrier syncthreads(); //no barrier

MixSyncBug Mixing synchronization critical(dist[src], s);
critical(dist[dst], d);

critical(dist[src], s);
atomic(dist[dst], d);

LivelockBug Actively running w/o progress if (newd < d)
then d = newd;

if (newd <= d)
then d = newd;

DeadlockBug Some threads wait forever
if (v < nodes)
then ...;
syncthreads();

if (v < nodes)
then syncthreads();

GuardBug Non-atomic check atomicMax(d, m); if (d < m)
then atomicMax(d, m);

Most of these bug types are well known. The GuardBug is a data race where a variable is accessed
both atomically and non-atomically (e.g., in an attempt to avoid the slower atomic operation when
it is not needed). Unlike the BoundsBug, the NbrBoundsBug often does not result in accesses past
the end of an array but only past the end of one of the concatenated adjacency lists in the CSR’s
edge array (see Figure 1), making it harder to detect. The WorkloadBug occurs when the problem
size is not evenly divisible by the number of threads. It ends up not processing all of the workload.
Each bug is independent in the sense that it causes a software defect no matter if there are

any other bugs in the code. However, one bug may interact with another and yield more complex
program behavior. For example, the memory bug “BoundsBug” can lead to out-of-bounds accesses,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 15

Table 3. Memory bug types

Name Description Bug-free example Buggy example
NameBug Wrong variable for (...; v < nodes; ...) for (...; v < edges; ...)
ExcessThreadsBug Too many threads if (gidx < nodes) //no check

BoundsBug Out-of-bounds access type buffer[size];
a = buffer[size - 1];

type buffer[size];
a = buffer[size];

NbrBoundsBug Exceeding adjacency list for (...; nbr < end; ...) for (...; nbr <= end; ...)
UninitializedBug Data not fully initialized data[v] = init; //no initialization

ShadowBug Re-declaring a variable
in an inner scope

int i;
for (i = v; ...);

int i;
for (int i = v; ...);

Table 4. Other bug types

Name Description Bug-free example Buggy example

OverflowBug Range overflow
val = INT_MAX;
if (val != INT_MAX)
then val += d;

val = INT_MAX;
val += d;

WorkloadBug Incorrect work
assignment gidx * size / threads; chunksize = size / threads;

gidx * chunksize;

which may trigger race conditions if multiple threads access the same out-of-bounds memory
address. Hence, combining “BoundsBug” with “RaceBug” may increase the chance of data races.
Note that combining bugs increases the number of codes exponentially. For example, 3 bugs

yield 7 buggy combinations (3 versions with 1 bug, 3 versions with 2 bugs, and 1 version with 3
bugs). Hence, adding just 3 bugs results in 7 times more codes than there are bug-free codes. Since
at least 3 of the 14 bugs listed in Tables 2, 3, and 4 are applicable to each of our bug-free codes, we
end up with nearly 40,000 buggy codes in Indigo3.

4.3 Annotation tags
Combining the implementation styles and bugs yields thousands of codes for each algorithm,
making it nearly impossible and not maintainable to produce them by hand. Hence, we wrote
just a few source files per algorithm and expressed all variations using annotation tags. These
tags are similar to the annotation comments in the Java Modeling Language (JML) [40]. Indigo3
automatically generates the codes from the annotated source files. This code generation framework
enables us and others to easily introduce additional implementation styles and bugs in the future
by adding more tags.

Listing 13 provides an excerpt of annotated CUDA code. We use the syntax “/*@tag@*/” (without
the quotes) to label alternative statements on a line of code. Each tag is associated with the code
that follows it. The associated code will be generated when the tag is activated. Only one tag per
line can be active at a time. Tags with different names on different lines are independent and all
combinations can be generated. However, tags on different lines with the same name are dependent,
meaning the same alternative will be used on all lines with the same tag names. Furthermore,
matching tags affixed with “+” and “-”, such as Lines 3 and 5 in Listing 13, extend the activation
idea to a block of code and enable the nesting of tags. This provides more flexibility and allows

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

us to express complex interactions between tags. Listing 14 shows the generated codes for the
persistent and non-persistent style that have no name bug and no bounds bug.

1 / ∗@NoNameBug@ ∗ / c on s t i n t g s i z e = nodes ; / ∗@NameBug@ ∗ / c on s t i n t g s i z e = edges ;
2
3 / ∗@+NonPers is t@ ∗ /
4 / ∗@NoBoundsBug@ ∗ / i f (v < g s i z e) { / ∗@BoundsBug@ ∗ / i f (v <= g s i z e) {
5 / ∗@−NonPers is t@ ∗ /
6
7 / ∗@+Per s i s t@ ∗ /
8 / ∗@NoBoundsBug@ ∗ / f o r (i dx = v ; i dx < g s i z e ; i d x += t h r e a d s) { / ∗@BoundsBug@ ∗ / f o r

(i dx = v ; i dx <= g s i z e ; i dx += t h r e a d s) {
9 / ∗@−Pe r s i s t@ ∗ /
10 . . .
11 }

Listing 13. Tag-based annotations to generate code variations

(a) Non-persistent code example

1 con s t i n t g s i z e = nodes ;
2 i f (v < g s i z e) {
3 . . .
4 }

(b) Persistent code example

1 con s t i n t g s i z e = nodes ;
2 f o r (i dx = v ; i dx < g s i z e ; i dx += t h r e a d s) {
3 . . .
4 }

Listing 14. Examples of generated code

We believe it is important for the generated codes to be human readable so they can be manually
inspected and understood. Thus, Indigo3 does not use synthetic variable names. It automatically
indents the code, which is necessary when variations introduce or remove if statements, and it
eliminates blank lines due to empty tags. The file name of each generated program specifies the
algorithm followed by all activated tags to make it easy to identify which file contains which code
and what bugs are present, if any.

4.4 Subset selection
Combining the various implementation styles with all meaningful bug combinations yields 41,790
codes. Running them through a reasonable set of inputs results in millions of tests, which may take
too long to run. To control the execution time, the suite supports the generation of user-defined
subsets of the codes.

The code filtering is accomplished through a configuration file. We adopted this approach from
Indigo [49] and chose it to simplify the subset creation. The configuration file lists the desired code
versions and filters out the rest. For example, the user can elect to only generate bug-free codes.
TACO [37] similarly creates tensor algebra kernels based on user-defined constraints. With this
approach, an Indigo3 user can, for instance, generate a small subset for testing and later a more
extensive subset to perform a detailed study.
The configuration file comprises 4 rules to manage the code generation as shown in Listing 15.

