FairAD: Computationally Efficient Fair Graph Clustering via
Algebraic Distance

Minh Phu Vuong
Texas State University
San Marcos, TX, USA
ctyl3@txstate.edu

Ivan Ojeda-Ruiz
Lamar University
Beaumont, TX, USA
iojedaruiz@lamar.edu

Abstract

Due to the growing concern about unsavory behaviors of machine
learning models toward certain demographic groups, the notion of
‘fairness’ has recently drawn much attention from the community,
thereby motivating the study of fairness in graph clustering. Fair
graph clustering aims to partition the set of nodes in a graph into k
disjoint clusters such that the proportion of each protected group
within each cluster is consistent with the proportion of that group
in the entire dataset. It is, however, computationally challenging
to incorporate fairness constraints into existing graph clustering
algorithms, particularly for large graphs. To address this problem,
we propose FairAD, a computationally efficient fair graph clustering
method. It first constructs a new affinity matrix based on the notion
of algebraic distance such that fairness constraints are imposed. A
graph coarsening process is then performed on this affinity matrix
to find representative nodes that correspond to k clusters. Finally, a
constrained minimization problem is solved to obtain the solution
of fair clustering. Experiment results on the modified stochastic
block model and six public datasets show that FairAD can achieve
fair clustering while being up to 40 times faster compared to state-
of-the-art fair graph clustering algorithms.

CCS Concepts

« Mathematics of computing — Graph algorithms; « Theory
of computation — Unsupervised learning and clustering; «
Information systems — Clustering,.

Keywords

Graph Clustering, Spectral Clustering, Fairness

ACM Reference Format:

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee. 2025.

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Dis-
tance. In Proceedings of the 34th ACM International Conference on Information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761320

Young-Ju Lee
Texas State University
San Marcos, TX, USA

yjlee@txstate.edu

Chul-Ho Lee
Texas State University
San Marcos, TX, USA

chulho.lee@txstate.edu

and Knowledge Management (CIKM °25), November 10-14, 2025, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3746252.3761320

1 Introduction

Recent advancements in machine learning (ML) have enabled its in-
tegration into decision-critical applications across various domains,
including finance, healthcare, education, and law enforcement. De-
spite their significant capabilities, ML algorithms are susceptible to
biases present in datasets, resulting in potentially unfair outcomes
for certain demographic groups [14]. Thus, fairness criteria have
been introduced into ML problems, ranging from supervised and
unsupervised learning settings [4, 7, 10, 11, 13, 18, 30, 31, 34] to
semi-supervised and self-supervised settings [6, 39, 40], to eliminate
unwanted algorithmic bias and develop fair ML models.

Fairness refers to the unbiased treatment of individuals or groups
across various demographic categories, such as race, gender, age,
and socioeconomic status. In general, fairness can be incorporated
in an ML problem by introducing a fairness regularizer term to
its objective function; formulating an optimization problem with
explicit fairness constraints; or post-processing the output of a
model to account for the fairness. As a result, it leads to an unbi-
ased outcome in the target ML task or the representations that are
invariant to protected attributes or have feature distributions that
are statistically indistinguishable across demographic groups.

Fairness has been characterized by several concepts, including
individual fairness [17, 27], group fairness [12], and counterfactual
fairness [19]. Individual fairness requires similar individuals to re-
ceive similar outcomes, while counterfactual fairness demands that
an individual’s outcome remains unchanged if only their protected
attribute were hypothetically modified, with all the other features
being held constant. Group fairness ensures a fairly proportional
representation across demographic groups. Given the prevalence
of demographic groups in real-world datasets, ensuring group fair-
ness has become a critical requirement, especially when it comes
to clustering applications.

Chierichetti et al. [7] pioneered the integration of fairness into
k-center and k-median clustering algorithms. They introduced the
concept of fairness by ensuring that the proportion of each de-
mographic group within each cluster is consistent with its overall
proportion in the dataset. Backurs et al. [4] extended their approach
to efficiently handle larger datasets with near-linear running time.

https://doi.org/10.1145/3746252.3761320
https://doi.org/10.1145/3746252.3761320
https://doi.org/10.1145/3746252.3761320

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

More recently, several works have addressed fair k-clustering in
the presence of outliers [1, 2]. They first identify a subset of points
as outliers to remove and partition the remaining data so that each
cluster preserves the overall demographic proportions. These meth-
ods, however, have been predominantly applied to clustering tasks
in the Euclidean space, but clustering problems also often occur in
the context of graph data.

Graph clustering is a fundamental problem and has been ex-
tensively studied in the literature. Among others, spectral cluster-
ing [26] has been the most popular unsupervised graph-clustering
algorithm as it is developed in a principled way to find the optimal
solution to a well-defined graph cut problem. It has also been ac-
tively extended to variants of the graph cut problem for various
reasons, e.g., improving the quality of clustering with assistive in-
put from the user [8, 20, 32, 35, 37, 38]. For example, Xu et al. [35]
incorporate linear constraints to the objective of spectral clustering,
while Wang et al. [32] enforce prior knowledge via must-link and
cannot-link constraints. These constraint-driven methods are espe-
cially effective for image segmentation applications, where a small
set of annotated pixels helps the algorithm produce more accurate
segmentation boundaries.

Kleindessner et al. [18] introduced a mathematical framework
that imposes the notion of fairness as additional linear constraints
into the problem of spectral clustering. Their algorithm, which
we name as FairSC, however, faces scalability issues for larger
graphs due to its high computational cost. Wang et al. [30] recently
proposed a scalable fair spectral clustering algorithm named sFairSC
by reformulating the problem as a projected eigenvalue problem
and effectively improving its scalability. While their algorithms
improve the balance performance compared to the standard spectral
clustering, their frameworks still rely on solving constrained or
projected eigenvalue problems due to the fairness constraints. They
generally take much longer than solving unconstrained eigenvalue
problems as they require computing the nullspace of a fairness
matrix or employing the nullspace projection.

We propose FairAD, a computationally efficient fair graph clus-
tering method via Algebraic Distance. In FairAD, we first construct
a new affinity matrix based on the notion of algebraic distance
such that the fairness constraints are imposed. We then employ a
recursive graph coarsening process on the affinity matrix to find
representative nodes that correspond to a given number of clus-
ters. They eventually lead to a simple constrained minimization
problem, which can be solved efficiently. We further optimize the
implementation of FairAD through several techniques.

