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Abstract
The influence maximization problem seeks to identify a subset of 𝑘
vertices in a network that, when activated, maximizes the spread of
influence under a given diffusion process. It is NP-hard to find the
optimal set of influential vertices; thus, recent studies have focused
on developing algorithms to find an approximate solution. The
state-of-the-art parallel implementations leverage a sketch-based
algorithm called influence maximization via martingales (IMM).
However, IMM incurs significant memory overhead due to the stor-
age requirements of graph traversal samples called random reverse
reachable (RRR) sets. In this paper, we introduce efficient Influ-
ence Maximization (eIM), a novel GPU-accelerated IMM algorithm
designed to improve the efficiency and scalability of IMM. Com-
pared to two popular GPU implementations, eIM achieves similar
accuracy with one to three orders of magnitude speedups while
reducing the memory requirement to store network data and RRR
sets up to 54%.
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1 Introduction
The influence maximization (IM) problem originates from viral
marketing applications [5, 11, 20]. Besides marketing, the IM prob-
lem has found applications in network monitoring [12], recom-
mender systems [27], public health interventions [19], and rumor
control [24]. It is based on the concept that if certain individuals in a
network are selected to promote a product, they can trigger a chain
reaction of influence. Their promotion of the product can spread
through the network via word of mouth, thus causing a cascading
effect that can lead to the product being adopted by their friends
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and followers. Specifically, for a given network, the IM problem
seeks to identify a given number of individuals within the network
who have the greatest potential to trigger the largest chain reaction
of influence. The optimal solution is called the seed set.

Kempe et al. [10] popularized the IM problem when they proved
that finding the optimal seed set for any network is NP-hard. This
is because the number of possible seed sets required to check grows
combinatorially as the number of vertices increases. This led to
the development of several earlier polynomial-time approximation
algorithms [7, 9, 10, 17]. For example, Kempe et al. [10] introduced a
greedy hill climbing algorithm to achieve a (1−1/𝑒−𝜖) approximate
solution under the independent cascade (IC) and linear threshold
(LT) models, where 𝜖 represents the approximation error. Their
algorithm, however, requires a large number of Monte Carlo simu-
lations to obtain the approximate solution, and thus is not scalable
to large networks due to its computational inefficiency.

Borgs et al. [3] developed a sketch-based algorithm to overcome
the inefficiencies of Monte Carlo simulations by generating a large
number of random reverse reachable (RRR) sets. The RRR sets are
generated based on reverse influence sampling (RIS) where each set
contains the vertices activated during a single run of the diffusion
process in reverse starting from a randomly selected vertex. The
seed set is then selected based on the vertices with the maximum
coverage over all RRR sets, as it has the potential to activate the
largest number of vertices. While faster than the original greedy
algorithm, this algorithm still requires a large number of graph
traversals and introduces a new requirement of storing all the RRR
sets. This storage demand can be memory intensive as the network
grows, or when scaling for higher accuracy or larger seed sets.

Tang et al. proposed a two-phase influence maximization algo-
rithm [23] to improve the RIS algorithm by using a more efficient
formula to determine the required number of RRR sets to ensure
the same theoretical approximation. They later improved upon this
work by developing the influence maximization using martingales
(IMM) algorithm [22], which is considered as a state-of-the-art al-
gorithm. This IMM algorithm provides a framework to determine a
tighter lower bound for the number of RRR sets required to guar-
antee a (1 − 1/𝑒 − 𝜖) approximate solution with high probability.
This algorithm iteratively produces RRR sets and evaluates whether
the most influential vertices of the samples achieve coverage above
a specified threshold. When the threshold is exceeded, the algo-
rithm estimates a lower bound for the required number of RRR sets.
However, it has been pointed out in [14] that the IMM algorithm
inherited two limitations from the RIS algorithm. It still requires a
large number of RRR sets to be generated to guarantee an approxi-
mate solution, and all RRR sets must be maintained in memory for
the seed set selection phase.
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Recent studies [15, 16, 21] have focused on leveraging parallel
computing techniques to further accelerate the IMM algorithm un-
der the IC and LT models. These state-of-the-art parallel algorithms
and implementations have demonstrated remarkable speedups in
execution time compared to their serial counterparts. However,
despite these advancements, significant challenges in computa-
tional efficiency remain. The IMM algorithm faces high memory
requirements for storing RRR sets, which limit the scalability and
effectiveness in solving the IM problem on large-scale networks.
Additionally, the creation of RRR sets introduces further challenges
to efficient parallelization, including the need to perform thousands
of graph traversals of unpredictable lengths. The varying lengths
of traversals complicate workload balancing as well as the synchro-
nization required to store the RRR sets in memory.

Our main contribution is the introduction of efficient Influence
Maximization (eIM), a GPU-accelerated IMM algorithm designed
to address the critical challenges IMM faces with efficiency and
scalability under the IC and LT models. First, we propose to use
a thread-safe logarithmic (log) encoding method that allows for
fast decompression for storing network data and RRR sets. This
allows us to save up to 54% of the required memory for storing
these two components with minimal impact on the running time.
Second, we optimize the generation of RRR sets by leveraging the
GPU’s global memory, eliminating additional memory allocation
that can occur when shared memory becomes exhausted during
the graph traversal process. Third, we propose a novel heuristic
of removing source vertices from RRR sets to improve efficiency.
Lastly, we analyze workload distribution strategies for scanning
through RRR sets and develop a customized strategy.

To validate eIM’s performance, we conduct extensive experi-
ments on 16 real-world networks, comparing it against two of the
most popular GPU accelerated IMM algorithms, cuRipples [15] and
gIM [21]. Our results show that eIM outperforms cuRipples and gIM
for most networks and parameter settings of the diffusion models.
Compared to gIM, eIM achieves speedups of up to 23× for the IC
model and 30× for the LT model. Additionally, eIM demonstrates
improved scalability compared to gIM, as it successfully produces
results in cases where gIM returns out-of-memory errors. When
compared to cuRipples, eIM achieves speedups of up to 5746× for
the IC model and 9224× for the LT model.

