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Abstract—Patching nodes is an effective network defense strat-
egy for malware control at early stages, and its performance is
primarily dependent on how accurately the infection propagation
is characterized. In this paper, we aim to design a novel patching
policy based on the susceptible-infected epidemic network model
by incorporating the influence of patching delay-the type of
delay that has been largely overlooked in designing patching
policies in the literature, while being prevalent in practice. We
first identify ‘critical edges’ that form a boundary to separate
the most likely infected nodes from the nodes which would still
remain healthy after the patching delay. We next leverage the
critical edges to determine which nodes to be patched in light
of limited patching resources at early stages. To this end, we
formulate a constrained graph partitioning problem and use its
solution to identify a set of nodes to patch or vaccinate under
the limited resources, to effectively prevent malware propagation
from getting through the healthy region. We numerically validate
that our patching policy significantly outperforms other baseline
policies in protecting the healthy nodes under limited patching
resources and in the presence of patching delay.

Index Terms—Epidemic modeling and control, malware prop-
agation, patching delay, graph partitioning

I. INTRODUCTION

Recent technological advancements have led to a rapid
increase in the number of devices connected to the Internet,
including conventional personal computers and various mo-
bile and IoT devices, which form large complex networks.
End-users, through these connected devices, share a massive
amount of information across different networks, making them
vulnerable to cyber attacks and malware infections. Once
successfully installed, the malware propagates in a network
by exploiting devices’ vulnerabilities, and it can infect a large
number of devices in a short time [1]-[5]. A typical example is
the Code Red 2 variant that infected 350,000 machines within
a span of 24 hours [6].

To control the spread of malware, we need to characterize
its spreading dynamics and devise the corresponding com-
bating strategies. Common models to characterize the spread
of malware infections are the susceptible-infected-susceptible
(SIS) model, the susceptible-infected-recovered (SIR) model,
and their extensions [7]-[10]. Most studies based on these
models largely focus on their steady-state behaviors (where
the cure/vaccine is readily available for all nodes) to establish
the “epidemic threshold” under which the epidemic dies out
eventually over time. The countermeasures developed based
on these models thus attempt to restrict the infection below
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the threshold by increasing the recovery rate or modifying the
network connectivity to curtail the spread.

However, a cure for malware (also called ‘patching’) is not
readily available upon a malware attack, as it may take days or
weeks to identify an exploit, let alone its cure. In this transient
period, we can mitigate the spread by deploying (temporary)
patches relying on advanced security measures such as threat
prevention and deep learning capabilities [11]-[13]; however,
these patches are expensive and certainly not available at scale.
Therefore, at the early stage of the spread, the aforementioned
models that consider a specific recovery rate for each node and
the corresponding combating strategies are no longer valid. A
more natural fit here is the susceptible-infected (SI) model,
which assumes that a node, once infected, will stay infected,
thus better representing the transient behavior of malware
propagation. This observation led to our earlier work [14]
on characterizing the transient dynamics of the SI model
on a network and establishing a tighter upper bound on the
likelihood of each node being infected at any time t.

Motivation: In addition to the delay caused by patching
development, there is another equally important delay that ex-
ists when we actually implement patches to nodes or devices.
This delay has been clearly seen in various security patches
practically implemented over the years [1], [15], [16]. For
instance, the Heart Bleed vulnerability allows the attackers to
read sensitive memory (containing cryptographic keys) of vul-
nerable servers [1], and its mitigation requires an administrator
to replace the cryptographic keys, revoke the compromised
certificate, and apply the security patch. These actions account
for a significant amount of time. Other similar examples are
Spectre and Meltdown security vulnerabilities and DROWN
attack [15], [16], which also require many time-consuming
actions to execute patching. A study conducted by tCell [17]
shows that the mean time to patch critical vulnerabilities takes
close to 38 days. Google’s Project Zero [18] also reports that
it takes 15 days on average for vendors to patch a vulnerability
that is being used in active attacks.

