
Query Result Size Estimation Techniques

in Database Systems

by

Banchong Harangsri

A dissertation submitted to the

The University of New South Wales

School of Computer Science and Engineering

Sydney, NSW 2052, Australia

in fulfillment of the requirements

for the degree of

Doctor of Philosophy

April 1998

i

Abstract

Query optimisers are critical to the efficiency of modern relational database systems.

If a query optimiser chooses a poor query execution plan, the performance of the

database system in answering the query can be very poor. In fact, the differences

in cost between the least and most expensive query execution plans can be several

orders of magnitude. On the other hand, it can be prohibitively expensive for

the query optimiser to search exhaustively for the least-cost (strictly optimal) query

execution plan. Most query optimisers, therefore, compromise by using a reasonably

cheap search to obtain a reasonably cheap query execution plan.

Accurate, but inexpensive, query size estimation is fundamental to the success

of real query optimisers. A number of studies [Christodoulakis 1984; Ioannidis and

Christodoulakis 1991, 1993] have demonstrated that optimisers can select very ex-

pensive query execution plans if they are forced to rely on poor or inaccurate query

size estimates. This thesis will address the problem of how to obtain reliable and

accurate query size estimation for the cost calculation of query execution plans.

The thesis focuses on improving query size estimation for the two main relational

database operations: selection and join. We propose, analyse and compare a number

of novel query size estimation techniques in order to come up with practical solutions

which can be implemented with low overhead. The novel techniques we introduce

range from machine learning, neural network, local regression and sampling-based

techniques. The thesis also involves extensive analytical and experimental investi-

gation of the effectiveness of the novel and traditional estimation techniques.

Our conclusions are that no one approach is “best” over the entire spectrum

of database configurations (distributed vs. centralised, normal vs. skewed data dis-

tributions, etc). However, we have identified the strengths and weaknesses of all

major techniques and analysed the time and space complexities required by those

techniques, all of which can be used as a guide to the implementation of query

optimisers in a variety of practical situations.

Our specific conclusions include:

• Sampling-based techniques typically give more accurate query size estimation

than non-sampling-based techniques but require more run-time overhead. This

ii

run-time overhead may be unacceptable in a number of situations (e.g. in dis-

tributed databases where the cost of sampling over the network is prohibitive).

• The most accurate of the non-sampling-based techniques is local regression.

Moreover, we show that it is a superset of the earlier well-known techniques

such as histogram, parametric (namely, uniform-distribution-based) or curve-

fitting, and is more flexible than those earlier techniques in the control of the

degree of the polynomial and in the window type used.

• We propose a bootstrap method to improve the quality of join selectivities.

• We show that histograms built by a new sampling-based technique is more

accurate in query size estimation than the histograms built by two traditional

sampling-based techniques, i.e., simple random sampling with and without

replacement. These two traditional techniques are ones typically used by most

current database systems to build histograms.

iii

Declaration

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any degree or diploma of a university or other institute of higher learning,

except where due knowledge is made in the text of the thesis.

Banchong Harangsri

April, 1998

iv

Acknowledgements

The four years of my PhD research at UNSW have had both good times and bad
times. In spite of the bad times, I’m very, very pleased to have had great supervisors,
a fabulous place to work (CSE@UNSW) and to have been able to live in Australia.
The place is great, and I really don’t want to leave!

I wish to express my heartfelt thanks to Dr. John Shepherd, my thesis supervisor
and Dr. Anne Ngu, my co-supervisor.

To John, “carrot and stick” is the thing that you always use with me. Thanks
for your patience; I hope you can avoid such recalcitrants in the future. You are one
of the “coolest dudes” I’ve ever met. Despite the hard times and disappointments,
I always seemed to learn something useful to improve myself from you.

Anne, you helped me become a knowledgeble researcher. You know that I started
from nearly zero background, zero knowledge about database systems but you got
me through my Masters degree, and I doubt that I would have been able to start
my PhD without you? Your comments on my work really did help everything to
work out nicely in the end.

I am indebted to the Thai government, more correctly to Thai people, for their
taxes they have been paying for me to do my Masters and PhD over the last seven
years. I’ll try my best to give you back every cent’s worth of it by using my knowledge
to help improve Thailand in any way I can.

To dad, I’m really sorry that I kept you waiting so long (seven years) that you
couldn’t make it to the end. But dad, I’ve now managed to reach the day that you
wanted to see and I wish that your soul can see it. Dad, if you hear me, this thesis
is dedicated for you.

A big “thank you” goes to Bing Hiong for many good points about the Christian
philosophy that she told me over the last five years. I’m sorry that I’m not yet
converted ... but you nevertheless taught me many important things about life via
quotes from the Bible!

Sunee, this small paragraph will convey nothing to fit your goodness here but I
will attempt to. I really appreciated your time and effort in helping me proof-read
my thesis and picking up many little mistakes. Thanks for your putting up with me
in all those chats, both via talk and via the telephone. I’m sorry that many times
I’d hit ^c too soon to quit talking with you; I hope you understand that it was due
to my thesis commitment.

I would also like to thank to Long, his wife Villa, his mother, his brother and
everyone else in his family. They constantly cheered me up whenever I’ve felt de-
pressed or have undergone any hardships in life or my study. You and Villa treated
me like one in your family, and your generosity in feeding me almost every night was
simply too much. My memories of shared meals with you will be one of my most
treasured memories from Australia.

Chien-Chung, how can I forget to mention you here? I remember every single
moment we spent together in the evening over the four years of your thesis. You are
a kind of fun loving person who can make me smile and burst out laughing all the

v

time. You would almost never get into anything serious. Thanks for all the talks at
any time, night or day – no problem for you – and simply for being there.

To Shinichi, the best time of the day for us was when we went for a dinner
together to a restaurant: Indian, Tum, Indonesian, Chinese, Korean, etc. All I had
to do was name one ... anywhere ... and you’d drive us there. You’ve been great
company and a great friend. And thanks for coming along to all those Chinese
restaurants, even though you don’t like Chinese food!

To Ruth, thanks for your constant encouragement whenever I had any hard
times. You are always sincere and willing to help. I will never forget your offer to
help financially if I ran out of time and scholarship. Thanks for all the good times
at the movies with Shinichi. Of course, you know I’m an action fan, right :-)

Raymond, thanks for your moral support. Whenever I listened to your advice, I
would strengthen myself to fight back against whatever difficulties I was confronting.
Forgive me for looking arrogant and being ignorant :-)

Martin, thanks for being simply a nice person. I like the way you think and
speak your mind. That made me understand myself better and sometimes I just
have to accept the bitter facts, don’t I?

Swee Yew, thanks for a number of recommendations you’d given me whenever
I went to see you at your desk. You are absolutely a very approachable person
whenever I want to ask something. I’ll remember and value your friendship.

Thanks to Liping and her family for keeping asking (pushing) me about submit-
ting my thesis. Thanks for cutting me off whenever I tried to talk for more than five
minutes, and also for reminding that every single minute of my time from now until
I hand in my thesis was precious (expensive, you call it the Chinese way) – “time is
gold”. Nice words.

Thanks to Larry Wall for Perl, Guido van Rossum for Python, B. Kernighan and
D. Ritchie for C, Bjarne Stroustrup for C++, University of California at Berkeley for
its Berkeley Database library, Donald E. Knuth for TeX, Leslie Lamport for LaTeX,
B. Smith and S. Sutanthavibul for the XFig drawing package, Thomas Williams
and Colin Kelley for their gnuplot graph plotting package, Richard Stallman for
his excellent Emacs editor and C. R. Birchenhall for the MatClass library. Without
all your good work, my thesis would not have seen the light of the day for another
seven years. All of the tables and graphs for the copious experiments in this thesis
were automatically generated by Perl.

Thanks guys for all the great help.