Our contributions can be summarized as follows:

We introduce a novel framework to integrate fairness constraints
into the affinity matrix for graph clustering, when constructed
based on the algebraic distance.

e We demonstrate how graph coarsening can be effectively lever-
aged to convert the problem into a simpler minimization problem,
which can be solved efficiently.

e We develop a series of implementation optimizations to further
improve the efficiency of FairAD.

e We evaluate the effectiveness and efficiency of FairAD through

extensive experiments on the modified stochastic block model

and six real-world datasets. The results show that FairAD not

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee

only delivers fair clustering but also runs up to 40X faster than
state-of-the-art fair graph clustering algorithms.

2 Preliminaries

Consider an undirected, weighted graph G = (V,E), where V =
{1,2,...,n} is the set of nodes and E is the set of edges. Each edge
between nodes i and j is associated with a positive weight W; j > 0.
Wj,; =0 for all i, and W; j = 0 if nodes i and j are not neighbors. Let
W =(W; ;) be the n X n weight matrix, which is also called affinity
matrix. Let d; be the degree of node i, which is defined as d; :=
2jev Wij, and let D := diag(di, dy, ..., dn) be the degree matrix.
For a subset of nodes A C V, we define vol(A) := };c4 d; to be a
volume of A. Also, for two subsets A, BCV, we define W(A, B) :=
2ieA,jeB Wi j- The Laplacian and normalized Laplacian matrices
of G are defined as L := D - W and L := D"/2(D - W)D~1/2
respectively.

Notations. For an integer n > 1, let [n] := {1,2,...,n}. Let 1 and
0 denote the n-dimensional all-one and all-zero column vectors,
respectively. Let Iy be the k X k identity matrix. For a node subset
ACV, let A denote its complement V \ A.

2.1 Spectral Clustering

The basic problem of graph clustering is the minimum cut problem,
which is to partition V into k disjoint subsets (clusters), i.e., V =
C1UC2 U -+ - UCy, such that the sum of the weights of the edges
across different clusters is minimized. That is, it is to find k disjoint
subsets to minimize

k
1 _
Cut(C1,Cz..... C) = & ; W (Cy,C)).

While this problem can be solved easily, it is widely known that
its solution does not lead to satisfactory partitions, and it often
separates an individual node from the rest of the graph. Thus, its
properly normalized versions have been introduced and extensively
studied in the literature [20, 28]. Among others, the normalized cut
(NCut) problem is the most popular problem, and its corresponding
‘spectral clustering’ algorithm is widely used as an effective graph
clustering algorithm [26].
Specifically, the NCut problem is to minimize

k f—
1 WG, G
WCr) ==)y ————=. 1
K= IZ‘ vol(C}) W
Consider k = 2. Letting h be an indicator vector with entries h; = 1
if i € Cy and h; = —1 otherwise, the NCut problem in (1) becomes

miny, ¢ (1,—1} NCut(h), which can also be written as

NCut(Cy, Cy, ..

min u'Lu
u;e{o,—1/c} (2)
subject to ' Du = vol(V) and u " D1 = 0,
where o is some positive constant. Since this problem is NP-hard [29],
by relaxing u to take arbitrary real values and substituting v :=
D!/2y, we have the following relaxed problem:
min o' Lo
veR”? (3)
subject to llo||? = vol(V) and o D21 =0.

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance

This boils down to finding the eigenvector corresponding to
the smallest non-zero eigenvalue of the normalized Laplacian L
and evaluating the “sign" of each component of the eigenvector to
partition the graph into two clusters.

For k > 2, by repeating the similar arguments as above, we
can relax the k-way NCut problem as the following standard trace
minimization problem, which is to find the n X k partition matrix
V = [v1,02,...,0)] to minimize the trace:

min Tr(V'LV) subject to VIV =4, 4)
VeRnxk

where Tr(VTLV) = 2{‘(:1 v;'—fvi. It is also known that the solution
to the relaxed k-way NCut problem in (4) is to find the eigenvectors

that correspond to the k smallest eigenvalues of L [26].

2.2 Fairness Constraints

The notion of fairness can now be introduced in the context of
graph clustering. The goal of fair graph clustering is to ensure that
the proportion of nodes in each cluster is identical to the proportion
of the population as a whole. Specifically, suppose that nodes are
originally divided into h distinct groups,ie., V=V UV, U---UV},.
Then, it aims to ensure that, fors =1,2,...,hand [=1,2,... k,

VenGil _ Vil “
or vl

Let f(s) = [fl(s),fz(s), . ,fn(s)] be the group indicator vector
for Vi, which has elements fl.(s) =1ifi € Vs and fi(s) = 0 otherwise.

Also, letF = (Fjs) be an nx (h-1) matrix with elements F; s := fl.(s) -
|[Vs|/|V| for s € [h—1] and i € [n]. Then, as shown in [18, 30], a
partition V.= C;UCaU- - -UCy is fair if and only if its corresponding
n X k partition matrix V = [v1, v, ..., 0] satisfies

FTV = 0(p1)xkr (6)

where 0(,_1)x is the all-zero matrix of dimension (h — 1) x k. In
other words, the fairness constraints in (5) are equivalent to the
linear constraints in (6). Therefore, the problem of fair spectral
clustering now becomes

min Tr(VTLV), (7)

VTV=Ig, FTV=0(1,_1)xx

which is imposing the linear constraints in (6) into the problem of
spectral clustering in (4).

To solve this problem efficiently, novel fair spectral clustering
algorithms, i.e. FairSC and sFairSC, have been developed [18, 30].
While they improve the balance performance compared to spectral
clustering, their frameworks still rely on solving constrained or
projected eigenvalue problems due to the fairness constraints. They
generally take much longer than solving unconstrained eigenvalue
problems as they require computing the nullspace of F or employ-
ing the nullspace projection. As shall be demonstrated through the
experiments, their computational time grows quickly with increas-
ing size of the graph. Therefore, there is a need for an efficient and
scalable approach for fair graph clustering.

3 Proposed Method: FairAD

In this section, we introduce FairAD, a computationally efficient fair
graph clustering method. We first construct a new affinity matrix

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

based on the notion of algebraic distance, where the fairness con-
straints are imposed. We then perform a recursive graph coarsening
process on this affinity matrix to find representative (or anchor)
nodes that correspond to k clusters. We finally determine which
cluster each node in the original graph belongs to by solving a re-
laxed k-way graph cut problem where the representative nodes are
used as additional linear constraints. In addition to the operations of
FairAD, we also explain a set of implementation optimizations made
to speed up FairAD in practice. Figure 1 illustrates an overview of
FairAD.