2 Background and Related Work
In this section, we present the IM problem, outline the IC and LT
diffusion models, and provide an overview of related work such
as IMM algorithm and two popular parallel IMM implementations,
gIM and cuRipples.

2.1 Problem Definition and Diffusion Models
Consider a directed graph 𝐺 = (𝑉 , 𝐸) that represents a social net-
work where𝑉 is a set of vertices with 𝑛 = |𝑉 | and 𝐸 is a set of edges
with𝑚 = |𝐸 |. (𝑢, 𝑣) ∈ 𝐸 indicates the presence of a directed edge
from 𝑢 to 𝑣 . We use 𝑁 − (𝑣) to indicate the set of in-neighbors of 𝑣 ,
i.e., 𝑁 − (𝑣) = {𝑢 : (𝑢, 𝑣) ∈ 𝐸}, meaning all the vertices that have an
outgoing edge to 𝑣 . Let 𝑑−𝑣 denote the in-degree of 𝑣 .

If 𝑆 is a subset of𝑉 , then the function 𝐼 (𝑆) represents the spread
of influence by 𝑆 under a given diffusion model, which is the total

number of activated vertices when the diffusion starts from 𝑆 . The
IM problem aims to find a subset of 𝑘 vertices such that when they
are activated, they have the maximum expected influence, i.e.,

𝑆∗ = arg max
𝑆 : |𝑆 |=𝑘

E[𝐼 (𝑆)] .

This optimal subset 𝑆∗ is denoted as the seed set.
We consider two commonly studied diffusion models, namely,

the IC and LT models. These models simulate how information
may spread through a social network. Both models take place in
discrete time steps, where at any step a vertex is either considered
active or inactive. The IC model is used to simulate the spread of
information via word of mouth through a network [6]. It assumes
that any newly activated vertices have a single chance to activate
each of their inactive neighbors. For a given graph 𝐺 , each edge
(𝑢, 𝑣) ∈ 𝐸 is assigned a random weight 𝑝𝑢𝑣 , such that 𝑢 may be
able to activate 𝑣 with probability 𝑝𝑢𝑣 . During each time step of
the diffusion process, every vertex activated in the last time step
has a single chance to activate each of its inactive neighbors. The
process completes when no neighbors are further activated.

The IC model presents greater memory requirements compared
to other diffusion models due to its tendency to propagate deeper
into the network and generate larger RRR sets when using the IMM
algorithm [4, 15, 18]. Thus, recent works [4, 10, 21, 25] consider
assigning edge probabilities in a way that effectively limits the size
of each graph traversal. This leads to both a reduction in memory
requirements and a speedup in computation time compared to the
pure random assignment. Specifically, it assigns the probability of
an edge (𝑢, 𝑣) ∈ 𝐸 to 1/𝑑−𝑣 , where𝑑−𝑣 is the in-degree of vertex 𝑣 [10].
This probability assignment results in fewer activated vertices and
makes the probability that a vertex is activated less dependent
on its incoming edges. In this work, we focus on this probability
assignment for the IC model.

The LT model [8] simulates the idea that an individual in a
network decides whether to “do a thing or not” based on whether
enough of its neighbors have decided to do “the thing.” In addition to
the IC model, the LT model is another popular diffusion model for
the IM problem. In the LT model, given a directed graph𝐺 = (𝑉 , 𝐸),
each vertex 𝑣 ∈ 𝑉 in the network is assigned a threshold 𝜏𝑣 ∈ [0, 1]
uniformly at random. Each edge (𝑢, 𝑣) ∈ 𝐸 is associated with a
weight 𝑝𝑢𝑣 such that

∑
𝑢∈𝑁 − (𝑣) 𝑝𝑢𝑣 ≤ 1, where 𝑁 − (𝑣) is the set of

in-neighbors of 𝑣 . The diffusion process proceeds in discrete time
steps. Letting 𝐴𝑡 be the set of activated vertices at the end of time
𝑡 , vertex 𝑣 ∈ 𝑉 becomes activated if the sum of the weights of its
activated in-neighbors at time 𝑡 − 1 reaches or exceeds its threshold
𝜏𝑣 , i.e.,

∑
𝑢∈𝑁 − (𝑣)∩𝐴𝑡−1 𝑝𝑢𝑣 ≥ 𝜏𝑣 .

2.2 Influence Maximization via Martingales
The IMM algorithm proposed by Tang et al. [22] improves the RIS
algorithm by calculating a tighter lower bound for the number of
RRR sets required to ensure a (1 − 1/𝑒 − 𝜖)-approximate solution.
Their proposed method expands the RIS algorithm by introducing
a new step that estimates the required number of RRR sets, 𝜃 , to
achieve the approximation. The process starts with an initial esti-
mate for the number of RRR set, denoted as 𝜃 . It generates 𝜃 RRR
sets and identifies a set of 𝑘 vertices with maximum coverage. The
process continues by computing a new 𝜃 until a set of 𝑘 vertices
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Algorithm 1: Influence Maximization via Martingales
Input :𝐺 , 𝑘 , 𝜀
Output :𝑆

1 𝜃 ← EstimateTheta(𝐺,𝑘, 𝜀)
2 R← Sample(𝜃,𝐺)
3 𝑆 ← SeedSelection(R, 𝑘)
4 return 𝑆

with sufficient coverage is found. This coverage is used to calculate
the value of 𝜃 . The algorithm ends by using 𝜃 to generate RRR sets
and find the final seed set 𝑆 . Note that the estimation process can
be adjusted using an approximation factor, 𝜀, that, when decreased,
will increase the estimation accuracy of 𝜃 . The procedure of the
IMM algorithm is summarized in Algorithm 1.