Ideally, the strategies for selecting which nodes to patch
should incorporate the patching delay 7" by analyzing the time-
dependent influence of malware propagation on the network;
however, this delay has been largely ignored in the literature.
For instance, it is assumed in [14] that the patching for nodes
marked for vaccination becomes effective immediately (i.e.,



T =0), creating issues in real-world scenarios where it takes
a non-negligible amount of time to take into effect. While
our recent work [19] considers the presence of this patching
delay, it is only limited to free topologies. Therefore, it is
crucial to address this gap by designing a new patching policy
that takes into account the delay 7" and efficiently determines
which nodes to patch on general graphs.

Our Contributions: In this work, we present a novel math-
ematical framework based on the SI model, which leads to a
new patching policy that efficiently selects the most feasible
nodes for patching under a limited budget. With the influence
of time delay T incorporated into the patching policy, our node
selection traces the state of infection more accurately, where
eligible candidates continuously evolve within a network as
the infection is actively spreading in the meantime. The main
contributions of this work are as follows:

« We highlight the presence of patching delay 7' in real-
world scenarios and illustrate its importance in effectively
mitigating malware propagation.

o To predict the spread of malware infections and leverage
such information, we encode the infection probability of
each node at time 7" into the graph model as ‘edge weights’,
leading to the notion of ‘critical edges’ with maximal
weights across the boundary between healthy and infected
groups of nodes.

« We formulate a constrained graph partitioning problem to
identify the boundary that separates the most likely infected
nodes from the nodes which would still be healthy after 7.
We then leverage its solution to determine which nodes to
patch or vaccinate under the budget constraint.

« We numerically validate that our policy significantly out-
performs other baseline policies, including the reactive
policy introduced in [14], in protecting healthy nodes under
the same budget constraint.

The rest of the paper is organized as follows. In Section II,
we review the SI epidemic model and its approximations and
demonstrate the importance of patching delays. Section III
presents the details of our proposed mathematical framework
that formulates a constrained graph partitioning problem to
mitigate malware propagation while accounting for patching
delay T under a limited budget. We present numerical simu-
lation results in Section IV and conclude in Section V.

II. PRELIMINARIES
A. Notations

We present notations that will be used throughout the paper.
For any two column vectors w = [uy, us, . .., u,]’ € R" and
v=[v1,v2,...,0,]T €R", we write u < v if u; < v; for all
i =1,2...,n. Let 1 and O denote the n-dimensional all-one
and all-zero column vectors, respectively. For a function f:
R—R and for a column vector u€R"™, we write f(u) as an
n-dimensional column vector with elements f(u;). Similarly,
we write diag(u) to be an n x n diagonal matrix with diagonal
entries u;. Let I=diag(1) be an n X n identity matrix.

B. SI Epidemic Model and Its Approximations

Consider a connected, undirected graph G = (N, E) as a
network model, where N = {1,2,...,n} is a set of nodes
and E is a set of edges, indicating neighboring relationships
between nodes. The graph G is characterized by an n x n
adjacency matrix A = [a;;| with elements a;; =1 if there is
an edge between nodes ¢ and j, i.e., (¢,j) € E, and a;; =0 if
otherwise. In the SI model on a graph G, the infection process
is primarily governed by the network connectivity, i.e., if node
i is infected and node j is susceptible for (i,j) € E, then 4
can infect j with a common infection rate 8 > 0.

Let X;(t) € {0, 1} denote the state of node ¢ at time ¢, where
X;(t)=1 indicates that node i is infected at ¢, and X;(¢)=0
indicates that node 7 is healthy and susceptible to infection
at t. We define x;(t) 2 P{X;(t) =1} = E{X;(t)} €[0,1] to
be the probability that node ¢ is infected at time t. In other
words, node ¢ is healthy at time ¢ with probability 1—x;(t).
Letting x(t) = [21(t), 22(t), ..., 2, (t)]T be a column vector
with elements x;(¢) at time ¢, we can write the following ODE
for the SI model: For any node 7 € N,
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with an initial condition x(0).