3.1 Imposing Fairness Constraints

For a given graph with the affinity (weight) matrix W, as the first
step of FairAD, we construct a new affinity matrix such that the
fairness constraints are imposed. To this end, we propose to use
the algebraic distance, which was originally developed in [22] to
measure the strength of a connection between each node pair in the
graph and to construct a new affinity matrix to achieve better solu-
tions to partitioning problems, albeit not under fairness constraints.
We below explain how the process of computing the algebraic dis-
tance can be modified to impose the fairness constraints into a new
affinity matrix.

We begin with the definition of algebraic distance. Let x1, x2, . . ., xR
be the n-dimensional test vectors. Each test vector x, is obtained
by running 7 Jacobi relaxation iterations [24] on Lx, = 0, where
L = D — W is the (unnormalized) Laplacian matrix. Starting from a
random vector x?, each Jacobi relaxation iteration on Lx, = 0 leads
to

xﬁ = x£_1 + D_l(O - Lxﬁ_l) = D_IWxﬁ_l, t=12,...,t—1,

and we finally have a test vector x, at t = 7. Intuitively, in each
iteration, the value of each node is updated based on the weighted
average of the values of its neighbors. This iterative process ef-
fectively smooths out the values of the nodes that are strongly
connected, while preserving the differences across the values of
the weakly connected nodes. Then, the algebraic distance between
nodes i and j is defined as

)= max i = x| ®)
where x,; is the i-th element of test vector x,. Next, a new affinity
matrix, say, Wy = (I/V:Jl.g), is constructed based on the algebraic
distance in (8) as follows [22]: For all i, j,

Walg

= exp(—s(i, j))-)

We here aim to incorporate the fairness constraints in (6) into
the process of computing the algebraic distance in (8). Specifically,
our approach is to impose the fairness constraints in (6) at each
Jacobi relaxation iteration so that its resulting test vector, say x,
at iteration t satisfies the fairness constraints, i.e., FTx£ = 0. For
brevity, we drop the subscript r as the test vectors are obtained in
the same way.

First, observe that the vector x’ at the t-th Jacobi relaxation
iteration is given by

xf =D 'Wxt L,
which leads to
Dx! = Wx!™1. (10)

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee

Wl,l Wf,llg
Wn.n : W#}g

@ Input weight @ Imposing fairness
matrix constraints

© Graph coarsening

@ Solving a constrained
minimization problem

Figure 1: An overview of FairAD.

Algorithm 1: Constrained Jacobi (cJacobi)
Input :W,D,F
Output:x7.
1 Initialize x°.
2 fort=1tordo
3 ‘ xt = (D +pFFT) " Iwx!~1,
4 end for

We then incorporate the fairness constraints F' x? = 0 into (10),
which leads to

Dx! = Wx!~! subject to FT x! = 0. (11)

Let b := Wx!~1. Since we solve this system for each ¢, for ease of
exposition, we also drop the superscript t. Next, we observe that the
system in (11) is equivalent to the following quadratic optimization
problem:

min leDx -b"x. (12)
FTx=0 2
We write its Lagrangian function, which is given by

1
L(x,A) = ExTDx -b"x+AF"x,

where A is the Lagrange multiplier. The KKT conditions applied to
this Lagrangian function yield

e o)) (o) w

which is a system of linear equations.

We leverage the augmented Lagrangian Uzawa method [15] to
solve the indefinite system in (13) as it has a fast rate of conver-
gence, implying that just one iteration provides a good approximate
solution. Specifically, given (xf, 1?), a new iterate (x/*1, A**1) is
obtained by solving the following equations:

(D + pFFN)x = p - FAF,
Al’+l — AO + IJFTxf
where p is a penalty parameter. It is known that if y is sufficiently
large, the iterates converge exponentially fast to the solution of (13).

More formally, the following result is known for the convergence
of the Uzawa method from [15, 21]:

Lemma 1. Let (x°, 1) be a given initial guess, and for £ > 1 let
(x%, AY) be the iterates produced by the augmented Lagrangian Uzawa
method. Denote by yo the smallest eigenvalue of FT D~ F. Then the
following holds:

4
t 1 0
=20 < (5h) 1A= 200

I3
VIRIA =27 < T (15h) 12 =201

IN

¢
lle = x|l

Lemma 1 implies that the Uzawa method converges exponen-
tially fast for a sufficiently large value of . Since the factor m (1+
Yoi) ! decreases monotonically with y, even a single iteration with
p > 1 can yield a good approximate solution. In other words, by
applying the Uzawa method to (13), for a given (x°, 1°), we can
obtain (x!, A1) in the first iteration as follows:

(D + yFF")x! = b - FA°,
=)0 +,uFTx1,
Setting A° = 0 yields
(D + pFFN)x! = b. (14)

By Lemma 1, we can safely use x! in (14) as an approximate solution
to (13). That is, we have the following solution to (13):

x~ (D+pFFT)71p. (15)

Thus, by noting that we have dropped the superscript ¢, and since
b = Wx!~1 the test vector x! at iteration ¢ is now obtained by

x! = (D+pFF) Twax! L, (16)

The process of imposing the fairness constraints into every Jacobi
relaxation iteration to obtain each test vector x, is summarized
in Algorithm 1. Once we obtain R test vectors, we compute the
algebraic distance s(i, j) for each pair of nodes i and j as in (8) and
construct a new affinity matrix Wy, as in (9).

3.2 Fair Graph Clustering via Algebraic
Distance

From the new affinity matrix W s, which now reflects the fairness
constraints, the next step of FairAD is to partition the nodes V into
k clusters. To this end, we leverage ‘graph coarsening’ to coarsen
the (updated) graph with W}, in order to identify a small number
of representative corresponding to k clusters. They are then used
as anchor nodes to guide the final clustering process. Specifically,
we finally solve a constrained minimization problem, which is a
relaxed k-way graph cut problem with having the representative
nodes as additional linear constraints.

Graph coarsening. For graph coarsening, we use a coarsening
algorithm introduced in [25]. It is a recursive algorithm, which
starts from the finest level and moves towards increasingly coarser
levels. Let GO = (V) E())) be the coarse graph at level £, and let
W, = (Wl(][)) be its corresponding affinity (weight) matrix, where
£=0,1,...,k. We set Gy := G and W := walg~ That is, the finest
graph is the graph G with Wy,. Also, G®) and W are the coarsest
graph and its affinity matrix, respectively. We below explain how
G and Wy are updated at each level ¢.

