Using Machine Learning to Predict Effective Compression Algorithms for Heterogeneous Datasets

Brandon Alexander Burtchell* Martin Burtscher

Department of Computer Science

Texas State University

Motivation

- Heterogeneous datasets are prevalent in big-data (e.g., IoT¹, medicine²)
- Data compression is necessary on large datasets
- Using a single compression algorithm per file is suboptimal
 - Compression algorithms tend to exploit patterns that are unique to a data
- But exhaustively considering many algorithms per file is infeasible

¹Cios and Moore, "Uniqueness of medical data mining".

 $^{^2 {\}rm Wang},$ "Heterogeneous Data and Big Data Analytics".

Motivation

- Heterogeneous datasets are prevalent in big-data (e.g., IoT¹, medicine²)
- Data compression is necessary on large datasets
- Using a single compression algorithm per file is suboptimal
 - Compression algorithms tend to exploit patterns that are unique to a data
- But exhaustively considering many algorithms per file is infeasible

Problem Statement

How can we predict an effective lossless compression algorithm for each file in a heterogeneous dataset?

¹Cios and Moore, "Uniqueness of medical data mining".

²Wang, "Heterogeneous Data and Big Data Analytics".

Introduction

- We call our approach "MLcomp"
- Offloads computation by training a nearest-neighbor (1NN) model off-line
- The compression ratios (CRs) of simple compression algos make effective features
- A few features (4) sufficiently distinguish files in a heterogeneous dataset
- We reduce a search space of over 100,000 algos to one well-performing algo for any input
- On our evaluation dataset, MLcomp reaches **97.8%** of the CR achieved when exhaustively searching our library

Background: CRUSHER⁴

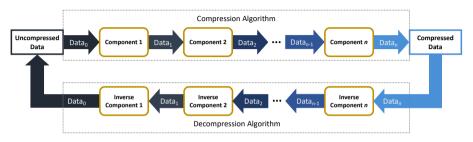


Figure 1: CRUSHER Compression and Decompression Pipeline Flow

- CRUSHER generates $56 \times 56 \times 33 = 103,488$ target pipelines
- CRUSHER generates 57 \times 33 = 1,881 feature pipelines
 - We use sequential feature selection $(SFS)^3$ to greedily choose the 4 best features

³Ferri et al., "Comparative study of techniques for large-scale feature selection".

⁴Burtscher et al., "Real-Time Synthesis of Compression Algorithms for Scientific Data".

MLcomp Walkthrough: Setup

• Suppose:

- 12 heterogeneous files to learn to compress: $\{f_0, f_1, f_2, ..., f_{11}\}$
- 10 CRUSHER components: $\{c_0, c_1, c_2, ..., c_9\}$
- 1. Split dataset
 - Training: $\{f_0, f_1, f_2, f_3\}$
 - Validation: $\{f_4, f_5, f_6, f_7\}$
 - Testing: $\{f_8, f_9, f_{10}, f_{11}\}$
- 2. Generate CRUSHER pipelines:
 - Features (length 1): $\{c_0, c_1, c_2, ..., c_9\}$
 - Targets (length 2): $\{c_0c_0, c_0c_1, c_0c_2, ..., c_9c_9\}$

MLcomp Walkthrough: Setup

• Suppose:

- 12 heterogeneous files to learn to compress: $\{f_0, f_1, f_2, ..., f_{11}\}$
- 10 CRUSHER components: $\{c_0, c_1, c_2, ..., c_9\}$
- 1. Split dataset
 - Training: $\{f_0, f_1, f_2, f_3\}$
 - Validation: $\{f_4, f_5, f_6, f_7\}$
 - Testing: $\{f_8, f_9, f_{10}, f_{11}\}$
- 2. Generate CRUSHER pipelines:
 - Features (length 1): $\{c_0, c_1, c_2, ..., c_9\}$
 - Targets (length 2): $\{c_0c_0, c_0c_1, c_0c_2, ..., c_9c_9\}$

MLcomp Walkthrough: Setup

• Suppose:

- 12 heterogeneous files to learn to compress: $\{f_0, f_1, f_2, ..., f_{11}\}$
- 10 CRUSHER components: $\{c_0, c_1, c_2, ..., c_9\}$
- 1. Split dataset
 - Training: $\{f_0, f_1, f_2, f_3\}$
 - Validation: $\{f_4, f_5, f_6, f_7\}$
 - Testing: $\{f_8, f_9, f_{10}, f_{11}\}$
- 2. Generate CRUSHER pipelines:
 - Features (length 1): $\{c_0, c_1, c_2, ..., c_9\}$
 - Targets (length 2): $\{c_0c_0, c_0c_1, c_0c_2, ..., c_9c_9\}$

MLcomp Walkthrough: Training

- 1. Compute features and identify target pipelines
 - i.e., for each training file, run each feature and target pipeline
- 2. Perform SFS to reduce features to size n
- 3. Train 1NN model with reduced feature vector

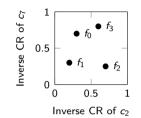


Figure 2: 1NN Feature Space

Training	Target
File	Pipeline
f_0	<i>c</i> ₂ <i>c</i> ₃
f_1	C4 C7
f_2	<i>c</i> ₆ <i>c</i> ₁
f ₃	<i>c</i> ₂ <i>c</i> ₃

Table 1: Target Pipeline Lookup

MLcomp Walkthrough: Prediction

- $1. \ \mbox{Compute feature vector of input file}$
 - i.e., run each feature pipeline on f_8
- 2. Find nearest neighbor (f_2)
- 3. Compress with neighbor's target pipeline (c_6c_1)