Despite its simple form, the coupled, nonlinear ODE in (1)
cannot be solved in a closed form for most cases. Thus, a linear
approximation has been adopted in the literature to obtain an
approximate solution to (1) [10], [20], [21]. Specifically, since
1—z;(t) <1, we have, for any i € N and for any time ¢ > 0,

dx;
0 50— 1) Y ars(0) < B a0
JEN JEN
Then, letting X(t) £ [Z1(t), Z2(t), ..., Z,(t)]" be the solution

to the linear dynamical system in the upper bound, we have

x(t) < %(t) = ’x(0), t>0, (2)

provided that %X(0) =x(0). This upper bound works only for
small values of ¢ and when x(0) ~ 0, and becomes useless
even for moderate values of ¢ > 0 as it grows exponentially,
contradicting that each x;(¢) € [0, 1] is a probability [14].

In our earlier work [14], we establish a tighter upper bound
for x(¢), which works for any value of ¢ with an initial
condition x(0). If z;(0) € {0,1} for all i, we have

), 3)
where f(y)=1—e"Y, and y(¢) is given by

x(t) < %(t) =

3(t) =~ log(1 - x(0))
+Z (™" A ding(1-x(0))]* Ax(0). )
(e 1)! 1ag X x(0).

This upper bound allows us to predict the likelihood of each
node being infected after any time ¢ from the initial condition
x(0). That is, even if the patching delay T is moderate to
possibly large, we can utilize this upper bound to predict the
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Fig. 1: Influence of the patching delay 7" on which nodes to vaccinate. The color indicates the probability of infection.

infection status of each node at 7" so that we can identify which
nodes can be successfully vaccinated without being infected
before 7.

C. Significance of Patching Delay T

We here demonstrate how different patching delays 7' can
change which nodes to patch or vaccinate to maximize the
number of saved nodes from the vaccination. Assume that
limited patches are available at ¢ = 0. Figure 1 shows three
different snapshots of an infection process with the infection
rate S = 0.05 on a small network at ¢ = 0,10,15, each of
which depicts the probability of each node being infected
at time t. Figure 1(a) shows an initial state at ¢ = 0, where
three nodes are initially infected (indicated by red circles, for
which 2;(0) = 1). If the patching delay is T = 0, i.e., the
patching takes into effect immediately, then it is ideal to patch
or vaccinate the nodes near the infection sources. However, as
shown in Figure 1(b), if the patching delay takes 7'=10, then
it will be better to vaccinate three nodes, indicated by the
diamond symbol. This is because they have a small chance of
getting infected during the patching delay 7" while preventing
infection from getting through the rest of the network, once
they are successfully patched or immunized. If the patching
is applied to the nodes near the infection sources, most of the
patching will be wasted as they are more likely to be infected
before the patching takes into effect. Similarly, if the patching
delay takes 7= 15, a bit farther nodes should be vaccinated
as their risk of infection during 7" is low while they can stop
a further propagation of infection when they are vaccinated.

As demonstrated in Figure 1, for effective epidemic control,
it is deemed crucial to identify the ‘boundary’ separating the
healthy nodes from the infected region and patch the boundary
nodes. However, it is non-trivial to find such a boundary as
it changes depending on the value of 7' and its size also
varies. Thus, we develop a mathematical framework to find a
‘patching’ boundary that effectively isolates the healthy nodes
from the infected regions while having a small size to cope
with limited patching scenarios.

III. PROPOSED FRAMEWORK

In this section, we provide the details of our proposed frame-
work for effective delayed patching. It has four major steps
as follows: constructing a weight matrix (Section III-A); for-
mulating a graph partitioning problem to identify the patching
boundary (Section III-B); solving the problem (Section III-C);
and using its solution to determine which nodes to patch or

vaccinate under the budget constraint (Section III-D). Figure 2
illustrates an overview of the framework.

