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ABSTRACT
Recently, low-cost acceleration sensors have been widely used to
detect earthquakes due to the significant development of MEMS
technologies. It, however, still requires a high-density network to
fully harness the low-cost sensors, especially for real-time earth-
quake detection. The design of a high-performance and scalable
networked system thus becomes essential to be able to process a
large amount of sensor data from hundreds to thousands of the
sensors. An efficient and accurate earthquake-detection algorithm
is also necessary to distinguish earthquake waveforms from various
kinds of non-earthquake ones within the huge data in real time.
In this paper, we present CrowdQuake, a networked system based
on low-cost acceleration sensors, which monitors ground motions
and detects earthquakes, by developing a convolutional-recurrent
neural network model. This model ensures high detection perfor-
mance while maintaining false alarms at a negligible level. We also
provide detailed case studies on two of a few small earthquakes
that have been detected by CrowdQuake during its last one-year
operation.
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1 INTRODUCTION
Low-cost micro-electro-mechanical systems (MEMS) acceleration
sensors have been extensively used over the last few years for
monitoring and detecting earthquakes, since they have great po-
tential to complement or possibly substitute traditional expen-
sive seismic networks whose coverage can hardly be dense due
to high installation and operational costs. The examples include
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Quake-Catcher Network (QCN) [7], Community Seismic Network
(CSN) [6, 10, 11], Home Seismometer [14], Monitoring of Earth-
quakes through MEMS Sensors (MEMS) [8] and Palert [24], each
of which has employed the low-cost MEMS acceleration sensors to
detect earthquakes.

MyShake [16, 18, 19] is the most recent effort in developing a
MEMS-sensor-based earthquake detection system, utilizing par-
ticipatory smartphones as seismic sensors. Unlike the above prior
works, it leverages a machine learning algorithm – an artificial neu-
ral network (ANN) model, as its core detection algorithm. While
each phone records acceleration data with its built-in accelerometer,
the ANN model running on the phone determines whether any
movement captured based on the acceleration data is caused by an
earthquake. A server-side operation then follows up to confirm the
earthquake. Despite its great success, it still has limitations. The
simple ANNmodel can hardly be an ideal choice from a perspective
of detection accuracy, although it can be a good compromise for
the tradeoff between battery and performance. The heterogeneity
across different participatory phones can also increase the chance
of false alarms.

On the other hand, the recent advances in deep learning have
been extensively explored and exploited in seismology for a wide
range of applications, which include searching for repeating seis-
mic signals, identifying previously unidentified earthquakes and
phase picking, yet from the plethora of archived continuous seismic
records in databases. For example, Perol et al. [21] proposed a con-
volutional neural network (CNN) to identify and locate earthquakes,
including missing ones, from the existing earthquake waveforms
recorded by two local stations in Oklahoma. Zhu and Beroza [25]
applied a deep CNN to pick up the arrival time of archived seismic
waves. See [17] and references therein for more details. While the
deep learning techniques have been powerful tools for the appli-
cations, they have not been explored for “real-time” earthquake
detection with low-cost MEMS acceleration sensors, which is one
of our focuses in this work.

In this paper, we present CrowdQuake – a networked system of
hundreds to thousands of low-cost acceleration sensors, empowered
by deep learning, for real-time earthquake detection. We envision
to use thousands of low-cost sensors, which are firmly installed
and regularly power supplied, to continuously stream their accel-
eration records to a backend system for earthquake detection. We
first design the system of CrowdQuake to be capable of handling
streaming time-series data from such a large number of sensors
and to enable running a deep learning algorithm with the large vol-
ume of data. The system is also designed to autonomously identify
abnormal sensors that can degrade the detection performance. We
propose a convolutional-recurrent neural network (CRNN) model
as a core detection algorithm of CrowdQuake, and demonstrate
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that it exhibits 99% detection performance with a false alarm rate
less than 1% while being robust to the choice of hyperparameters.
This CRNN model effectively eliminates the potential drawbacks of
the state-of-the-art ANN model, which can lead to excessive false
alarm rates for earthquake detection.

As its first phase, CrowdQuake has been deployed with three-
hundred acceleration sensors over the southern part of South Korea
for about a year. While CrowdQuake is currently being expanded
to its second phase with thousands of sensors, it has shown its
feasibility of using low-cost sensors to detect small magnitude
earthquakes over the last one-year operation, including the ones
that would have been considered too small to be detected by other
existing systems like MyShake. We expect that CrowdQuake can be
complementary and integrative to any existing seismic networks for
better coverage and detection performance, and it can also become
an effective system model for the areas where a network of seismic
stations is not available.

2 CROWDQUAKE
In this section, we present CrowdQuake by providing a system
overview and explaining its main components in detail.

2.1 System Overview
CrowdQuake is designed with the following requirements:
• to detect earthquakes in real time, based on acceleration records
measured by hundreds to thousands of low-cost MEMS accelera-
tion sensors that are dispersed over a large area.

• to store the past acceleration data in databases and allow post-
hoc data analysis to identify the earthquakes that could have
been missed by the real-time detection.

• to identify abnormal sensors periodically that can negatively
affect the capability of earthquake detection.
We provide a system architecture of CrowdQuake in Figure 1,

which consists of low-cost sensors, gateways, a data server that
embodies databases and postprocessing engines, and a monitoring
server. The sensors are available in the form of Samsung Galaxy
S7 smartphones and custom-designed IoT sensors, as depicted in
Figure 2.1 As its first phase, CrowdQuake was initially deployed
with three-hundred smartphone sensors over the southern part of
South Korea, and it has been in operation for about a year to ascer-
tain the feasibility of using low-cost sensors to detect earthquakes.
CrowdQuake is now being expanded to cover the whole country
with eight-thousand IoT sensors.2 In this paper, we focus on the
first-phase deployment of CrowdQuake and its operational results.

