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SPECIFICATION BASED FIREWALL

TESTING

HUIBO HEIDI MA, M.A.

Texas State University-San Marcos, 2004

Supervisor Professor: Anne Hee Hiong Ngu

Firewalls are crucial elements in network security, and have been widely deployed

in most businesses and institutions for securing private networks. A firewall con-

sists of a sequence of rules. The function of a firewall is to examine each incoming

and outgoing packet and decide to either accept the packet (i.e., allow it to pro-

ceed) or discard the packet based on the sequence of rules. The decision made by

a firewall for a packet is the decision of the first rule that the packet matches.

As a safety-critical system, a firewall needs to be correctly implemented by

a sequence of rules according to its specification. However, since the number of

rules in a firewall may be large and the rules may conflict, a firewall often contains

errors that make the firewall inconsistent with its specification.

To check whether the firewall implementation of a sequence of rules is con-

sistent with its specification or not, a firewall designer usually need to figure out

the answers to the queries such as “which computers in the private network can

receive BOOTP packets from the outside Internet?”. We call the process of testing

a firewall by issuing such test queries specification based firewall testing.

The technical challenge in specification based firewall testing is how to

answer the test queries based on a firewall specification. To solve this problem, in
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this thesis, we propose a firewall testing algorithm based on a data structure called

Firewall Decision Diagram proposed in [11]. Given a firewall of a sequence of rules,

we at first construct an equivalent firewall decision diagram from the sequence of

rules by the construction algorithm in Chapter 3. Then given each firewall testing

query, the firewall decision diagram is used as the core data structure for answering

the query by the firewall testing algorithm in Chapter 4.

The experimental results show that our firewall testing algorithm is very

efficient. Even given a firewall of 5000 rules, it takes less than 4 seconds for the

firewall testing algorithm to answer a firewall testing query.
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Chapter 1

INTRODUCTION

Firewalls are the corner stones of network security. A firewall is a security guard

placed at the point of entry between a private network and the outside Internet

so that all incoming and outgoing packets have to pass through it. A packet can

be viewed as a tuple with a finite number of fields; examples of these fields are

source/destination IP address, source/destination port number, and protocol type.

For each incoming and outgoing packet, a firewall maps the packet to a decision

by examining the values of these fields and the physical network interface that the

packet arrives on. The decision can be accept or discard, or a combination of these

with other options such as the logging option. For the sake of brevity, we assume

that each packet has a field containing the information of the network interface on

which a packet arrives, and the decision for a packet is either accept or discard.

A firewall consists of a sequence of rules. Each rule is of the form

〈predicate〉 → 〈decision〉

, where the 〈predicate〉 is a boolean expression over the packet fields, and the

〈decision〉 is either accept or discard. Figure 1.1 shows an example of a firewall on

the gateway router in Figure 1.2. This gateway router has two interfaces: interface

0, which connects the gateway router to the outside Internet, and interface 1,

1



which connects the gateway router to the inside local network. In this thesis, we

use the following shorthand: I (Interface), S (Source IP), D (Destination IP), N

(Destination Port), P (Protocol Type), a (Accept), d (Discard), and we assume

that the value of the protocol type field of a packet is either 0 (TCP) or 1 (UDP).

Also, in this thesis, we use “all” to denote the domain of the corresponding packet

field. For example, (S ∈ {all}) means the packet field S can take any value from

the domain of S. We use α to denote the integer formed by the four bytes of

the IP address of the mail server, i.e., 192.168.0.1, and similarly β for the IP

address 192.168.0.2 used by a local host inside the private network, and γ for the

IP address of a previously known malicious host outside of the private network.

1. r1 : (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {α}) ∧ (N ∈ {25}) ∧ (P ∈ {0}) → a

This rule allows incoming SMTP packets to proceed to the mail server.

2. r2 : (I ∈ {0}) ∧ (S ∈ {γ}) ∧ (D ∈ {all}) ∧ (N ∈ {all}) ∧ (P ∈ {all}) → d

This rule discards incoming packets from a previously known malicious host.

3. r3 : (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {β}) ∧ (N ∈ {all}) ∧ (P ∈ {all}) → a

This rule allows host β unrestricted communication with outside Internet.

4. r4 : (I ∈ {0})∧ (S ∈ {all})∧ (D ∈ {all})∧ (N ∈ {67, 68})∧ (P ∈ {1}) → d

This rule discards incoming BOOTP packets. The BOOTP protocol is used
by local computers to obtain IP addresses. Therefore, the service should be
banned for outside computers.