A. Critical Edges and Edge Weights

To effectively identify the boundary separating the healthy
nodes from the infected region, we below introduce a notion
of ‘critical edges.” We then define the weight of an edge such
that critical edges have higher weights, while non-critical ones
have lower weights.

For a particular patching delay 7', there are four states that
a node pair (i, j) € F forming an edge can take based on the
infection status of nodes ¢ and j at 7', and they are categorized
as the following two groups:

(i) = {g

As the first group, C-type states correspond to edges that are
susceptible to infection, which we label as critical edges. In
other words, a critical edge is an edge between a healthy node
and an infected node (or vice versa). In contrast, C’-type states
correspond to the non-critical edges that do not cause malware
propagation, as infection cannot spread over healthy-healthy
or infected-infected edges. Next, with the predicted infection
probability %(7") from (4), we define the weight of an edge
between nodes ¢ and j as:

wi j(T) = aij [#:(T)(1=2;(T)) + (1=2:(T))2;(T)] . (5)

if (Xz(T)v X](T)) = (Oﬂ 1) or (L O)
if (Xz(T)a XJ(T)) = (Oa 0) or (11 1)

Note that this edge weight w; ;(T") will encode our predicted
state of the infection after time 7" and can be interpreted as the
probability of edge (4, j) being critical at T'. The weight value
will get larger along the infection boundary, but it becomes
smaller for edges well inside either susceptible or infected
region, where Z;(7") and &;(T") are both close to 0 or 1.

B. Partitioning with Normalized Cut

The problem is then to identify the boundary along the
critical edges after the patching delay 7' (to which a limited
number of patches are applied), which can separate the most
likely infection region from the nodes that would still be
healthy by time 7. To this end, we start with formulating
the problem as a graph partitioning problem on our weighted
graph. While several graph partitioning problems have been
introduced in the literature, we here adopt the problem formu-
lation of normalized cut (NCut), which is rooted in the spectral
graph theory [22]-[24].
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Fig. 2: An overview of our proposed framework for effective delayed patching.

Consider a connected, weighted graph GG, where each edge
(i,7) € E is associated with a positive weight w; ;. To partition
this graph (or the node set V) into two partitions U and U*¢,
we find a cut between the two partitions, where the size of the

cut is defined as
Cut(U,U°) £ Y wyy,
i€U jeUe
i.e., the sum of the weights of edges crossing the boundary be-
tween U and U*®. The set of edges contributing to Cut(U, U¢)
is called a cut-set. The NCut problem is to solve the following:

, (Cw(U.U%) | Cut(U,U?)
JEN Ncut(U)_zIJncl%< vol(U) vol(U%) ) ©

UCN
where vol(U) and vol(U¢) are the sum of edge weights in U
and U¢, respectively. In other words, the NCut problem aims
to find the minimum cut between the two partitions (clusters)
while balancing the sum of edge weights in each partition.
It is known that the NCut problem leads to a more balanced
minimum cut than the pure minimum cut, which favors cutting
small sets of isolated nodes in the graph [22].

To provide a clean interface between our weighted graph
setting and the NCut problem (which partitions along the edges
with the minimum weights), we “flip” the edge weights as

Em- (T) = Qi3 — Wi 5 (T)
= aij [2:(T)2;(T) + (1—2:(T))(1—2,;(T))], (7)

where w; ;(T) is from (5). This way, the critical edges will
now have the lowest weights, and all the logic so far will carry
over to this ‘flipped’ version of edge weights.

Since the NCut problem in (6) is NP-hard, we adopt its
relaxed problem by relaxing the integer-valued solution, which
takes 1 or —1 for each node to indicate U or U€ it belongs
to, to take arbitrary real values [22]-[24]. To proceed, we
define d; =} w; j(T) to be the ‘generalized” degree of node
i. Let D = diag(dy,ds,...,d,) be the degree matrix, and
let W = [w;;(T)] be the n x n weight matrix, where edge
weights w,; (T') are given in (7). The Laplacian and normalized
Laplacian matrices of our weighted graph G are defined as
L=D — W and L = D~'/2LD /2 respectively. Then, the
(relaxed) NCut problem is given by

min v' Lv
veR” (8)
subject to ||v]|? = vol(N) and v ' D/21 = 0.
This boils down to finding the eigenvector corresponding to the
smallest non-zero eigenvalue of the normalized Laplacian L

and evaluating the “sign” of each component of the eigenvector
to partition the graph into two clusters.