The sensors continuously record three-component acceleration
waveforms and send them to the gateways. The gateways then
process the acceleration data and leverage a deep learning model,
which shall be explained in detail later (Section 4), to detect the
presence of an earthquake in real time. In the event of an earthquake,
the event and its corresponding raw data are sent to the data and
monitoring servers. If otherwise, i.e., in the normal operation, the
acceleration records are stored in the databases (within the data

1By low cost, we mean that the sensors used in CrowdQuake are cheap accelerometers,
including the ones built in smartphones. Each of them costs less than $10 US dollars.
2This implies that each sensor approximately covers an area of about 1 km2 for most
of the country.
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Figure 1: System architecture of CrowdQuake.

Figure 2: Snapshots of four actual sensors installed.
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Figure 3: (a) Histogram of sampling intervals; (b) Noise floor
of a sensor.

server) for long-term data storage and postprocessing, and also to
locate misbehaving sensors if any. For the system implementation
of CrowdQuake, we employ several well-maintained open-source
projects such as Apache Kafka [1], InfluxDB [4], Elasticsearch [2],
and Grafana [3].

2.2 System Details
Acceleration Sensors. It is important to understand the quality of
acceleration sensors for reliable operation of CrowdQuake. First, an
important capability of each sensor is to maintain a constant mea-
surement interval between two consecutive records over time, or to
ensure a consistent sampling rate, i.e., the number of samples (data
points) per second. We observe that our sensors exhibit reasonably
accurate sampling performance at a sampling rate of 100 Hz, as
shown in Figure 3(a). Note that the sampling rate of MyShake is
25 Hz [16, 18], which is deemed chosen for balancing a battery-
performance tradeoff in participatory smartphone sensors. In our
system environment, the sensors are regularly power supplied.3

3In fact, as a default mode, MyShake runs on a smartphone only when it is essentially
stationary and also power supplied.



We next evaluate the sensitivity of our sensors against high- and
low-earth background noise levels. The closer to the earth back-
ground noise levels, the better the sensor is. As can be seen from
Figure 3(b), the noise floor of each sensor typically ranges from
−58 dB to −60 dB. While it is still far from the earth background
noise, we note that there has been an improvement in the sensi-
tivity of (MEMS) acceleration sensors as compared to the ones for
MyShake in 2016. It is shown in [16] that their noise floors are
around −50 dB (See [16] for more details). Thus, we expect that our
deep learning-driven CrowdQuake system equipped with improved
sensors can go beyond the limitation set by MyShake that aims
at detecting magnitude 5 or larger earthquakes at distances of 10
km or less. In other words, we expect that our system can detect
smaller earthquakes, in addition to the ones with magnitude 5 and
above, at the similar or even longer distances. We will show that
this is indeed the case in Section 5.
Gateways. The gateways are responsible for collecting and pro-
cessing the acceleration data from the sensors and detecting earth-
quakes via deep learning. In (the first phase of) CrowdQuake, to
handle the data from 300 sensors simultaneously, we employ two
gateways, each of which handles the data from 150 sensors. Each
gateway assigns a ‘worker’ running on a separate CPU core to
sensors in order to process their acceleration records and run our
deep learning algorithm for earthquake detection, which will be
explained in Section 4. Since the number of workers can be up to
the number of CPU cores, we use two gateways to serve 150 sensors
each. The gateway size thus needs to be increased properly, when
the number of sensors increases.

Each sensor first establishes a connection with the corresponding
gateway, after which the gateway assigns an appropriate worker
to the sensor. The sensor then sends acceleration data to the gate-
way every second, which is also transferred to the data server. In
addition, the sensor periodically sends a ‘heartbeat’ message to
inform the gateway of its status such as its remaining battery level
and resource usages. A sensor can also be requested by a system
administrator to send a heartbeat message to the gateway. Further-
more, each gateway generates the status logs of sensors under its
management and the gateway itself, and send them to the data
server.
Data Server. The data server streams the acceleration data and
various events/logs to databases for long-term data storage and
postprocessing, and also for visualization via the monitoring server.
It has two message queues that are built using Apache Kafka, and
two databases based on InfluxDB and Elasticsearch, respectively.
The rationale behind this structural design is that there are various
data types and a large volume of the acceleration data needs to
be stored consistently. Note that the volume of data from each
individual sensor still remains small.4

We first observe that the acceleration records are streaming time-
series data and are of regular data type. It is mainly for long-term
data preservation and also for on-demand postprocessing that is
done infrequently. On the other hand, the events and logs are of

4Each sensor generates 100 three-component data points per second, which translates
into 2K bytes per second, where the size of each three-component data point, along
with its timestamp, is 20 bytes. By using bitwise operations, the data volume can
reduce down to about 700 bytes per second.
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(a) A normal sensor
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Figure 4: Normal and anomalous sensor records.
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Figure 5: Histograms of 3 features in the 𝑥-axis component.

Figure 6: A screen snapshot of the monitoring server.

irregular type and they are generated sporadically, with relatively
smaller data volume. It is also mainly for visualization. Therefore,
the former would need a database with faster data handling speed,
while the latter would need a database that is suitable for data of
irregular type and can be better integrated with the monitoring
server for visualization. We have thus chosen InfluxDB for the
former, which is a special database for time-series data, and Elastic-
search for the latter, which provides better indexing and searching
functionalities.

We also note that the data needs to be retrieved from each mes-
sage queue and stored into its corresponding database as fast as the
data is pushed into the queue, thereby preventing from message
overflows. Our micro-benchmark test indicates that each message
queue based on Apache Kafka can handle up to about 200K mes-
sages per second, i.e., the acceleration records from 2K sensors per
second, in its input and output, when the input and output data rates
are the same. Furthermore, InfluxDB can store up to about 160K
messages per second, i.e., the data from 1.6K sensors per second,
while Elasticsearch can do up to about 70K messages per second,
which is reasonable speed for events and logs. Therefore, the data
server operates without any problem.