5. r5 : (I ∈ {all})∧ (S ∈ {all})∧ (D ∈ {all})∧ (N ∈ {all})∧ (P ∈ {all}) → a

This last rule allows any incoming and outgoing packets to proceed.

Figure 1.1: A simple firewall

A packet matches a rule if and only if (iff ) the packet satisfies the predicate

of the rule. The predicate of the last rule in a firewall is usually a tautology to

ensure that every packet has at least one matching rule in the firewall. The rules

in a firewall may overlap and conflict. Two rules overlap iff there is at least one

packet that matches both rules. Two rules conflict iff these two rules overlap and

also have different decisions. For example, the two rules r1 and r2 in Figure 1.1
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Figure 1.2: A simple network

conflict. For each incoming and outgoing packet, a firewall maps it to the decision

of the first (i.e., highest priority) rule that the packet matches.

Due to the conflicts among rules and the resulting order-sensitivity of the

rules, the correctness of a firewall becomes hard to guarantee and the function of a

firewall becomes difficult to analyze. The meaning of a rule cannot be understood

without examining all the rules listed before it. For example, the meaning of

the rule r2 in Figure 1.1 is not exactly discarding all incoming packets from a

previously discovered malicious host γ because γ can send SMTP packet to the

mail server by the rule r1.

Although the design of firewalls has gained some attention in the research

community of network security (see [6, 11, 12]), the testing of firewalls has not been

thoroughly studied. The previous work on firewall testing, such as [16, 15], are

all based on injecting real packets to test a firewall. Such firewall testing methods

are very inefficient. For example, assuming the specification of the firewall in

Figure 1.2 requires that all the computers in the outside Internet, except the

malicious host discovered previously, can send emails to the mail server in the

private network, testing whether a firewall satisfies this requirement or not by

sending bogus packets pretending originated from all the hosts outside the private
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network is very inefficient. In this thesis, we assume a firewall functions correctly

as long as the sequence of rules of the firewall is consistent with the specification

of the firewall.

To test the function a firewall, an effective way is to test the firewall based

on its specification. For example, if the specification of a firewall requires that

no computers in the private network should be reached by the BOOTP packets

from the outside Internet, we can issue a query ‘which computers in the private

network can receive BOOTP packets from the outside Internet?”. If the answer

to this query is an empty set, then we can conclude that the firewall satisfies this

requirement of its specification. If the answer to this query is a nonempty set,

then we know that the firewall fails to satisfy this requirement, and we can further

investigate why the computers in the nonempty set can receive BOOTP packets.

We call these queries firewall testing queries, and the process of testing a firewall

by such queries specification based firewall testing.

Specification based firewall testing is useful in a variety of ways. For exam-

ple:

1. Verifying the correctness of a firewall. Whether a firewall satisfies its speci-

fication can be checked by issuing firewall testing queries.

2. Maintaining a firewall. For a firewall administrator, issuing firewall testing

queries is part of the daily maintenance activities. For example, if a computer

in a private network is found being attacked, the firewall administrator can

issue queries to check who else are also vulnerable to the same type of attack.

3. Debugging a firewall. Although no debugging tools have been seen for de-

signing firewalls, we believe that specification based firewall testing should

be a valuable component for a firewall debugger. In the process of designing

a firewall, the designer can use firewall testing queries to detect the design
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errors in the firewall by checking whether the answers are consistent with

the firewall specification.

4. Understanding a legacy firewall. The firewall for an enterprise private net-

work typically consists of a large number (say hundreds) of rules which are

written by different administrator in different times. The first thing for a

new administrator who just takes over a legacy firewall is to understand the

firewall, which can be assisted by issuing firewall testing queries.

Although analyzing firewalls by queries was previously discussed in [4, 8, 14],

the problem of how to efficiently process a firewall query remains unsolved. We

need an algorithm that can answer a firewall testing query in at most a few seconds.

The processing of a firewall testing query must be fast in order to interact with a

human user. Our solution to this problem is an efficient firewall testing algorithm.

The core data structure of our firewall testing algorithm is a firewall decision

diagram. Given a firewall of a sequence of rules, we first construct an equivalent

firewall decision diagram from the sequence of rules by the construction algorithm

in Chapter 3. Then the firewall decision diagram is used as the core data structure

for efficiently processing firewall testing queries.