The user can select the target graph algorithms, bug types, implementation styles, and data types.
The example in Listing 15 generates every possible implementation style for all 7 graph algorithms,
does not insert any bugs, and only uses the integer data type. The supported algorithms are
breadth-first search (bfs), single-source shortest paths (sssp), connected components (cc), maximal
independent set (mis), minimum spanning tree (mst), triangle counting (tc), and page rank (pr).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 17

Table 5 lists the available choices for the code filters. As a shorthand, Indigo3 also supports the
keywords “all” and “only”. The former turns off any filtering, and the latter means only code that
includes the required tag will be generated. For example, putting “only RaceBug” in the bug option
rule generates only the codes that have a race bug but do not include any other bugs.
1 CODE:

2 algorithm: {all}

3 bug_option: {nobug}

4 style_option: {all}

5 dataType: {IntType}

Listing 15. Sample configuration file

Table 5. Choices for managing the code generation

Rule Choices
Algorithm all, bfs, sssp, cc, mis, mst, tc, pr
Bug option all, nobug, bug names from Tables 2, 3, and 4
Style option all, style names from Section 4.1
Data type all, IntType, FloatType, LongType, DoubleType

5 EXPERIMENTAL METHODOLOGY
5.1 Hardware and software
The system we used for running the parallel C and OpenMP codes has two Intel Xeon Gold 6226R
CPUs with 16 cores each. Hyperthreading is enabled, meaning the 32 cores can run 64 simultaneous
threads. The main memory has a capacity of 128 GB. The operating system is Fedora 37. We
ran the CUDA codes on an RTX 4090 GPU with 16,384 processing elements distributed over 128
multiprocessors. We compiled the CPU codes with clang 14.0.5 using the “-O3 -march=native”
optimization flags, including “-fopenmp” for the OpenMP and “-pthread -std=c11” for the parallel C
codes. We used nvcc 12.0.140 with the “-O3 -arch=sm_89” flags to compile the CUDA codes. We ran
the CPU codes with 64 threads. For the CUDA experiments, we launched 512 threads per block.

5.2 Codes and inputs
Our test codes are based on 7 graph algorithms, namely Breadth-First Search, Connected Compo-
nents, Single Source Shortest Path, Maximal Independent Set, Triangle Counting, PageRank, and
Minimum Spanning Tree. We selected these algorithms because they are also frequently included
in other benchmark suites. Since many existing program-analysis tools do not support the complex
feature set of C++, we ported the Indigo2 C++ codes to C before including them in Indigo3. We
generated the 2516 bug-free codes in the Indigo3 suite from these algorithms by applying the
implementation and parallelization styles listed in Section 4. Since several of the code-verification
tools we evaluated do not support the libcu++ library and parallel C, we removed the parallel C
and CUDA codes that use this library from our tests, leaving 1924 bug-free codes. Half of them
operate on 32-bit data types and the other half on 64-bit data types. To keep the running times
manageable, we only evaluate the 32-bit data types in this paper.

To ensure compatibility with the iGuard [36] tool, we introduced the optional use of atomicAdd(0)
and atomicExch for implementing atomic load and store operations in CUDA. Whereas these
alternatives incur some performance overhead, they do broaden the range of tools to which our

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

Table 6. Graph information

Name Type Origin Vertices Edges Size (MB) 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 𝑑 ≥ 32 𝑑 ≥ 512 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

soc-LiveJournal1 community SNAP 4,847,571 85,702,474 362.2 17.7 20,333 14.0% 0.125% 21
rmat22.sym RMAT Galois 4,194,304 65,660,814 542.1 15.7 3,687 12.4% 0.045% 19
USA-road-d.NY road map Dimacs 264,346 730,100 6.9 2.8 8 0.0% 0.000% 721

codes can be applied. In summary, Indigo3 includes parallel C, OpenMP, and CUDA codes as well
as alternative atomic load and store implementations for the CUDA tools that need it.

To thoroughly test the programs, we ran each of them on 67 input graphs, including one social
network, one random graph, and one road map. Table 6 provides information on the type, size, and
degree distribution of the three graphs. The remaining 64 inputs are all possible undirected graphs
with four vertices. They are generated by enumerating all possible symmetric adjacency matrices.

5.3 Verification tools
We evaluate the effectiveness of 5 program-verification tools. Table 7 presents the type (static or
dynamic), version, and the targeted programming model of each tool. Archer [1] is a data-race
detector for OpenMP codes that combines static and dynamic techniques. ThreadSanitizer [8] is a
dynamic data-race detector for C/C++ programs and is part of Clang 3.2 and gcc 4.8. We also tested
CIVL [60], but being a static analyzer, it ended up being too slow to be included in our study.

iGUARD [36] instruments GPU programs to detect races in them. It is based on NVIDIA’s NVBit
binary instrumentation framework [65]. Compute Sanitizer [3] is a correctness-checking suite
included in the CUDA toolkit. It contains multiple tools to perform different types of checks. The
memcheck [5] tool detects out-of-bounds and misaligned memory accesses. It also reports hardware
exceptions. The racecheck [6] tool flags shared memory data access hazards that can cause data races.
The initcheck [4] tool checks for accesses to uninitialized data in global memory. The synccheck [7]
tool reports cases where the application attempts invalid uses of synchronization primitives.

To accommodate the unique requirements of Archer and iGuard, which demand specific earlier
versions of libraries and CUDA drivers, we implemented distinct setups to make them work. For
Archer, we leveraged a Docker container environment, whereas iGuard is tested on a separate
system with a Titan V GPU, CUDA driver version 418.39, and nvcc 10.1.

Table 7. Tested Verification Tools

Tool Type Version C/OpenMP CUDA
Clang Static Analyzer [2] Static 18.0.0 Yes No
Archer [1] Dynamic/Static 2.0.0 Yes No
ThreadSanitizer [8] Dynamic 9.3.1 Yes No
iGuard [36] Dynamic 1.0 No Yes
Compute Sanitizer [3] Dynamic 2023.2.2 No Yes

5.4 Metrics
To evaluate each tool, we measured the four counts shown in Table 8 to produce a confusion
matrix. A tool generates a false positive (FP) if it reports a non-existing bug. If it correctly detects
an existing bug, it is a true positive (TP). It is a true negative (TN) if the tool does not detect any
bug in a bug-free program. If it fails to detect an existing bug, it is a false negative (FN). Note that,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 19

for a bug-free program, a tool can only generate either an FP or TN result. Similarly, it can only
generate either a TP or FN result for a buggy program.