Tong

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Query optimisation problem: a search problem and its significance . . 7

1.2.1 Query size estimation methods 10

1.2.1.1 Representative methods as targets for comparison . . 14

1.2.2 Search algorithms . 15

1.2.2.1 Exhaustive search algorithm 16

1.2.2.2 Limited search algorithms 16

1.2.2.3 Limited search algorithms with large search spaces . 17

1.3 Definitions and notations . 17

1.4 Thesis scope and contributions . 19

1.4.1 Centralised database systems 20

1.4.2 Distributed database systems 21

1.5 Cost-based vs. rule-based approaches to query optimisation 22

1.6 Thesis organisation . 23

2 Fundamentals and survey on query size estimation methods 25

2.1 Introduction . 25

2.2 Query size estimation for selections using attribute independence as-

sumption . 28

vi

CONTENTS vii

2.3 Query size estimation for natural joins 29

2.4 Parametric methods . 30

2.4.1 Review on parametric methods 30

2.4.2 Query size estimation for selections using UNF 35

2.4.2.1 Algorithm and storage complexity for selections . . . 36

2.4.3 Query size estimation for joins using UNF 36

2.4.3.1 Algorithm and storage complexity for joins 37

2.5 Histogram methods . 37

2.5.1 Review on histogram methods 37

2.5.2 Query size estimation for selections using histograms 44

2.5.2.1 Selectivity of sel(b# = x) 45

2.5.2.2 Selectivity of sel(b# < x) 47

2.5.2.3 Algorithm and storage complexity for selections . . . 49

2.5.3 Query size estimation for joins using histograms 50

2.5.3.1 Algorithm and storage complexity for joins 52

2.6 Curve-fitting methods . 52

2.6.1 Review on curve-fitting methods 52

2.6.2 Query size estimation for selections using IASE 54

2.6.2.1 Algorithm and storage complexity for selections . . . 56

2.6.3 Query size estimation for joins using IASE 57

2.6.3.1 Algorithm and storage complexity for joins 61

2.6.4 Query size estimation for selections using ASE 61

2.6.4.1 Algorithm and storage complexity for selections . . . 64

2.6.5 Query size estimation for joins using ASE 64

2.6.5.1 Algorithm and storage complexity for joins 65

2.7 Machine learning methods . 66

2.7.1 Review on machine learning methods 66

2.7.2 Notations and definitions . 67

2.7.3 Query size estimation for selections using M5 69

2.7.3.1 Constructing a model tree (Constructing leaf node

functions) . 70

2.7.3.2 Result size estimation function in a leaf node 74

CONTENTS viii

2.7.3.3 Selecting most similar queries 75

2.7.3.4 Combining leaf node functions and most similar queries 76

2.7.3.5 Algorithm and storage complexity for selections . . . 77

2.7.4 Query size estimation for joins using M5 80

2.7.4.1 Algorithm and storage complexity for joins 81

2.8 Sampling methods . 82

2.8.1 Review on sampling methods 82

2.8.2 Query size estimation for selections using SS 87

2.8.2.1 Algorithm and storage complexity for selections . . . 89

2.8.3 Query size estimation for joins using SS 89

2.8.3.1 Algorithm and storage complexity for joins 91

2.9 Summary of algorithm and storage complexities 92

2.10 Cost model derivation for multidatabase systems 93

3 Query size estimation using systematic sampling 97

3.1 Introduction . 98

3.2 Proportion model . 102

3.3 Systematic sampling for joins . 103

3.3.1 How many tuples to sample 106

3.3.1.1 Population mean and variance 107

3.3.1.2 How many tuples to sample 109

3.3.1.3 Oversampling problem with star joins 111

3.3.1.4 How to obtain an initial estimated selectivity µ̂ . . . 111

3.4 Theoretical foundation for systematic sampling 113

3.4.1 Variance of estimated selectivity of a distinct value 113

3.4.2 Total variance of estimated selectivities for all distinct values . 121

3.5 Experimental results for joins . 126

3.5.1 Experimental setup . 126

3.5.2 Quality of sample relations yielded by SYSSMP, SRSWOR

and SRSWR . 127

3.5.3 Query size estimation . 129

3.5.3.1 Index per join attribute (extreme case) 130

3.5.3.2 Some indices among join attributes 133

CONTENTS ix

3.6 Systematic sampling for selections . 141

3.6.1 How many tuples to sample 142

3.6.2 Double systematic sampling 144

3.6.3 Feedback systematic sampling 146

3.7 Application of theoretical foundation of SYSSMP to selections 147

3.7.1 Variance of estimated selectivity of a complex predicate 147

3.8 Experimental results for selections . 151

3.8.1 Experimental setup . 152

3.8.2 Variance of estimated selectivity of a complex predicate 153

3.8.3 Query size estimation . 156

3.9 Conclusion . 157

4 Improving join selectivities by bootstrap method 167

4.1 Motivation in improving join selectivities 167

4.2 Introduction . 169

4.3 Bootstrap method . 172

4.4 Experimental results . 174

4.5 Conclusion . 177

5 Query size estimation using local regression 184

5.1 Introduction . 186

5.2 Method for local regression . 194

5.3 Method for backpropagation NN . 197

5.4 Query size estimation . 201

5.4.1 Building a single-dimensional regression model for b# 202

5.4.1.1 IASE . 203

5.4.1.2 ASE . 205

5.4.1.3 LWR . 205

5.4.1.4 M5 . 206

5.4.1.5 NN . 207

5.4.1.6 HIST and UNF . 209

5.5 Implementation . 211

5.6 Experimental results . 215

CONTENTS x

5.6.1 Experimental setup . 216

5.6.2 Local against global regression 218

5.6.3 Simple predicate queries . 219

5.6.4 Complex predicate queries . 222

5.7 Why local regression would assist in obtaining accurate join selectivities223

5.7.1 How to use local regression to estimate join selectivities 226

5.7.2 Sharing the same histograms for selection and join selectivities 228

5.8 Conclusion . 228

6 Query optimisers that use sampling methods 230

6.1 The overall cost of query execution 231

6.1.1 Non-sampling-based methods 233

6.1.2 Sampling-based methods . 235

6.2 Introduction (structure of presentation) 236

6.3 Notations and background for join selectivities 238

6.3.1 Heuristic procedure: performing selections before joins 239

6.3.2 Star joins after applying selections (actual results) 240

6.3.3 Star joins after applying selections (estimated results) 240

6.3.4 Estimated join selectivities by a sampling method 241

6.3.5 Estimated join selectivities by UNF 241

6.4 Sampling cost vs subplan cost . 243

6.5 Semi-dynamic and fully dynamic approaches for query optimisers . . 248

6.6 Query optimisation algorithm . 251

6.7 Cost calculation for query execution plans 252

6.7.1 Estimated cost for selections 252

6.7.2 Actual cost for selections . 253

6.7.3 Estimated cost for an execution plan 254

6.7.4 Actual cost for the optimal execution plan 256

6.8 Schemas of temporary relations . 257

6.9 Overall cost of query optimisation . 259

6.9.1 Sampling cost for join selectivities 260

6.9.2 Sampling cost for selection selectivities 262

6.10 Experimental results . 263

CONTENTS xi

6.10.1 Experimental setup . 263

6.10.2 Improvement of query execution plans 267

6.11 Conclusion . 269

7 Conclusion 277

Bibliography 279

Author Index 294

List of Figures

1.1 Query processing architecture . 3

1.2 A join query . 8

1.3 The join graph of Q . 8

1.4 An example of a query execution plan for Q 8

1.5 Exhaustive search query optimisation algorithm, given a join query Q . . 9

1.6 Size estimation methods . 12

1.7 Search algorithms as a search engine for query optimisers 16

2.1 Selectivity calculation for >,≥,≤ and 6= relational operators 30

2.2 The estimated total number of tuples based on UNF 36

2.3 A serial histogram with uncontiguous distinct values in 2 buckets 40

2.4 Problem against local constant fitting . 43

2.5 Selectivity calculation for simple predicate b# < x 47

2.6 The estimated total number of tuples . 51

2.7 Cartesian product between two join attributes 57

2.8 A matrix X . 58

2.9 Matrices A and Y . 59

2.10 Partitioning algorithm . 71

2.11 A model tree for attribute b1 constructed by the algorithm Partition . . 73

2.12 An algorithm to compute a similarity . 75

xii

LIST OF FIGURES xiii

2.13 Join selectivity calculation . 80

2.14 Algorithm for selectivity estimation for selections 88

2.15 Algorithm for selectivity estimation for star joins 90

3.1 A frequency distribution of a sample against an original relation 99

3.2 A fixed-length record relation . 100