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Algorithm 2: Coarsening

Algorithm 3: FairAD

Input : Wy, # of coarse levels x
Output: Coarse graphs {G};_; with {W,}}_,
1 Wo = W, VIO = v
2 for each coarse level £ = 1,2, ...,k do
s | pe= v,
4 | VO = {ng).
5 fori=23,...,ndo

6 if max;cy () Wéz;l) < aZj’eV“’*l) er::"l) then
7 ‘ v = vy {n;).

8 end if

9 end for

10 Compute P, by (18).
11 W[= P;—W[_IP[.
12 end for

The coarsening algorithm begins by initializing V() as a sin-
gleton set containing only the first node, say, n; € v (=1 That is,
V() := {n;}. We then repeatedly check if the next node n; € V(=1
is ‘weakly’ connected to the ones that have been added in V() by
evaluating the following inequality:

max WV < ¢ E w-D (17)
cev(e) Mis) n;,j’
]EV j/ev(l—l)

where « is the coarsening parameter. The value of « is generally
chosen to be much smaller than one, i.e., « < 1, and our choice
of the value shall be explained later in the experiments. If the
inequality holds, it implies that node n; does not have a strong
connection with any of the previously added nodes in v Asa
result, node n; is treated as a ‘sufficiently independent’ node and
added to V([), ie., v =y y {n;}. Otherwise, V() remains
unchanged. This coarsening process is repeated until all the nodes
V(=1 are evaluated. Note that the intuition behind this process is
to eliminate mutually strongly connected nodes at each level.
Once the coarsening process is complete at level ¢, we construct
a |V(€_1)| X |V(f)| interpolation matrix Py := (Pf’j), with elements

Y4 .
P; ; given by

wiv
YU forie v e v,
2o W
pt =TTV W (18)
i, forie VO i=j,
0, otherwise.

This interpolation matrix is then used to obtain the affinity matrix
W; at level £ as follows:

W, =PIw,_P,.

The entire graph coarsening process is repeated recursively, level
by level. It is summarized in Algorithm 2.

Constrained minimization. The primary objective of graph coars-
ening is to identify k representative nodes corresponding to k dis-
tinct clusters. Intuitively, they are most weakly connected to each
other, so they could serve as anchor nodes (i.e., each node represents
each separate cluster) for the final clustering process. However, a
drawback of the graph coarsening algorithm is that we cannot

Input :W,D,F, m
Output:vi,vs,..., 0,
forr=1toR do

‘ xr « cJacobi(W, D, F).
3 end for

[

'

Compute W, using (9) with {xr}le.

{Gr}}_y < Coarsening(Wy,).

for each coarse level t =k, k- 1,...,0 do
if [V()| > m then

B, ¢ « SpectralClustering(Gy, k).

break;

10 end if

@

=Y

® N

11 end for

= -1/2
12 Lyg = Dalg/ (Dalg - walg)D
13 Aglg = Lojg + BT B.
14 for each clusteri=1,2,...,k do
15 ‘ v = IlA;léBTCi'

-1/2
alg

16 end for

control the exact number of nodes generated at the coarsest level
(¢ = k). Thus, we instead identify at least m > k representative
nodes that correspond to k clusters, where multiple nodes can cor-
respond to the same cluster. Once we obtain coarse graphs {G¢}}_,
from the coarsening algorithm, we find the smallest coarse graph
containing at least m nodes. Note that for a given value of k, we set
the value of m to be a bit greater than the value of k. For example,
we use the value of m between 15 and 50 for k < 10.

Specifically, we move towards the finest graph, starting from the
coarsest one, and find the first coarse graph containing at least m
nodes (Lines 6-7 of Algorithm 3). We then apply spectral clustering
to this coarse graph to obtain k groups of representative nodes
(Line 8 of Algorithm 3). In other words, we first compute the first
k eigenvectors of the m X m normalized Laplacian matrix of the
coarse graph, which form a m X k matrix, and then run k-means
on its rows to produce k groups of representative nodes. Note that
since the coarse graph (with m nodes) is significantly smaller than
the original graph (with n nodes), it is not a computational burden
to use the spectral clustering at this stage.

Let m* be the number of identified representative nodes. Our next
step is to find the clustering solution such that m* representative
nodes belong to their corresponding clusters. In other words, we
impose the representative nodes with their corresponding groups
as linear constraints to a relaxed graph cut problem. This problem
is given by, fori =1,2,...,k,

1 —
Brzr;n—r:: Ev;—Lalgvis (19)
1%

where Ealg is the normalized Laplacian corresponding to Wy} From

m* representative nodes, say, 1,72, . . ., Fm*, we define B and c; to
be
T .
efll Ory,i
€. Oryi
2
B= and c¢; = , (20)

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

'§’ 103L 772 w/o CuPy v
= 2f &3 w/ CuPy

= o N
g 10t

:E 100% /
= £

€ 10°1F

NBA German LastFM Recidivism Deezer Credit

Figure 2: Running time of FairAD with and without CuPy.

= 2] :

gs 10 gm Direct solver ?

= F =9 PyAMG

@ 10': \
2 \
B 1°°§

e 3 AN
©10-1L o \

German LastFM Recidivism Deezer Credlt

Figure 3: Runmng time of FairAD with and without PyAMG.

respectively, where e; is an n-dimensional vector with the i-th entry
being one and the others being zero, and §,; = 1if node r belongs to
cluster i and 0 otherwise. That is, each row of B is a one-hot vector
that represents the location of its corresponding representative
node, and c; is a vector to indicate which representative nodes
belong to cluster i.

We can employ the same technique as used in solving (12) to
solve (19). First, we write its equivalent indefinite system as

Eal BT\ (v; _ {0
(5 % J0)-C) &

Then, as was done in Section 3.1, we leverage the Uzawa method
to solve the system in (21). For a given (u0 19), we have (v}, A in
the first iteration as follows:

(Laig + 1B B)o} +BA® = B ¢;
A=204+ ,u(Bvl-l - cj).
Setting A% = 0 yields
(ialg + ,uBTB)v} =B ¢;
By Lemma 1, we obtain the following approximate solution to (21):

~ pA B ci, (22)

where Agy = ialg + uBTB. Finally, once we have the solutions
01,02, ..., Vg, the cluster label of node j is determined by identifying
which o; has the maximum value in its j-th entry, i.e., arg max; v; ;
for j € [n].