2.3 Accelerated IMM
To improve the computational efficiency, the use of CPUs and GPUs
to parallelize IMM has recently been studied. Two of the most
popular accelerated algorithms are cuRipples and gIM [15, 21]. Both
implementations leverage GPUs to improve the efficiency of IMM.
cuRipples is an updated version of the CPU-only Ripples [16] that
allows for the utilization of both CPUs and GPUs simultaneously
and is designed for distributed systems. cuRipples shows excellent
scaling to larger networks. This is because cuRipples does not store
all RRR sets on the GPU, and each CPU-GPU pair creates a subset of
the RRR sets, which are offloaded to system memory. When finding
a seed set, the RRR sets are moved back on to the GPU’s memory
until it is full. Any remaining sets that cannot fit within the GPU’s
memory space are operated on by the CPU. This transfer of data
between the CPU and GPU incurs significant overhead and results
in higher computation time.

On the other hand, gIM is designed to be run on a singular GPU.
The data for the RRR sets is now stored in the GPU’s global memory,
which removes any communication overhead between the CPU and
GPU and eliminates the need to transfer data. gIM’s performance
enhancements also come from its edge-level parallelization of the
breadth first search (BFS) traversal. This works by assigning each
warp (32 threads) to generate a single RRR set. When a warp visits
a vertex during the BFS traversal, each thread within the warp
attempts to activate a neighboring vertex. If the neighbor is acti-
vated, it will be atomically added to the warp’s BFS queue located
in shared memory. However, due to the limited size of shared mem-
ory, when this memory reaches capacity, it must be offloaded into
global memory. In addition, global memory is used to store RRR set
data. The active vertices are written from the queue to a temporary
RRR set in global memory, which is eventually copied to the final
collection of RRR sets. The main drawback of this implementation
is repeated dynamic memory allocations, which introduce overhead
and can eventually exhaust the GPU’s memory.

Recent studies have focused on improving gIM, Ripples, and
cuRipples by optimizing the BFS traversal process [18], improving
workload balance on multi-CPU systems [26], or reducing the space
requirement for RRR sets in system memory [4]. In contrast, this
work aims to address the challenges of using GPU memory, making
it complementary to these recent studies. Specifically, we introduce
eIM, an optimized parallel implementation of the IMM algorithm

Decimal Binary Bits
5 0000000000000000000000000 0000101 3
8 0000000000000000000000000 0001000 4
23 0000000000000000000000000 0010111 5
56 0000000000000000000000000 0111000 6
123 0000000000000000000000000 1111011 7
Array: 5 8 23 56 123

Encoded: 0000101 0001000 0010111 0111000 111 1011 0000000000000000000000000000

Figure 1: Example of log encoding on an array of five integers.
by leveraging log encoding, employing a novel heuristic of remov-
ing source vertices, and judiciously using the GPU’s memory and
resources. We demonstrate that eIM substantially reduces memory
overhead and improves computational efficiency on a GPU.

3 eIM: Proposed Optimization
In this section, we describe the integral components of eIM. Here
we go into detail on log encoding, removal of source vertices, and
our methods for generating RRR sets and selecting the seed set.

3.1 Log Encoding
To reduce the memory requirements of IMM, our eIM algorithm uti-
lizes a thread-safe implementation of log encoding. This encoding
is applied to both the network data and the RRR sets. The network
data is initially represented in the compressed sparse column (CSC)
format since IMM uses the RIS method to generate RRR sets. The
CSC representation consists of three arrays, each of which has
offsets, in-neighbors, and edge weights, respectively. The RRR sets
are stored in a single array, denoted as R, that holds all the vertices
in each of the RRR sets. An offset array, denoted as 𝑂 , is used to
indicate the starting index for each RRR set in R. While other stud-
ies have used different compression techniques such as Huffman
coding and bitmap coding that result in a reduction in the memory
footprint of R, they have only been used on CPUs [4]. In this work,
we leverage log encoding (or bit-packing) [1, 2] on GPUs due to its
fast decompression and reduced cache misses.

Log encoding is a simple technique that removes the leading
zero bits from all values within an array and concatenates the
remaining bits [2]. To determine the number of bits that are required
to represent each value in the array, the largest value must be
identified. Specifically, the number of required bits, say, 𝑛𝑏 , needed
to represent each value in the array can be determined based on
𝑛𝑏 = ⌈log2 (𝑥max)⌉, where 𝑥max denotes the maximum element in
the array. Figure 1 illustrates this operation on an array of integers.
In the example, 𝑥max is 123, which can be represented using 7 bits.
The leading zeros are removed, and the values are compressed into
two 32-bit containers. This encoding reduces the number of bits
representing the array of five integers from 160 bits to 64 bits. Since
the number of bits required to represent all elements might not be
a multiple of 32, some bits may need to span two containers.

3.2 RRR Set Sampling under the IC Model
The set sampling phase of the IMM algorithm generates 𝜃 RRR sets,
where 𝜃 is the estimated number of required RRR sets. As men-
tioned in Section 2.2, an RRR set consists of all vertices activated
during a backward run of a given diffusion model. The generation
of individual RRR sets is independent and can be created with min-
imal communication between threads. However, several challenges
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Algorithm 2: Parallel RRR set sampling under the ICmodel
Input :𝐺 (𝑉 , 𝐸), R, 𝜃 , 𝐶 , 𝑂 , offset, count
Output : set of RRR sets 𝑅, array of counts 𝐶

1 for each block in parallel do
2 for each 𝑣 ∈ 𝑉 in parallel do
3 𝑀 [𝑣] ← 0;
4 while count < 𝜃 do
5 if tid = 0 then
6 𝑠 ← RandomElement(𝑉 );
7 𝑀 [𝑠] ← 1;
8 𝑄 [0] ← 𝑠;
9 q_head← 0;