3.3 Sample a relation . 105

3.4 Unsorted and sorted values and stepping through the sorted values . . . 105

3.5 Relation R sorted on the join attribute 114

3.6 Three error measures . 133

3.7 Star joins with 2 relations (binary joins) 134

3.8 Star joins with 3 relations . 134

3.9 Star joins with 4 relations . 135

3.10 Star joins with 5 relations . 135

3.11 Star joins with 5 relations with 2, 4, and all indexed attributes 139

3.12 Star joins with 5 relations with 2, 4, and all indexed attributes 140

3.13 Selectivity estimation by systematic sampling 142

3.14 Double systematic sampling . 145

3.15 Feedback systematic sampling . 146

3.16 Procedure to count the number of times that SYSSMP/SRS outperforms 154

3.17 Procedure to compare three sampling methods 157

3.18 R1-100k, estimated & actual . 158

3.19 R2-100k, estimated & actual . 159

3.20 R3-100k, estimated & actual . 160

3.21 R4-100k, estimated & actual . 161

4.1 Join selectivity estimation by the bootstrap method 174

4.2 SJ1, 2rels, SRSWR . 176

4.3 One-time SRSWR against bootstrap SRSWR 178

4.4 One-time SRSWOR against bootstrap SRSWOR 179

4.5 One-time SYSSMP against bootstrap SYSSMP 180

4.6 One-time HYBRID against bootstrap HYBRID 181

5.1 Local regression with different numbers of windows used 188

LIST OF FIGURES xiv

5.2 A typical multi-layer neural network architecture 198

5.3 Backpropagation of error (rear to front) to adjust network weights 200

5.4 3-layer, 1 input and 1 output network . 201

5.5 A frequency distribution against its cumulative frequency distribution . . 203

5.6 A data structure for the implementation of many local regression methods

under a single framework . 212

5.7 Join selectivity calculation . 226

6.1 The estimated total number of tuples based on UNF 242

6.2 A join order to execute a join query . 255

6.3 A star join query . 257

6.4 Routine to calculate total query execution costs for 5 categories 266

List of Tables

1.1 Unique plans . 9

1.2 Sampling-based and non-sampling-based methods 13

2.1 Calculation for a join selectivity . 33

2.2 Equi-width and equi-height histograms and histogram notations 46

2.3 Relationship between IASE and ASE . 53

2.4 Tree nodes . 79

2.5 The summary of algorithm and storage complexities 93

3.1 Symbol definitions . 104

3.2 A proposal for a sanity bound . 111

3.3 . 112

3.4 Systematic sample relations and notations 115

3.5 Selectivities and a variance, when a distinct value = 1 120

3.6 Means and variances on different distinct values 121

3.7 Total variance calculation . 125

3.8 Parameters for each distribution . 126

3.9 5 data distributions of Exponential, Zipf, Uniform, Semizipf and Normal 129

3.10 Total variances and sample relation variances 130

3.11 Relation configurations for star joins . 132

3.12 Estimation errors for 2-relation star joins 136

xv

LIST OF TABLES xvi

3.13 Estimation errors for 3-relation star joins 136

3.14 Estimation errors for 4-relation star joins 136

3.15 Estimation errors for 5-relation star joins 136

3.16 Relations with 2 and 4 indices on them 137

3.17 Error trend with increment of indexed attributes 138

3.18 Symbol redefinitions . 141

3.19 Substitutions and the oversampling problem 142

3.20 A proposal for a sanity bound . 145

3.21 Selectivities and variances of systematic sample relations 150

3.22 an FD . 152

3.23 Relations with different cardinalities, FDs, distributions and distinct values153

3.24 Selectivity variances on each indexed attribute over 400 queries 155

3.25 Sampling parameters . 157

3.26 Estimation errors . 158

3.27 Estimation errors . 159

3.28 Estimation errors . 160

3.29 Estimation errors . 161

3.30 Estimation errors . 162

3.31 Estimation errors . 162

3.32 Estimation errors . 162

3.33 Estimation errors . 162

3.34 Estimation errors . 162

3.35 Estimation errors . 163

3.36 Estimation errors . 163

3.37 Estimation errors . 163

3.38 Total numbers of tuples accessed . 163

3.39 Total numbers of tuples accessed . 164

3.40 Total numbers of tuples accessed . 164

3.41 Total numbers of tuples accessed . 164

4.1 One-time SRSWR against bootstrap SRSWR 182

4.2 One-time SRSWOR against bootstrap SRSWOR 182

4.3 One-time SYSSMP against bootstrap SYSSMP 183

LIST OF TABLES xvii

4.4 One-time HYBRID against bootstrap HYBRID 183

5.1 Fitting and window types and number of parameters required per window.211

5.2 3 est scheme records and base estimation functions 214

5.3 Parameters for each distribution. 216

5.4 Relations with different configurations. 217

5.5 Three kinds of errors for 1, 2 and 3 windows. 219

5.6 Three kinds of errors for 4 and 5 windows. 220

5.7 Three kinds of errors for 12 parameters. 222

5.8 Three kinds of errors for 15 parameters. 223

5.9 Three kinds of errors for 12 parameters. 224

5.10 Three kinds of errors for 15 parameters. 225

6.1 All combinations of star joins for a 5-relation database 244

6.2 Sampling cost for a subplan in percent 246

6.3 Schemas of 5 relations in a database . 257

6.4 Schemas of temporary relations . 258

6.5 FDs on databases . 264

6.6 Numbers of distinct values . 264

6.7 5 categories . 265

6.8 Results between UNF and HYBRID with 1-time resampling with samp-

cost added . 270

6.8 Results between UNF and HYBRID with 1-time resampling with samp-

cost added . 271

6.9 Total costs by HYBRID with 1-time resampling before and after adding

sampling costs . 272

6.10 Total costs by HYBRID with 15-time resampling before and after adding

sampling costs . 273

6.11 Total costs by HYBRID between 1-time and 15-time resampling with

samp-cost added . 274

6.12 Results with 15-time resampling and with no-samp-cost between HY-

BRID and SRSWR . 275

LIST OF TABLES xviii

6.12 Results with 15-time resampling and with no-samp-cost between HY-

BRID and SRSWR . 276

CHAPTER 1

Introduction

Highlight

Despite the use of the exhaustive search algorithm, the
“optimal” plan selected by an optimiser can be not
truly optimal if the size estimation method used by
the optimiser inaccurately estimates sizes of temporary
intermediate relations. This is no matter what sizes
(small or large) of search spaces are considered. This
also in turn indicates whatever search algorithms used
by an optimiser will be in vain if the size estimation
method used by the optimiser inaccurately approximates
sizes of intermediate relations.

1.1 Overview

Database management systems are large and complicated software systems, typically

constructed from components such as: file management, transaction management,

recovery and concurrency control, query processing, security and protection. Query

processing is one of the critical components in any database system. An obvious

reason is that queries provide one of the most common forms of interaction between

humans and a database system. (We define queries as requests by users in some form

of languages to a database system for some information stored in the database.) If

1

Introduction 2

the speed of answering queries is unacceptably slow, one of the primary goals of

database management systems (timely provision of useful information) will not have

been met.

With traditional navigational database systems, e.g. network and hierarchical,

databases are linked-based, containing physical links to connect records together.

To retrieve information from a database of this kind, a program to implement a

user request for some information in the database must be written by a skilled

programmer in some low-level procedural data manipulation language (DML) such

as NDML (Network DML) and HDML (Hierarchical DML) in order to retrieve the

information required by the user. The programmer is required to have knowledge

of storage structures and access paths in order for efficient information access to be

achieved. The programmer is thus given the opportunity to construct the “optimal”

query execution plan (if at all possible) to retrieve data from storage. (A query

execution plan is a plan which basically has a sequence to access data stored in

database files.) Hence for these database systems, there is no need for extensive

query optimisation to be done.