3.3 Optimized Implementation

We here explain a set of implementation optimizations used for
the implementation of FairAD, which is summarized in Algorithm
3. First, recall that obtaining the test vectors x1, x2, . . ., xg to con-
struct a new affinity matrix Wy, requires computing (16) itera-
tively (or running Algorithm 1), which involves inverting the ma-
trix (D + pFFT). To efficiently compute (D + yFF")~!, we employ
the Woodbury matrix identity [33]. For given matrices A, C, U, and
V with the shapes n X n,k X k,n X k and k X n, respectively, the
Woodbury matrix identity to compute (A + UCV)~! is given by

(A+ucv) t=A"t A lycl+vaTlu)yTivaTl

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee

Using this identity, we can efficiently compute (D + gFF')~! as
follows:

(D+pFFT) "' =D -D7'F(I,' +FT'D7'F)T'FTD 7,

where I, := pl. Here, since D is a diagonal matrix, it is straight-
forward to compute D! In addition, F is a tall matrix, meaning
that the inversion (I;l +FTD™!F)~! is also easier to compute. This
is because it only involves inverting a k X k matrix, where k is
typically much smaller than n. That is, the inversion costs O (k?)
instead of O(n?).

Second, we optimize the implementation of FairAD by leverag-
ing CuPy, which is an open source library for GPU-accelerated
computing with Python.! In particular, the matrix operations are
done much more efficiently since CuPy allows us to fully exploit
GPU parallel processing. As a result, the computational efficiency
of FairAD can be greatly enhanced. In Figure 2, we compare the
running times of our GPU-accelerated implementation of FairAD
with CuPy and its CPU-based counterpart. The GPU-accelerated
implementation achieves at least an order-of-magnitude speed-up
on five of the six datasets. Specifically, we observe a nearly two
orders-of-magnitude improvement on NBA and LastFM graphs and
roughly an order-of-magnitude improvement on the larger graphs
such as Recidivism, Deezer, and Credit.

Third, we optimize the efficiency of the graph coarsening algo-
rithm, which is an integral part of FairAD, by judiciously choosing
the order of nodes in V=1 to be evaluated, as in Line 5 of Al-
gorithm 2. Instead of simply evaluating the nodes in increasing
order of their node IDs, we prioritize the nodes that are strongly
connected with others. To this end, we maintain a set of ‘volumes’,
denoted by v. It is initially v := 1 and updated by v := vP,. The
nodes in V=1 are then evaluated in descending order of their
volumes. This way, we can first evaluate more important nodes
from a network connectivity perspective at each level.

Finally, to identify the cluster membership of each node in the
end, i.e., which cluster each node belongs to, we need to compute the
solution v; as in (22), which is equivalent to solving the following
linear system: Fori = 1,2,...,k,

Aqlgvi = BT c;.

Note that unlike computing (D + pFFT)~1, it is impractical to di-
-1 . .
rectly compute Aalg’ since Alg does not possess the nice property

of (D + pFFT) that allows us to leverage the Woodbury matrix iden-
tity. One could solve the linear system using the standard solvers
from NumPy or SciPy’s linear algebra packages, but they become
inefficient for large graphs. Thus, we utilize PYAMG’s classical
AMG solver [5], which is well-suited for large, sparse systems.? In
Figure 3, we compare the running times of the implementation of
FairAD when using the PyAMG solver and a direct SciPy solver.
For the small graphs such as NBA and LastFM, the implementa-
tion of FairAD with PyAMG outperforms the one with the direct
solver by up to an order of magnitude. For the larger graphs such as
Recidivism, Deezer, and Credit, the implementation with PyAMG
completes in roughly 150 seconds, while the one with the direct
solver fails with out-of-memory errors (‘OOM”). Thus, we can see

!https://docs.cupy.dev/en/v13.2.0/index.html
2https://pyamg.readthedocs.io/en/latest/

https://docs.cupy.dev/en/v13.2.0/index.html
https://pyamg.readthedocs.io/en/latest/

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance

Table 1: Statistics of datasets used in the experiments

Dataset \4 |E| Sensitive Attribute | h
NBA 403 10,621 Country

German 1,000 21,742 Gender

LastFM 7,624 27,806 Country

Recidivism | 18,876 | 311,870 Race
Deezer 28,281 | 92,752 Gender
Credit 29,460 | 136,196 Education 3

that the implementation of FairAD based on the PYAMG solver is

more computationally efficient and scalable to large graphs.

N DN RN

4 Experiments

In this section, we provide extensive experiment results to demon-
strate the superior performance of FairAD to baseline algorithms,
which are state-of-the-art fair clustering algorithms such as FairSC
and sFairSC as well as the plain spectral clustering (SC).

Datasets. We consider both synthetic and public real-world datasets
for performance evaluation. The synthetic dataset is generated
based on a modified stochastic block model (mSBM) [18], which
has been widely used to generate synthetic networks for clustering
and community detection. Suppose that the set of nodes V consists
of h groups, i.e, V=V, UV U--- UV, and is also partitioned into
k ground-truth clusters, i.e., V.= C; UCy U - - - U Cg. The synthetic
dataset is generated such that the ‘fairness’ condition is satisfied,
meaning that the almost same proportion of nodes from each group
Vs appears in each cluster C;. In other words, we ensure the propor-
tion 55 := |V5 N Cy|/|C| to be more or less the same for all s € [A],
ie,n ~ny~...~np foreachl € [k].

For mSBM, the probability of having an edge between two nodes
depends on their membership in the groups and clusters. Thus, we
define the probability of having an edge between nodes i and j, say,
Qi,j, to be given by

a, if i and j are in the same group and the same cluster,

0 b, if i and j are in the same group and different clusters,
i,j =

¢, if i and j are in different groups and the same cluster,

d, if i and j are in different groups and different clusters,

with a > b > ¢ > d, which is to reflect stronger connections within
groups and clusters [18, 30]. Then, the affinity matrix of mSBM is
obtained by

{Bernoulli(Qi,j), ifi#j
ij =

0, otherwise,

where Bernoulli(Q; ;) is a Bernoulli random variable with proba-
bility Q; Jje

In addition, we consider six real-world datasets, namely, NBA
[9], German [3], Recidivism [16], LastFM [23], Deezer [23], and
Credit [36], which are all from social networks and contain sensitive
attributes. The statistics of the datasets are provided in Table 1. We
use the largest connected component of each graph.
Parameter settings. In our experiments, we set the parameters
of mSBM as follows: a = 10(logn/n)z/3, b = 7(log n/n)?3, ¢ =
4(log n/n)?/3 andd = (log n/n)?/3. For FairAD, we set u =10 and
a = 10~%. Both the number of test vectors, R, and the number of

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Jacobi iterations, 7, are set to 10. We observed that the test vectors
X1, X2, ..., xR often become indistinguishable due to floating point
precision limitations. To address this issue, we introduce a scaling

parameter f§ to the definition of Vl/iajl.g in (9), which is now given

by Wlajlg = exp(—ps(i, j)), where the value of § is chosen to be
sufficiently large. This way, we ensure that the difference between
the scaled algebraic distances of different node pairs becomes much
bigger, thereby leading to informative test vectors. Specifically, we
set f = n/log(n) in the experiments.