The experimental results show that our firewall testing algorithm is very

efficient. Even given a firewall of 5000 rules, it takes less than 4 seconds for the

firewall testing algorithm to answer a firewall testing query.

The rest of this thesis is organized as follows. We start with a detailed ex-

amination of previous related work, and compare it with our approach in Chapter

2. Then in Chapter 3, we introduce the algorithm for converting a firewall of a

sequence of rules to an equivalent firewall decision diagram. The firewall testing

algorithm is presented in Chapter 4. In Chapter 5, we show the experimental

results about the efficiency of the construction algorithm and the firewall testing

algorithm. The concluding remarks are given in Chapter 6.
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Chapter 2

RELATED WORK

Analyzing firewalls by queries was previously discussed in [4, 8, 14]. In [4], a

query language for requesting information from a firewall is proposed. However,

the query language proposed in [4] is limited in terms of its expressive power. For

example, it cannot describe the queries such as ‘which computers of the outside

Internet cannot send SMTP packets to the mail server in the private network?”.

In addition, how a query is processed based on a sequence of rules is not presented

in [4]. Some ad-hoc firewall testing queries are discussed in [8, 14], however,

no algorithm on processing these queries is presented. Therefore, how fast and

scalable that the firewall testing queries can be processed in [8, 14] is not clear. As

we mention earlier, the efficiency of firewall testing query processing is important

because a firewall administrator needs to interact with the firewall testing query

engine.

There are some tools currently available for network vulnerability testing,

such as Satan [9, 10] and Nessus [19]. These vulnerability testing tools scan a

private network based on the current publicly known attacks, rather than the

requirement specification of a firewall. Although these tools can possibly catch

errors that allow illegitimate access to the private network, it cannot find the

errors that disable legitimate communication between the private network and
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the outside Internet.

Instead of firewall testing, ensuring the correctness of a firewall by conflicts

detection was discussed in [18, 13, 7, 5]. Similar to conflicts detection, six types of

so-called “anomalies” are defined in [1, 2, 3]. Examining each conflict or anomaly

is helpful in reducing errors. However, conflict detection creates more problems

than it solves. At first, the number of conflicts in a sequence of rules can be huge.

For a firewall with n rules, the number of conflicts is O(n2). For each conflict,

[13] proposes that the firewall administrator check whether the two rules need to

be swapped or a new rule needs to be added to resolve the conflict. This manual

checking is highly unreliable because each of the two conflicting rules have to be

understood in the current order of the firewall, which may be not correct. Since

the number of conflicts in a firewall can be huge, this manual checking for each

conflict can be tremendous work for the firewall administrator. Second, if a new

rule is added for each conflict, as proposed in [13], the firewall can grow extremely

big because each new rule added to the firewall may conflict with existing rules

and therefore create O(n) new conflicts. When the number of rules in a firewall

becomes big, the packet filtering performance will degrade dramatically; also, the

firewall becomes too hard to understand. Third, conflict detection does not solve

the incompleteness and redundancy problems.

The previous work on firewall testing, such as [16, 15], are all based on

injecting real packets to test a firewall. Testing firewalls by injecting packets are

either inefficient or incomplete. As an example, consider the firewall in Figure 1.2,

assuming the specification of the firewall requires that all the computers in the

outside Internet, except the malicious host discovered previously, can send emails

to the mail server in the private network. There are two strategies to inject packets:

(1) injecting bogus packets pretending originated from all the hosts outside the

private network; (2) injecting bogus packets pretending originated from some the
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hosts outside the private network. Clearly, the first strategy of injecting packets

is extremely inefficient, and the second strategy of injecting packets cannot cover

all possible host IP addresses, which make the testing incomplete.
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Chapter 3

FDD

Firewall Decision Diagrams are proposed in [11] for specifying firewalls. In this

Chapter, we discuss how to construct an equivalent Firewall Decision Diagram

from a firewall of a sequence of rules. In Chapter 4, we will see that Firewall

Decision Diagrams are used as the core data structures for processing firewall

testing queries.

A Firewall Decision Diagram (FDD) f over fields F1, · · · , Fd is an acyclic

and directed graph that has the following five properties:

1. There is exactly one node in f that has no incoming edges and it is called the

root of f . The nodes in f that have no outgoing edges are called terminal

nodes of f .

2. Each node v in f has a label, denoted F (v), such that

F (v) ∈















{F1, · · · , Fd} if v is nonterminal,

{accept , discard} if v is terminal.