On the other hand, with the advent of relational systems accompanied by higher-

level declarative languages such as SQL, QUEL and etc., users are able to specify

what they want in a high-level query language – namely, what the desired result

would be like, rather than focusing on the implementation details of how the result

can be obtained. In a high-level declarative query, there is no clear exact order stated

in the query of how the data should be accessed. On one hand, this facilitates the

use of the language for users; they require no knowledge of storage structures and

access paths in order to request a database system for some information. On the

other hand, this also requires the relational database system to perform a non-trivial

optimisation task on the user’s behalf.

The example of university INGRES [INGRES 1988], a popular public domain

relational database system, shows that query optimisation is a critical and complex

part of the implementation of relational database systems. University INGRES

consists of thirteen modules and two of the modules are dedicated for the query

optimisation task. The entire system contains 59,967 lines of C source code with

the two query optimisation modules having 10,782 lines of C code. In other words,

Introduction 3

about 18% of the entire database system is dedicated to the query optimisation task.

A query processing architecture [Elmasri and Navathe 1991] fundamentally com-

prises 4 main components as shown in Figure 1.1: Scanner and Parser, Query

Rewriter, Query Optimiser and Query Code Generator. Here are the tasks of each

component:

Intermediate form 1 of query

Query in a high-level language

such as SQL, QUEL

Query Code Generator

Code to execute query

Query Optimiser

Query execution plan

Query Rewriter

Intermediate form 2 of query

Query Scanner and Parser

Figure 1.1: Query processing architecture

Scanner and Parser A query is considered by the scanner and parser as a stream

of words called tokens. The scanner feeds tokens received from a query word-

by-word to the parser which would then check the syntax of the query. The

task of scanning and parsing queries is fundamentally similar to the parsing

translation done by compilers [Aho et al. 1985]. The output of this compo-

nent is an internal representation (intermediate form 1) of the query normally

Introduction 4

denoted by a graph or tree data structure [Elmasri and Navathe 1991].

Query Rewriter is involved with simplification of expressions in a query, trans-

forming expressions via equivalence-preserving re-write rules, identifying and

removing common sub-expressions, as well as performing semantic optimisa-

tion [Lanzelotte 1990; Straube 1990]. These processes are referred to as logical

query optimisation; their aim is to produce a simpler (more efficient) query

expression. The output of this component is a modified query graph (inter-

mediate form 2 as shown in the figure).

Query Optimiser For any given query, there are generally several equivalent ways

called query execution plans to evaluate it. Each of the execution plans pro-

duces the same final result but they all have different execution costs.

Definition 1.1 A query execution plan is a plan which has an order for

accessing data stored in database files and reading/writing with temporary files.

The aim of a query optimiser is to find the plan which incurs the lowest cost to

execute the query. In practice, we are more often satisfied with quickly finding

a cheap plan, rather than attempting to find the optimal (absolute cheapest)

plan.

Query Code Generator simply generates code (as a sequence of low-level database

operations) using a given query execution plan. This sequence of operations

is then passed to the query evaluation engine to produce the answer to the

query.

The decision of a query optimiser to select a plan as the final execution plan for

a query is typically based on the estimated costs of plans and all these estimated

costs are rudimentarily approximated by a query size estimation method or size

estimation method for short. Thus, it is crucial that a size estimation method used

by an optimiser provide estimated plan costs reasonably close to the corresponding

actual ones so that the decision by the query optimiser in most of the times provides

a low cost plan, but not necessarily cheapest.

Introduction 5

The reason for not being the cheapest is that a query optimiser relies on size esti-

mates, not the actual sizes, and so there can be errors in the plan cost approximation

– each error comes from the difference between an actual size and its estimated size

used – such that the selected plan is not the cheapest. However, all these errors can

be reduced if a query optimiser employs an accurate size estimation method.

To raise the importance of a size estimation method used, let us give a simple

example. Suppose there are two plans X and Y which cost 600 and 1000 cost units

respectively, to be selected by a query optimiser. If the query optimiser employs an

accurate size estimation method, it can turn out that the estimated costs for the

two plans are 400 and 900, respectively. Thus the optimiser will select plan X as

the final execution plan which is the optimal plan.

On the other hand, if the query optimiser employs a poor size estimation method,

it can turn out that the estimated costs for the two plans are 800 and 600, respec-

tively. Thus the optimiser will select plan Y as the execution plan. This clearly

points that the optimiser now selects the suboptimal plan.

Over recent years, research in query optimisation has been getting more and

more advanced and complicated due to problem issues such as the following four.

We notice, however that one common thing which all the problem issues below call

for is an optimiser which employs an accurate size estimation method. In this thesis

we will investigate a series of size estimation methods.

• Query optimisation in object-oriented database systems

First there are many new applications such as computer-aided design and office inte-

gration [Delobel et al. 1995] which call for data models with more expressive power,

e.g., object-oriented data models than the atomic flat data types such as integers,

reals and character strings used by the relational data model. This is where the

research in relational query optimisation has been shifted into object-oriented query

optimisation. See the research theses for examples, for the architectures of exten-

sible object-oriented query optimisers in [Straube 1990; Lanzelotte 1990; Mitchell

1993; Munoz 1994].

Despite the shift of the query optimisation research as mentioned above, the

query size estimation methods, i.e., a sampling-based and a non-sampling based

method, developed in this thesis can still be used with the object-oriented query

Introduction 6

optimisation. As part of the cost model [Gardalin et al. 1995; Gardarin et al. 1996]

for the Flora object-oriented query optimiser [Gruser et al. 1996], the authors imply

to a choice in adopting a method for estimating sizes of selection predicates in object-

oriented queries. Such a method of choice in fact could be any of a sampling-based

or non-sampling-based method.

Furthermore, in the MOOD project (METU Object-Oriented DBMS) [Dogac

et al. 1996], the cost of path expressions [Ozkan et al. 1996] in object-oriented

queries is involved with selectivity estimation (or size estimation) and hence, our

work in this thesis fits very well to back up the previous work.

• Knowledge-based and deductive systems with “large” joins

Second, there are applications for knowledge-based systems and deductive database

systems which require processing of queries with a large number of joins [Krisna-

murthy et al. 1986]. This implies that the search space as a result of “large” joins

has been substantially increased, which then makes it more difficult to search for

the optimal plan in the very large search space.

The problem of query optimisation, in the strict sense of finding the minimal cost

query execution plan, is known to be NP-complete [Ullman 1988a; Swami and Gupta

1988]. For a query with m relations, an exhaustive search algorithm, the very first

search algorithm proposed by Selinger et al. [1979a], has a worst case time complexity

of O(m!) [Krisnamurthy et al. 1986]. This time complexity grows substantially faster

than an exponential time complexity O(2m). (They both are formidable but the

former is considerably worse!.) As the size of the optimisation problem increases

(e.g. m becomes larger than 7), then exhaustive search over the entire space to find

the optimal plan becomes infeasible. This is where more advanced search algorithms,

such as Simulated Annealing [Kirkpatrick et al. 1983], Genetic Search [Holland 1975]

and A∗ [Winston 1984; Pearl 1984], have been introduced and investigated to replace

the exhaustive search for applications such as of knowledge-based systems.

• Multiple query optimisation

Third, there is a problem called multiple query optimisation [Jarke 1984; Sellis 1988;

Park and Segev 1988; Yoo 1990; Chakravarthy 1991; Cosar et al. 1993; Choenni

et al. 1996]. In many current multi-user database systems, there can be a number

Introduction 7

of user queries coming to a database system simultaneously. Those “concurrent”

queries which exist in a database system at the same time may share some common

expressions. By sharing the results for common expressions (one result for one

common expression) over a number of queries, overall query processing cost can be

significantly reduced. There are two main issues to be dealt with for this problem:

(1) identifying common expressions from the concurrent queries and (2) constructing

a global execution plan by a global query optimiser to execute the queries which

exploits the identified common expressions.