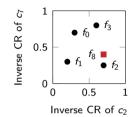


Figure 2: 1NN Feature Space

Training File	Target Pipeline
f_0	C ₂ C ₃
f_1	C4 C7
f_2	$c_{6}c_{1}$
f_3	<i>c</i> ₂ <i>c</i> ₃

Table 1: Target Pipeline Lookup

Evaluation Methodology

- Data is from the THEMIS-B spacecraft⁵
 - 27 distinct data packet types sent to Earth daily
 - THEMIS-B assigns compressors according to packet type
- Dataset splits:
 - Training: January and February 2013 (1,406 files)
 - Validation: March 2013 (775 files)
 - Testing: All data packets from 2014 (8,916 files)
- Final MLcomp model stats:
 - 4 feature pipelines selected from 1,881 (length 2)
 - 90 target pipelines identified from 103,488 (length 3)

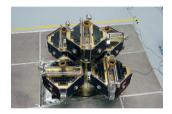


Figure 3: THEMIS Satellites

⁵Angelopoulos, "The THEMIS Mission".

Evaluation Methodology

- Data is from the THEMIS-B spacecraft⁵
 - 27 distinct data packet types sent to Earth daily
 - THEMIS-B assigns compressors according to packet type
- Dataset splits:
 - Training: January and February 2013 (1,406 files)
 - Validation: March 2013 (775 files)
 - Testing: All data packets from 2014 (8,916 files)
- Final MLcomp model stats:
 - 4 feature pipelines selected from 1,881 (length 2)
 - 90 target pipelines identified from 103,488 (length 3)

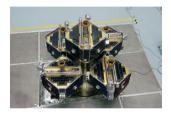


Figure 3: THEMIS Satellites

⁵Angelopoulos, "The THEMIS Mission".

Evaluation Methodology

- Data is from the THEMIS-B spacecraft⁵
 - 27 distinct data packet types sent to Earth daily
 - THEMIS-B assigns compressors according to packet type
- Dataset splits:
 - Training: January and February 2013 (1,406 files)
 - Validation: March 2013 (775 files)
 - Testing: All data packets from 2014 (8,916 files)
- Final MLcomp model stats:
 - 4 feature pipelines selected from 1,881 (length 2)
 - 90 target pipelines identified from 103,488 (length 3)

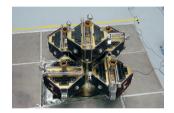


Figure 3: THEMIS Satellites

⁵Angelopoulos, "The THEMIS Mission".

Results: Compression Ratio

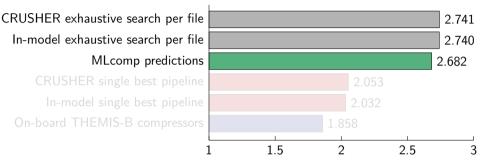


Figure 4: Geometric-mean Compression Ratio of MLcomp and Baselines

• MLcomp nearly achieves our upper bounds

- Compressing with a single pipeline (even the best!) is sub-optimal
- MLcomp surpasses THEMIS-B despite withholding the packet type label

Results: Compression Ratio

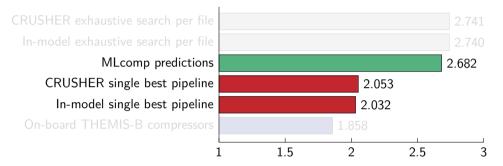


Figure 4: Geometric-mean Compression Ratio of MLcomp and Baselines

- MLcomp nearly achieves our upper bounds
- Compressing with a single pipeline (even the best!) is sub-optimal
- MLcomp surpasses THEMIS-B despite withholding the packet type label

Results: Compression Ratio

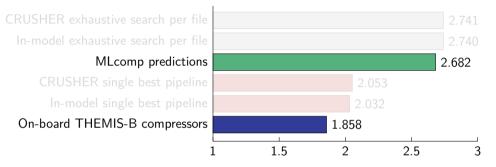
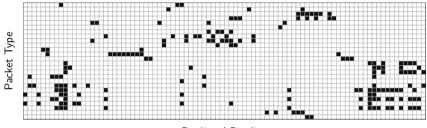


Figure 4: Geometric-mean Compression Ratio of MLcomp and Baselines

- MLcomp nearly achieves our upper bounds
- Compressing with a single pipeline (even the best!) is sub-optimal
- MLcomp surpasses THEMIS-B despite withholding the packet type label

Results: Correlation between Packet Type and Predicted Pipeline



Predicted Pipeline

Figure 5: Correlation between Packet Type and Predicted Compression Pipeline

- Discreteness exhibits MLcomp's lack of bias towards a few pipelines
- Some packet types have similar sets of predicted pipelines
 - · Likely collected by the same instrument in different modes

Results: Comparison with THEMIS-B Compressors per Packet Type

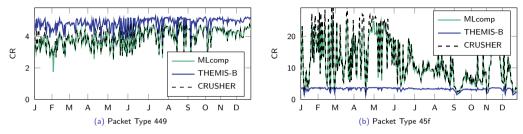


Figure 6: Compression Ratio of Packet Type across Test Set

- 449: THEMIS-B beats MLcomp by highest factor $(1.2 \times)$
 - Due to limitations of CRUSHER, not MLcomp
- 45f: MLcomp beats THEMIS-B by highest factor $(3.0 \times)$
 - MLcomp predicted 15 distinct pipelines for 45f
 - Adapts to heterogeneity within packet type

Summary & Conclusion

- An ML approach is useful for heterogeneous datasets
 - Using a single algorithm results in poor CRs
 - But exhaustively searching per file is too slow
- Training a model offloads computation, so prediction is relatively quick
- MLcomp yields near-optimal CR on 8,916 unseen heterogeneous packets
- We hope this inspires others to explore ML to improve data compression

Further Questions? burtchell@txstate.edu