AnomalyDetection&Other Postprocessing. The data server also
has an anomaly detection module to locate abnormal sensors, since
sensors can possibly misbehave at any time for some reason and the
abnormal sensors can negatively affect the capability of earthquake
detection in CrowdQuake. As shown in Figure 4, the (time-domain)
waveforms, spectrogram, and power spectral densities (PSDs) of
the background noise signals of normal and abnormal sensors are
generally quite different from each other. Note that the unit of ac-
celeration data here in time domain is all𝑚/𝑠2 and its DC offset
(mean amplitude) is removed.5 Overall, we observe that the ampli-
tude range of the background noise of normal sensors is consistent,
the spectrogram exhibits no dominant frequency component (or
uniform power across the frequency band), and the average PSD is
also consistent for all three components. However, the background
noise measured on abnormal sensors deviates from this common
behavior of normal sensors.

To identify such abnormal sensors, we compute (i) variance
(mean squared deviation) of the amplitude of the noise waveform,
and (ii) mean and (iii) variance of the PSD of the waveform for
each component, thereby giving 9 features in total (for each sensor).
Figure 5 shows the histograms of 3 normalized features. We then
use the 𝑘-means clustering algorithm [5] for anomaly detection. (i)
We first cluster the 300-sensor data of 9 normalized features into
𝑘 = 4 clusters. (ii) We treat the biggest cluster that contains most
of the data as a main cluster of normal sensors. (iii) We measure
the Euclidean distance of the 9-feature data of each sensor to the
centroid of the main cluster, and rank sensors in an increasing order
of distances to the centroid. The longer the distance, the worse
the sensor is. Thus, the bottom 10% to 20% sensors, whose size is
tunable, are considered as a group of potential abnormal sensors and
they are highlighted on a map, so that a system administrator can
postprocess the acceleration data from the sensors and make a site
visit for further examination, if necessary. CrowdQuake currently
runs the anomaly detection module every 30 minutes.

The data server also allows us to perform post-hoc data analysis
on the past acceleration records to identify undetected earthquakes,
if any, and understand why they were missed, by providing the
results of time-frequency domain analysis such as the waveform
in time domain, spectrogram, and PSDs, along with their statis-
tics. By the actual operation of CrowdQuake for about a year, we
have noticed that most abnormal data are caused by man-made
sources, e.g., regular inspections by employees or the operation of
air conditioning for cooling the facilities. Thus, unexpected events
and noises are always possible, thereby making the problem of
detecting earthquakes correctly without false alarms challenging.

Monitoring Server. For easy maintenance and monitoring, we
build a monitoring server using the Grafana platform [3], which
enables a system administrator to monitor the current status of
CrowdQuake. This provides various information visually, such as
sensors’ locations, the number of active sensors, system resource
usages, acceleration records, abnormal sensors, and detected earth-
quakes. Figure 6 shows an exemplary screen snapshot of this moni-
toring server.

5The acceleration of gravity 𝑔 is 9.80665𝑚/𝑠2 on Earth.

3 REVISITING THE STATE OF THE ART
MODEL FOR REAL-TIME DETECTION

Before going into the details of our deep learning model used
in CrowdQuake, we revisit the state-of-the-art machine learning
model for real-time earthquake detection. It is a simple artificial
neural network (ANN) model with three features and has been used
as the core detection algorithm in the MyShake system [16, 18, 19].
In particular, we find out that the ANN model and its associated
features have two main drawbacks, which lead to deficient detec-
tion/classification performance.

We first provide an overview of the ANNmodel with three associ-
ated features proposed in [16]. Each three-component acceleration
record is divided into 2-second sliding windows with a 1-second
step, i.e., every two consecutive windows have an overlap of 1 sec-
ond. In other words, the basic data unit is a 2-second acceleration
window (with an overlap of 1 second), which we hereafter call an
“instance”. It is worth noting that such a short duration of each in-
stance is chosen for the purpose of ‘real-time’ earthquake detection.
Then, for each instance, the following three features are extracted:
(i) cumulative absolute velocity (CAV), (ii) interquartile range (IQR),
and (iii) zero crossing count (ZC). As shown in Figure 7(a), the ANN
model is a multi-layer perceptron (MLP) [13] that has a hidden
layer of 5 neurons, and it takes the three features as an input for a
binary classification, where earthquake and non-earthquake data
instances are labeled as 1 and 0, respectively. The final output of
the model, say 𝑦, indicates the probability that a given input in-
stance results from an earthquake. With a choice of the value of a
probability threshold, say 𝑝 , if 𝑦 ≥ 𝑝 , then the corresponding input
instance is classified as an earthquake, otherwise a non-earthquake.
See Appendix A for more details.

While the ANN model has been shown effective in [16, 18],
we identify the following limitations of the ANN model through
extensive experiments for various test cases.
1. The three features show unsatisfactory discriminative power.
2. The ANN model is sensitive to (i) the sampling rate of accelera-

tion data, (ii) how earthquake ‘instances’ are extracted from the
(publicly available) earthquake accelerationwaveforms recorded
on seismometers, and (iii) the value of the threshold 𝑝 .

The overall performance of the ANN model also shows a high false
alarm rate to detect earthquakes.
Model Performance.We train and evaluate the ANNmodel for var-
ious test cases, including the setting used in [16, 18], to investigate
how the sampling rate of acceleration data affects the performance
of the ANN model and also how the way that earthquake instances
(used for mode training and testing) are extracted from the existing
earthquake data influences the model performance.

To this end, for earthquake data, we consider the K-NET records
of Japan earthquakes available in National Research Institute for
Earth Science and Disaster Resilience (NIED) [20]. Specifically, we
use a set of earthquake records, each of whose 𝑥-axis component
peak ground acceleration (PGA) is greater than 0.1 gravity (g). For
non-earthquake data, we use a wide range of acceleration records
that we have collected using the low-cost sensors. They are all
recorded at a sampling rate of 100 data points per second. It is
worth noting that there is a data imbalance problem for real-time
earthquake detection, since non-earthquake data instances are far
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Figure 8: The ROC and PR curves of the ANN model.

more than earthquake data instances. For the ANN model, the
𝑘-means clustering method is used to handle this problem [16].