• Web-based query processing and optimisation

Fourth, there is an open new problem with web-based query processing and optimi-

sation which perhaps deals with a vast amount of unstructured data over the internet

(as compared with structured data stored in relational or object-oriented databases

for examples). This is probably an ongoing research project under investigation in

many research institutions.

1.2 Query optimisation problem: a search problem and its sig-

nificance

To define the problem of query optimisation, let us give an example query Q in

Figure 1.2 together with its query graph in Figure 1.3. A query graph is a graph

which represents how relations are joined by join predicates and restricted by selec-

tion predicates in the query. For example, in Figure 1.3 relation A joins with B on

a join predicate A.a1 = B.b1 and B joins with C on a join predicate B.b2 = C.c1. In

addition, A must be restricted by a selection predicate A.a3 = “xyz” and C must

be restricted by a selection predicate C.c3 > 999.

From the query graph, one possible plan to execute Q in order is shown in

Figure 1.4. That is, select tuples from A which satisfy predicate A.a3 = “xyz”

and write them into A′, a temporary intermediate relation. A′ then joins with the

original relation B which produces a temporary intermediate relation A′B. Next C

is restricted by the condition C.c3 > 999 which results in a temporary relation C ′.

Last, the two temporary relations A′B and C ′ join each other to produce the final

temporary relation A′BC ′ which is what the user requires.

Introduction 8

Query Q:
select A.a2, C.c2
from A,B,C
where A.a1 = B.b1 and

B.b2 = C.c1 and
A.a3 = “xyz” and
C.c3 > 999;

Figure 1.2: A join query

A CB

σA.a3= “xyz”

A.a1 = B.b1 B.b2 = C.c1

σC.c3>999

Figure 1.3: The join graph of Q

result size for joinresult size for selection result size for joinresult size for selection

A

σA.a3= “xyz”

A′

A′ B

A′B

A′B

C

σC.c3>999

C ′

C ′ A′BC ′

A′BC ′

Figure 1.4: An example of a query execution plan for Q

Introduction 9

To execute a query withm relations involved, the total number of possible unique

plans in the search space is calculated from m!. In the given query Q, m = 3;

Table 1.1 shows all unique 3! plans (join orders) to execute Q.

Each of the unique plans can produce the same final output1 C′
1 B 1 A′

2 B 1 C′
1 A′

3 C′
1 A′ 1 B

4 A′ 1 C′
1 B

5 B 1 A′ 1 C′

6 A′ 1 B 1 C′

total 3! = 6

Table 1.1: Unique
plans

relation, i.e., A′BC ′ but with different execution costs. Different

execution costs can result basically due to different amounts of

reading and writing to/from storage.

The optimisation problem is to find which one out of the m!

plans results in the minimum and thus optimal cost to execute

the query. Given a query Q, an optimisation algorithm to find

the optimal plan with the minimum cost is shown in Figure 1.5.

Step 1. let a unique plan, say optimal plan, be the so-far optimal plan to execute Q
in the entire search space of Q. Let optimal plan = {} and its estimated cost
estcost(optimal plan) =∞.

Step 2. generate a unique plan plan to execute query Q from the search space.

Step 3. estimate the cost of the plan estcost(plan).

Step 4. if estcost(plan) < estcost(optimal plan), then:

•optimal plan = plan

•estcost(optimal plan) = estcost(plan).

Step 5. repeat steps 2–4 until all unique plans in the search space are exhausted. If so, re-
turn the optimal plan optimal plan and its estimated cost estcost(optimal plan).

Figure 1.5: Exhaustive search query optimisation algorithm, given a join query Q

In Figure 1.5, to select the optimal plan optimal plan with the minimum cost,

one would need to evaluate the cost of each unique plan plan in the search space.

Typically a query optimiser would rely on the estimated cost of each unique plan to

decide upon which plan is optimal.

Queries considered in this thesis are of the form like the one in Figure 1.2 which

comprise two important operations: selection and join. We call these queries join

queries. Given a query of the form, it is reasonable to consider that the estimated

Introduction 10

cost estcost(plan) for a unique plan plan consists of:

estcost(plan) = estcost(selection) + estcost(exeplan) (1.1)

where estcost(selection) is the total estimated cost for all selections in the query

and estcost(exeplan) is the estimated execution plan cost, which is the estimated

cost for a join order, such as any of the 6 join orders as shown in Table 1.1. In query

Q in Figure 1.2, there are two selections: A.a3 = “xyz” and C.c3 > 999. Equation

(1.1) is the optimisation objective which we want to minimise. Whichever plan in

the search space has the minimum estimated cost would be selected as optimal.

Query optimisation researchers view and tackle the query optimisation problem

as a twofold one: (1) Query size estimation methods and (2) Search algorithms. The

details are described below.

1.2.1 Query size estimation methods

The optimisation objective in (1.1), in essence, entails the estimation of sizes of

temporary intermediate relations. Figure 1.4 shows the underlying need for the

estimation of the sizes of temporary relations: A′, C ′, A′B and A′BC ′.

Definition 1.2 The term “size” used throughout the thesis is equivalent to (1) a

number of tuples or (2) a cardinality. These 3 terms can be used interchangeably.

Therefore, researchers in this area attempt to find out a good method to accu-

rately approximate sizes of temporary intermediate relations. This would then assist

in obtaining the reliable estimated cost estcost(plan) for any unique plan plan in

the search space. That is, the estimated cost estcost(plan) for any plan plan should

accurately reflect the actual cost for the plan plan and hence if a plan is selected

optimal, its minimum estimated cost will likely reflect the minimum actual cost for

the plan in the search space.

Christodoulakis [1984]; Ioannidis and Christodoulakis [1991, 1993] imply that

poor size estimation methods can lead to the selection of more expensive query

execution plans. The theoretical studies mainly show the severe problem particularly

when the search space considered is large, e.g., the number of relations involved in

queries is more than 10. We have also found a common evidence to the earlier work

Introduction 11

and moreover, the search space we have considered is rather small, i.e., 4–5 relations

involved in queries.

For a large search space and with a poor size estimation method used, given an

“optimal” plan, an initial error may be negligible for the first subplan (such as the

first join), but subsequent errors (errors in the next subplans such as next joins)

can grow very rapidly, namely, exponentially [Ioannidis and Christodoulakis 1991].

Thus the plan which is selected as “optimal” by an optimiser may indeed no longer

be optimal as a consequence of the “explosive” inaccuracy of the size estimation

method used.

In summary, the evidences from the earlier work and our work indicate that a

size estimation method used by an optimiser definitely plays a critical role to the

selection of low-cost query execution plans no matter what sizes of search spaces are

considered.

By the queries we consider in this thesis, the intrinsic problem of query size

estimation is to approximate the selectivity for the join or selection operation. A

selectivity is a ratio, namely, a numerical value between 0 and 1 and is defined as:

Definition 1.3 Selectivity is the ratio of the size of the output relation due to

a join or selection operation over the cartesian product of sizes of all the relations

which participate in the operation.

For a selection: selectivity = |out|
|in|

For a join: selectivity = |out|
|in1| ∗ |in2| ∗ ··· ∗ |inm|

where |out| is the size of the output relation, and |in| or |ini|, i = 1, 2, . . . , m is the

size of the input relation. In the case of a join operation, there are at least two

participating relations (although this may be the same relation being used twice).

In the case of a selection operation, there is only one participating relation.

The selectivity obtained then can be used to estimate the size of a temporary

intermediate relation, e.g., the sizes of A′, C ′ and A′B as shown in Figure 1.4. As

an example, the estimated size of A′ is calculated by:

(estimated selectivity of selection A.a3 = “xyz”) ∗ (the size of A)

Similarly, the estimated size of A′B is calculated by:

Introduction 12

(sampling)

Simple Random Sampling Methods

Size Estimation Methods

Systematic Sampling Method

(a) Sampling-based methods

Parametric Methods

Curve-Fitting MethodsSize Estimation Methods

Neural Network Methods

Histogram Methods

(non-sampling)

Machine-Learning Methods

(Local Regression)

(b) Non-sampling-based methods

Figure 1.6: Size estimation methods

(estimated selectivity of join A.a1 = B.b1) ∗ (the size of cartesian product of A′ and B)

where the estimated size of A′ is as calculated above.