Table 8. Confusion Matrix

Bug-free code Buggy code
Positive report False positive (FP) True positive (TP)
Negative report True negative (TN) False negative (FN)

To make the results easier to understand, it is common to convert them into the three higher-is-
better metrics 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴), 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃), and 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅), which are defined as follows:
𝐴 = (𝑇𝑃 +𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁),
𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), and
𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁).
The accuracy reflects the probability that the tool produces a correct report, the precision denotes

the probability of correctly detecting a bug out of all positive reports, and the recall measures the
probability of detecting a bug within all buggy codes.

6 RESULTS
Applying all possible combinations of the 15 supported bug types to the 962 bug-free codes would
result in hundreds of thousands of codes, and evaluating them on our 67 inputs would take many
months. To make the running time manageable, we select four sets of codes for our experiments:
(1) bug-free codes, (2) codes that have one parallelism bug, (3) codes that have one memory bug,
and (4) codes that combine one parallelism bug. Additionally, we compare the generated bug-free
codes with optimized third-party codes (i.e., Lonestar and Gardenia).

6.1 Bug-free codes
For the bug-free codes, if a tool reports a data race or memory bug, we count it as a false positive.
Tables 9 and 10 list the tool, programming language, the number of evaluated codes, the number of
these codes yielding a false positive for at least one input, the number of runs (i.e., codes × inputs),
and the number of runs yielding a false positive. For example, ThreadSanitizer reports data races
for 145 out of 12,596 runs, and these 145 runs stem from 4 bug-free codes.
Table 9 shows that Clang does not find any bugs in the bug-free CPU codes. Since it is a static

analyzer that runs at compile time, it does not use any inputs. ThreadSanitizer reports non-existent
data races in 4 codes, 2 of which use an OpenMP clause reduction and the other 2 swap two
pointers to arrays after each iteration. Archer reports non-existent data races in 10 codes, all of
which use an OpenMP clause reduction. Evidently, the internal implementation of the OpenMP
reduction confuses both ThreandSanitizer and Archer. Additionally, ThreadSanitizer appears to
not understand the implicit barrier at the end of a parallel code section, which is why swapping
pointers between 2 such code sections yields false positives.

We made sure that the reported bugs are not actual bugs as follows. For the reduction problem,
we changed the clause reduction to a critical section. With this change, ThreadSanitizer and Archer
no longer output any data race warnings. For the swap problem, we duplicated the parallel code
section and switched the array names in the second copy to eliminate the need for swapping the
pointers. The modified code uses one copy in every odd iteration and the other copy in every even
iteration. With this change, ThreadSanitizer no longer gives any data race warnings.

Table 10 shows that iGuard reports non-existent data races in 36 of the bug-free GPU codes, and
Compute Sanitizer does not report any bugs. The false positives for iGuard stem from three scenarios:

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

codes that launch kernels at different granularities (e.g., thread-based and warp-based), codes that
swap array pointers between kernels, and codes that access memory at different granularity (e.g.,
integer and Boolean arrays).
We modified the codes as follows to explore the reasons for the false positives and make sure

they are not true positives. For the first scenario, we changed the kernels so that we could launch
all of them at the same granularity. For the second condition, we first tried the idea outlined above
to remove the swap. Since this did not help, we resorted to only launching 1 kernel at at time on the
GPU and running the rest of the code on the CPU. For the third scenario, we converted the Boolean
array into an integer array. These changes removed all iGuard data race reports. We believe the
first two types of false positives arise because iGuard ignores the implicit barrier between kernel
launches. The third type arises because we used iGuard’s default memory-access granularity of 4
bytes, which is too coarse for Boolean arrays.

Table 9. Results for bug-free CPU codes

Tool Language Codes FP Codes Runs FP Runs
Clang Static Analyzer OpenMP 188 0 (0.0%) n/a n/a
ThreadSanitizer OpenMP 188 4 (2.1%) 12,596 145 (1.2%)
Archer OpenMP 188 10 (5.3%) 12,596 592 (4.7%)

Table 10. Results for bug-free GPU codes

Tool Language Codes FP Codes Runs FP Runs
iGuard CUDA 774 36 (4.6%) 51,858 1,974 (3.8%)
Compute Sanitizer CUDA 774 0 (0.0%) 51,858 0 (0.0%)

6.2 Parallelism bug detection
Tables 11 and 12 show the results for the Indigo3 codes with exactly one parallelism bug. If a tool
reports a data race or a missing barrier, we count it as a true positive result.
As Table 11 shows, the Clang Static Analyzer does not detect any of the bugs, presumably

because it statically analyzes the program without considering inputs or runtime behavior. Both
ThreadSanitizer and Archer detect some of the bugs, with ThreadSanitizer performing a little better.
The GPU results in Table 12 show that both iGuard and Compute Sanitizer find a few of the bugs.
iGuard performs better because Compute Sanitizer does not check for races in global memory.

The LivelockBug (see Table 2) is particularly challenging for ThreadSanitizer, Archer, and iGuard
as evidenced by the increase in the percentages when removing the livelock codes. ThreadSani-
tizer correctly flags 118 (74.7%) and Archer 113 (71.5%) of 158 non-livelock buggy codes. iGuard
correctly flags 201 (47.4%) of 424 non-livelock buggy codes. While iGuard has a timeout option,
ThreadSanitizer and Archer potentially run forever if the program contains a livelock bug.

6.3 Memory bug detection
Since some memory bugs (e.g., out of bounds accesses) may cause data races, we count such reports
as true positives. Tables 13 and 14 show the results for the codes with exactly one memory bug.
Even though the Clang Static Analyzer is not able to detect parallelism bugs, it does correctly

report memory warnings for 19.1% of our codes. Archer detects more memory bugs and ThreadSan-
itizer even more, but both of them perform better on parallelism bugs than on memory bugs. This is

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 21

Table 11. Results for CPU codes with one parallelism bug

Tool Language Codes TP Codes Runs TP Runs
Clang Static Analyzer OpenMP 212 0 (0.0%) n/a n/a
ThreadSanitizer OpenMP 212 136 (64.2%) 14,204 7,840 (55.2%)
Archer OpenMP 212 115 (59.9%) 14,204 4,140 (31.9%)

Table 12. Results for GPU codes with one parallelism bug

Tool Language Codes TP Codes Runs TP Runs
iGuard CUDA 544 219 (40.3%) 36,448 10,326 (28.3%)
Compute Sanitizer CUDA 544 53 (9.7%) 36,448 3,195 (8.8%)

not surprising because they are designed for data-race detection. On the GPU side, the same is true
for iGuard. However, Compute Sanitizer performs much better on memory bugs. As mentioned,
this is likely because it does not check for data races in global memory.