We then consider three different ‘sampling rates’ such as 25
Hz (down-sampled), 50 Hz (down-sampled), and 100 Hz for both
earthquake and non-earthquake data to obtain their corresponding
instances, respectively. For each (existing) earthquake waveform,
we also consider its three different ranges around the peak – three
different ‘selected durations’ of the strongest portion of each wave-
form, to extract the corresponding earthquake instances, which are
2-second, 4-second, and 10-second ranges of the waveform around
the peak, respectively. See Appendix B for more details.

We first observe that the discriminative power of the three fea-
tures used in the ANN model turns out to be poor, as can be seen
from Figure 7(b)–(d). That is, each subfigure indicates that it is hard
to find a separating hyperplane of the data and the presence of such
a hyperplane is even unclear. We further observe that the perfor-
mance of the corresponding ANNmodel also becomes quite limited.
In Figure 8, we present the receiver operating characteristic (ROC)
and precision-recall (PR) curves of the ANN model for different test
cases of sampling rates and selected durations.6 We also provide

6The ROC and PR curves capture a tradeoff between TPR and FPR (recall vs. FAR) and
the one between precision and recall, respectively, with varying values of 𝑝 [12]. It is
worth noting that when dealing with the data/class imbalance problem as is the case
here, the PR curve is generally preferable to the ROC curve [9].

the values of the area under ROC (AUROC) and the area under
PR (AUPR) in each figure. Here, TPR stands for true positive rate,
which is the recall. FPR stands for false positive rate, which is also
called fall alarm rate (FAR). For the ROC curve, the closer to the
upper left corner (a perfect classifier), the better the model is. As
to the PR curve, if it is closer to the upper right corner, the model
is better. In other words, the greater AUROC/AUPR, the better the
model is. Also, for a given threshold 𝑝 , the higher recall, higher
precision and lower FAR, the better the model is. See Appendix B
and Appendix C for more details on the performance metrics and
detailed performance results with threshold 𝑝 =0.5, respectively.

Figure 8 shows that the ANN model under all test cases achieves
high TPR/recall at the cost of low precision and high FPR/FAR. It
further implies that the ANNmodel is sensitive to the sampling rate,
the selected duration of the strongest portion of each earthquake
waveform, and also the choice of 𝑝 . We notice that the performance
of the ANN model can be improved when increasing the sampling
rate to 100 Hz and the selected duration to 10 seconds, which is
somewhat opposite to the setting in [16, 18] where they use the
sampling rate of 25 Hz and consider a short (yet unknown) duration
of the strongest portion. Nonetheless, even with the best case, the
FPR/FAR is still above 10% to 20% to ensure high recall/TPR, which
means that the system would lead to a large number of false alarms
while detecting earthquakes in real time. We further conduct the
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Figure 9: The architecture of our CRNN model. The data size here at each layer is based on a sampling rate of 100 Hz.

10-fold cross-validation and confirm the results, but here omit the
details due to space constraint.

4 THE CRNN MODEL
Our observations thus far call for a novel learning model that would
achieve high earthquake detection accuracy while maintaining
low FAR. We thus propose a convolutional-recurrent neural net-
work (CRNN) model that is a combination of convolutional neural
network (CNN) and recurrent neural network (RNN) for earth-
quake detection as a binary classification. Here earthquake and
non-earthquake instances are again labeled as 1 and 0, respectively.
This model stems from an observation that time-series acceleration
data at each component can be treated as one-dimensional (1D)
images to be fed into the CNN (and also into the CRNN). That is,
each 3-component acceleration record becomes a 1D image with 3
channels (like RGB colors), or a 2D image with 1 channel, in the
context of CNN.

Specifically, we use the same basic data unit as the one for the
ANN model, which is the 2-second sliding window (an instance).
Our CRNN model takes each instance directly as an input, which is
in contrast to the ANNmodel that takes the three features extracted
from each instance as an input. Thus, assuming the sampling rate
of 100 Hz (i.e., 100 data points per second), each input instance
becomes a 200 × 1 image with 3 channels, or a 200 × 3 image with
1 channel. We here use the latter representation for brevity.
Model Structure. Our proposed CRNN model is depicted in Fig-
ure 9. It is the optimized one, starting from a simple CRNN model,
by gradually modifying its structure with adding more layers and
tuning hyperparameters. Our model benefits from both CNN and
RNN. It no longer needs the handcrafted features like the ones
for the ANN model, which have been shown to have low predic-
tive power. Instead, the CNN component of our model automates
feature engineering to extract informative features after filtering
out noise via convolution filters. In addition, its RNN component
introduces the notion of ‘memory’ to the network, capturing time
dependency across the input instances.

Let 𝑺𝑡 ∈R𝑛×3 be the 𝑡-th input instance, where 𝑛 is the number of
data points over a window of 2 seconds. We then divide 𝑺𝑡 into two
sub-instances of size 𝑛

2 ×3 (1-second window data each). Letting 𝑺𝑡,1
and 𝑺𝑡,2 be the corresponding sub-instances, they are sequentially
fed into the model. We here take the case of 100-Hz sampling rate
as an example, so 𝑛=200.

• The first layer is a 1D convolutional layer that convolves each
of 64 filters of size 3 × 3 across the input sub-instance 𝑺𝑡,𝑖 ∈
R100×3 (𝑖 =1, 2), with a stride of 1 and without padding.7 It then
applies the rectified linear unit (ReLU) activation function, i.e.,
ReLU(𝑥) =max{0, 𝑥}, to the convolution outputs individually,
leading to 64 feature maps, each of which is a column vector of
length 98. That is, the output of this layer is a 98 × 64 matrix.

• The second one is another 1D convolutional layer having another
64 filters of size 3×64, which are individually applied to the output
of the first layer, with a stride of 1 and without padding. It also
applies the ReLU function to each convolution output and finally
creates 64 feature maps, each of which is a 96 × 1 vector.

• The third one is a max-pooling layer for dimensionality reduction.
It applies a max filter (with a stride of 2) to two non-overlapping
consecutive elements to keep a bigger one only, for each feature
map. Thus, the output of this layer is still 64 feature maps, yet
each with a 48 × 1 vector.