3. Each edge e in f has a label, denoted I(e), such that if e is an outgoing edge

of node v, then

I(e) ⊆ D(F (v)).
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4. A directed path in f from the root to a terminal node is called a decision

path of f . No two nodes on a decision path have the same label.

5. The set of all outgoing edges of a node v in f , denoted E(v), satisfies the

following two conditions:

(a) Consistency : I(e) ∩ I(e′) = ∅ for any two distinct edges e and e′ in

E(v),

(b) Completeness :
⋃

e∈E(v) I(e) = D(F (v)) 2

Figure 3.1 shows an FDD over two fields F1 and F2, where D(F1) = D(F2) =

[0, 9]. The label of each edge is represented by one or more non-overlapping inter-

vals whose union is the label of the edge. For example, the label of the rightmost

outgoing edge of the root is {0, 1, 2, 3, 8, 9}, which is represented by two the inter-

vals [0, 3] and [7, 9].

[7,9]

[4,4]
[7,9]

[0,1]

[4,6]
[0,3]

[5,6]

[2,3]

da

F1

F2

Figure 3.1: An FDD example

A firewall over fields F1, · · · , Fd is a firewall in which all the packets pass

through it are tuples of these n fields. For the rest of this paper, we assume that

all firewalls are over these n fields and all packets are tuples of these n fields, if

not otherwise specified.
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A decision path in an FDD f is represented by (v1e1 · · · vkekvk+1) where v1

is the root, vk+1 is a terminal node, and each ei is a directed edge from node vi

to node vi+1. A decision path (v1e1 · · · vkekvk+1) in an FDD defines the following

rule:

F1 ∈ S1 ∧ · · · ∧ Fn ∈ Sn → F (vk+1)

where

Si =































































I(ej) if there is a node vj in the decision

path that is labelled with field Fi,

D(Fi) if no node in the decision path is

labelled with field Fi.

For an FDD f , we use Sf to represent the set of all the rules defined by all

the decision paths of f . For any packet p, there is one and only one rule in Sf

that p matches because of the consistency and completeness properties; therefore,

f maps p to the decision of the only rule that p matches.

As an example, let f denote the FDD in Figure 3.1. Therefore, Sf consists of

the following three rules in Figure 3.2. Note that these rules are non-overlapping.

1. r1 : F1 ∈ [4, 6] ∧ F2 ∈ [2, 3] ∪ [5, 6] → a

2. r2 : F1 ∈ [4, 6] ∧ F2 ∈ [0, 1] ∪ [4, 4] ∪ [7, 9] → d

3. r3 : F1 ∈ [0, 3] ∪ [7, 9] ∧ F2 ∈ [0, 9] → d

Figure 3.2: Rules from an FDD

Given an FDD f , any sequence of rules that consists of all the rules in Sf

is equivalent to f . The order of the rules in such a firewall is immaterial because

the rules in Sf are non-overlapping. For example, the sequence of rules 〈r1, r2, r3〉

that consists of all the rules in Figure 3.2 is equivalent to the FDD in Figure 3.1.

Given a sequence of rules, how to construct an equivalent FDD? Next we
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discuss how to construct an equivalent FDD from a sequence of rules 〈r1, · · · , rn〉,

where each rule is of the format (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → decision. Note

that all the d packet fields appear in the predicate of each rule, and they appear

in the same order. A similar algorithm for constructing FDDs has been previously

discovered in [17]. Here we include this algorithm for completion.

We first construct a partial FDD from the first rule. A partial FDD is a

diagram that has all the properties of an FDD except the completeness property.

The partial FDD constructed from a single rule contains only the decision path

that defines the rule. Suppose from the first i rules we have constructed a partial

FDD, whose root is v (v is labelled F1, and suppose v has k outgoing edges

e1, · · · , ek). Let ri+1 be (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → decision. Next we consider

how to add rule ri+1 to this partial FDD.

At first, we examine whether we need to add another outgoing edge to

v. If S1 − (I(e1) ∪ · · · ∪ I(ek)) 6= ∅, we need to add a new outgoing edge with

label S1 − (I(e1) ∪ · · · ∪ I(ek)) to v because any packet whose F1 field satisfies

S1 − (I(e1) · · · ∪ I(ek)) doesn’t match any of the first i rules, but matches ri+1 if

the packet satisfies (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd). This new edge points to the root

of the partial FDD built from (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → decision.

Second, we compare S1 and I(ej) for each j where 1 ≤ j ≤ k in the following

three cases:

1. S1 ∩ I(ej) = ∅: In this case, we skip edge ej because any packet whose value

of field F1 is in set I(ej) doesn’t match ri+1.