10 q_tail← 1;
11 while q_head < q_tail do
12 if tid = 0 then
13 𝑢 ← Q.front();
14 q_head← q_head + 1;
15 for each neighbor 𝑣 ∈ 𝑁 − (𝑢) in parallel do
16 𝑟 ← Random(0, 1);
17 if 𝑟 ≤ 𝑝𝑣𝑢 and𝑀 [𝑣] = 0 then
18 𝑀 [𝑣] ← 1;
19 Q.atomicEnqueue(𝑣);
20 atomicAdd(q_tail, 1);
21 old_offset← atomicAdd(offset, |𝑄 |);
22 𝑂 [count + 1] ← old_offset + |𝑄 |;
23 for 𝑖 ← tid; 𝑖 < |𝑄 |; 𝑖 ← 𝑖 +warpSize do
24 𝑣 ← 𝑄 [𝑖];
25 atomicAdd(𝐶 [𝑣], 1);
26 R[old_offset + 𝑖] ← 𝑣 ;
27 𝑀 [𝑣] ← 0;
28 atomicAdd(count, 1);

exist when trying to parallelize this algorithm. For example, load
imbalances between blocks of threads can occur as traversal lengths
can drastically vary. This drastic size differences of RRR sets intro-
duce complications when adding them to the collection of RRR sets
R. Communication is necessary while adding sets into R, to avoid
overwriting values or wasting space between sets.

Similar to gIM under the IC model [21], in our eIM algorithm,
each block performs a single ‘warp-wide’ BFS, but it has several
key differences in its design to efficiently manage larger graph
traversals. eIM is designed to better accommodate for larger and
deeper graph traversals through the implementation of a global
memory pool. While accessing shared memory is faster than going
to global memory, it tends to not be able to fit entire RRR sets,
resulting in the need to dynamically allocate additional space. Our
algorithm uses global memory for the BFS traversal queue. This
offers several advantages over using shared memory. It eliminates
the need for dynamic memory allocation as the queue grows and for
additional storage to hold the RRR set while it is being generated.
Since we maintain all activated vertices in the queue, when the
traversal finishes we can transfer the queue directly to R.

Algorithm 2 shows the pseudocode for the RRR set sampling
phase in eIM under the IC model. Each block within the GPU

𝑿𝟎 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔

Designated location for the Warp’s Queue

Old Offset = 5 New Offset = Warp 𝑄 Size + Old Offset 

0 5 12Offset Array:

ℝ:

Global Pool:

𝑿𝟎 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔

Threads

Figure 2: Example of transferring data from 𝑄 to R.

launches a single warp, or 32 threads. These warps are responsible
for creating the RRR sets and adding them to R. The estimated num-
ber of required RRR sets, 𝜃 , and the current number of generated
RRR sets, denoted as count, are shared between all the blocks. Each
block is allocated a section within the global memory for storing
its own BFS queue 𝑄 .

Each warp starts by initializing a shared binary array, say,𝑀 , that
indicates if a vertex within 𝐺 has been activated or not. After this
initialization, thread 0 within each warp randomly selects a starting
vertex, marks it as activated, and adds it to its queue 𝑄 . It also
initializes its queue’s head and tail pointers. Thread 0 starts the BFS
traversal by indicating the currently visited vertex 𝑢 by reading the
front of the queue (without removal) and updating the head pointer.
The block proceeds by performing a warp-wide probabilistic BFS,
where each thread within the warp visits an unvisited in-neighbor
𝑣 of 𝑢. Each thread generates a number from [0, 1] uniformly at
random. The neighbor 𝑣 is added to 𝑄 and marked as visited if the
random number is less than or equal to its activation probability 𝑝𝑣𝑢 .
In other words, the neighbor is activated with probability 𝑝𝑣𝑢 and
added to𝑄 . We mark the neighbor as visited in𝑀 before atomically
adding it to𝑄 . This ordering is important to avoid adding the same
vertex to 𝑄 multiple times. The last step is to atomically increase
the queue’s tail pointer. The BFS traversal will stop adding vertices
to 𝑄 , and the head pointer will reach the end.

Since an RRR set is equivalent to the visited array of a proba-
bilistic BFS traversal [18], we can copy 𝑄 directly to R. Each warp
shares a running sum of the total number of activated vertices
within R, denoted as offset in Algorithm 2. This value can also be
used to indicate the index within R where the next RRR set should
be placed. Thus, to copy 𝑄 to R, we retrieve its current value and
store it in shared memory, under the variable old_offset, while we
atomically increase the value of offset by the size of 𝑄 (line 22).
This operation returns the value of offset before the atomic addition
and updates offset with the new value. The updated value tells the
next block where to start adding vertices. Next, we update an offset
array, denoted as 𝑂 , maintaining the starting point for each RRR
set in R. Lastly, in parallel each thread within the warp copies a
vertex over from𝑄 to R, atomically updates the vertex’s count in𝐶 ,
and resets its value in𝑀 . The process of copying the vertices from
𝑄 to R is illustrated in Figure 2.

When transferring the elements (vertices) from 𝑄 to R, we add
them in ascending order by vertex ID. This ordering enables us
to use a binary search operation during the seed selection phase
when updating vertex frequency counts. We empirically observed
that the benefit of using binary search in the seed selection phase
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outweighs the overhead of sorting the elements in each queue 𝑄
when they are added intoR. After copying the values, we atomically
update the count of currently generated RRR sets. If this count is
less than 𝜃 , we continue and generate a new RRR set. This will
result in a round robin assignment of RRR set creation between the
GPU blocks, balancing the workload.

3.3 RRR Set Sampling under the LT Model
The RRR set sampling algorithm under the LT model is similar to
that of the IC model in its use of global memory for storing the
traversal data. The algorithm also adds vertices in each RRR set to
R in ascending order to leverage binary search in the seed selection
phase. However, the LT model’s algorithm differs in how it forms
RRR sets. Unlike the IC model, where a vertex 𝑣 can potentially
activate all of its inactivated in-neighbors, the set of neighbors that
𝑣 can activate in the LT model is either ∅ or contains a single in-
neighbor [21–23]. In each iteration, if the sum of edge weights of
𝑣 ’s incoming neighbors exceeds its threshold 𝜏𝑣 , the first incoming
neighbor whose edge weight causes the running sum to exceed 𝜏𝑣
is activated.