• The fourth one is a flatten layer that is to merge and reshape the
feature maps to be fitted to the following layer. The 64 feature
maps obtained by the max-pooling layer are linked in series into
a vector 𝒄𝑡,𝑖 ∈ R3072×1.

• The fifth one is a simple recurrent layer with 100 neurons and the
hyperbolic tangent (TanH) activation function, i.e., TanH(𝑥) =
𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 , element-wise. The outputs of this layer to the inputs 𝒄𝑡,1
and 𝒄𝑡,2 are obtained by

𝒉𝑡,1 = TanH(𝑾1𝒄𝑡,1 + 𝒃1) ∈ R100×1,
𝒉𝑡,2 = TanH(𝑾1𝒄𝑡,2 + 𝑼𝒉𝑡,1 + 𝒃1) ∈ R100×1,

respectively, where𝑾1 ∈ R100×3072 is the input-to-output weight
matrix, 𝑼 ∈ R100×100 is the output-to-output weight matrix, and
𝒃1 ∈ R100×1 is the recurrent bias vector. Note that the output
𝒉𝑡,1 that originally comes from 𝑺𝑡,1 is fed back along with the
input 𝒄𝑡,2 to this recurrent layer, which in turn gives the output
𝒉𝑡,2. Thus, our CRNN network has a memory of 1 sub-instance
due to the feedback.

• The sixth one is a fully-connected layer with 100 neurons and
the ReLU activation function applied element-wise, leading to
the following output 𝒛𝑡 :

𝒛𝑡 = ReLU(𝑾2𝒉𝑡,2 + 𝒃2) ∈ R100×1,

7It is still a 1D convolution, as the convolution is done over 1 dimension.
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Figure 10: The ROC and PR curves of the CRNN model.

where𝑾2 ∈R100×100 and 𝒃2 ∈R100×1 are the weight matrix and
bias vector, respectively. Note that the output 𝒛𝑡 is obtained based
only on the input 𝒉𝑡,2 (not 𝒉𝑡,1), although 𝒉𝑡,2 depends on both
𝒉𝑡,1 and 𝒄𝑡,2. To see this, refer to Figure 9(b) for the unfolded
RNN structure.

• The last layer is an output layer with the logistic activation
function. The final output is then given by

𝑦𝑡 = 𝑓 (𝒘3 · 𝒛𝑡 + 𝑏3) =
1

1 + exp(−(𝒘3 · 𝒛𝑡 + 𝑏3))
∈ (0, 1),

where 𝒘3 ∈ R100×1 and 𝑏3 ∈ R are the weight vector and bias
term, respectively. Here, ‘·’ indicates the dot product. Note that
this final output is the output of the model to the input instance
𝑺𝑡 . As was the case with the ANN model, for a given value of
𝑝 , if 𝑦𝑡 ≥ 𝑝 , then the corresponding instance is classified as an
earthquake, otherwise a non-earthquake.
For training the model while handling the data imbalance, we

consider the following weighted cross-entropy loss function ℓ to
be minimized:

ℓ = −
[
𝑐0 (1 − 𝑦𝑡 ) ln(1 − 𝑦𝑡 ) + 𝑐1𝑦𝑡 ln𝑦𝑡

]
,

where𝑦𝑡 is the true label of the input instance 𝑺𝑡 . Here, 𝑐0 and 𝑐1 are
weights for the classes of non-earthquakes (𝑦𝑡 =0) and earthquakes
(𝑦𝑡 = 1), which can also be viewed as costs for a false alarm and
a miss, respectively. Due to the data imbalance, we set 𝑐0 =1 and
𝑐1 to be the ratio of non-earthquake instances to the number of
earthquake instances, so that the total cumulative weights to both
classes are the same.
Model Performance. We evaluate our CRNN model through the
same set of test cases as we used for the ANNmodel, and present the
resulting ROC and PR curves of our model in Figure 10, where the
corresponding AUROC and AUPR values are also reported in each
subfigure. (See Appendix C for the detailed performance results
with threshold 𝑝 =0.5.) We observe that our model demonstrates
excellent overall performance regardless of the choices of sampling
rate and selected earthquake duration, and also for an almost entire
range of the values of the threshold 𝑝 . Their detection accuracy is

above 99% with the FAR less than 1% for all the cases. Overall, our
CRNN model achieves remarkable performance improvement over
the state-of-the-art ANN model. As was done for the ANN model,
we employ the 10-fold cross-validation and confirm the results, but
again omit the details due to space constraint.

Table 1: Runtime of the CRNN model [milliseconds]

# Sensors 100 300 500 1000 5000 10000

i7-7820X 18 ± 1 49 ± 1 81 ± 1 162 ± 1 795 ± 7 1600 ± 6
1080 Ti 9 ± 2 22 ± 3 34 ± 4 67 ± 4 344 ± 11 649 ± 28

Computational Cost. One may expect that our CRNN model
would be computationally expensive and thus not suitable for the
purpose of real-time detection. This is, however, not the case. With
300 sensors data, the runtime of executing the CRNN model per
each 2-second input instance (so 300 instances in total) takes only
about 49 ms. Note that other data processing time is negligible com-
pared to this runtime. While the server of CrowdQuake currently
uses an Intel Core i7 7820X processor, we observe that leveraging a
GeForce GTX 1080 Ti GPU reduces the runtime to about 22 ms. We
further observe that running the CRNN model at CrowdQuake is
also scalable to thousands of sensors, as shown in Table 1. The run-
time results are reported by taking the average over 20 iterations
for each case. The value after ± indicates its standard deviation.
Additional Experiments. We further extend our study to the per-
formance evaluation of the CRNN model built upon a different
dataset, which contains a wider range of earthquake data that in-
clude the earthquake waveforms with smaller PGA values than
before, while having the same set of non-earthquake data. Note
that this newly built CRNN model has been used along with the
previous one in CrowdQuake to see if it can better detect low mag-
nitude earthquakes in practice. Specifically, we use a bigger set of
Japan earthquakes, each of whose 𝑥-axis PGA is 0.05g or above,
for model training and testing. We then evaluate the performance
of the corresponding ANN and CRNN models for the same test
cases as before, and we here summarize our results. See Appen-
dix B and Appendix C for more details on the new dataset and
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Figure 11: The performance of the ANN and CRNN models when applied to (a)–(d) two 0210-earthquake waveforms and (f)–
(i) two 1230-earthquake waveforms recorded by our low-cost sensors. Top: waveform; Bottom: prediction probability 𝑦. Two
maps of sensors whose records allowed the CRNN model to confirm (e) the 0210 earthquake and (j) the 1230 earthquake.
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Figure 12: The performance of the CRNN model over (a)–(f) 0210-earthquake waveforms and (g)–(l) 1230-earthquake wave-
forms recorded on 6 different sensors.