2. S1 ∩ I(ej) = I(ej): In this case, for a packet whose value of field F0 is in set

I(ej), it may match one of the first i rules, and it also may match rule ri+1.

So we add (F2 ∈ S2)∧ · · · ∧ (Fd ∈ Sd) → decision to the subgraph rooted at

the node that ej points to in a similar fashion.

12



3. S1 ∩ I(ej) 6= I(ej) and S1 ∩ I(ej) 6= ∅: In this case, we split edge e into two

edges: e′ with label I(ej) − S1 and e′′ with label I(ej) ∩ S1. Then we make

two copies of the subgraph rooted at the node that ej points to, and let e′

and e′′ point to one copy each. Thus we can deal with e′ by the first case,

and e′′ by the second case.

In the following pseudocode of the construction algorithm, we use e.t to

denote the node that the edge e points to.

13



As an example, Figure 3.4 shows the partial FDD that we constructed the

first rule, r1, in Figure 1.1. The partial FDD that we get by appending the rule r2

in Figure 1.1 to the partial FDD in 3.4 is in Figure 3.5. Figure 3.6 shows the FDD

constructed from the sequence of rules in Figure 1.1 by the FDD construction

algorithm in Figure 3.3.

14



FDD Construction Algorithm

Input : A firewall f of a sequence of rules 〈r1, · · · , rn〉
Output : An FDD f ′ such that f and f ′ are equivalent
Steps:
1. build a decision path with root v from rule r1;
2. for i := 2 to n do Append( v, ri );

Append( v, (Fm ∈ Sm) ∧ · · · ∧ (Fd ∈ Sd) → decision )
Input : (1) Root v of a partial FDD. Node v is labelled Fi,

and it has k outgoing edges: e1, e2, · · · , ek

(2) Rule (Fm ∈ Sm) ∧ · · · ∧ (Fd ∈ Sd) → decision
Output: The partial FDD with the above rule added
1. if ( Sm − ( I(e1) ∪ · · · ∪ I(ek) ) ) 6= ∅ then

(a) add an outgoing edge ek+1 with label
Sm − (I(e1) ∪ · · · ∪ I(ek)) to v;

(b) build a decision path from rule
(Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd) → decision,
and let ek+1 point to its root;

2. if m < d then

for j := 1 to k do

if I(ej) ⊆ Sm then

Append( ej.t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)
→ decision );

else if I(ej) ∩ Sm 6= ∅ then

(a) I(ej) := I(ej) − Sm;
(b) add one outgoing edge e to v,

and label e with I(ej) ∩ Sm;
(c) replicate the graph rooted at ej.t,

and let e points to the replicated graph;
(d) Append( e.t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)

→ decision );

Figure 3.3: FDD Construction Algorithm
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Figure 3.4: A partial FDD from rule r1 in Figure 1.1
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Figure 3.6: A constructed FDD from the firewall in Figure 1.1
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Chapter 4

FIREWALL TESTING

From the previous chapter, we know that by applying the FDD construction algo-

rithm in Figure 3.3 to a firewall of a sequence of rules, we get an equivalent FDD.

In this Chapter, we consider how to answer firewall testing queries using an FDD.

Each query can be represented as (F1 ∈ Q1)∧(F2 ∈ Q2)∧· · ·∧(Fd ∈ Qd) →

decision, where Qi is either a question mark “?” or a subset of D(Fi). If some

values of the field Fi will be part of the query result, we let Qi be a question mark

“?”; if the values of the field Fi have been specified by the query, we let Qi be the

specified value. For example, the query “which machines in the private network

can receive BOOTP packets from the outside Internet?” can be represented as

(I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈?) ∧ (N ∈ {67, 68}) ∧ (P ∈ {1}) → a.

A query (F1 ∈ Q1) ∧ (F2 ∈ Q2) ∧ · · · ∧ (Fd ∈ Qd) → decision overlaps with

a rule (F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → decision ′ iff the following two

conditions hold:

1. for each i, 1 ≤ i ≤ d, either Qi =? or Qi ∩ S(i) 6= ∅ holds;

2. decision = decision ′.