In real-world scenarios, the number of patches available is
limited and thus can be fewer than the number of (critical)
edges in the cut-set that is identified as a solution to the NCut
problem in (8). While we could explicitly incorporate a con-
straint on the number of patches (or the budget constraint) into
the NCut problem, there may be no solution to the problem. To
address this potential issue, we impose the budget constraint
separately after solving the NCut problem. In addition, we
observe that a straightforward application of the solution to
the NCut problem can lead to a cut partitioning either healthy
or infected region inside, instead of separating one region
from the other. See Figure 3 for an example. Thus, to steer
the solution toward a more meaningful boundary of critical
edges, we add linear constraints to the problem in (8) in such
a way that a small group of nodes whose status is definitively
known to be healthy or infected at time 7" is forced into their
corresponding healthy or infected group, respectively. This
constrained NCut problem remains tractable while producing
a cut that clearly isolates high-risk nodes from the other ones.

Choosing constrained nodes. In what follows, we explain
how to choose a small group of nodes for the linear constraints
into the NCut problem. We first label nodes as ‘infected’ or
‘healthy’ using the predicted infection probability X(7") from
(4). Specifically, node ¢ is labeled as infected if ;(T") > 0.5
and healthy otherwise. From these labels, we select at most
10% of nodes to be imposed as hard linear constraints for the
NCut problem in (8). The selection process is done as follows:

o Infected constraints: We choose initially infected nodes and
their one-hop neighbors as constrained nodes to be in the
group of infected nodes. Since they are definitively infected
or have the highest immediate risk of infection, they are
used as ‘prompt’ nodes to guide the partitioning of most
likely infected nodes by the patching delay 7.

e Healthy constraints: For the nodes labeled healthy, we
calculate the smallest shortest-path distance from any one of
infection sources to each of them, sort them in a decreasing
order of the shortest-path distance, and choose the top-
K nodes (having the longest shortest-path distance). They
serve as ‘anchor’ nodes in the healthy side of the partition.

In this work, the value of K is chosen such that the total num-
ber of nodes in both constraints amounts to 10% of the entire
node set NV to steer the partition toward a meaningful boundary
of critical edges without over-constraining the problem.



The selected constrained nodes are encoded as a set of linear
constraints, which can be represented as

Bv=c,

where each row of BE€R™*™ is a one-hot vector to indicate
the location of each constrained node, and the corresponding
entry in ¢ € R™ encodes its assigned label. Specifically, for
each constrained node, we set ¢; =1 if it is labeled as infected
and c; =—1 if it is labeled as healthy. Note that the nodes that
are not explicitly constrained do not appear in B or c. With
these labeled constraints, the NCut problem in (8) becomes
minv ' Lo
. v ©))
subject to ||v||? = vol(N) and Bv = c.

Note that the orthogonality constraint v’ D'/21 =0 is omitted.
This is because any vector in the null space of L has all
entries either equal to +1 or all equal to —1. However, by
construction, our label constraints force at least one entry of
+1 (infected) and another entry of —1 (healthy). Hence, no
feasible v can lie in the null space of L, so we safely drop
the orthogonality constraint.

C. Solving Normalized Cut with Linear Constraints

To solve the constrained NCut problem in (9), we con-
sider two methods, namely projected power method [25] and
augmented Lagrangian Uzawa method [26]. For the sake of
completeness, we below review the principle of each method.