the results, respectively. Our results indicate that the CRNN model
still significantly outperforms the ANN model in all performance
metrics. While the performance of the ANNmodel becomes slightly
improved with this new dataset, its FAR remains non-negligible.

5 CASE STUDIES
It is clearly hard to validate CrowdQuake in practice, since earth-
quakes – the target for detection – are completely beyond our con-
trol and they happen irregularly and unpredictably. Nonetheless,
there were five small earthquakes near the area where CrowdQuake
is deployed, and CrowdQuake was able to detect all of them, albeit
their small intensity measured. We here present two earthquakes
as examples – one occurred on February 10, 2019 (named ‘0210
earthquake’), the other occurred on December 30, 2019 (named
‘1230 earthquake’). The PGA of the 0210 earthquake was 0.0045g
and its corresponding intensity was III in the modified Mercalli
intensity (MMI) scale [23]. The PGA of the 1230 earthquake was
0.0164g and its MMI intensity was IV. These earthquakes left the
people near their epicenters shaken and feared.

The results are quite promising, since they somewhat demon-
strate the feasibility of detecting earthquakes with low magnitudes,
which have been considered too small to be detected using low-cost
sensors, e.g., [16] and references therein. They also show the pos-
sibility of going beyond the limitation set by the recent MyShake
system [16, 18, 19] that aims only at detecting magnitude 5 or larger
earthquakes at distances of 10 km or less. We notice that the PGA
values of earthquake waveforms used for training the ANN model
in MyShake were all above 0.2g [16], which translates into the peak
intensity VII in the MMI scale and is far bigger than 0.0045g and
0.0164g. While we use lower ‘base’ PGA values, i.e., 0.1g and 0.05g,
to select earthquake waveforms (with PGA values greater than the
base values) in order to train two different versions of our CRNN
model in CrowdQuake, the base PGA values are still greater than
0.0045g and 0.0164g. However, we emphasize that we consider a
relatively long portion of each earthquake waveform for model
training, which is the 10-second selected duration, i.e., 1 second
before the peak and 9 seconds after the peak (See Appendix B for
more details.). Thus, the earthquake datasets for training actually



contain low-amplitude portions of earthquake waveforms, so the
two versions of our CRNN model are able to detect small earth-
quakes in practice. We also observe that the one with the base PGA
value of 0.05g performs better than the other, so we here only report
its results for brevity.8

We present a few representative results of CrowdQuake for de-
tecting the 0210 and 1230 earthquakes. Several low-cost sensors
in CrowdQuake were able to record the small earthquakes and its
CRNN model confirmed them as earthquakes. For comparison, we
also apply the ANN model, trained under the same condition (the
100-Hz sampling rate and 10-second selected duration) as the CRNN
model was trained, to the same earthquake waveforms recorded,
and find out that it is still not able to detect both earthquakes. Fig-
ure 11(a)–(d) shows the performance of the ANN and CRNNmodels
in prediction probability 𝑦 (classification output), when they are
applied to the waveforms recorded on two sensors of CrowdQuake
in the happening of the 0210 earthquake. Similarly, Figure 11(f)–
(i) shows the performance comparison for the 1230 earthquake.
Our CRNN model clearly captures the strongest portions of the
earthquake waveforms even in the presence of relatively high back-
ground noise at the low-cost sensors. However, the ANN model
is largely inaccurate and unreliable, or it is rather close to a ran-
dom decision with the low-cost sensors for both earthquakes. This
confirms the superiority of our CRNN model over the ANN model.

We further present the performance of CrowdQuake, or its CRNN
model. Figure 12(a)–(f) shows that the CRNN model correctly de-
tects the 0210 earthquake from the seismic waveforms recorded
on 6 sensors. Similarly, Figure 12(g)–(l) indicates the detection of
the 1230 earthquake with 6-sensor records. We also observe that
the number of sensors that are able to pick up the seismic wave-
forms, which are then confirmed by the CRNN model, depends on
the value of the probability threshold 𝑝 . If we set 𝑝 =0.5, then the
CRNN model enables about 20 sensors to detect both earthquakes,
i.e., the prediction-probability outputs 𝑦 of the CRNN model are
greater than 0.5. When we lower down 𝑝 to 0.2, it increases to 28
for the 0210 earthquake and 27 for the 1230 earthquake, respec-
tively. The locations of the sensors are shown as the blue dots in
Figure 11(e) and (j), respectively. The distance between each of
the senors and its epicenter approximately ranges from 45 km to
140 km for the 0210 earthquake, and from 17 km to 53 km for the
1230 earthquake, respectively. Note that the distances are much
longer than the 10 km considered in MyShake [16]. Therefore, our
observations clearly indicate that CrowdQuake has great potential
to detect a wide range of earthquakes using low-cost sensors in real
time, including small earthquakes at long distances that would not
have been considered possible in the current literature.