If a query (F1 ∈ Q1) ∧ (F2 ∈ Q2) ∧ · · · ∧ (Fd ∈ Qd) → decision with k

(1 ≤ k ≤ d) question marks, assuming Qij =? for 1 ≤ j ≤ k and i1 < i2 < · · · < ik,
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overlaps with a rule (F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → decision ′ defined

by a decision path in an FDD, then the k-tuple (Si1 , Si2 , · · · , Sik) is part of the

answer to the query.

For example, the query “which machines in the private network can receive

BOOTP packets from the outside Internet?” represented as (I ∈ {0}) ∧ (S ∈

{all}) ∧ (D ∈?) ∧ (N ∈ {67, 68}) ∧ (P ∈ {1}) → a, overlaps with the rule (I ∈

{0})∧ (S ∈ {[0, γ − 1]∪ [γ + 1, 232]})∧ (D ∈ {β})∧ (N ∈ [67, 68])∧ (P ∈ all) → a

defined by a decision path in the FDD in Figure 3.6, then the 1-tuple (β) is part

of the answer to the query, i.e., the machine β in the private network can receive

BOOTP packets from the outside Internet.

Given an FDD f and a query with k question marks, the set of tuples

defined by all the rules in Sf that overlap with the query
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Firewall Testing Algorithm

input : (1) An FDD with root v that we get from the FDD
construction algorithm,

(2) A query (F1 ∈ Q1) ∧ (F2 ∈ Q2) ∧ · · ·∧(Fd ∈ Qd)
→ decision

output: Query result
1. S := ∅;
2. Query( v, (F1 ∈ Q1) ∧ (F2 ∈ Q2) ∧ · · · ∧ (Fd ∈ Qd)

→ decision );
3. return(S);

Query( v, (Fi ∈ Qi) ∧ (Fi+1 ∈ Qi+1) ∧ · · · ∧ (Fd ∈ Qd)
→ decision )

/*Let E(v) = {e1, · · · , em}.*/
/*Suppose v is labelled Fk, where i ≤ k ≤ d.*/
for j := 1 to m do

if Qi =? or I(ej) ∩ Qk 6= ∅ then

if k < d then

Query( ej.t, (Fk+1 ∈ Qk+1) ∧ · · · ∧ (Fd ∈ Qd) )
else if F (ej.t) = decision then

(1) Let r be the rule defined by the decision path
containing ej;

(2) Add the tuple defined by r to S;

Figure 4.1: Firewall Testing Algorithm
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Chapter 5

EXPERIMENTAL RESULTS

In this thesis, we presented a firewall testing algorithm for testing firewalls based

on its specification. In this chapter, we mainly evaluate the efficiency of this

firewall testing algorithm, which is measured by the average time for processing a

firewall testing query.

In the absence of publicly available firewalls, we create synthetic firewalls

at random. Each rule has the following five fields: interface, source IP address,

destination IP address, destination port number and protocol type.

The programs are implemented in SUN Java JDK 1.4. The experiments

were carried out on a SunBlade 2000 machine running Solaris 9 with 1Ghz CPU

and 1 GB memory. Figure 5.1 shows the average execution time for processing a

firewall testing query.

From this figure, we see that our firewall testing algorithm is both efficient

and scalable. It takes less than 4 seconds to give answer to a firewall testing query

even if the firewall has 5000 rules. In fact, it is very unlikely that a firewall can

have this many rules. Clearly the efficiency of our firewall testing algorithm is

more than enough to be used in practice. The intuitive explanation about the

efficiency of our firewall testing algorithm is that processing of a query does not

need to go through all the rules due to the constructed firewall decision diagram.
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Our firewall testing algorithm is scalable in terms of the number of rules. The

running time of our firewall testing algorithm does not go exponentially with the

number of rules.
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Figure 5.1: Experimental Results
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Chapter 6

CONCLUDING REMARKS

Serving as the first line of defense against malicious attacks and unauthorized

traffic, firewalls are important in securing the private network of most businesses,

institutions, and even home networks. How to test the correctness of a firewall

becomes an important problem.

In this thesis, we propose the method of specification based firewall testing

using the data structure of Firewall Decision Diagrams. We presented a firewall

testing algorithm for processing firewall test queries that generated from the spec-

ification of a firewall. The experimental results show that our firewall testing

algorithm is very efficient.

What distinguishes our testing method and previous firewall testing meth-

ods is that we do not inject packets. Testing a firewall by injecting packets is very

inefficient and hard to deploy. By our method, any aspect of a firewall specifica-

tion can be easily tested in a few seconds. Both time and human effort involved

is kept minimum. We consider our method of testing firewalls a new progress in

the area of firewall testing.
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