Table 13. Results for CPU codes with one memory bug

Tool Language Codes TP Codes Runs TP Runs
Clang Static Analyzer OpenMP 492 94 (19.1%) n/a n/a
ThreadSanitizer OpenMP 492 276 (56.1%) 32,964 6,996 (22.2%)
Archer OpenMP 492 160 (32.5%) 32,964 3,843 (11.7%)

Table 14. Results for GPU codes with one memory bug

Tool Language Codes TP Codes Runs TP Runs
iGuard CUDA 1,250 245 (19.6%) 83,750 12,363 (14.8%)
Compute Sanitizer CUDA 1,250 765 (61.2%) 83,750 34,170 (40.8%)

6.4 Multiple bug detection
We also tested on Indigo3 codes with 2 bugs: 1 parallelism bug and 1 memory bug. Whenever a
tool reports either a data race or a memory issue, we count it as a true positive. Tables 15 and 16
show the results for the codes with 2 bugs.
All evaluated tools perform better for the multiple-bug codes than for the single-bug codes.

Similar to the single-bug results, ThreadSanitizer again finds more bugs than Archer. Compute
Sanitizer reaches the highest true positives per code in all experiments as it detects many of the
memory bugs and some data races trigger memory bugs that it can detect (e.g., races that write
nonsensical values to a worklist).

Every tool generates incorrect predictions (false positives or false negatives). Section 6.1 discusses
the reasons for false positives (i.e., when a tool reports bugs in bug-free codes). The reasons for
false negatives (i.e., when a tool does not report an existing bug) are related to the design and
implementation of the verification tools. For example, iGuard is a data race detection tool and not
able to detect memory bugs. Additionally, some bugs (e.g., data races) may not manifest themselves
in each run, making it difficult to detect for dynamic verifiers.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

Table 15. Results for CPU codes with one memory and one parallelism bug

Tool Language Codes TP Codes Runs TP Runs
Clang Static Analyzer OpenMP 566 134 (24.0%) n/a n/a
ThreadSanitizer OpenMP 566 443 (78.3%) 37,386 14,831 (39.7%)
Archer OpenMP 566 430 (75.9%) 37,386 16,247 (43.5%)

Table 16. Results for GPU codes with one memory and one parallelism bug

Tool Language Codes TP Codes Runs TP Runs
iGuard CUDA 1,294 889 (68.7%) 86,698 40,835 (47.1%)
Compute Sanitizer CUDA 1,294 1,097 (84.8%) 86,698 48,557 (56.0%)

6.5 Confusion matrix
Tables 17 and 18 evaluate the tools’ effectiveness per code and per run, respectively. Higher numbers
are better. For this study, we combined the inputs from the previous four subsections, that is, the
bug-free codes, the codes with one parallelism bug, the codes with one memory bug, and the codes
with both a parallelism and a memory bug. The results in Table 17 are higher than in Table 18 since
bugs may not manifest themselves on every input. This illustrates the importance of thoroughly
testing data-dependent codes on a range of inputs that elicit different runtime behaviors.

The precision is close to 100% in all cases, meaning the tools do not produce many false positives.
Hence, if a tool reports a bug, it is likely that there is a true bug in the code. However, the highest
accuracy and recall are below 72%, showing that the tools miss a substantial number of bugs.

ThreadSanitizer has a higher accuracy, precision, and recall than Archer. As discussed, Compute
Sanitizer performs quite well even though it is unable to detect data races in global memory because,
relatively speaking, it does very well at memory bug detection (and two of the three sets of buggy
codes include memory errors).

Table 17. Tool metrics per code

Tool Language Accuracy Precision Recall
Clang Static Analyzer OpenMP 28.5% 100.0% 18.0%
ThreadSanitizer OpenMP 71.3% 99.5% 67.3%
Archer OpenMP 61.1% 98.6% 56.1%
iGuard CUDA 54.1% 97.4% 43.8%
Compute Sanitizer CUDA 69.6% 100.0% 62.0%

6.6 Evaluation by style
The used parallelization and implementation style may impact the tools’ effectiveness. To deter-
mine whether this is the case, we evaluate the tools on different styles. The results are shown in
Tables 19, 20, 21, 22, and 23, where every row shows the metrics for a set of alternative styles.

In the following discussion, we focus on the most striking observations. For example, the Clang
Static Analyzer finds more bugs in edge-based than in vertex-based codes. The opposite is true for
ThreadSanitizer and Compute Sanitizer. A possible reason is that edge-based codes access the two
endpoints of each edge, which may be simpler to analyze for a static tool than loops that iterate

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 23

Table 18. Tool metrics per run

Tool Language Accuracy Precision Recall
Clang Static Analyzer OpenMP n/a n/a n/a
ThreadSanitizer OpenMP 43.1% 99.5% 34.9%
Archer OpenMP 37.1% 97.6% 28.5%
iGuard CUDA 43.8% 97.0% 30.7%
Compute Sanitizer CUDA 53.2% 100.0% 41.5%

over variable-length adjacency lists as is done in vertex-based codes. Clang performs better on data-
driven codes, but ThreadSanitizer and Archer detect more bugs in topology-driven codes, possibly
because topology-driven codes exhibit more parallelism and, therefore, increase the chance of a
parallelism bug manifesting itself. Archer and iGuard perform better for the pull than the push style.
Since they are both data-race detectors, this may indicate that races in push-style codes are harder
to detect. Perhaps the multiple-reader/multiple-writer races in the push style are more difficult to
handle than the multiple-reader/single-writer races in the pull style. Furthermore, iGuard detects
more bugs for the non-duplicate worklist and read-write styles than their alternatives. One reason
may be that read-write versions have independent read and write operations, which increases the
chance for a data race. Averaged over all tested tools, programs implemented in the data-driven and
pull styles tend to be the easiest to verify, and programs that allow duplicates on the worklist are
the most challenging. Overall, we find that the verification tools perform differently on alternative
styles. This highlights the importance of thoroughly testing and evaluating verification tools using
programs that are implemented in different styles.