In our eIM algorithm for the LT model, we modify the second
while loop (lines 11–20) in Algorithm 2. Thread 0 reads an activated
vertex 𝑢 from the front of the queue 𝑄 and assigns it a random
threshold 𝜏𝑢 uniformly in the range [0,1]. This threshold is shared
across all threads within the warp. Each thread retrieves a weight
𝑝𝑣𝑢 from an inactivated in-neighbor 𝑣 of 𝑢. The thread calculates
both the inclusive sum, i.e., the sum of weights from ranks smaller
than or equal to itself, and the exclusive sum, i.e., the sum of weights
from ranks strictly smaller than itself. A neighbor 𝑣 is activated and
added to 𝑄 if its inclusive sum is greater than 𝜏𝑢 and its exclusive
sum is less than 𝜏𝑢 , indicating that it is the first neighbor to exceed
the threshold. The while loop terminates if no neighbor is activated
during an iteration.

Two algorithms for the LT model were explored for identifying
the activating vertex. The first uses atomic addition, where each
thread is assigned a neighbor and adds their edge weight to a
shared sum. This method was slow as it introduced serialization
into the algorithm as each thread will wait until they are able to
update the shared sum. The second method uses parallel prefix sum
(scan), which enables parallel calculation of cumulative weights.
Instead of threads waiting to update a single shared variable, each
thread maintains their own running sum and uses __shfl_up_sync
to share their weight with other threads within its warp. Each
thread first adds the value from the thread before it to its own,
then adds the sum of two positions before its own, then four, and
so on, doubling the distance each time. This effectively reduces
the number of iterations from 𝑂 (𝑑−𝑢 ), which is when using atomic
addition, to𝑂 (log𝑑−𝑢 ). The vertex whose running sum first exceeds
the threshold is selected to be activated and is added to 𝑄 .

3.4 Source Vertex Elimination
We observe that many singleton sets appear within R, where a
singleton set is a set that contains only one element. These singleton
sets offer limited value for identifying the most influential vertices
because the influence of a seed set cannot cover a singleton set
unless the seed set includes that specific vertex. This leads to a

Algorithm 3: Parallel update of counts for IC and LT
Input :𝐺 (𝑉 , 𝐸), R, 𝜃 , 𝐶 , 𝐹 , 𝑂 , 𝑣
Output :updated array of counts 𝐶

1 for each thread tid in parallel do
2 stride← bdim + gdim;
3 for 𝑖 ← tid; 𝑖 < 𝜃 ; 𝑖 ← 𝑖 + stride do
4 if 𝐹 [𝑖] = 0 then
5 start← 𝑂 [𝑖];
6 end← 𝑂 [𝑖 + 1];
7 found← binary_search(start, end)
8 if found then
9 𝐹 [𝑖] ← 1;

10 for 𝑗←start; 𝑗 <end; 𝑗← 𝑗+1 do
11 𝑢 ← R[ 𝑗];
12 atomicSub(𝐶 [𝑢], 1);

lower overall coverage ratio and necessitates the generation of
additional RRR sets, slowing down the entire process. Another
disadvantage of having long sequences of singleton sets is that
they can introduce thread divergence and serialization within GPU
blocks during the seed selection phase.

To address this issue, we introduce a heuristic of eliminating
the source vertex for each set. The source vertex is the randomly
selected vertex from which the diffusion process in reverse begins.
Since source vertices are selected uniformly at random, removing
them does not introduce any bias into the sampling process. Instead,
it significantly reduces the number of singleton sets while preserv-
ing the overall structure and quality of the RRR sets. This is because
each RRR set still contains all vertices that have the potential to
activate the source vertex (in the forward process), preserving the
influence information. As shown in Section 4.3, this optimization
not only reduces the number of generated RRR sets for most net-
works, but also improves running time performance. However, for
some networks, it may result in a greater total number of elements
in R, despite the reduction in set count.

3.5 Parallelization of Seed Selection
Once RRR sets are generated, what remains is to select the seed set
𝑆 . The seed selection algorithm uses a greedy strategy to select a
set of 𝑘 vertices that maximize the coverage over R. It iteratively
adds vertices to the seed set 𝑆 until 𝑘 vertices have been selected.
In each iteration, the vertex that appears in the most RRR sets is
added to 𝑆 , and all the RRR sets in R covered by the selected vertex
are removed. This allows for the algorithm in sequential iterations
to focus on only the RRR sets that are uncovered.

During the sampling phase, each vertex is added to its corre-
sponding RRR set in ascending order by vertex ID, and its count
is updated in 𝐶 , an array that tracks how frequently each vertex
appears across all RRR sets. This count correlates to a vertex’s influ-
ence. In the seed selection algorithm, we first select the vertex with
the highest count, i.e., argmax𝑢 𝐶 [𝑢], and add it to the seed set 𝑆 .
To find the next vertex that adds the most marginal gain to 𝑆 , we
update the count for each vertex by removing the influence of the
previously selected vertex, say, 𝑣 . This includes identifying all RRR
sets containing 𝑣 and decrementing the counts of other vertices in
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Figure 3: Scalability of the thread-based approach and the
warp-based approach as 𝑁 increases (𝑘 = 100).

those sets. We assign one thread per RRR set to determine if 𝑣 is
present using binary search. To track which sets are covered by
𝑆 , we use a binary array 𝐹 , where each bit indicates whether its
corresponding RRR set has been covered. The procedure is outlined
in Algorithm 3.

We observe that by assigning a single thread to search for 𝑣
scales more efficiently than its warp-based counterpart to scan
through the RRR sets. In other words, as the number of RRR sets
increases, the thread-based approach outperforms the warp-based
approach. For smaller numbers of RRR sets, warps benefit from
memory coalescing, but serialization increases as the number of sets
grows. This is because warps are limited by hardware constraints,
as the number of sets grows, the fixed number of warps becomes
a bottleneck. This results in the work being processed in more
iterations, leading to greater serialization. In contrast, the larger
number of threads allows workload to be distributed more evenly,
increasing parallelization and improving scalability.