4.1 Experiment Setup

Evaluation metrics. We use the error rate introduced in [18] to
quantify the performance of FairAD and baselines on the synthetic
networks generated by mSBM. Let V = (V; ;) be the indicator matrix
of the predicted clustering labels, where V; ; = 1, if node i belongs
to cluster j, and 0 otherwise. Similarly, let V* be the indicator matrix
for the ground-truth labels generated by the mSBM. Note that the
numeric labels 1, 2, ..., k are arbitrary, so the same partitions may
differ by a permutation of columns. In other words, there exists a
permutation matrix U such that VU = V*. To account for this nature,
letting IT be the set of all k X k permutation matrices, the error
rate is defined as the smallest difference between the permuted
prediction VU and the ground truth V*, which is given by

1
E(V-V*) = Quin [VU = V.. (23)

For real-world datasets, we use the average balance introduced
in [7] as the performance metric. Specifically, for a given group
partition V.= V; U --- U V, having a partition of clusters V =
C1 U -+ - U Cy, we define the balance of cluster C; as follows: For
I=12..k

Vs NGyl

balance(C;) = min ———,
ss'€lhlszs [Vsr N Cl

(24)
where |V N C;| is the number of the members of group V; that
also appear in cluster C;. This metric measures the degree of the
discrepancy in the proportional representation of each group Vs in
cluster C; by taking the minimum ratio across all pairs of groups. In
other words, the balance of C; is determined by the largest difference
in the proportional representation of each group Vs in cluster Cj,
i.e., the largest difference between |Vs N C;| and |Vy N C;| among
all pairs of groups. A cluster achieves perfect balance (value 1) only
if all groups are equally represented in the cluster, while a lower
balance value indicates that at least one group pair is unbalanced.
The average balance is then obtained by taking the average of the
balance values over all k clusters.

Hardware and software configuration. For hardware, all experi-
ments are conducted on a Linux server equipped with an Intel Xeon
Gold 5218R CPU, 95GB RAM, and an NVIDIA Quadro RTX 8000
48GB GPU. For software, we use Python 3.12, SciPy v1.11, CuPy
v13.2, and CUDA 12.3. Each experiment is repeated ten times, and
the average results are reported for performance evaluation.

4.2 Experiment Results

Synthetic dataset. We first consider the mSBM dataset to demon-
strate the effectiveness and scalability of FairAD in comparison

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee

== SC =fA- FairSC =4- sFairSC -@- FairAD
1.0 1.0 1.0
]] e . s e i e e . e e s 8 =
& © e ~ ~N —
5 0.5 5 0.5 5 0.5 >(/ */)(—
= e e s e e e e e E =
0.0 Lot e el o 4 Y i 0.0 oo] e wcoffibon e i e fliem e 0.0 e] e waffben e e i
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
of nodes n led # of nodes n led # of nodes n led
(@) h=2,k=4 (b) h=5k=5 (c) h=10,k=5
w w w
‘2 4000 S A ‘2 4000 5 A 2 4000 . A
£ 7 £ 7’ £ Cd
E A E A = PV \
22000 . 22000 &« . 22000 &« .
£ .- Y = .- 4| i .- -4
< =.‘__-t.- £ _.‘ __t-_g- < - __;_-. S
2 0 - —-!— —!7 E 0 =) - —w | 2) == e =
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
of nodes n led # of nodes n led # of nodes n led
d) h=2k=4 () h=5k=5 (f) h=10,k =5

Figure 4: Error rate in (23), shown in the top row, and running time (in seconds), shown in the bottom row, under synthetic

networks generated by mSBM with varying values of h and k.

Table 2: Running times (in seconds) of SC, FairSC, sFairSC, and FairAD on mSBM with n = 20000

[k=3 [k=4 [k=5 | k=6 |
\ |h=2]h=4]h=6]h=8]h=10 || h=2[h=4[h=6]h=8]h=10[h=2[h=4]h=6[h=8[h=10||h=2]h=4[h=6]h=8]h=10 |
SC 44 34 55 53 53 32 22 26 46 47 53 35 46 55 58 79 58 44 39 53
FairSC | 1337 | 1215 | 1249 | 1329 | 1357 || 1304 | 1325 | 1361 | 1213 | 1196 || 1137 | 1253 | 1143 | 1156 | 1243 || 1248 | 1313 | 1337 | 1189 | 1179
SFairSC | 546 | 512 | 535 | 636 | 457 444 | 499 | 466 | 450 | 526 578 | 534 | 698 | 437 | 567 642 | 603 | 654 | 433 | 603
FairAD | 57 52 51 52 52 61 60 56 58 55 65 63 64 62 63 81 66 69 63 71
Table 3: Running times (in seconds) of SC, FairSC, sFairSC, and FairAD on mSBM with n = 30000
k=3 k=4 k=5 k=6
h=2]h=4]h=6]h=8[h=10 [h=2]h=4]h=6]h=8]h=10|h=2[h=4[h=6[h=8[h=10||h=2]h=4[h=6[h=8][h=10
SC 73 78 86 | 111 97 m | 72 84 | 111 37 89 89 78 | 107 | 122 82 82 94 | 107 | 122
FairSC | 4502 | 4287 | 4383 | 4285 | 4472 || 4574 | 4523 | 4567 | 4502 | 4421 || 4430 | 4553 | 4494 | 4529 | 4519 || 4510 | 4332 | 4453 | 4339 | 4379
sFairSC | 1008 | 1036 | 1003 | 963 | 1001 || 1032 | 1006 | 1007 | 962 | 1044 || 1099 | 1157 | 1063 | 1076 | 981 890 | 862 | 804 | 883 | 789
FairAD | 122 | 116 | 114 | 112 | 114 149 | 129 | 133 | 132 | 140 140 | 149 | 134 | 130 | 131 161 | 149 | 146 | 148 | 158

with the baseline algorithms in terms of error rate and running
time. As illustrative results, in Figure 4, we present the results for
the cases withh=2andk =4, h=5and k = 5,and h = 10 and
k = 5. Here, the graph sizes vary from n = 5 x 103 to n = 3 x 10%.
As shown in Figure 4, we observe that FairSC, sFairSC, and FairAD
accurately obtain the ground truth clustering labels, whereas SC
fails with a high error rate. While FairSC, sFairSC, and FairAD do
the job correctly, FairAD is significantly faster than FairSC and
sFairSC in terms of running time, with the speed-ups of up to 42x
and 12X, respectively.

