
Exploring IoT Applications in High School

The Subject-Observer Pattern
Explained with a common example

The Subject-Observer pattern is commonly used to respond to
changes in the state of some object (such as a button on the
screen, a key on a keyboard, or a sensor on a device.)

A subject keeps track of its state and keeps a list of observers
to notify when its state changes.

Consider an email group list for one-way announcements:

Email Group Author
(Subject)

Email Group Members
(Observers)

Readers subscribe to the group

Members read the new content

Author creates the group

Author send email to group
members to notify them of the

new content.

Author creates new content

Group Members
me@there.edu
someone@here.com

New readers subscribe
Members unsubscribe

Using the Subject-Observer model eliminates the need to modify the
subject when different or additional observers are needed. The
observers simply register themselves to receive notifications from the
subject. This pattern is used to make the Microsoft Band 2 sensors
communicate with the Android App.

The Subject-Observer Pattern in Java: Events and EventListeners

Java implements the Subject-Observer pattern with Event objects and
EventListener classes. The Event object contains the data that describes
the subject’s current state. When a state-change occurs in the subject, it
creates an Event object and generates a state-change event, which is sent
to all registered EventListeners (observers).

The API for each sensor in the Microsoft Band includes both an Event
interface and an EventListener interface. The Band library (JAR file)
contains an implementation class for each event interface. The observer
class for each sensor must implement an EventListener.

Data Flow in the MS Band App
Microsoft Band » Android App » Data File

Available Sensors
Raw Data from Microsoft Band 2 (Available via Microsoft SDK)

 Accelerometer
 Altimeter
 Ambient Light
 Barometer & Ambient Temp
 Calories

 Contact
 Distance
 Galvanic Skin Resistance
 Gyroscope
 Heart Rate

 Pedometer
 RR (heart beat interval)
 Skin Temperature
 UV Light

 Button Touch (listener for buttons on app screen) Location (listens for GPS readings from Android device)
Raw Data from the Android Device (Available via the Android SDK)

Acknowledgements

 The MS Band 2 app is a modification of an app written by Mario A. Gutierrez,
et al, during the Texas State University REU-IoT program in summer 2015. This
work was an invaluable starting point for this work.

 REU-IoT students Brock Yarbrough, Andrew Polican, and Joie Wu provided
clarification of details based on their experience with the original on which my
code is based.

 Dr. Ann Ngu provided direction, support, and encouragement throughout the project, and
for to the opportunity to participate in the project.

 We thank the National Science Foundation for funding this research under the
Research Experiences for Undergraduates Program, CNS-1358939, and NSF-
CRI 1305302 awards, and the supplemental RET (Research Experiences for
Teachers) funding.

Data Collection with the Band App

 The app collects data on all sensors for each run.

 The MARK button allows the user to change the
marker number in the data file to identify each
trial or each step in a trial.

 After data collection stops, the file can be sent by
email or can be retrieved later with a file
manager app.

The CSV data file has appropriate column headers
to identify the sensor, the value, and the units.

Applications in Science Classes
 Accelerometer

 Measurement when launching small spring-powered
vehicles

 Direct measurement of forces in scale-model roller
coasters

 Gyroscope
 Measurement of forces and velocity in study of

rotational mechanics

 Heart rate, Skin Temp, GSR
 Measurement of data for correlating responses to

sweat production during exercise (in a study of
homeostasis) SensorService is a concrete class that extends the Android Service class. It

creates background code to manage all of the sensor collection and to run a
Thread class to receive asynchronous events from the sensor
EventListeners.

 Sensor is an abstract class that provides methods for tasks that are
common to all sensors on any device - not specifically the Microsoft Band
hardware.

 MSBandSensor is an abstract subclass of Sensor that provides methods for
tasks common to all Microsoft Band hardware sensors. It declares some
methods in Sensor that are common to all Microsoft Band sensors.

 AccelerometerSensor, GyroscopeSensor, etc. (each hardware sensor’s
class) is a concrete subclass of MSBandSensor. Each of these classes:

 provides a EventListener of the appropriate type

 establishes the sensor’s meta-data (sensor name, raw data types,
sampling rate)

 provides methods to register and unregister the specific instance of an
EventListener

Accelerometer
Hardware Sensor

Accelerometer Event

Class AccelerometerSensor
extends abstract class MSBandSensor

extends abstract class Sensor

has-a EventListener

Gyroscope
Hardware Sensor

Gyroscope Event

Class SensorService
Class SensorAccumulator
Class CSVSampleWriter

Class GyroscopeSensor
extends abstract class MSBandSensor

extends abstract class Sensor

has-a EventListener

IoT in Computer Science Classes

IoT programming projects will be introduced in class. This has the
advantage that it can be seen by students as more “real world” than
traditional projects.

Programming apps for a phone in a high school provide a context
(phone interactions) that is familiar to the students, which leads to
better learning engagement and interest in pursuing computer science
major.

The Fall Detection IoT application created by REU students will be
demonstrated. This exposes students to the engineering of a fairy large
and complex piece of software.

Students will be instructed to modify the Fall Detection application for
collecting other sensor data from the smartwatch. This exposes
students to the importance of structuring codes for reusability.