Let𝑊𝑛 and 𝑇𝑛 denote the numbers of launchable warps and
threads, respectively. Also, let 𝐶𝑤 and 𝐶𝑡 represent the cost (run-
ning time) to process a single set using a warp and a thread, respec-
tively. It is clear that𝑊𝑛 < 𝑇𝑛 and 𝐶𝑤 < 𝐶𝑡 . While processing a
single set is cheaper using a warp, as the number of sets increases,
the warp-based approach must complete more iterations because
it can only process𝑊𝑛 sets in parallel at a time. In contrast, the
thread-based approach divides the workload into smaller chunks,
increasing overall parallelization. As a result, the thread-based ap-
proach becomes more efficient as the number of sets grows. More
precisely, assuming that each thread (or warp) takes the same cost
as 𝐶𝑡 (or 𝐶𝑤 ) to process a set in each iteration, if the number of
RRR sets, denoted as 𝑁 , is sufficiently large enough, we have⌈

𝑁

𝑊𝑛

⌉
𝐶𝑤 >

⌈
𝑁

𝑇𝑛

⌉
𝐶𝑡 .

Figure 3 shows experiment results on the scalability of both ap-
proaches as 𝑁 increases and confirms that our thread-based ap-
proach achieves improved scalability.

4 Performance Evaluation
In this section, we present extensive experiment results to demon-
strate performance of eIM compared to cuRipples and gIM in terms
of memory efficiency and running time.

4.1 Setup
Datasets. We consider 16 real-world unweighted network datasets
from SNAP [13], which are listed in an ascending order of graph size

Table 1: Graph statistics

Dataset # Vertices # Edges
wiki-vote (WV) 8,298 103,689
p2p-gnutella32 (PG) 62,586 147,892
soc-Epinions1 (SE) 75,888 508,837
slashdot0902 (SD) 82,168 870,161
email-EuAll (EE) 265,214 418,956
web-Stanford (WS) 281,904 2,312,497
web-NotreDame (WN) 325,729 1,469,679
com-dblp (CD) 425,957 1,049,866
com-Amazon (CA) 548,552 925,872
web-Berkstan (WB) 685,231 7,600,595
web-Google (WG) 916,428 5,105,039
com-Youtube (CY) 1,157,828 2,987,624
soc-pokec-relationships (SPR) 1,632,804 30,622,564
wiki-topcats (WT) 1,791,489 28,508,141
com-Orkut (CO) 3,072,627 117,185,083
soc-LiveJournal1 (SL) 4,847,571 68,475,391

(number of vertices) in Table 1. Since the datasets are unweighted,
we preprocessed them by assigning edge weights according to the
given diffusion model, as explained in Section 2.1.
Software and hardware. We conduct the experiments on a Linux
server equipped with a 16-core, 2.9 GHz Intel Xeon CPU, 96 GB
RAM, and an NVIDIA RTX A6000 48 GB GPU. We implement eIM1

in C++ and CUDA, and compile it via the nvcc compiler version 11.8
with “-O3” optimization enabled. For baselines, i.e., cuRipples [15]
and gIM [21], we use the C++/CUDA code from their corresponding
papers and run the code following their instructions. For cuRipples,
tests were conducted on a single GPU and 16 CPU cores.
Parameter setting. We select the parameters 𝑘 and 𝜀 for eIM and
the baselines in our experiments as follows. By default, we set
𝑘 = 50 and 𝜀 = 0.05, unless otherwise specified. We selected these
parameters for comparability with the experiments done in [15,
21] for cuRipples and gIM. Additionally, we analyze the impact of
varying 𝑘 and 𝜀 on each algorithm’s performance. We observed
that quality of solutions, or the number of vertices activated by
the selected seed set, provided by eIM remains the same as the one
by cuRipples and gIM; thus, below we only present experiment
results for memory efficiency and running time due to the space
limit. All experiment results reported here are obtained by taking
the average over ten runs.

4.2 Memory Reduction Evaluation
The network datasets are initially represented in CSC format. To
evaluate the memory saving capabilities of log encoding, we com-
pare the memory required to store a dataset in its original CSC
format with the memory required when the CSC components are
compressed using log encoding. Our results indicate that for smaller
networks, up to 28.8% of memory can be saved. When the network
size increases, the percentage of memory saved decreases but re-
mains greater than 14%, indicating the benefit of log encoding.

To compare the memory reduction in storing and processing the
RRR sets, we record the amount of memory used in storing and
processing the RRR sets for various networks before and after the
log encoding is applied to eIM under the IC model. The amount
1https://github.com/JKDNY/eIM
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of saved memory depends on both the size of the network and its
underlying structure. Figure 4 shows the total memory saved for
both the RRR sets and the network data. It shows that log encoding
can reduce the memory required to store this data by up to 54% for
small networks and up to 16.6% for larger networks.

4.3 Performance of Source Vertex Elimination
The removal of source vertices generally leads to greater speedups
for networks that create a substantial number of RRR sets that only
contain the source vertex, as shown in Figure 5. This improvement
is achieved by eliminating these singleton sets, which allows the
algorithm to generate more informative sets that contribute to
meaningful coverage. As a result, the fraction of RRR sets covered
by the seed set 𝑆 increases more rapidly, reducing the total number
of RRR sets that need to be generated.