6 CONCLUSION
We have presented CrowdQuake, which is a deep learning-driven
networked system of low-cost sensors for earthquake detection
in real time, and its operational results. CrowdQuake is designed
to manage streaming time-series acceleration data from hundreds
to thousands of sensors and to be capable of real-time earthquake

8It might be possible to further optimize the performance of our CRNN model by
training it under the dataset of earthquakes with a properly chosen base-PGA value.

detection via our CRNNmodel. It also automates the process of iden-
tifying abnormal sensors, which can deteriorate the performance
of earthquake detection. Finally, the CRNN model in CrowdQuake
exhibits remarkable performance, i.e., 99% detection performance
with a false alarm rate less than 1%, and enables CrowdQuake to
have detected five small earthquakes over its one-year operation.
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A DETAILS OF THE ANN MODEL
The ANN model in [16] uses the following three features that are
extracted from each instance (a 2-second window) as an input: (i)
cumulative absolute velocity (CAV), (ii) interquartile range (IQR),
and (iii) zero crossing count (ZC). The CAV is a cumulative measure
of the amplitude of the acceleration data for 2 seconds, which
is defined as CAV =

∫ 2
0 ∥𝑎(𝑠)∥𝑑𝑠 , where ∥𝑎(𝑠)∥ is the length (𝑙2

norm) of the vector of three acceleration components at time 𝑠 . In
practice, it is computed as the sum of the lengths of the vectors
of three acceleration components recorded over 2 seconds. The
IQR is a measure of statistical dispersion that indicates the middle
50% range of the amplitudes ∥𝑎(𝑠)∥ for 2 seconds. Note that the
CAV, when properly normalized, and the IQR capture the notions
of the ‘average’ and ‘variance’ of the vector length, respectively,
for each 2-second window. The ZC is a frequency measure that
counts how many times the (acceleration) signal changes its sign
for the 2-second window. Its maximum value is used among the ZC
values of three components. Each feature is scaled or normalized
to a range of 0 to 1.

The ANN model uses the logistic sigmoid activation function at
the hidden and output layers, which is given by 𝑓 (𝑥)= 1

1+exp(−𝑥) .
Letting 𝒔𝑡 ≜ [𝑠𝑡 (1), 𝑠𝑡 (2), 𝑠𝑡 (3)]𝑇 be the feature vector of the 𝑡-th

instance, its output 𝑦 (𝒔𝑡 ) is then obtained by

𝑦 (𝒔𝑡 ) = 𝑓

(
𝑤0 +

5∑
𝑘=1

𝑤𝑘 𝑓

(
𝑤𝑘
0 +

3∑
𝑖=1

𝑤𝑘
𝑖 𝑠𝑡 (𝑖)

))
∈ (0, 1),

where {𝑤𝑘
𝑖
} be the weight vector for the 𝑘-th neuron at the hidden

layer and {𝑤𝑘 } be the weight vector at the output layer.
There is a data imbalance problem for real-time earthquake de-

tection, since non-earthquake data instances are far more than
earthquake data instances. To address this problem, the 𝑘-means
clustering method is used in [16]. Letting 𝑚 be the number of
earthquake feature vectors, the non-earthquake feature vectors are
grouped into𝑚 clusters. The centroids of clusters are used to repre-
sent the (transformed) non-earthquake feature vectors for training
the ANN model. We use backpropagation and stochastic gradient
descent [13] for training the ANN model, where a learning rate of
0.2 is chosen. We also apply a different training algorithm, which is
the stochastic gradient descent with the Adam optimizer [15], and
observe similar results.

B EXPERIMENTAL SETTINGS
B.1 Dataset
For earthquake data, we first use a total of 2299 K-NET records
of Japan earthquakes from NIED [20], each of whose 𝑥-axis com-
ponent PGA is greater than 0.1g. To better detect low-magnitude
earthquakes in practice, we also consider a smaller value of the
PGA, which is 0.05g, when selecting earthquake waveforms from
NIED, and thus use 8973 K-NET records with 𝑥-axis PGA values
greater than 0.05g. For non-earthquake data, we use a wide range
of acceleration records that we have collected using the low-cost
sensors, which include background noise of the low-cost sensors
measured in several environments and the ones recorded on the
low-cost sensors while under various human activities. They are
all recorded at a sampling rate of 100 data points per second.
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Figure 13: Three durations of an earthquake waveform.

B.2 Test Cases
We begin with the setting in [16, 18], where the sampling rate is 25
Hz and the strongest portion of each earthquake waveform is only
selected for earthquake instances (2-second windows) to clearly
separate (large-magnitude) earthquakes from non-earthquakes. For
the former, the data is all down-sampled to 25 Hz. For the latter, we
select the 2-second duration of each earthquake waveform around
the peak acceleration in the 𝑥-axis component, i.e., the one with
1 second before the peak and after the peak. We further extend
the test cases as follows. We consider sampling rates of 50 Hz and
100 Hz, in addition to 25 Hz. We also take two different durations
– 4 seconds and 10 seconds, into consideration for choosing the
strongest portion of each earthquake waveform. Specifically, the
4-second duration is the one with 1 second before the peak and 3
seconds after the peak, while the 10-second duration is the one with
1 second before the peak and 9 seconds after the peak. See Figure 13
for illustration. Thus, three durations lead to 1, 3, and 9 instances
for each earthquake waveform, respectively. For non-earthquake
data, we use the entire waveforms for obtaining instances.

B.3 Data Splitting
We split the data for both classes of earthquakes (EQ) and non-
earthquakes (non-EQ) into training set (70%) and testing set (30%).
In particular, the EQ data is split based on earthquake records. For
EQ dataset with PGA greater than 0.1g, 1610 and 689 out of 2299
records are randomly selected for training and testing, respectively.
For EQ dataset with PGA greater than 0.05g, 6281 and 2692 out of
8973 records are used for training and testing, respectively. We then
divide each earthquake record into instances (2-second windows
with a 1-second step). On the other hand, the none-EQ dataset
is randomly split based on the instances. Table 2 summarizes the
numbers of instances for model training and testing.