Table 19. Clang’s evaluation for each style

Tool Accuracy Precision Recall
Vertex, Edge 26%, 42% 100%, 100% 14%, 32%
Topo, Data 20%, 43% 100%, 100% 2%, 35%
NonDup, Dup 24%, 33% 100%, 100% 12%, 22%
Push, Pull 25%, 23% 100%, 100% 14%, 14%
ReadWrite, ReadModifyWrite 24%, 26% 100%, 100% 17%, 19%
NonDeterm, Determ 25%, 33% 100%, 100% 15%, 22%
Default, Dynamic 30%, 30% 100%, 100% 19%, 19%
AtomicAdd, CriticalAdd, ClauseAdd 25%, 25%, 25% 100%, 100%, 100% 13%, 13%, 13%

6.7 Comparison with third-party codes
To demonstrate that our unoptimized bug-free codes yield reasonable performance, we compare
them to the optimized Lonestar [39] CPU and Gardenia [70] GPU codes. We refer to these Lonestar
and Gardenia codes as “baseline”. We omitted some of the modifications to our codes described in
Section 5.2 since they merely serve to make the codes compatible with the verification tools. For
each of our codes in this analysis, we selected the style that yields the highest average throughput
across all inputs. Then we run the best-performing style on the set of inputs listed in Table 24. We
selected them because they cover a wide range of sizes and degree distributions.

We compute the speedups over the baseline codes and visualize them in Figure 2. Each column
summarizes the speedups over all inputs for one algorithm. Since we run each program through a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

Table 20. ThreadSanitizer’s evaluation for each style

Tool Accuracy Precision Recall
Vertex, Edge 76%, 42% 99%, 98% 71%, 31%
Topo, Data 83%, 69% 99%, 100% 79%, 64%
NonDup, Dup 71%, 67% 100%, 100% 65%, 60%
Push, Pull 78%, 75% 99%, 100% 75%, 74%
ReadWrite, ReadModifyWrite 71%, 71% 100%, 99% 67%, 69%
NonDeterm, Determ 75%, 77% 100%, 99% 71%, 73%
Default, Dynamic 80%, 73% 99%, 99% 77%, 69%
AtomicAdd, CriticalAdd, ClauseAdd 86%, 86%, 80% 100%, 100%, 96% 84%, 84%, 81%

Table 21. Archer’s evaluation for each style

Tool Accuracy Precision Recall
Vertex, Edge 59%, 62% 98%, 99% 52%, 55%
Topo, Data 66%, 54% 96%, 100% 60%, 47%
NonDup, Dup 47%, 46% 100%, 100% 37%, 35%
Push, Pull 55%, 64% 99%, 98% 48%, 60%
ReadWrite, ReadModifyWrite 47%, 55% 100%, 100% 40%, 51%
NonDeterm, Determ 58%, 60% 99%, 98% 52%, 53%
Default, Dynamic 69%, 54% 99%, 98% 64%, 47%
AtomicAdd, CriticalAdd, ClauseAdd 64%, 68%, 78% 100%, 100%, 85% 58%, 63%, 90%

Table 22. iGuard’s evaluation for each style

Tool Accuracy Precision Recall
Vertex, Edge 51%, 44% 98%, 100% 41%, 39%
Topo, Data 53%, 55% 100%, 95% 41%, 41%
NonDup, Dup 40%, 29% 100%, 100% 27%, 5%
Push, Pull 44%, 56% 93%, 93% 28%, 53%
ReadWrite, ReadModifyWrite 43%, 34% 100%, 100% 34%, 8%
NonDeterm, Determ 50%, 54% 94%, 93% 41%, 46%
Persist, NonPersist 46%, 49% 94%, 94% 39%, 43%
Thread, Warp, Block 34%, 42%, 55% 97%, 95% 93% 20%, 35%, 53%
GlobalAdd, BlockAdd, ReductionAdd 49%, 39%, 39% 92%, 92% 92% 48%, 38%, 38%

set of inputs, each column represents multiple speedups. The box shows the range of the middle
50% of the data. The line in the middle of the box indicates the median. Other data points are plotted
as circles. Speedups above 1 (i.e., the dashed blue line) mean our codes are faster. If the median line
in the box is above 1, it shows that our codes are faster than the baseline for at least half of the
inputs. Figure 2a does not show MIS or MST results since they are not included in Gardenia [70].
Our PR and TC codes outperform the CPU baselines but are slower on the GPUs because the

Gardenia codes include an optimization that removes redundant edges. The performance of CC is
on par with the baselines across the different devices and programming models. Our BFS codes are

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 25

Table 23. ComputeSanitizer’s evaluation for each style

Tool Accuracy Precision Recall
Vertex, Edge 71%, 57% 100%, 100% 64%, 53%
Topo, Data 70%, 74% 100%, 100% 62%, 65%
NonDup, Dup 71%, 67% 100%, 100% 64%, 55%
Push, Pull 68%, 65% 100%, 100% 57%, 59%
ReadWrite, ReadModifyWrite 63%, 69% 100%, 100% 57%, 57%
NonDeterm, Determ 67%, 69% 100%, 100% 60%, 61%
Persist, NonPersist 68%, 69% 100%, 100% 62%, 64%
Thread, Warp, Block 68%, 68%, 67% 100%, 100% 100% 60%, 63%, 63%
GlobalAdd, BlockAdd, ReductionAdd 66%, 63%, 64% 100%, 100% 100% 63%, 60%, 61%

Table 24. Inputs for performance comparison

Name Type Origin Vertices Edges Size (MB)
2d-2e20.sym grid Galois 1,048,576 4,190,208 37.7
coPapersDBLP publication SMC 540,486 30,491,458 124.1
rmat22.sym RMAT Galois 4,194,304 65,660,814 542.1
soc-LiveJournal1 community SNAP 4,847,571 85,702,474 362.2
USA-road-d.NY road map Dimacs 264,346 730,100 6.9

