
Approach

We used the Microsoft Band smartwatch
and an Android smartphone to detect falls.

In order to evaluate the Accessor
framework we implemented two versions
of our fall detection. One is a native
Android application in Java, and the other
is an implementation of the Accessor
specification with Java and Javascript.

Both apps do fall detection locally and use
Weka to run the detection model.
We also trained our own model for fall
detection using Support Vector Machines
(SVM).

Problem

Falls in the elderly cause ~26,000 deaths
and $34 billion in medical costs annually.

Existing fall detection systems use
expensive custom sensors.

The Accessor Design Pattern remains
untested for activity detection on mobile
platforms

Fall detection requires low latency and
high reliability for safety reasons.

Procedure

Subjects were ages ranging from 19-29, all in
good physical condition.

Accelerometer data was collected using an
Android app and the Microsoft Band.
Participants were told to perform at least 8
falls.

Four types of falls: front fall, back fall, right fall,
left fall. For each type of fall there was one fast
fall and one slow fall.

Features Used

Resultant Acceleration:

CvFast:

Smax and Smin: maximum and minimum
resultant acceleration in the sliding window.

All features except resultant acceleration were
calculated using a 750 ms sliding window with
66% overlap.

 Training and Testing
Due to sensitivity of SVM to unbalanced data,
training and testing data consisted of 10% fall
data and 90% non-fall data

Model was trained on one class SVM with RBF
Kernel.

Training file consisted of 1938 samples while
the testing set consisted of 568 samples

Accessors

Accessors are a design pattern created by the
TerraSwarm Research Center.
They are self-contained Javascript objects that
provide software interfaces to hardware and
software services. Only their inputs and outputs
are visible and they can be chained together
into “Swarmlets” to create complex functionality.
Swarmlets are executed by a host that is
implemented to specific hardware. This enables
the development of small, flexible programs that
can be run on heterogeneous hardware.

Results
Confusion Matrix:

Sensitivity (True Positive): 61.45%
Specificity (True Negative): 90.5%

Our Accessor host did not implement
100% of the official Accessor
specifications due to time limitations.
Despite this, we were able to develop a
functional fall detection application that
matched the functionality of the native
Android application.

Conclusions

Using commercial smartwatch sensors
can yield acceptable fall detection
results

The Accessor Design Pattern rivals
native Android apps in both
functionality and development time

Exploring the Accessor Design Pattern for Smartwatch Based Fall Detection
Andrew Polican1, Yeahauy Wu2, Brock Yarbrough3, and Dr. Anne Ngu3

1Ira A Fulton School of Engineering, Arizona State University 2College of Science and Technology, Temple University 3College of Science and Engineering, Texas State University

Accessor

Accessor

Host

Android

Citations:
[1] S. Liu; W. Cheng. “Fall Detection with the Support
Vector Machine during Scripted and Continuous
Unscripted Activities”. Sensors. September 2012.
[2] P. Jantaraprim et. al.. “Fall Detection for the Elderly
using a Support Vector Machine”. International Journal
of Soft Computing and Engineering (IJSCE), March
2012
[3] J. Guiry; P. van de Ven; J. Nelson. “Multi-Sensor
Fusion for Enhanced Contextual Awareness of Everyday
Activities with Ubiquitous Devices”. Sensors. March
2014,
[4] Elizabeth Latronico, et al"A Vision of Swarmlets".
IEEE Internet Computing, Special Issue on Building
Internet of Things Software, 19(2):20-29, March 2015.

Implementation

The Accessor host on Android was created
using J2V8, a Java interface for the V8
Javascript engine. A simple accessor for the
SVM model was written in Javascript, run with
the host, and successfully predicted falls.

Weka was stripped of all GUI features so it
could run on Android. An SVM model was
created in Weka and added. For prediction the
features calculated are written to a CSV file in
groups. Each sample of the group is predicted.
If 2-5 falls are predicted in a row then the final
prediction is fall.

(We NSF for funding the REU (CNS-1358939)
at Texas State University to perform this piece
of work and the infrastructure provided by the
NSF-CRI 1305302 award.)

This research supported by Texas State University and the NSF REU Program through REU award #135893