Projected power method (PPM). This method was designed
to solve the following general problem:

maxv ' Mo
v
subject to ||v]|> =1 and Bv = c.

where M is a positive semidefinite matrix. In our setting, we
set M=al — L, where « is a sufficiently large value. vol(V)
is also a constant. Then, maximizing v Mw is equivalent to
minimizing v Lv in (9). We note that the feasible set is the
intersection of the unit sphere and the hyperplane Bv = c.
Thus, any feasible vector admits a decomposition v =ng + 2,
where ng=BT (BB ")~ !c is the orthogonal projection of the
origin onto Bv =c, and z lies in the null space of B with a
fixed norm | z|| =+, with y=+/1 — |[ng||? > 0.

Starting from an initial vector v that satisfies ||vg|| = 1, we
generate a sequence of iterates {vy}i>0 as follows: At each
step, we update the current iterate vy, by first stretching it using
the operator M, then projecting the result back onto the hy-
perplane using the projection matrix P =I-B"(BBT)"'B,
and finally normalizing the projected vector to the length ~.
Then, the new iterate vy is obtained by adding back ng
after normalization. This procedure repeats until convergence
and is summarized in Algorithm 1. Here we assume that ng
is not an eigenvector of M and has a nonzero component in
the direction of the dominant eigenvector. Otherwise, a small
perturbation can be added to satisfy this condition.

Augmented Lagrangian Uzawa method (Uzawa). Although
PPM can be used to solve the constrained NCut problem in

Algorithm 1 Projected Power Method
:P+~I-B"(BB")"'B
ny«+ BT (BB") !¢

sy /1 —|ng|?

vPMn,

W

until convergence
return v

R A
I
T

(9) for most cases, it is inherently slow in practice due to its
iterative process. Moreover, ¢ needs to be chosen carefully so
that its resulting linear constraints, together with the volume
constraint, do not lead to an ill-posed problem. To cope
with these issues, we consider the following relaxed problem
without having the volume constraint, as similarly done in [26]
for image segmentation:

min v' Lv.
Bwv=c

(10)
This relaxation allows us to leverage the Uzawa method [27],
which often leads to an accurate solution in a single iteration.

We begin by writing the Lagrangian function for the prob-
lem in (10) as follows:

1 +—
L(v,\) = 5vTLerA(BTu —c), (11
where A is the Lagrange multiplier. The KKT conditions
applied to this Lagrangian function yield

(5 %) (=)

We can then use the Uzawa method to solve this indefinite
system. While it has a very nice property that just one iteration
provides a good approximate solution, we refer to [26]-[28]
for mathematical details.

Specifically, by applying the Uzawa method to (12), we
can obtain (v, A1) in the first iteration as follows: For given
(vo, Ao),

(L+uB'B)v; + B\g=puB'c
A1 = Ao + pu(Bvy —c),

12)

where p is a sufficiently large value, i.e., ;1> 1. Setting A\g =0
yields

(L+uB'B)v; = uB'c, (13)

with the error ||[v* —v1| < \/1/p, where v* is the solution
to (12). Thus, with x> 1, we can safely use vy in (13) as
an approximate solution to (12). In other words, we have the

following solution to (12):
v~uL+pB'B)"'B'c. (14)

We empirically observe that the Uzawa method yields a
higher-quality partition than PPM and the vanilla NCut while
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being computationally faster than PPM. As an example, in
Figure 3, we show the partition quality of the vanilla NCut,
PPM, and the Uzawa method, as well as the running times
of PPM and the Uzawa method. The results were obtained on
a synthetic graph of 2000 nodes, generated by the stochastic
block model, with infection rate §=0.01 and patching delay
T = 2. As shown in Figure 3, the Uzawa method identifies
the infection region clearly and isolates it from the healthy
nodes (the rest of the graph), while both NCut and PPM cut
through the healthy region, leading to poorer-quality partitions.
Furthermore, the Uzawa method runs roughly 30 times faster
than PPM. Thus, in this work, we adopt the Uzawa method to
solve our constrained NCut problem in (9).