Table 25. Average speedup over baseline codes

Language BFS SSSP CC MIS PR TC Geomean
CUDA 1.97 0.40 1.11 N/A 0.45 0.43 0.70
OpenMP 0.90 0.10 0.89 6.55 2.86 5.11 1.54
C++ threads 1.14 0.07 0.51 21.14 12.47 3.04 1.80

faster on the GPUs and similar to the baseline on the CPUs. Lastly, our SSSP codes are generally
slower. This is because both Lonestar and Gardenia include worklist optimizations. Gardenia
employs two extra arrays that make the code as efficient as the data-driven approach but without
the overhead of maintaining a worklist. Lonestar combines the data-driven approach with a priority
scheduler that processes the vertices in ascending distance to reduce the total amount of work.
Table 25 lists the average speedup of the best-performing style over the baseline for each

algorithm. For example, the “1.97” in the CUDA row and BFS column means our BFS CUDA code is
1.97× faster on average (i.e., geometric mean). The right-most column presents the geometric mean
for each programming model.
Overall, we find that, even though our codes do not include optimizations, they still yield

reasonable performance. The optimized baselines do not outperform our codes in many cases,
indicating that choosing the right implementation style is as important as incorporating program-
specific code optimizations.

6.8 Result correlation with inputs and architectures
As the behavior of our codes is input and hardware dependent, we studied the results for each
input graph on different devices. We found that the degree distribution (e.g., road maps versus
social networks) does not significantly influence the results. However, the graph size can impact
the data race detection on the CPU. For example, ThreadSanitizer detects more data races in larger
graphs (73% of the parallelism bugs) than in smaller graphs (62%). The larger graphs include the

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

(a) CUDA

(b) OpenMP (c) C++ Threads
Fig. 2. Throughput ratio to baseline codes

all-possible 4-vertex graphs with more than 3 edges as well as the real-world graphs. The smaller
graphs are the 4-vertex graphs with 3 or fewer edges. In contrast, the CUDA tools perform the same
across different graph sizes. Hence, the behavior for different programming models (i.e., OpenMP
and CUDA) can be different. Moreover, we found that a tool may produce a different prediction
for the same program on different hardware. This is expected because dynamic tools often yield
different reports for each run anyways. However, since we run a large number of tests, the overall
results for a specific tool tend to be consistent across different hardware.

7 SUMMARY AND CONCLUSIONS
This paper presents a labeled benchmark suite called Indigo3 [46] that includes 41,790 graph analyt-
ics codes written in CUDA, OpenMP, and parallel C. Each program can be run with an unbounded
number of inputs. They are based on 13 sets of alternative parallelization/implementation styles
and 15 types of common bugs. We wrote a framework to automatically create the Indigo3 suite by
generating codes with all meaningful combinations of these styles and bugs as well as bug-free
codes. We applied our framework to 7 graph algorithms expressed in 3 programming models. Each
generated code is labeled with the parallelization/implementation styles and bugs present. This
allows users to select desired subsets and makes Indigo3 useful for testing various tools.

We evaluated 5 program verification tools on 4 subsets of Indigo3 codes, namely codes that are
bug-free, have one parallelism bug, have one memory bug, and combine one parallelism with one
memory bug. The results show that ThreadSanitizer, Archer, and iGuard are better at detecting
parallelism bugs whereas the Clang Static Checker and Computer Sanitizer are better at detecting
memory bugs. Since memory bugs may manifest themselves as data races, data-race warnings are
sometimes triggered by memory bugs. We carefully examined all reported false positives to make
sure our bug-free codes are correct and to determine the program patterns that confuse the verifiers.
The results per code are always significantly better than per input, meaning data-dependent codes

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 27

such as irregular graph algorithms should be tested on a number of inputs that elicit different
program behaviors. Additionally, we found the tools’ effectiveness to vary between implementation
styles, highlighting the importance of considering different styles when testing verification tools.
We hope our work will prove useful to the verification community and will inspire others to build
benchmark suites for additional domains.

ACKNOWLEDGMENTS
This work has been supported in part by the National Science Foundation under Award Number
1955367 and by an equipment donation from NVIDIA Corporation. We thank Ganesh Gopalakrish-
nan, John Jacobson, Stephen Siegel, Alex Wilton, and Wenhao Wu for their help and feedback to
improve this paper.

REFERENCES
[1] Accessed: 2021-6-26. Archer. https://github.com/PRUNERS/archer.
[2] Accessed: 2023-9-28. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[3] Accessed: 2023-9-28. ComputeSanitizer. https://docs.nvidia.com/compute-sanitizer/index.html.
[4] Accessed: 2023-9-28. Initcheck Tool. https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html.
[5] Accessed: 2023-9-28. Memcheck Tool. https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html.
[6] Accessed: 2023-9-28. Racecheck Tool. https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html.
[7] Accessed: 2023-9-28. Synccheck Tool. https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html.
[8] Accessed: 2023-9-28. ThreadSanitizer. https://github.com/google/sanitizers.
[9] Lada A Adamic, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman. 2001. Search in power-law networks.

Physical review E 64, 4 (2001), 046135.
[10] Gabriell Araujo, Dalvan Griebler, Dinei A. Rockenbach, Marco Danelutto, and Luiz G. Fernandes. 2021. NAS Parallel

Benchmarks with CUDA and beyond. Software: Practice and Experience 53, 1 (2021), 53–80. https://doi.org/10.1002/
spe.3056 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3056

[11] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2012. Efficient system-enforced deterministic parallelism.
Commun. ACM 55, 5 (2012), 111–119.

[12] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing breadth-first search. In SC’12: Proceed-
ings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, IEEE,
New York, NY, USA, 1–10.

[13] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark suite. arXiv preprint arXiv:1508.03619
(2015).

[14] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefler. 2017. To push or to pull:
On reducing communication and synchronization in graph computations. In Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing. 93–104.

[15] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU
kernels. In Proceedings of the ACM international conference on Object oriented programming systems languages and
applications. 113–132.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characterization
and architectural implications. In Proceedings of the 17th international conference on Parallel architectures and compilation
techniques. 72–81.

[17] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012. Internally deterministic parallel algorithms
can be fast. In Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.
181–192.

[18] Hans-J. Boehm. 2011. How to Miscompile Programs with "Benign" Data Races. In 3rd USENIX Workshop on Hot Topics
in Parallelism (HotPar 11). USENIX Association, Berkeley, CA. https://www.usenix.org/conference/hotpar-11/how-
miscompile-programs-benign-data-races

[19] Hans-J Boehm. 2011. How to miscompile programs with" benign" data races. In 3rd USENIX Workshop on Hot Topics in
Parallelism (HotPar 11).

