
April 2005 Texas State CS Seminar

Automated Discovery and Classification of
Deep Web Sources

Dr Anne H.H. Ngu
Department of Computer Science
Texas State University-San Marcos

What is a Deep Web Source?

Surface Web Sources are html pages on the Web that
are static and can be indexed and retrieved by
traditional search engines.
Deep Web Sources are dynamically generated html
pages from searchable databases. Traditional search
engines cannot “see” or retrieve content in deep
Web.
Examples of deep Web sources are BLAST, PubMed,
credit checking, and various reservation sites.

Public information on the deep Web is currently 400 to 550 times
Larger than surface Web sources.

Problems in accessing Deep Web Sources

The number of available Deep Web sources
are increasing at an exponential rate.
No common interface exist.
Sources are autonomous and thus can
change their interfaces, come and go at will.
Processes for seeking the desired information
in Deep Web source is still very tedious and
frustrating (a keyword search using “BLAST sites” return over six

millions hit with Google)

Motivating Scenario

Microarray
analysis

BLAST
Detail

BLAST
Summary

BLAST
Delay

BLAST
Response

RequestID Summary URL Detail URL

……

ID, Region

Sequence
alignment

…

Promoter
sequences

All related sequencesNCBI BLAST

CLUSFAVOR

Genes that changed
significantly

Statistical clustering of
genes

GeneIDs

AA123490

GeneBank

Current approaches to seeking
information in Deep Web sources
(manual)

Must manually identify the set of Deep Web sources
to query, then enter the query into each source,
Must merge the result by hand or create an ad-hoc
program to merge them.
Problems

When sources change the way data are presented, new
program for merging the results must be recreated.
The number of sources used could be incomplete.
Important conclusion could be drawn from an incomplete
data sets.

Current Approaches to seeking
information in Deep Web sources
(automated)

Forming a federation or creating a virtual view of all
the identified sources. This requires a global schema,
sophisticated mediators to access the actual source
at runtime. New Web source cannot be included
automatically.
Building a data warehouse or creating a materialized
view of the data (extract data from all potential
sources, store them in a centralized database for
querying and analysis)
Problems

Very labor-intensive
Not scalable with evolution of Deep Web sources

Major challenges in providing a scalable
and automated access of Deep Web
sources?

Locating new Deep Web sources
Evaluating them to determine if they
are the Deep Web sources that you are
looking for
Interacting with them to determine how
to obtain the desired information
Constructing wrappers for future
automated access to those sources

DataFoundry Project at LLNL

•Seed URL
•Frequency
of crawling

BLAST1

BLAST2

IP

XML/HTTP

SQL/JDBC

BLASTN

Flat file/FTP

Service Class Description
In XML

Crawler

Classifier

Wrapper
generator

wrapper1

Set of
candidate sites

wrapper2

wrapperN

DataFoundry
Workflow Engine

Wrapper
Registry

Service
Class
Descrip
tion

Phase 4

User

Phase 1

Phase 2

Phase 3
Annotated site
interfaces

Request

Results

Discovering the deep Web sources

Require the definition of capabilities of
the Web source
Capabilities can be divided into:

Functional component (types of operations
performed)
Non-functional component (quality of
services)
Interaction pattern (explicit states that
need to be traversed)

Service Class Description

A service class is used to describe the
common capability of a class of deep
Web sources (BLAST, FlightReservation,
BookPurchase) but not necessary a
common Web interface
A service class is specified using
combination of XML Schema and
regular expression

Service class main types of information

Data types – the types expected in input parameters,
results (output) as well as any unique intermediate
types that may appear in a class of Web sources.
Input parameters – common names used in html
form for posing a request to the Web source.
Example data – typical instances of data used to
evaluate the source.
Control Flow – the generic navigation pattern of a
class of Web source for a particular operation.

Example data types definition in BLAST
Service Class

<type name="DNASequence" type="string" pattern="[GCATgcat-]+" />
<type name="AlignmentSequenceFragment" >
 <element name="AlignmentName" type="string" pattern=".
{1,100}:" />
 <element type="whitespace" />
 <element name="m" type="integer" />
 <element type="whitespace" />
 <element name="Sequence" type="DNASequence" />
 <element type="whitespace" />
 <element name="n" type="integer" /></type>
<type name="AlignmentString">
 <element DNAAlignmentString" type="string" pattern="\s+\|+[| +]
*" /></type>
<type name="Alignments"
 <element name="QueryString" type="AlignmentSequenceFragment"
 <element type="string" pattern="\s*" />
 <element type="AlignmentString" required="true"/>
 <element type="string" pattern="\s*" />
 <element name="SequenceString"
type="AlignmentSequenceFragment" /></type>
<type name="SummaryResults">
 <choice>
 <element type="Alignments" />
 <element type ="EmptyDNABLAST"/>
 </choice>
</type>