D. Node Selection for Patching under Budget Constraint

As a solution to the problem in (9), we obtain a cut-set,
denoted as F., which is the set of ‘cross-boundary’ edges
between U and U°. What remains is how to choose a given
number of nodes for patching from the cut-set E., especially
when the budget constraint on the number of available patches
(or vaccines) is smaller than the size of the cut-set, i.e., |E.|.
To this end, we propose the following greedy heuristic: We
first find a healthy-side node with the highest degree (obtained
from the original, unweighted adjacency matrix) in E, and
then remove it, which in turn deletes all the edges associated
with that node from E.. We repeat this process on the reduced
cut-set until it becomes empty or the budget is fully allocated.
If the budget is still available, we consider all one-hop (yet
not selected) neighbors of the nodes to be patched and repeat
the process again until the budget is fully utilized.

The operation of the framework, as illustrated in Figure
2, can be summarized as follows. Given an input graph G,
infection rate (3, and patching delay 7', we first calculate
X(T') using (4) and construct a weight matrix W to identify a
boundary along the critical edges. By patching or vaccinating
the boundary nodes, we can effectively suppress the malware
propagation from the infected region to healthy nodes. To find
such a boundary, we formulate a graph partitioning problem
as a relaxed NCut problem with linear constraints where a
few nodes whose infection or healthy status is crystal clear
are selected and placed in each group so that they can behave
as anchor nodes to guide the partitioning process. We finally

adopt the Uzawa method to solve the problem and identify
which nodes to patch or vaccinate under the budget constraint.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results to demonstrate
the efficacy of our proposed patching policy (Delayed) in mit-
igating malware propagation against three existing baselines.
The first baseline is an eigenvector centrality-based policy
(Eigen), which immunizes the top-K nodes by the eigenvector
centrality (obtained from the original, unweighted adjacency
matrix). This policy has been considered in the literature [20],
[29] as the eigenvector centrality can capture the early growth
rate of the SI dynamics and thus be used to identify the most
vulnerable nodes for vaccination. The second baseline is a
degree-based policy (Degree), vaccinating the top-K high-
degree nodes, since high-degree nodes can be more likely
exposed to the spread of an epidemic. The last one is a
reactive policy (Reactive) proposed in [14], which computes
each node’s predicted infection probability Z;(7T") using (4)
and vaccinates the top-K high-risk nodes.

A. Simulation Setup

For performance evaluation, we consider both synthetic
and real-world graphs. For the former, we use the stochastic
block model [30] to generate synthetic random graphs, each
of which contains & communities and has more edges within
communities than between communities. The average degree
is fixed at eight for all random graphs. We vary the number
of nodes n = 1000, 2000,4000,8000 and the number of
communities k= 3,4,5,6. For the real-world graph, we use
the Facebook social network [31], which has 4,039 nodes and
88,234 edges collected via a Facebook app and represents
social interactions among the nodes.

We set up each simulation as follows. At ¢=0, we initiate
an epidemic by randomly choosing a small number of nodes
as initially infected nodes (or infection sources). We use a
single source for small graphs (n = 1000,2000) and use five
sources for the larger graphs. In each simulation, each patched
node still remains vulnerable to infection for the patching
delay T, so it becomes successfully patched or vaccinated
at time 7" only if it has not been infected by 7. In other
words, at time ¢t =T, if a patched node remains healthy, it is
considered successfully patched and removed from the graph.
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Fig. 4: The expected number of infected nodes by each vaccination policy on synthetic graphs.

However, if it has been infected during time 7’, although it
was patched initially, it remains infected in the graph and
spreads the malware. We set the infection rate 5=0.01 for all
experiments. We vary the values of the patching delay 7" and
the budget constraint on the number of available vaccines or
patches, denoted as b, to see their impact on the performance.
Each data point reported here is obtained by averaging over
100 independent simulations. We only report representative
simulation results due to space constraints.

