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Motivation

• Heterogeneous datasets are prevalent in big-data (e.g., IoT1, medicine2)
• Data compression is necessary on large datasets
• Using a single compression algorithm per file is suboptimal

• Compression algorithms tend to exploit patterns that are unique to a data
• But exhaustively considering many algorithms per file is infeasible

Problem Statement
How can we predict an effective lossless compression
algorithm for each file in a heterogeneous dataset?

1Cios and Moore, “Uniqueness of medical data mining”.
2Wang, “Heterogeneous Data and Big Data Analytics”.

burtchell@txstate.edu MLcomp Wed Mar 20 2 / 12



Motivation

• Heterogeneous datasets are prevalent in big-data (e.g., IoT1, medicine2)
• Data compression is necessary on large datasets
• Using a single compression algorithm per file is suboptimal

• Compression algorithms tend to exploit patterns that are unique to a data
• But exhaustively considering many algorithms per file is infeasible

Problem Statement
How can we predict an effective lossless compression
algorithm for each file in a heterogeneous dataset?

1Cios and Moore, “Uniqueness of medical data mining”.
2Wang, “Heterogeneous Data and Big Data Analytics”.

burtchell@txstate.edu MLcomp Wed Mar 20 2 / 12



Introduction

• We call our approach "MLcomp"
• Offloads computation by training a nearest-neighbor (1NN) model off-line
• The compression ratios (CRs) of simple compression algos make effective features
• A few features (4) sufficiently distinguish files in a heterogeneous dataset
• We reduce a search space of over 100,000 algos to one well-performing algo for any input
• On our evaluation dataset, MLcomp reaches 97.8% of the CR achieved when

exhaustively searching our library
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Background: CRUSHER4
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Figure 1: CRUSHER Compression and Decompression Pipeline Flow

• CRUSHER generates 56 × 56 × 33 = 103,488 target pipelines
• CRUSHER generates 57 × 33 = 1,881 feature pipelines

• We use sequential feature selection (SFS)3 to greedily choose the 4 best features

3Ferri et al., “Comparative study of techniques for large-scale feature selection”.
4Burtscher et al., “Real-Time Synthesis of Compression Algorithms for Scientific Data”.
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MLcomp Walkthrough: Setup

• Suppose:
• 12 heterogeneous files to learn to compress: {f0, f1, f2, ..., f11}
• 10 CRUSHER components: {c0, c1, c2, ..., c9}

1. Split dataset
• Training: {f0, f1, f2, f3}
• Validation: {f4, f5, f6, f7}
• Testing: {f8, f9, f10, f11}

2. Generate CRUSHER pipelines:
• Features (length 1): {c0, c1, c2, ..., c9}
• Targets (length 2): {c0c0, c0c1, c0c2, ..., c9c9}
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MLcomp Walkthrough: Training

1. Compute features and identify target pipelines
• i.e., for each training file, run each feature and

target pipeline
2. Perform SFS to reduce features to size n
3. Train 1NN model with reduced feature vector
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Figure 2: 1NN Feature Space

Training Target
File Pipeline
f0 c2c3
f1 c4c7
f2 c6c1
f3 c2c3

Table 1: Target Pipeline Lookup
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MLcomp Walkthrough: Prediction

1. Compute feature vector of input file
• i.e., run each feature pipeline on f8

2. Find nearest neighbor (f2)
3. Compress with neighbor’s target pipeline (c6c1)
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Evaluation Methodology

• Data is from the THEMIS-B spacecraft5

• 27 distinct data packet types sent to Earth daily
• THEMIS-B assigns compressors according to packet type

• Dataset splits:
• Training: January and February 2013 (1,406 files)
• Validation: March 2013 (775 files)
• Testing: All data packets from 2014 (8,916 files)

• Final MLcomp model stats:
• 4 feature pipelines selected from 1,881 (length 2)
• 90 target pipelines identified from 103,488 (length 3)

Figure 3: THEMIS Satellites

5Angelopoulos, “The THEMIS Mission”.
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Results: Compression Ratio

On-board THEMIS-B compressors 1.858
In-model single best pipeline 2.032

CRUSHER single best pipeline 2.053
MLcomp predictions 2.682

In-model exhaustive search per file 2.740
CRUSHER exhaustive search per file 2.741

1 1.5 2 2.5 3
Figure 4: Geometric-mean Compression Ratio of MLcomp and Baselines

• MLcomp nearly achieves our upper bounds
• Compressing with a single pipeline (even the best!) is sub-optimal
• MLcomp surpasses THEMIS-B despite withholding the packet type label
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Results: Correlation between Packet Type and Predicted Pipeline
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Figure 5: Correlation between Packet Type and Predicted Compression Pipeline

• Discreteness exhibits MLcomp’s lack of bias towards a few pipelines
• Some packet types have similar sets of predicted pipelines

• Likely collected by the same instrument in different modes

burtchell@txstate.edu MLcomp Wed Mar 20 10 / 12



Results: Comparison with THEMIS-B Compressors per Packet Type
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Figure 6: Compression Ratio of Packet Type across Test Set

• 449: THEMIS-B beats MLcomp by highest factor (1.2×)
• Due to limitations of CRUSHER, not MLcomp

• 45f: MLcomp beats THEMIS-B by highest factor (3.0×)
• MLcomp predicted 15 distinct pipelines for 45f
• Adapts to heterogeneity within packet type
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Summary & Conclusion

• An ML approach is useful for heterogeneous datasets
• Using a single algorithm results in poor CRs
• But exhaustively searching per file is too slow

• Training a model offloads computation, so prediction is relatively quick
• MLcomp yields near-optimal CR on 8,916 unseen heterogeneous packets
• We hope this inspires others to explore ML to improve data compression

Further Questions?
burtchell@txstate.edu
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