The impact of eliminating source vertices on memory is shown
in Figure 6. To measure this impact, we ran eIM under the IC model
for each network ten times, both including and excluding the source
vertices, and obtained the average size of R, which is a collection
of RRR sets, at the end of the algorithm execution. An average
reduction of 8.65% to R is achieved across all networks when the
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Table 2: Speedup achieved by eIM over gIM under the IC
model when increasing the values of 𝑘 with 𝜀 = 0.05

Dataset 𝑘 =20 𝑘 =40 𝑘 =60 𝑘 =80 𝑘 =100
WV 8.04 7.82 9.02 10.68 19.23
PG 1.43 1.74 2.18 2.72 3.05
SE 3.28 4.92 6.52 8.0 7.32
SD 2.73 3.29 4.96 6.23 7.44
EE 7.19 14.32 15.11 19.45 23.02
WS 3.02 5.84 8.03 10.62 12.89
WN 2.79 5.28 4.66 5.42 6.08
CD 3.63 7.02 9.54 12.48 14.25
CA OOM/0.18 OOM/0.21 OOM/0.27 OOM/0.35 OOM/0.32
WB 3.42 6.94 10.07 8.07 8.94
WG 5.68 8.83 OOM/0.37 OOM/0.46 OOM/0.61
CY 1.98 2.49 3.13 5.46 6.44
SPR 1.75 2.20 3.33 4.32 5.46
WT 1.56 2.39 3.56 4.62 5.83
CO 1.62 2.23 2.89 3.35 3.76
SL 2.19 4.07 3.90 OOM/1.42 OOM/1.83

Table 3: Speedup achieved by eIM over gIM under the IC
model when decreasing 𝜀 values with 𝑘 fixed at 100

Dataset 𝜀=0.5 𝜀=0.45 𝜀=0.4 𝜀=0.35 𝜀=0.3 𝜀=0.25 𝜀=0.2 𝜀=0.15 𝜀=0.1 𝜀=0.05
WV 1.93 2.16 2.07 2.39 2.63 2.91 3.67 5.07 10.69 19.23
PG 0.86 0.75 0.76 0.90 0.88 0.87 1.13 1.36 1.92 3.05
SE 1.25 1.18 1.21 1.37 1.54 1.56 1.78 2.68 4.26 7.32
SD 1.05 1.15 1.20 1.25 1.37 1.49 1.78 2.67 4.07 7.44
EE 1.74 1.95 2.11 2.24 2.56 2.94 3.68 6.46 10.73 23.02
WS 0.99 1.20 1.14 1.27 1.72 2.46 3.16 4.50 7.27 12.89
WN 1.07 1.03 1.04 1.14 1.17 1.21 1.42 1.94 3.04 6.08
CD 1.07 1.17 1.13 1.26 1.56 1.88 2.19 3.10 4.85 14.25
CA 4.16 4.84 5.57 6.45 7.94 10.02 13.08 17.95 24.44 OOM/0.32
WB 0.94 1.43 1.52 1.68 2.06 2.35 3.02 4.11 5.95 8.94
WG 2.23 2.48 2.81 3.16 3.92 4.71 5.71 7.20 9.12 OOM/0.61
CY 1.29 1.38 1.48 1.63 1.78 1.69 2.00 2.43 3.47 6.44
SPR 1.11 1.18 1.28 1.30 1.51 1.75 2.06 2.62 3.64 5.46
WT 1.23 1.24 1.31 1.38 1.50 1.75 2.13 2.76 3.92 5.83
CO 1.15 1.12 1.05 1.18 1.22 1.31 1.55 1.92 2.52 3.76
SL 1.62 1.77 1.93 2.18 2.43 2.37 2.80 3.32 4.09 OOM/1.83

source vertices are excluded. Networks that generate more than 50%
sets that only contain source vertices achieve a greater reduction
in the size of R compared to other networks. Since the removal
of source vertices leads to quicker convergence in finding a lower
bound for 𝜃 , it results in the generation of fewer but larger RRR
sets. Due to these larger RRR sets, we observe that some networks
may be impacted negatively and the size of R is slightly increased.

4.4 Performance under the IC Model
We now turn our attention to the performance comparison of eIM
against cuRipples and gIM. We first consider the IC model. Figure 7
shows the speedups achieved by eIM over cuRipples and gIM under
the IC model. eIM significantly outperforms both cuRipples and
gIM on all datasets, and eIM achieves a speedup of up to 5746×
compared to cuRipples, and up to 11× compared to gIM. In addition,
as the network size increases, the speedup achieved by eIM over



SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Jacob Doney, Xin Huang, and Chul-Ho Lee

WV PG SE SD EE WS WN CD CA WB WG CY SPR WT CO SL
100

101

102

103

104

Sp
ee

du
p

28.6x

8.8x

78.2x

0.9x

40.0x

4.4x

40.7x

4.3x

87.5x

13.8x

109.3x

4.3x

196.7x

3.3x

410.2x

6.7x

40.5x

O
O

M

1403.8x

5.7x

44.6x

13.9x

1478.0x

1.8x

2700.1x

3.9x

2700.5x

2.6x

9224.2x

1.5x

7765.9x

4.0x

eIM vs. cuRipples eIM vs. gIM

Figure 8: Speedups of eIM under LT with 𝑘 = 50 and 𝜀 = 0.05.

cuRipples trends upwards. This performance advantage can be at-
tributed to eIMmaintaining RRR sets within GPUmemory, whereas
cuRipples incurs substantial overhead from repeated transfer of
data from host to device. When compared to gIM, eIM achieves
higher speedups when more RRR sets are required to be generated.
These speedups are a result from using our thread-based approach
when scanning through RRR sets. By log encoding (bit-packing),
we also reduce the memory footprint and improve cache utilization.
Furthermore, networks that tend to produce a significant num-
ber of sets containing only source vertices, such as Wiki-Votes and
Email-Eu, exhibit the highest speedups, suggesting the performance
benefits of their removal.