[20] Martin Burtscher. 2019. ECL graphs. https://cs.txstate.edu/~burtscher/research/ECLgraph/index.html. Accessed:
2023-08-18.

[21] Martin Burtscher and Jared Coplin. 2014. Power characteristics of irregular GPGPU programs. InWorkshop on General
Purpose Processing Using GPUs.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/PRUNERS/archer
https://clang-analyzer.llvm.org/
https://docs.nvidia.com/compute-sanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://github.com/google/sanitizers
https://doi.org/10.1002/spe.3056
https://doi.org/10.1002/spe.3056
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3056
https://www.usenix.org/conference/hotpar-11/how-miscompile-programs-benign-data-races
https://www.usenix.org/conference/hotpar-11/how-miscompile-programs-benign-data-races
https://cs.txstate.edu/~burtscher/research/ECLgraph/index.html

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

[22] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of irregular programs on GPUs. In
2012 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 141–151.

[23] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin Skadron. 2013. Pannotia: Understanding irregular
GPGPU graph applications. In 2013 IEEE International Symposium onWorkload Characterization (IISWC). IEEE, 185–195.

[24] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE international symposium on workload charac-
terization (IISWC). Ieee, 44–54.

[25] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle Spafford, Vinod Tipparaju,
and Jeffrey S Vetter. 2010. The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units. 63–74.

[26] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E Blelloch, and Julian Shun. 2020. The graph based benchmark
suite (gbbs). In Proceedings of the 3rd Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA). 1–8.

[27] Jack Dongarra. [n. d.]. Compressed row storage. http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.
html. Accessed: 2021-7-3.

[28] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, DanGrossman, andHans-J Boehm. 2012. IFRit: interference-free regions
for dynamic data-race detection. In Proceedings of the ACM international conference on Object oriented programming
systems languages and applications. 467–484.

[29] Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, William Mansky, and Joseph Devietti. 2017. Barracuda: Binary-level
analysis of runtime races in cuda programs. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 126–140.

[30] Adriano Marques Garcia, Dalvan Griebler, Claudio Schepke, and Luiz Gustavo Fernandes. 2022. SPBench: a framework
for creating benchmarks of stream processing applications. Computing 105, 5 (jan 2022), 1077–1099. https://doi.org/
10.1007/s00607-021-01025-6

[31] Alan George, Joseph WH Liu, et al. 1981. Computer solution of large sparse positive definite systems. Vol. 134. Prentice-
Hall Englewood Cliffs, NJ.

[32] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floreszx, Simon Garcia De Gonzalo, Thomas B Jablin,
Antonio J Pena, and Wen-mei Hwu. 2017. Chai: Collaborative heterogeneous applications for integrated-architectures.
In 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 43–54.

[33] Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz Gustavo Fernandes. 2017. SPar: A DSL for High-
Level and Productive Stream Parallelism. Parallel Processing Letters 27, 01 (2017), 1740005. https://doi.org/10.1142/
S0129626417400059

[34] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent Threads style GPU programming for
GPGPU workloads. In 2012 Innovative Parallel Computing (InPar). IEEE, San Jose, CA, USA, 1–14. https://doi.org/10.
1109/InPar.2012.6339596

[35] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011. Accelerating CUDA Graph Algorithms
at Maximum Warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming
(San Antonio, TX, USA) (PPoPP ’11). Association for Computing Machinery, New York, NY, USA, 267–276. https:
//doi.org/10.1145/1941553.1941590

[36] Aditya K. Kamath and Arkaprava Basu. 2021. IGUARD: In-GPU Advanced Race Detection. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for
Computing Machinery, New York, NY, USA, 49–65. https://doi.org/10.1145/3477132.3483545

[37] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra
Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

[38] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. 2009. Lonestar: A suite of parallel irregular
programs. In 2009 IEEE International Symposium on Performance Analysis of Systems and Software. IEEE, 65–76.

[39] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. 2009. Lonestar: A suite of parallel irregular
programs. In 2009 IEEE International Symposium on Performance Analysis of Systems and Software. IEEE, New York, NY,
USA, 65–76. https://doi.org/10.1109/ISPASS.2009.4919639

[40] Gary T Leavens. 2007. The java modeling language (jml). URL http://sourceforge. net/apps/wordpress/fixedptc (2007).
[41] Da Li, Hancheng Wu, and Michela Becchi. 2015. Nested Parallelism on GPU: Exploring Parallelization Templates for

Irregular Loops and Recursive Computations. In 2015 44th International Conference on Parallel Processing. IEEE, New
York, NY, USA, 979–988. https://doi.org/10.1109/ICPP.2015.107

[42] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan. 2012. GKLEE:
Concolic Verification and Test Generation for GPUs. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New Orleans, Louisiana, USA) (PPoPP ’12). Association for Computing Machinery,
New York, NY, USA, 215–224. https://doi.org/10.1145/2145816.2145844

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
https://doi.org/10.1007/s00607-021-01025-6
https://doi.org/10.1007/s00607-021-01025-6
https://doi.org/10.1142/S0129626417400059
https://doi.org/10.1142/S0129626417400059
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/3477132.3483545
https://doi.org/10.1145/3133901
https://doi.org/10.1109/ISPASS.2009.4919639
https://doi.org/10.1109/ICPP.2015.107
https://doi.org/10.1145/2145816.2145844

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs 29

[43] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin. 2017. DataRaceBench: a benchmark
suite for systematic evaluation of data race detection tools. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[44] Richard J Lipton. 1975. Reduction: A method of proving properties of parallel programs. Commun. ACM 18, 12 (1975),
717–721.

[45] Yiqian Liu, Noushin Azami, Avery Vanausdal, and Martin Burtscher. 2023. Choosing the Best Parallelization and
Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs. In SC ’23: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis. 11111. https://doi.org/11111

[46] Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher. 2023. Indigo3 Git Repository. https://github.
com/burtscher/Indigo3Suite. Accessed: 2023-12-09.

[47] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
mark Suite of Irregular Parallel Code Patterns. In 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 24–34. https://doi.org/10.1109/ISPASS55109.2022.00003

[48] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
mark Suite of Irregular Parallel Code Patterns. In 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 24–34.