Because of the close relationship between the notions of size and selectivity (the

size of a temporary relation is determined using the selectivity), we use the terms

size estimation and selectivity estimation interchangably throughout this the-

sis.

Mannino et al. [1988] have made an extensive survey of size estimation methods.

There are two important lines of research for size estimation methods. One deals

with query size estimation for selections, the other with query size estimation for

joins. Figure 1.6 shows the majority of known size estimation methods. Any of the

methods in the figure can rudimentarily be used for both selection and join selec-

tivity estimation. (Some of the earlier work proposed a method for join selectivity

estimation only, some proposed a method for selection selectivity estimation only

and others proposed a method for both.)

Definition 1.4 Sampling-based methods are ones which call for sampling so as

to estimate sizes of temporary intermediate relations.

That is, samples are drawn from the original relations and an estimated size of a

temporary relation (due to a selection or a join) is calculated using these samples.

In Figure 1.6(a), simple random sampling has many variants [Hou et al. 1988, 1989;

Lipton et al. 1990; Haas and Swami 1992, 1995]. In this thesis, we propose a novel

Introduction 13

sampling-based method called systematic sampling (SYSSMP) which we have found

superior to existing sampling-based methods.

Definition 1.5 Non-sampling-based methods conventionally make use of sta-

tistical parameters about the data distributions for selectivity estimation. These

statistical parameters are stored in the database profile catalogue.

In this thesis, we propose several new approaches to non-sampling-based query size

estimation, e.g., curve-fitting (or local regression), machine-learning and neural net-

work from Figure 1.6(b). The other methods in the figure are ones that were previ-

ously proposed in the literature. Although curve-fitting methods have already been

studied by Sun et al. [1993] and Chen and Roussopoulos [1994], they all belong to

a class of what we call local regression [Cleveland 1979] methods. Furthermore, the

existing curve-fitting methods are less effective and efficient than the local regression

method proposed in this thesis.

Table 1.2 shows the list of acronyms for all sampling-based and non-sampling-

based methods we will consider in this thesis. More details about the acronyms in

the table are given below. Throughout the thesis, we will refer to these methods by

their acronyms.

acronym description
SRSWOR Simple Random Sampling WithOut Replacement
SRSWR Simple Random Sampling With Replacement
SS Sequential Sampling, a variant of SRSWR
SYSSMP SYStematic SaMPling
HYBRID SS + SYSSMP

(a) sampling-based methods

acronym description
UNF uniform-distribution-based parametric method
HIST equi-height histogram method
IASE curve-fitting method (unweighted regression)
ASE curve-fitting method (unweighted regression)
M5 machine-learning method
NN neural network method

(b) non-sampling-based methods

Table 1.2: Sampling-based and non-sampling-based methods

Introduction 14

1.2.1.1 Representative methods as targets for comparison

It is generally known that sampling-based methods produce more accurate selec-

tivities and thus more accurate sizes of temporary intermediate relations than non-

sampling-based methods (see also the results in [Sun et al. 1993; Harangsri et al.

1996c]).

Second, there are two types of database systems with which the sampling-based

methods are not appropriate. One is distributed database systems where sampling

must be done across a network just to obtain selectivities. The other is systems

which prefer an instant and quick way for query size estimation. (By the nature

of sampling-based methods, they are not quick methods for size estimation.) For

these two types of systems, non-sampling-based methods will suit them rather than

sampling-based methods.

Therefore we scope down all experiments in this thesis into:

• Comparing among sampling-based methods only.

• Comparing among non-sampling-based methods only.

In spite of the scoping down, there are still a large number of size estimation

methods both sampling-based and non-sampling-based in the literature available

as targets for comparison with the methods proposed in this thesis. We selected

the following methods as representatives to compare with the SYSSMP and local

regression methods proposed here and compared them, using a wide range of various

data distributions, various numbers of distinct values, various join predicates and

various selection predicates in all experiments conducted in the thesis.

Sampling-based methods

Ling and Sun [1995] extensively compared three most representative simple random

sampling algorithms with replacement. Their analytical and experimental work ap-

parently demonstrates that the most effective algorithm is SS (Sequential Sampling).

Hence, SS is the target to be compared with SYSSMP (SYStematic SaMPling).

Non-sampling-based methods

All the following representative methods will be compared with the local regression

method proposed in this thesis.

Introduction 15

UNF (UNiForm) This is a parametric method which is basically selected as a

ground for comparing with other more sophisticated methods below. Ev-

ery other method should pass the performance test by comparing with this

method.

HIST (HISTogram) This is the equi-height histogram. The main reason we se-

lected this “vanilla” histogram method as a target for comparison with our

method here is that equi-height histograms are state-of-the-art ones currently

in use in most of commercial database systems. Page 29 of Poosala’s the-

sis [Poosala 1997] contains a table of histograms currently in use in 7 com-

mercial databases, including Oracle, Sybase and Informix. 6 out of 7 use the

equi-height histogram. Hence we see that there is enough value to compare

with this type of histograms.

IASE (Instant and Accurate Size Estimation) and ASE (Adaptive Size

Estimation) These are only two curve-fitting methods that we have found in

the literature.

M5 (Learning Machine #5) As one of machine-learning methods, M5 demon-

strated its superiority over many other machine-learning methods compared

in [Quinlan 1993b] by using many real-world databases from the University of

California at Irvine [Merz and Murphy 1996].

NN (Neural Network) Known as a function approximator, neural networks are

applied successfully to many estimation problems. Standard neural networks

with the most popular training algorithm backpropagation are a target to be

compared with our method.

1.2.2 Search algorithms

Researchers in this area attempt to find out a good search algorithm by which a

low-cost, not necessarily optimal, query execution plan can be quickly obtained from

a search space. Search algorithm researchers typically assume the existence of good

size estimation methods.

Figure 1.7 shows the search algorithms which have been proposed in the literature

as search engines for query optimisers. Except for the exhaustive search algorithm,

Introduction 16

Exhaustive Search

Simulated Annealing Search

Genetic Search

Tabu Search

A* Search

Heuristic Search

Search Algorithms

Figure 1.7: Search algorithms as a search engine for query optimisers

all search algorithms in the figure are limited search algorithms which perform only

a partial search over the entire space of query execution plans.

1.2.2.1 Exhaustive search algorithm

The exhaustive search algorithm was the first search algorithm proposed in the query

optimisation literature for IBM’s System-R query optimiser.

Definition 1.6 The exhaustive search algorithm enumerates all m! plans in

a search space where m is the number of relations involved in a query. By using

a heuristic which avoids performing any cartesian product in any plan, this can

prune down many likely expensive plans from the search space. The algorithm then

considers a smaller but still exponential number of plans, i.e., 2m [Selinger et al.

1979a] in the search space.

1.2.2.2 Limited search algorithms

Definition 1.7 A limited search algorithm searches (considerably) less than the

m! plans in the search space. Only a portion of the entire space will be searched.

The query optimiser chooses the minimal cost plan from the portion searched; this

may not be the (globally) optimal execution plan.

Simulated Annealing has been successfully applied to many hard combinatorial

problems (see [Laarhoven and Aarts 1988] for examples), i.e., which have very large

Introduction 17

search spaces. The first application of Simulated Annealing to the query optimi-

sation problem was done by Ioannidis and Wong [1987]. Subsequently, there have

been a series of variants of Simulated Annealing suggested to improve the original

proposal [Swami and Gupta 1988; Swami 1989b,a; Ioannidis and Kang 1990; Kang

1991; Pongpinigpinyo 1996].

A∗, one of very well-known search algorithms used in AI, was proposed by Yoo

[1990]. A Genetic search algorithm was proposed by Bennett et al. [1991]; Stillger

and Spiliopoulou [1996] and the Tabu search algorithm was proposed by Morzy

et al. [1994]. There have also been a number of heuristic algorithms proposed in

the literature, e.g. ones proposed by Wong and Youssefi [1976]; Krisnamurthy et al.