We also evaluate the impact of parameters 𝑘 and 𝜀 on the perfor-
mance. Here we focus on the comparison of eIM to gIM. Table 2
shows the speedup of eIM compared to gIM when increasing the
values of 𝑘 while having 𝜀=0.05. The amount of speedup generally
increases as the value of 𝑘 increases. Additionally, for some net-
works, eIM is able to handle larger values of 𝑘 , in which case gIM
returns an OOM error. In such cases, the table entries indicate OOM
for gIM and the running time of eIM in seconds. The results indicate
that eIM tends to scale more consistently than gIM. In addition,
Table 3 shows the speedup of eIM over gIM when decreasing 𝜀

values with 𝑘 fixed at 100. The results show that compared to gIM,
eIM is more adapted to handle lower values of 𝜀 and avoids OOM
errors. When scaling for a larger seed set (i.e., a higher value of 𝑘)
or for higher accuracy (i.e., a smaller value of 𝜀), eIM shows greater
performance improvement for all datasets, although the amount of
the performance improvement still depends on the network struc-
ture. Note that gIM runs slightly faster than eIM for a few cases
in which the number of generated RRR sets is relatively small. In
such case, the benefit of using shared memory in gIM outweighs
its overhead of dynamically allocating additional memory space.

4.5 Performance under the LT Model
Next, we conduct the experiments to compare the performance of
eIM to cuRipples and gIM under the LT model. As can be seen from
Figure 8, eIM outperforms both cuRipples and gIM on all datasets,
except for p2p-gnutella32. The speedup achieved by eIM is up to
9224×when compared to cuRipples and 13×when compared to gIM.
Notably, gIM encountered an OOM error on com-Amazon, whereas
eIM remained successful due to its more efficient memory usage
when generating RRR sets. We also observe the same performance
improvements and trends as in the IC model, including increasing
speedups with the network size, and the advantages of our thread-
based search and source vertex elimination.

Table 4: Speedup achieved by eIM over gIM under the LT
model when increasing the values of 𝑘 with 𝜀 = 0.05

Dataset 𝑘 =20 𝑘 =40 𝑘 =60 𝑘 =80 𝑘 =100
WV 6.90 9.27 10.03 7.94 9.62
PG 0.71 0.90 0.96 1.05 1.46
SE 2.42 5.09 7.00 5.28 6.20
SD 2.14 4.13 5.89 7.54 5.27
EE 9.24 19.62 20.21 25.66 30.39
WS 2.37 3.91 5.17 6.43 7.20
WN 2.60 3.08 4.05 4.82 5.66
CD 2.97 5.83 7.98 10.20 6.15
CA OOM/0.18 OOM/0.21 OOM/0.26 OOM/0.33 OOM/0.41
WB 2.79 4.69 6.38 10.54 7.05
WG 4.66 10.44 10.03 11.99 17.11
CY 0.99 1.49 1.91 2.35 2.51
SPR 1.71 2.68 3.00 3.69 4.34
WT 1.77 2.25 2.97 3.59 4.07
CO 1.42 1.49 1.80 2.12 1.92
SL 2.19 3.54 6.00 4.81 4.95

Table 5: Speedup achieved by eIM over gIM under the LT
model when decreasing 𝜀 values with 𝑘 fixed at 100
Dataset 𝜀=0.5 𝜀=0.45 𝜀=0.4 𝜀=0.35 𝜀=0.3 𝜀=0.25 𝜀=0.2 𝜀=0.15 𝜀=0.1 𝜀=0.05
WV 1.44 1.88 1.93 1.52 1.68 2.02 2.21 3.22 6.34 9.62
PG 0.85 0.84 0.94 0.94 0.85 0.85 0.96 0.95 1.15 1.46
SE 1.03 1.04 1.04 1.11 1.19 1.16 1.52 2.07 3.24 6.20
SD 0.95 1.07 1.03 1.15 1.10 1.24 1.49 2.03 2.93 5.27
EE 1.76 1.98 2.14 2.60 2.80 3.45 5.40 8.02 14.24 30.39
WS 1.06 1.08 1.08 1.23 1.26 1.57 2.03 2.78 4.39 7.20
WN 1.14 1.14 1.10 1.24 1.10 1.20 1.46 2.17 3.13 5.66
CD 0.94 1.17 1.17 1.09 1.28 1.46 1.74 2.22 3.42 6.15
CA 5.30 6.02 6.77 8.52 9.17 11.77 15.17 20.59 27.73 OOM/0.41
WB 0.85 1.10 1.22 1.44 1.55 1.80 2.34 3.06 4.37 7.05
WG 2.97 3.26 3.76 4.34 5.08 6.35 7.88 10.21 13.45 17.11
CY 1.39 1.36 1.32 1.28 1.44 1.20 1.02 1.25 1.61 2.51
SPR 1.03 1.13 1.23 1.33 1.51 1.82 2.12 2.61 3.35 4.34
WT 0.94 0.98 1.02 1.13 1.21 1.39 1.69 2.10 2.82 4.07
CO 1.42 1.32 1.32 1.22 1.34 1.56 1.50 1.57 1.79 1.92
SL 1.47 1.64 1.76 1.91 2.20 2.45 2.85 3.46 4.21 4.95

We further report the speedups achieved by eIM over gIM under
the LT model with different choices of 𝑘 and 𝜀. Table 4 presents the
results when increasing the values of 𝑘 with 𝜀 =0.05, and Table 5
shows the results when decreasing 𝜀 values with 𝑘 fixed at 100. We
observe that eIM outperforms gIM for most cases, and the speedup
is up to 30×. It is worth noting that similar to the results under
the IC model, gIM is slightly faster than eIM for a few cases where
the number of generated RRR sets is relatively small. Nonetheless,
eIM greatly improves the scalability of finding the seed set on
large networks, especially when the size of the seed set is greater
and/or the accuracy is higher. All the above results indicate the
high effectiveness and efficiency of eIM.

5 Conclusion
The scalability of the IMM algorithm is significantly limited due
to its large memory overhead. To address this challenge, we in-
troduced eIM, a GPU-accelerated IMM algorithm with several key
innovations, including log encoding, efficient GPU memory usage,
and optimized workload distribution. Through extensive experi-
ments, we demonstrated that eIM reduces memory footprint and
improves running time compared to gIM and cuRipples, while main-
taining solution quality. Looking ahead, we plan to extend eIM to
support multi-GPU execution to further improve scalability and to
expand support for the IC model with random edge weights, which
covers different influence propagation scenarios.
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