[49] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
mark Suite of Irregular Parallel Code Patterns. In 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, New York, NY, USA, 24–34. https://doi.org/10.1109/ISPASS55109.2022.00003

[50] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: understanding graph
computing in the context of industrial solutions. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12. https://doi.org/10.1145/2807591.2807626

[51] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and Mitsuhisa Sato. 2020. Performance Evaluation of
Supercomputer Fugaku using Breadth-First Search Benchmark in Graph500. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). 408–409. https://doi.org/10.1109/CLUSTER49012.2020.00053

[52] RupeshNasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-Free Irregular Computations onGPUs. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units (Houston, Texas, USA) (GPGPU-6).
Association for Computing Machinery, New York, NY, USA, 96–107. https://doi.org/10.1145/2458523.2458533

[53] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-free irregular computations on GPUs. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units. 96–107.

[54] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus Topology-driven Irregular Computa-
tions on GPUs. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. IEEE, New York, NY,
USA, 463–474. https://doi.org/10.1109/IPDPS.2013.28

[55] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-driven versus topology-driven irregular computations
on GPUs. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. IEEE, 463–474.

[56] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph Algorithms on GPUs. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13). Association for
Computing Machinery, New York, NY, USA, 147–156. https://doi.org/10.1145/2442516.2442531

[57] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber Hassaan, Rashid Kaleem, Tsung-Hsien
Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation. 12–25.

[58] Apan Qasem, Ashwin M. Aji, and Gregory Rodgers. 2017. Characterizing data organization effects on heterogeneous
memory architectures. In 2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
160–170. https://doi.org/10.1109/CGO.2017.7863737

[59] Simon Schwitanski, Joachim Jenke, Sven Klotz, and Matthias S. Müller. 2023. RMARaceBench: A Microbenchmark
Suite to Evaluate Race Detection Tools for RMA Programs (SC-W ’23). Association for Computing Machinery, New
York, NY, USA, 205–214. https://doi.org/10.1145/3624062.3624087

[60] Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V.Marianiello, JohnG. Edenhofner, MatthewB.
Dwyer, and Michael S. Rogers. 2015. CIVL: the concurrency intermediate verification language. In SC ’15: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–12. https:
//doi.org/10.1145/2807591.2807635

[61] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and
Wen-mei W Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput computing.
Center for Reliable and High-Performance Computing 127 (2012).

[62] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding real-world concurrency bugs in Go. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems. 865–878.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/11111
https://github.com/burtscher/Indigo3Suite
https://github.com/burtscher/Indigo3Suite
https://doi.org/10.1109/ISPASS55109.2022.00003
https://doi.org/10.1109/ISPASS55109.2022.00003
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1109/CLUSTER49012.2020.00053
https://doi.org/10.1145/2458523.2458533
https://doi.org/10.1109/IPDPS.2013.28
https://doi.org/10.1145/2442516.2442531
https://doi.org/10.1109/CGO.2017.7863737
https://doi.org/10.1145/3624062.3624087
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1145/2807591.2807635

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher

[63] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. 2012. Automatic restructuring of GPU kernels for exploiting
inter-thread data locality. In International Conference on Compiler Construction. Springer, 21–40.

[64] Gaurav Verma, Yaying Shi, Chunhua Liao, Barbara Chapman, and Yonghong Yan. 2020. Enhancing DataRaceBench for
Evaluating Data Race Detection Tools. In 2020 IEEE/ACM 4th International Workshop on Software Correctness for HPC
Applications (Correctness). IEEE, 20–30.

[65] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. 2019. NVBit: A Dynamic Binary Instru-
mentation Framework for NVIDIA GPUs. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
372–383. https://doi.org/10.1145/3352460.3358307

[66] Jin Wang and Sudhakar Yalamanchili. 2014. Characterization and analysis of dynamic parallelism in unstructured
GPU applications. In 2014 IEEE International Symposium on Workload Characterization (IISWC). IEEE, New York, NY,
USA, 51–60. https://doi.org/10.1109/IISWC.2014.6983039

[67] Hancheng Wu, Da Li, and Michela Becchi. 2016. Compiler-Assisted Workload Consolidation for Efficient Dynamic
Parallelism on GPU. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, New York,
NY, USA, 534–543. https://doi.org/10.1109/IPDPS.2016.98

[68] Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang. 2020. Simulee:
Detecting CUDASynchronization Bugs viaMemory-AccessModeling. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York,
NY, USA, 937–948. https://doi.org/10.1145/3377811.3380358

[69] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. 2019. Gardenia: A graph processing
benchmark suite for next-generation accelerators. ACM Journal on Emerging Technologies in Computing Systems
(JETC) 15, 1 (2019), 1–13.

[70] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. 2019. GARDENIA: A Graph Processing
Benchmark Suite for Next-Generation Accelerators. J. Emerg. Technol. Comput. Syst. 15, 1, Article 9 (jan 2019), 13 pages.
https://doi.org/10.1145/3283450

[71] Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue. 2021. GoBench: A Benchmark Suite of Real-World
Go Concurrency Bugs. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE,
187–199.

[72] P Zhang and G Chartrand. 2006. Introduction to graph theory. Tata McGraw-Hill.
[73] Yang Zhang, Jie Shen, Zhen Xu, Shikai Qiu, and Xuhao Chen. 2019. Architectural Implications in Graph Processing

of Accelerator with Gardenia Benchmark Suite. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 1329–1339.

Received 10 December 2023; revised 8 May 2024; accepted 7 May 2024

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1109/IISWC.2014.6983039
https://doi.org/10.1109/IPDPS.2016.98
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1145/3283450

	Abstract
	1 Introduction
	2 Background
	2.1 Program verification
	2.2 Parallelization and implementation styles
	2.3 Irregular code example
	2.4 CSR graph format

	3 Related Work
	3.1 Parallel benchmark suites
	3.2 Benchmark suites for data-race detection
	3.3 Automatic code generation
	3.4 Program verifiers

	4 Indigo3 Design
	4.1 Parallelization and implementation styles
	4.2 Common bugs
	4.3 Annotation tags
	4.4 Subset selection

	5 Experimental Methodology
	5.1 Hardware and software
	5.2 Codes and inputs
	5.3 Verification tools
	5.4 Metrics

	6 Results
	6.1 Bug-free codes
	6.2 Parallelism bug detection
	6.3 Memory bug detection
	6.4 Multiple bug detection
	6.5 Confusion matrix
	6.6 Evaluation by style
	6.7 Comparison with third-party codes
	6.8 Result correlation with inputs and architectures

	7 Summary and Conclusions
	Acknowledgments
	References