SummaryResults

Query: 179 GGCTTCTACACCAAAGTGCTCAACTACGTGGACTGGAT 142
 || | |||||||| ||| || | ||||||||||||||
Sbjct: 3 GGTGTTTACACCAACGTGGTCGAGTACGTGGACTGGAT 40

Example of an Alignments

*** No Hits ****

Example of an EmptyDNABLAST

Example control flow definitions in BLAST
Service Class

<controlgraph name="BLASTN">
<vertices>
<vertex name="start" type="HTMLform"/>
<vertex name="end" type ="SummaryResults" />

</vertices>
<edges>

<edge origin="start" destination="end" />
</edges>

</controlgraph>

Example Sample Data Definitions in
BLAST Service Class

<example>
<arguments>

<argument required="true">
<name>sequence</name>
<type>DNASequence</type>
<hints>
<hint>sequence</hint>
<hint>query</hint>
<hint>query_data</hint>
<inputType>text</inputType>

</hints>
<value>TTGCCTCACATTGTCACTGCAAAT

CGACACCTATTAATGGGTCTCACC
</value>

</argument>

<argument required="false">
<name>BlastProgram</name>
<type>string</type>
<hints>
<hint>program</hint>

</hints>
<value>blastn</value>

</argument>
</arguments>

</example>

Source capability classification process

Locating Web Interface – done by a crawler
agent which locates an HTML form with a text
input parameter, labelled with ‘sequence’,
‘query_data’, or ‘query’ in its name.
Evaluating the source – check whether the
interface conforms to the capability specified
in the Service Class Description (SCD).

Evaluation of the source
Guided by the control flow graph in SCD.
First match the start page of the source
against the start state in the control flow
graph.
If there is a match, then generates a
series of test queries to probe the sites
based on the sample data specified in
SCD.
The evaluation process continues either
the site matches one of the end states in
the control flow graph or there are no
more possible queries to try.
If a site is positively identified, the steps
used to reach the end state of the control
graph along with the input parameters
used to probe the site will be saved.

Example of a potential deep Web source that
match BLAST Service Control Flow Graph

Discovery of BLAST sites using SCD

Able to correctly classify two third of 150 BLAST sites using SCD
of 150 lines.
Failed to classify important sites such as NCBI BLAST because
its control flow is more than the simple start and end states. It
utilizes intermediate page that need to be traversed to reach
the end state.
Sites may have its own specific interaction pattern (intermediate
pages) due to site specific implementation. These should not be
specified in the SCD.
We use the term indirection page for site specific interaction
pattern
The indirection pages need to be inferred during classification
process.

Example of an Indirection Page

Different types of Indirection Page

Refresh → forms, links & result
summary page

http://www.ebi.ac.uk/blast2 10

Multiple forms & links → email http://genoplante-info.infobiogen.fr/pise/blast2 gpi.html9

Retrieve result button & links http://www.sanger.ac.uk/HGP/blast server.shtml 8

Press it button http://www.bioinfo.org.cn/lmh/blastlmh.html7

Format button & links http://www.ncbi.nlm.nih.gov/blast/Blast 6

Check your entry → new pop-up
window for email result

http://www.rtc.riken.go.jp/jouhou/HOMOLOGY/blast5

forms &links → Refresh →
Click here → output page

http://zeon.well.ox.ac.uk/git-bin/blast2 4

Click here to see your results →
Click reload button to check
status

http://pbil.iniv-lyon1.fr/BLAST/blast nuc.html3

Click to view result link http://www.sgn.cornell.edu/cgi-bin/SGN/blast/blast
search.pl2

Retrieve button and links http://www.genedb.org/genedb/dicty/blast.jsp1

Type of Indirect Page Site URL Site No

Naïve approach to indirection page
identification

check all the links exhaustively
Computationally very expensive
Treating all out bound links as equal
Flooding a site with too many http requests

Indirection Page detection

Require a scheme to prioritize the
outbound links
Do not want to get into expensive
natural language understanding to
figure out links of indirection pages
The technique must be robust against
various type of indirection pages that
can be generated by a web source

PageDiff approach for discovery of
indirection pages

Only outbound links that are dynamically generated
as a response to a query are potential indirection
pages.
If we post two similar requests to the same Web
interface and compute the difference in the outbound
links between the two response pages, the resulting
set (typically very small) will contain the outbound
links that are dynamically generated.
It is possible to quickly follow all the outbound links
in this set to identify the indirection page.