Table 2: Summary of data for model training and testing

EQ dataset with PGA > 0.1g Training set Testing set

Selected duration # EQ # Non-EQ # EQ # Non-EQ
2 seconds 1610 34810 689 14924
4 seconds 4830 34810 2067 14924
10 seconds 14490 34810 6201 14924

EQ dataset with PGA > 0.05g Training set Testing set

Selected duration # EQ # Non-EQ # EQ # Non-EQ
2 seconds 6281 34810 2692 14924
4 seconds 18843 34810 8076 14924
10 seconds 56529 34810 24228 14924

B.4 Performance Metrics
To evaluate each model, we use TPR/recall, FPR/FAR, and precision
that are obtained from its four outcomes, i.e., true positive (TP),
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false positive (FP), true negative (TN), and false negative (FN). Here,
for each instance, positive means an earthquake, while negative
means a non-earthquake. Note that Recall is the ratio of TPs to
the overall number of positive instances. FAR is the ratio of FPs to
the overall number of negative instances. See Figure 14 for their
definitions. Recall that for a given threshold value 𝑝 , the higher
recall, higher precision and lower FAR, the better the model is.

We also use ROC and PR curves for performance evaluation.
Recall that for the ROC curve, if it is closer to the upper left corner
(a perfect classifier), which implies no FPs, the model is better. As
to the PR curve, the closer to the upper right corner, having only
TPs without any FP and FN, the better the model is.

B.5 Software
We use Python 3.7 and the following libraries for our implementa-
tions and experiments.9

• We use ObsPy 1.1.1 for earthquake data processing.
• We use TensorFlow 1.14 and Keras 2.2.4 to build our CRNN
model.We use scikit-learn 0.21.2 for ANN and𝑘-means clustering
algorithm. We also use scikit-learn to compute the performance
metrics.

• We use NumPy 1.16.1 and pandas 0.24.1 for data processing and
manipulation. Matplotlib 3.0.3 is used to plot figures.

B.6 Hyperparameters and Configurations
ANN. The hidden-layer size is 5, and the activation function is
‘logistic’. We use the stochastic gradient descent with a learning
rate of 0.2 to train the ANN model. The regularization parameter
is 0, and the maximum number of iterations is 10,000. We use the
default values set in scikit-learn for all the other hyperparameters.
The ANN model is trained on a CPU.
CRNN. For both convolutional layers, the number of filters is 64,
the kernel size is 3, and the activation function is ‘relu’. The pool
size is 2 for the max-pooling layer. The simple RNN layer contains
100 neurons with ‘tanh’ activation function. The fully-connected
layer uses 100 neurons with ‘relu’ function. The output layer uses
‘sigmoid’ function. We use mini-batch gradient descent with the
Adam optimizer [15] to optimize the model parameters and weights,
minimizing the loss function ℓ , where the mini-batch size of 256
is chosen empirically. We also use the dropout [22] at the fully-
connected layer with probability 0.5 to avoid overfitting. We run
the model training for 100 epoches, which is chosen as we have
observed that the amount of reduction in the loss function ℓ after
about 50 ∼ 60 epoches becomes quite small. We use the default
values set in TensorFlow for all the other hyperparameters. The
CRNN model is trained on a GPU to reduce the training time.

9Code to reproduce our experiments is available at http://www.crowdquake.net.

C ADDITIONAL RESULTS
We below provide additional results of our experiments.
Results of EQ dataset with PGA > 0.1g. We present in Table 3
the performance of the ANN and CRNN models when we set the
threshold 𝑝 to be 0.5. Note that the ROC and PR curves of the models
were given in Figure 8 and Figure 10, respectively.

Table 3: Performance comparison with a threshold of 0.5

25 Hz 50 Hz 100 Hz
2 s 4 s 10 s 2 s 4 s 10 s 2 s 4 s 10 s

ANN
Recall 0.93 0.93 0.92 0.94 0.94 0.88 0.90 0.94 0.94

Precision 0.07 0.20 0.43 0.07 0.20 0.43 0.31 0.52 0.69
FAR 0.52 0.51 0.50 0.52 0.52 0.47 0.09 0.12 0.17

CRNN
Recall 0.99 0.98 0.97 0.98 0.99 0.98 0.99 0.99 0.99

Precision 0.86 0.97 0.98 0.97 0.96 0.98 0.99 0.98 0.99
FAR 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Results of EQ dataset with PGA > 0.05g.We here only provide
the AUROC and AUPR values of the ANN and CRNN models in
Table 4, instead of their ROC and PR curves due to space constraint.
We also report the performance of the models with 𝑝 =0.5 in Table 5.

Table 4: Performance of the ANN and CRNN models

25 Hz 50 Hz 100 Hz
2 s 4 s 10 s 2 s 4 s 10 s 2 s 4 s 10 s

ANN
AUROC 0.64 0.69 0.83 0.69 0.79 0.89 0.95 0.96 0.97
AUPR 0.18 0.48 0.87 0.20 0.64 0.92 0.73 0.89 0.97

CRNN
AUROC 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
AUPR 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 5: Performance comparison with a threshold of 0.5

25 Hz 50 Hz 100 Hz
2 s 4 s 10 s 2 s 4 s 10 s 2 s 4 s 10 s

ANN
Recall 0.93 0.94 0.98 0.92 0.92 0.92 0.92 0.94 0.96

Precision 0.26 0.52 0.76 0.26 0.52 0.82 0.47 0.79 0.93
FAR 0.47 0.47 0.50 0.47 0.43 0.31 0.18 0.13 0.11

CRNN
Recall 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Precision 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
FAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

We observe that our CRNN model outperforms the ANN model
in all performance metrics, regardless of the choices of the PGA
value for selecting earthquake waveforms from NIED to build the
set of earthquake instances for model training and testing. We also
notice that the overall performance of the ANN model is slightly
improved when we include more earthquake instances, which is the
case with the PGA value of 0.05g. Nevertheless, the FAR of the ANN
model is still higher than 10% even with the best case. Note that, for
EQ dataset with PGA greater than 0.05g, we do not apply 𝑘-means
clustering to the cases with the selected duration of 10 seconds,
as the number of earthquake instances now becomes greater than
that of non-earthquake instances, so the negative aspect of the data
imbalance problem for detecting earthquakes no longer exists. For
all the other test cases, 𝑘-means clustering is used to balance the
dataset before training the ANN model.

http://www.crowdquake.net
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