B. Simulation Results

Synthetic graphs. Figure 4 shows the expected number of
infected nodes under each vaccination policy, obtained on syn-
thetic graphs with n=1000, 2000, 3000, 4000 for k=3, 4,5, 6,
respectively, while varying the value of T' = 15, 20, 25, 30.
In all cases, we set the budget constraint b to 20% of the
graph size (the number of nodes in the graph). As shown in
Figure 4, our Delayed policy exhibits the overall most effective
performance in minimizing the number of infected nodes. The

Reactive policy shows competitive results compared to our
Delayed policy when the patching delay T is small for large
graphs, in which case the nodes chosen by the policy for
patching are most likely patched or vaccinated successfully
after 7. However, when the value of 7' grows, our Delayed
policy becomes much more effective. The expected numbers
of infected nodes under Delayed policy can be only up to
half those under Reactive policy (see Figures 4(k) and 4(1)).
On the other hand, both the Eigen and Degree policies lead
to unsatisfactory results, especially for larger graphs with
a higher value of k (having more communities). This is
because their choice of nodes for patching is determined
merely based on the underlying graph structure, but not the
dynamics of malware propagation as well as the presence of
the patching delay T'. Specifically, they leave up to six times
more infections than the other policies, which happens when
n=4000, 8000 and k=5, 6, respectively.

In Figure 5, we further demonstrate the superior perfor-
mance of our Delayed policy compared to the baselines for
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Fig. 6: The expected number of infected nodes on the Facebook graph with varying values of 7" and b.

a large synthetic graph with n=38000. Here, we measure the
expected number of infected nodes at t =1000. To show the
robustness of our policy, we vary the number of communities
k=3,4,5,6, the budget constraint b= 10%, 15%, 20%, 30%
and the patching delay T'=25, 30, 35,40. As shown in Figure
5, Delayed policy consistently outperforms the other baselines

by a large margin, having the least number of infected nodes at
t=1000. In particular, with the low budget (b=10%), Delayed
policy already halves the number of infected nodes compared
to Reactive policy, and it reduces the number of infections
by nearly five times compared to Degree and Eigen policies
as budget b increases. Furthermore, even when the patching



delay T increases, the performance of Delayed policy remains
relatively consistent, especially compared to Reactive policy.
This demonstrates the effectiveness of its delayed patching.

Real-world graph. We next evaluate the performance of our
Delayed policy on the Facebook social network to confirm
its superiority over the three baselines. As shown in Figure
6, our Delayed policy shows the best performance. It always
produces the lowest infection curve, meaning that we can
always obtain the least expected number of infected nodes with
this policy. With the patching delay T'=15 or T'=20, Delayed
policy reduces the number of infected nodes by at least 500
nodes compared to Reactive and the other baselines. Further-
more, with 7' = 20, while the baseline policies are mostly
ineffective as almost the entire network becomes infected, the
Delayed policy is still able to save 25% to 35% of the total
population with budget b = 10% and b = 20%, respectively.
Interestingly, the Degree-based policy initially outperforms the
Delayed policy in the early stages, but it quickly becomes
ineffective, leaving a much higher infection count in the end.
To summarize, the simulations on both synthetic and real-
world graphs confirm the effectiveness of our patching policy,
especially for longer patching delays 7. This is crucial since
the patching process or vaccines take time to become effective
in practice. By accurately identifying the boundary between
infected and healthy regions in the presence of the patching
delay 7', our framework is able to isolate high-risk nodes and
prevent the malware from spreading through the network.

V. CONCLUSION

In this work, we introduced a novel mathematical frame-
work for effective patching under limited patching resources
and in the presence of patching delay. The rationale behind
this framework is to identify a minimum-cut boundary that
separates the most likely infected nodes from the healthy
region and leverage the boundary to identify which nodes to
patch under limited patching resources. We demonstrated the
superior performance of its resulting patching policy over the
existing baseline policies through extensive experiments on
synthetic and real-world networks. We believe that our work
provides a first step toward the design of vaccination strate-
gies for general networks under realistic delay and resource
constraints.
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