PageDiff Algorithm

Start Page 1

Start Page 2

Post query1

Post query 2

Response 1

Response 2

Compute
page difference

Compute
similar
forms and links

Resp2Diff

Resp1Diff

Recursively
Check each
Form and link
For result page

Recursively
Check each
Form and link
For result page

Examples of similar links

http://www.rcsb.org/pdb/cgi/explore.cgi?pid=94041058908865&page
=0&pdbId=1B20

http://www.rcsb.org/pdb/cgi/explore.cgi?pid=96011058909035&page
=0&pdbId=1AOO.

blast
blast

blast
blast

Experimental Evaluation

The prototype is implemented in Java.
Interaction with deep Web source is handled by
HttpUnit user agent library.
Precision and Recall in IR is used to measure the
performance of our prototype.
Two set of experiments (BLAST and Bio-KeyWord)
are performed.

IdentifiedtotalSites
iedtesIdentifrelevantSi

antSitestotalrelev
iedtesIdentifrelevantSi

=

=

Precision

Recall

BLAST Experimental Result

100%75.0
%

02356446Experi
mental
Set

100%77.7
%

063188Test
Set

PrecisionRecallFalse
Positive

False
Negative

True
Positive
with
Indirection

True
Positive

True
Negative

Data Set

Bio-KeyWord Sources

Bio-keyWord sources are keyword-based bioinformatics search
sites for protein and nucleotide sequences.
A deep Web source is considered to be Bio-KeyWord site if it
allows user to input a keyword (HIV, Cancer) and returns the
result in an HTML page with a list of pointers to files that have
detailed information for the protein or nucleotide sequences
relevant to that keyword.
Each pointer in the returned HTML page is an HTML link
indexed by either protien ID code (protein sequence) or
accession number (nucleotide).
Bio-KeyWord sites are completely different in input requirement
and the result summary page as compared to BLAST.
A new BioKey SCD with 120 lines of code is used.
The same mechanism can be used to discover and classify Bio-
KeyWord sources.

Sample output page from a Bio-keyWord
Source

BioKeyWord SCD
<type name="AccessionNumberType“

type="string“ pattern="([A-Z]{2}_?\d{6}|[A-Z]\d{5})"/>
<type name="AccessionNumber">

<elementtype="string“ pattern="[^A-Za-z0-9]*?"/>
<elementtype="AccessionNumberType"/>
<elementype="string“ pattern="[^A-Za-z0-9]"/>

</type>
<type name="HREF">

<element
type="string“pattern="\x3C(a|A)[^\x3E]*(href|HREF)=[\x22\x27]"/>

<element name="Link“ type="string“ pattern="[^\x22\x27]+"/>
<element type="string“ pattern="[\x22\x27][^\x3E]*\x3E"/>

</type>
<typename="NucleotideLink">

<element type="HREF"/>
<element name="accessionNo“ type="AccessionNumber"/>

</type>

Bio-KeyWord Experimental Results

100%63.3
%

010243Exp. Set
3

100%100%000582Exp. Set
2

83.3%71.4
%

122381Exp. Set
1

87.7%87.7
%

111710Test Set

PrecisionRecallFalse
Positive

False
Negative

True
Positive
with
Indirecti
on

True
Positive

True
Negative

Data Set

Conclusions
BLAST sources and Bio-KeyWord sources have completely different
Web interfaces and completely different input and output requirement,
the same mechanism can be used to identify them based on their
respective SCD.
DNA alignments are very unique to BLAST sources and thus we can
achieve 100% precision.
The protein code is unique within the respective domain, but an
arbitrary Web source can also generate a four letter acronym used for
protein code identification, thus we achieve lower precision with
BioKeyWord.
SCD is a powerful paradigm for classifying Web sources whose output
exhibit a regular pattern that can be described using a regular
expression.
SCD is not effective for classifying Web sources whose output pattern
is irregular and can all be literally defined using the same regular
expression. For example, a publication web source.

Future Works

Automate the creation of SCD using
supervised machine learning technique. A
paper called “Automated Generation of Data
Types for Classification of Deep Web Sources”
has been submitted to Data Integration in the
Life Sciences Workshop.
Extend the detection of indirection page to
those that also requires specialized user
interaction.
Extend SCD definition to include the quality of
service.