[1986].

1.2.2.3 Limited search algorithms with large search spaces

When the number of relations involved in a query is small (less than about 8 re-

lations), then the entire search space m! will be small and thus can be thoroughly

searched for the optimal plan by the exhaustive search algorithm.

However, future database applications will require processing of queries with a

large number of joins [Krisnamurthy et al. 1986; Swami 1989b] perhaps involving

more than 7 relations. This would expand the search space to a size that made

exhaustive search infeasible and so the development of limited search algorithms are

essential.

Regardless of the search algorithm used, a critical factor is the accuracy of size

estimation for intermediate results. In this thesis, we thus focus on methods for

accurate query size estimation, assuming that they will be applicable to any existing

or future query optimisation search algorithm.

1.3 Definitions and notations

The following are definitions and notations that we will use throughout the thesis.

Simple predicate A simple predicate on a relation is a condition specified on a

single attribute (any) of the relation to restrict only some tuples of the relation

which satisfy the condition.

Let R be a relation of interest with a cardinality (a total number of tuples)

Introduction 18

N . The schema of R consists of u attributes, namely, b1, b2, . . . , bu. A simple

predicate is of the form (b# relopt x), where b# is an attribute of R, # =

1, 2, . . . , u, relopt could be any of the relational operators <,>, 6=,=,≥,≤ and

x could be any value in the domain of attribute b#. A simple predicate query

is a selection query with a simple predicate on R.

Complex predicate A complex predicate on a relation is formed by any com-

bination of AND-ed (conjunctive) or OR-ed (disjunctive) simple predicates

on the relation, e.g., (b1 > 10 and b2 6= 120), (b1 > 10 or b2 = 120),

(b1 ≤ 89 or b2 = 12 and b4 ≥ 123), where each attribute b#, # = 1, 2, 4

is an attribute of R. A complex predicate query is a selection query with a

complex predicate on R.

Frequency means the number of times an attribute value of R.b# occurs in relation

R. Let f(x) be either a function of a frequency distribution of x — how many

times each x value appears in R under b# — or a function of a cumulative

frequency distribution of x — how many times any value less than or equal to

x appears in R under b#. We use the term data distribution as a synonym for

the term frequency distribution.

On-line sampling In on-line sampling, the query optimiser obtains selectivity es-

timates by taking a (hopefully) representative sample of an original relation

and then determining the likely result size based on the result size for the

query on the sample.

The sample is taken immediately on-line from its original relation stored in the

secondary storage for the selectivity estimation. This is the main reason why

any of sampling-based methods never suffers against effects of low/high up-

dates to a database, in contrast with virtually all non-sampling-based methods

that do suffer. As a non-sampling-based method, M5 proposed by Harangsri

et al. [1997] does not suffer against effects of database updates.

Note that the description above is strictly applicable for selection selectivity

estimation. For join selectivity estimation, the approach would also be similar,

i.e., by taking samples of each original relation in the join and then joining

them together for an estimated join selectivity.

Introduction 19

The on-line sampling would clearly incur some delay in processing queries since

apart from reading and writing to/from storage for temporary intermediate

relations created on the fly, the database system has to do some extra reading

and writing to obtain samples from which selectivities can be estimated. In this

thesis, whenever we refer to the term “sampling”, we mean on-line sampling.

Off-line sampling Unlike on-line sampling, in off-line sampling, the database is

not sampled directly for the selectivity estimation purpose but is sampled

typically to collect necessary statistical parameters which are then used by

those non-sampling-based methods for selection and join selectivity estimation.

Normally off-line sampling a database is performed when the system has a light

load, for example, at night.

In this thesis, we will normally use the whole phrase “off-line sampling” to

refer to this kind of sampling and use simply “sampling” to mean “on-line

sampling”.

1.4 Thesis scope and contributions

This thesis places the main emphasis on size estimation methods, not search algo-

rithms. We will propose a series of size estimation methods which have been found

to improve the size estimation and thus cost evaluation of query optimisers.

There are two major contributions in the thesis. One is a novel sampling-based

size estimation method for centralised database systems. We describe its scope in

Section 1.4.1. The other is a novel non-sampling-based size estimation method for

(1) distributed database systems or (2) database systems which call for an instant

and quick way of query size estimation. We describe its scope in Section 1.4.2.

Although sampling-based methods are generally known to produce more accurate

selectivities and thus more accurate sizes of intermediate relations than the non-

sampling-based methods, they also have some disadvantages in practice.

Firstly, in distributed database systems, relations may be allocated to different

nodes of the network. In this case, on-line sampling may become infeasible be-

cause we introduce the significant overhead of network latency into some sampling

operations.

Introduction 20

Secondly, some database systems may prefer an instant and quick way of size es-

timation. Then any of non-sampling-based methods should be selected as the choice.

Compared with non-sampling-based methods, sampling-based methods are not an

instant and quick size estimator but can generally yield more accurate selectivities.

Hence this is a tradeoff in using sampling-based and non-sampling-based methods.

1.4.1 Centralised database systems

For centralised database systems, we propose that:

• For joins and selections, a novel sampling-based method SYSSMP be used for

estimating sizes of temporary intermediate relations.

• For selections, if:

– histograms [Piatetsky-Shapiro and Connell 1984], a current state-of-the-

art method, are still the favored choice as used by many commercial

database systems such as INGRES, Sybase, DB2, Informix, MS-sqlserver,

Oracle and Teradata for query size estimation,

– and because current databases are getting larger and larger and perhaps

change frequently,

then building histograms from entire relations would be very expensive and

time-consuming. Hence building histograms from a sample of an original rela-

tion would play a more important role to the very large and rapidly changed

databases. We propose that SYSSMP be used to build histograms, in place of

SRSWR or SRSWOR. The results can be found in [Harangsri et al. 1998].

• The bootstrap method [Efron 1979] can be used to improve the quality of join

selectivities.

In this thesis, all experiments for joins are conducted through star joins. A star

join is a join in which any join attribute of the two or more participating relations

can join one another on a common join domain. The reason star joins are used is

that (1) they are amenable to simulation and analysis, (2) Haas and Swami [1995]

also used star joins in their experiments and (3) they also play a significant role in

decision-support system applications [Haas and Swami 1995].

Introduction 21

1.4.2 Distributed database systems

For distributed database systems where non-sampling-based methods are more ap-

propriate, we propose that:

• For selections, local regression [Cleveland 1979] be used for estimating sizes of

temporary intermediate relations. Compared with other non-sampling-based

methods:

– novel machine-learning and neural network methods proposed in this the-

sis,

– the parametric uniform distribution based method (UNF), the equi-height

histogram (HIST) and two curve-fitting methods ASE and IASE, pro-

posed earlier in the literature,

local regression achieves the best results in query size estimation for selections.

If histograms, which is also a special form of local regression, are the preferred

method for query size estimation and very large and dynamically-changing

databases are considered, then we propose like in the case of centralised

database systems that SYSSMP be used to build histograms, in place of SR-

SWR or SRSWOR.

• For joins, since the experimental work is not yet done, we give very sound

justifications in Section 5.7 of Chapter 5 of why local regression would perform

for joins equally as well as when it performs for selections. The following is a

brief justification.

In essence, the selectivity estimation for any join can use the frequency distri-

bution approximating functions for the attributes which are in the join. And

each of these approximating functions is fundamentally built for both selection

and join selectivity estimation. Many of previous non-sampling-based meth-

ods, e.g., UNF [Selinger et al. 1979a] and histogram [Piatetsky-Shapiro and

Connell 1984; Poosala 1997] share the approximating functions for both join

and selection selectivity estimation.

As the join selectivity estimation shares the same underlying approximating

functions used for selection selectivity estimation, there should be no doubt for

Introduction 22

the efficiency of join selectivity estimation as long as the efficiency of selection

selectivity estimation is justified.