We further evaluate the impact of varying values of h and k on
the performance of FairAD and baselines when the graph sizes are
n = 20000 and n = 30000. We observe that the error rates of FairSC,
sFairSC, and FairAD are all zero for most cases, whereas SC’s error
rate ranges from 0.17 to 0.83. We omit the results for brevity. We
here mainly evaluate the running time of each method. As shown
in Tables 2 and 3, the running time of FairAD is just under 200
seconds, achieving over 10X speed-up compared to sFairSC and
30X to 40X speed-up compared to FairSC for all test cases. While SC
achieves the similar running time as FairAD, it has a much higher
error rate. These results demonstrate the superior performance of
FairAD across different settings.

Real-world datasets. We next evaluate the effectiveness and ef-
ficiency of FairAD on six real-world datasets in terms of the av-
erage balance and running time and demonstrate its superiority
to the baselines. As shown in Figure 5, we observe that FairAD
outperforms all baselines consistently in terms of average balance.
Specifically, for the small graphs such as NBA, German, and LastFM,
FairAD achieves an average improvement of approximately 20%,
with up to about 100% improvement, when compared to FairSC
and sFairSC. Note that FairSC and sFairSC exhibit nearly identical
balance performance for all graphs. We also observe that FairSC
takes an excessive amount of time, i.e., several hours to days, for
the larger graphs such as Recidivism, Deezer, and Credit, for which
we do not report its results. For the larger graphs, FairAD outper-
forms sFairSC by 10% to 15%. Overall, the results demonstrate the
effectiveness of FairAD, which consistently achieves the highest
average-balance score for all test cases on all datasets. In other
words, FairAD produces the most balanced clusters for all cases.
To evaluate the efficiency of FairAD, we compare its running time
with that of each baseline and report the results in Figure 6. FairAD
is at least twice as fast as sFairSC and more than 3X faster than
FairSC for all values of k on the small graphs such as NBA, German,
and LastFM. The performance gap in running time becomes wider

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance

£ sFairSC

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

FairAD

o
N

Average Balance
(=]
-

of clusters: k
(b) German

g
)

of clusters: k
(c) LastFM

EX3 sC = FairSC
0.5 0.6
c c
5 0.4 k] 3
c 0. X R ©
KX <4
2 e | BN 504
0.3 N BN 2
g N | BN g
€0.2 A | %.9: NN & KX < 0.2
2 6 8
of clusters: k
(a) NBA

1.0 o
] Yo.8
B0.91 oordid 0 fmd o [%
@ i 3 0.7
0 0.8 T (] f
-3 i -3]
[Co.6 !
50.7 E] ;
> > :
<o.6 ; <05 :

a4
of clusters: k

(d) Recidivism

of clusters: k

(e) Deezer

S
RS

s
R

of clusters: k

(f) Credit

Figure 5: Average balance for NBA, German, and LastFM datasets (top row) and for Recidivism, Deezer, and Credit datasets

(bottom row), when changing the number of clusters.

XX sc FairSC
w2 Q -
uE:
£ \ N § :
1 § \ 5 2
|y % N %
N WS B B N
2 4 6 8

T sFairSC FairAD
O N\ N
v N N
g30 \ §
20 R
£
£ o \
=
[4

of clusters: k # of clusters: k # of clusters: k
(a) NBA (b) German (c) LastFM
E 750 E E 6000
dE) g 4000 E
i= 500 = = 4000
2 22000 g
't 250 T c 2000
c H c
g E 2 B B | R
0! 0 o O e 0 e OCHE....
4 6 8 4 6 8
of clusters: k # of clusters: k # of clusters: k
(d) Recidivism (e) Deezer (f) Credit

Figure 6: Running time for NBA, German, and LastFM datasets (top row) and for Recidivism, Deezer, and Credit datasets (bottom

row), when changing the number of clusters.

on the larger graphs, as shown in Figures 6(d)-6(f). FairAD is more
than an order of magnitude faster than sFairSC, achieving up to 40X
speed-up compared to sFairSC. This is because sFairSC, especially
its eigensolver, requires a much larger number of iterations to
converge for such large graphs. We also observe that FairAD is even
faster than SC for Deezer and Credit datasets, where SC already
fails to produce balanced clusters.

To summarize, the experiments on both synthetic and real-world
datasets confirm the effectiveness and efficiency of FairAD. It pro-
duces highly balanced clusters while taking only a fraction of the
running times of its competing methods, namely FairSC and sFairSC,
making it a practical solution for fair graph clustering.

5 Conclusion

We have introduced FairAD, a novel fair graph clustering method
via algebraic distance. The main enabler of FairAD is its frame-
work to impose fairness constraints into the affinity matrix when

it is constructed based on the algebraic distance. FairAD then ef-
fectively leveraged graph coarsening to convert the optimization
problem into a simpler graph cut problem, which is solved effi-
ciently. Its implementation was further optimized through several
techniques. Experiment results demonstrated the superior perfor-
mance of FairAD to state-of-the-art fair graph clustering algorithms
in terms of both the quality of fairness and computational efficiency.

Acknowledgments

This work was supported by the National Science Foundation under
grants IIS-2209921, CNS-2209922, and DMS-2208499, the Interna-
tional Energy Joint R&D Program of the Korea Institute of Energy
Technology Evaluation and Planning (KETEP), granted financial
resource from the Ministry of Trade, Industry & Energy, Republic
of Korea (No. 20228530050030), and an equipment donation from
NVIDIA Corporation. C. Lee is the corresponding author.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

GenAlI Usage Disclosure

No GenAl tools were used in any stage of the research, nor in the
writing.

References

(1]

[10

[11]

[12]

[13

[14

[15]

[16

[17]

[18]

Matteo Almanza, Alessandro Epasto, Alessandro Panconesi, and Giuseppe Re.
2022. k-Clustering with fair outliers. In Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining. 5-15.

Daichi Amagata. 2024. Fair k-center clustering with outliers. In Proceedings of
The 27th International Conference on Artificial Intelligence and Statistics. PMLR,
10-18.

Arthur Asuncion, David Newman, et al. 2007. UCI machine learning repository.
Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and
Tal Wagner. 2019. Scalable fair clustering. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, 405-413.

Nathan Bell, Luke N. Olson, Jacob Schroder, and Ben Southworth. 2023. PyAMG:
Algebraic Multigrid Solvers in Python. Journal of Open Source Software 8, 87
(2023), 5495.

Brian Brubach, Darshan Chakrabarti, John P. Dickerson, Aravind Srinivasan,
and Leonidas Tsepenekas. 2021. Fairness, semi-supervised learning, and more:
A general framework for clustering with stochastic pairwise constraints. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 6822-6830.
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.
Fair clustering through fairlets. In Proceedings of the 31st International Conference
on Neural Information Processing Systems. 5036—5044.

Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng.
2016. Simple and scalable constrained clustering: a generalized spectral method.
In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics. PMLR, 445-454.

Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair
graph neural networks with limited sensitive attribute information. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining. 630—
688.

Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022. Edits: Modeling
and mitigating data bias for graph neural networks. In Proceedings of the ACM
Web Conference 2022. 1259-1269.

Xin Du, Yulong Pei, Wouter Duivesteijn, and Mykola Pechenizkiy. 2020. Fairness
in network representation by latent structural heterogeneity in observational
data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
3809-3816.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. 214-226.

Wei Fan, Kunpeng Liu, Rui Xie, Hao Liu, Hui Xiong, and Yanjie Fu. 2021. Fair
Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein
Distance. In 2021 IEEE International Conference on Data Mining (ICDM). 1054—
1059.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and removing disparate impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 259-268.

Michel Fortin and Roland Glowinski. 2000. Augmented Lagrangian methods:
Applications to the numerical solution of boundary-value problems. Elsevier.
Kareem L Jordan and Tina L Freiburger. 2015. The effect of race/ethnicity on
sentencing: Examining sentence type, jail length, and prison length. Journal of
Ethnicity in Criminal Justice 13, 3 (2015), 179-196.

Christopher Jung, Sampath Kannan, and Neil Lutz. 2020. Service in Your Neighbor-
hood: Fairness in Center Location. In Ist Symposium on Foundations of Responsible
Computing, Vol. 156. 5:1-5:15.

Matthéus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern.
2019. Guarantees for spectral clustering with fairness constraints. In Proceedings

Minh Phu Vuong, Young-Ju Lee, Ivan Ojeda-Ruiz, and Chul-Ho Lee

of the 36th International Conference on Machine Learning. PMLR, 3458-3467.
Matt Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual
fairness. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. Curran Associates Inc., 4069-4079.

Maria CV. Nascimento and André C.P.L.F. de Carvalho. 2011. Spectral methods
for graph clustering—a survey. European Journal of Operational Research 211, 2
(2011), 221-231.

Ivan Ojeda-Ruiz and Young-Ju Lee. 2020. A fast constrained image segmentation
algorithm. Results in Applied Mathematics 8 (2020), 100103.

Dorit Ron, Ilya Safro, and Achi Brandt. 2011. Relaxation-based coarsening and
multiscale graph organization. Multiscale Modeling & Simulation 9, 1 (2011),
407-423.

Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:
Birds of a Feather, from Statistical Descriptors to Parametric Models. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management. 1325-1334.

Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt. 2006.
Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 7104 (2006),
810-813.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888—
905.

Ali Vakilian and Mustafa Yalciner. 2022. Improved approximation algorithms for
individually fair clustering. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics. PMLR, 8758-8779.

Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
Computing 17 (2007), 395-416.

Dorothea Wagner and Frank Wagner. 1993. Between min cut and graph bisection.
In Proceedings of the 18th International Symposium on Mathematical Foundations
of Computer Science. Springer, 744-750.

Ji Wang, Ding Lu, Ian Davidson, and Zhaojun Bai. 2023. Scalable spectral clus-
tering with group fairness constraints. In Proceedings of the 26th International
Conference on Artificial Intelligence and Statistics. PMLR, 6613-6629.

Nan Wang, Lu Lin, Jundong Li, and Hongning Wang. 2022. Unbiased graph
embedding with biased graph observations. In Proceedings of the ACM Web
Conference 2022. 1423-1433.

Xiang Wang, Buyue Qian, and Ian Davidson. 2014. On constrained spectral
clustering and its applications. Data Mining and Knowledge Discovery 28 (2014),
1-30.

M.A. Woodbury. 1950. Inverting Modified Matrices. Department of Statistics,
Princeton University.

Ruicheng Xian, Lang Yin, and Han Zhao. 2023. Fair and optimal classification via
post-processing. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, 37977-38012.

Linli Xu, Wenye Li, and Dale Schuurmans. 2009. Fast normalized cut with linear
constraints. In 2009 IEEE Conference on Computer Vision and Pattern Recognition.
2866-2873.

I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients. Expert
Systems with Applications 36, 2 (2009), 2473-2480.

Stella X Yu and Jianbo Shi. 2001. Grouping with bias. Advances in Neural
Information Processing Systems 14 (2001), 1327-1334.

Stella X Yu and Jianbo Shi. 2004. Segmentation given partial grouping constraints.
IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2 (2004), 173~
183.

Fengda Zhang, Kun Kuang, Long Chen, Yuxuan Liu, Chao Wu, and Jun Xiao.
2022. Fairness-aware contrastive learning with partially annotated sensitive
attributes. In The Eleventh International Conference on Learning Representations.
Tao Zhang, Tianging Zhu, Jing Li, Mengde Han, Wanlei Zhou, and Philip S.
Yu. 2020. Fairness in semi-supervised learning: Unlabeled data help to reduce
discrimination. IEEE Transactions on Knowledge and Data Engineering 34, 4 (2020),
1763-1774.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spectral Clustering
	2.2 Fairness Constraints

	3 Proposed Method: FairAD
	3.1 Imposing Fairness Constraints
	3.2 Fair Graph Clustering via Algebraic Distance
	3.3 Optimized Implementation

	4 Experiments
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Conclusion
	Acknowledgments
	References