This thesis also contributes a comprehensive experimental evaluation of all of

the size estimation methods, both our new methods and the existing ones. To our

knowledge, a unified experimental analysis such as this has never been undertaken

previously, and provides a valuable insight into the effectiveness of all of these meth-

ods.

For the feasibility issue of using on-line sampling for selectivity estimation, some

query optimisation researchers, e.g., [Ioannidis and Poosala 1995; Ioannidis 1993;

Chen and Roussopoulos 1994] question about how feasible it is to use sampling

particularly for the estimation of join selectivities (because a join is a most time-

consuming operation). We will show by a simplified analysis in Chapter 7 that a

sampling fraction can be selected such that the total cost for all necessary sampling

would be far less than the total query execution cost. This further suggests that the

total sampling time will only slightly interfere in the total query execution time. To

our best knowledge to date we have seen no such analysis in the literature of query

optimisation and selectivity estimation.

1.5 Cost-based vs. rule-based approaches to query optimisa-

tion

The following is a justification that all the size estimation methods developed in this

thesis can be used by cost-based query optimisers.

Definition 1.8 Cost-based query optimisers are ones that generate a number

of equivalent query plans, use query size estimates to approximate query plan costs

and select one which is optimal or near-optimal as the final execution plan for the

query.

Although there are other approaches to query optimisation, e.g., rule-based op-

timisation [Freytag 1987; Haas et al. 1989], parametric optimisation [Ioannidis et al.

1992], most of current query optimisers in use nowadays are cost-based, e.g., Ora-

cle, INGRES, DB2, MS-sqlserver, Sybase, Informix, InterBase [InterBase 1998] and

SOLID [SOLID 1998].

Introduction 23

Furthermore, although modern query optimisers like Oracle, offer two opti-

misation approaches [Oracle 1996a]: rule-based and cost-based, a note [Software

AG Americas 1998] against the performance of the rule-based optimisation in prac-

tice evidences that the Oracle cost-based optimiser significantly improves the speed

of query processing over the Oracle rule-based optimiser. In addition, according

to [Oracle 1996b], the following are the reasons why one should use the cost-based

approach:

• The main problem against the rule-based approach is that users must have

the knowledge of or experience in how to compose SQL queries in order for

the most efficient performance to be attained. That is, requesting the same

information from a database by writing different SQL statements can achieve

different performances.

• The cost-based approach generally chooses an execution plan that is as good

as or better than the plan chosen by the rule-based approach, especially for

queries with multiple joins and indices.

Due to the performance problem existing in practice, Oracle will no longer sup-

port the rule-based approach in future versions of its query optimiser [Oracle 1996b].

As a result, we hope that all the size estimation methods developed in this thesis

can be plugged into those cost-based query optimisers.

1.6 Thesis organisation

We start in Chapter 2 by giving fundamentals and detailed survey of query size

estimation methods that have been proposed in the literature.

For centralised database systems, we propose in Chapter 3 that systematic sam-

pling be used for query size estimation for both joins and selections.

To improve the quality of join selectivities used by query optimisers of centralised

database systems, the bootstrap method is proposed in Chapter 4.

For distributed database systems or systems which call for an instant and quick

way of size estimation, we propose in Chapter 5 that local regression be used for

query size estimation for selections.

Introduction 24

The evaluation of the sampling-based method proposed in this thesis in an ex-

perimental cost-based query optimiser is made in Chapter 6.

We summarise our achievements made by this thesis and discuss about some

future work in Chapter 7.

CHAPTER 2

Fundamentals and survey on query size estimation methods

Summary

In the previous chapter, we showed that query size
estimation is a critical component for the effective
functioning of query optimisers for relational database
systems. In this chapter we describe the major ap-
proaches to the problem of query size estimation for
both centralised and distributed database systems.
We characterise these approaches in terms of their
underlying assumptions and their strengths and short-
comings. The conclusion is that existing approaches
have complementary advantages and disadvantages, so
that no one method is outstanding for all purposes.

2.1 Introduction

There has been a considerable amount of work on the issue of selectivity estimation

over one and a half decades. During this period, five major approaches to solving the

problem have been identified: parametric [Selinger et al. 1979a; Makinouchi et al.

1981; Christodoulakis 1983b], histogram [Ioannidis 1993; Ioannidis and Poosala 1995;

Poosala 1997], curve-fitting [Sun et al. 1993; Chen and Roussopoulos 1994], machine

learning [Harangsri et al. 1997] and sampling [Hou et al. 1988, 1989; Lipton et al.

25

Fundamentals and survey on query size estimation methods 26

1990; Hou et al. 1991b; Haas and Swami 1992, 1995]. We will describe each of the

categories in detail in Sections 2.4, 2.5, 2.6, 2.7, 2.8, respectively.

The structure of each section (with the methods in the same category) would be

the same. That is:

1. review a body of work in the literature that belongs to the category,

2. give a detailed description of one (or two) representative methods in the cate-

gory for selection and join query result size estimation, The reasons we chose

each representative method were described earlier in Section 1.2.1.1 of Chap-

ter 1.

3. and analyse the algorithm and storage complexity for the representative method

(s).

The analysis of the algorithm complexity to estimate selectivities for complex

predicate queries is done based on the worst case that all attributes of a relation,

say R, are specified in those complex predicate queries on R.

The storage complexity for a natural join is analysed per relation which partic-

ipates in the join. It is analysed based on the assumption that there can be only

one join attribute on each joining relation but the extension of the analysis to cover

more join attributes on a joining relation should be obvious to be done.

For each respective category, we describe UNF (parametric), equi-width and

equi-height histograms (histogram), IASE and ASE (curve-fitting), M5 (machine

learning) and SS (sampling) as for the representative methods. We also make a

summary of the algorithm and storage complexities for these representative methods

in Section 2.9.

The first four categories: parametric, histogram, curve-fitting and machine learn-

ing are all non-sampling-based techniques and the last is sampling-based techniques.

Through the first four, typically query size estimation will rely on attribute indepen-

dence assumption — there is no correlation among attributes of a relation — and

the reason is described below. Through the last, query size estimation can naturally

handle attribute dependence — there are some correlations among attributes of the

relation.

Fundamentals and survey on query size estimation methods 27

The description till the end of this section is applicable for any of non-sampling-

based techniques in the first four categories.

To estimate sizes of complex predicate queries (multiple-attribute queries), multi-

dimensional query size estimation techniques are the most appropriate. However,

the following two important reasons are the ones that prevent the use of multi-

dimensional techniques and thus multi-dimensional models yielded by the tech-

niques.

• To create multi-dimensional models, one needs to know all dependencies among

attributes in a relation – there can be more than one attribute dependency in

a relation. Finding all attribute dependencies in a relation is a separate and

hard problem in itself which requires another approach to solving the problem.

Ziarko [1991] proposed an approach to the problem and the paper also contains

a number of references to other approaches.

• Assuming that in an attribute dependency, K attributes of the relation depend

on one another, the storage requirement for a multi-dimensional model would

be (p + 1)K for curve-fitting methods or bucketK for histogram methods (see

the derivation for the storage requirement in Chapter 5). p is the coefficient

of the polynomial used by the curve-fitting method and bucket is the number

of buckets used by a dimension of a multi-dimensional histogram.

In other words, curve-fitting and histogram methods call for a nontrivial ex-

ponential amount of storage to the number of attributes involved in the de-

pendency, to maintain statistical parameters in database systems.

Consequently many query optimisation researchers simply resort to the attribute

independence assumption so as to make the selectivity estimation problem tractable.

As a consequence of using the assumption, multi-dimensional techniques reduce

themselves to a single-dimensional one which yields single-dimensional models as the

outcome. Moreover, most of the estimation techniques used in commercial systems

even use single-dimensional histograms (models).

However, the attribute independence assumption is not the only way to hinge on

for the size estimation of complex predicate queries. A technique like SVD proposed

Fundamentals and survey on query size estimation methods 28

by Poosala and Ioannidis [1997]; Poosala [1997] can also be used to create single-

dimensional models (single-dimensional histograms, for example). The resulting

histograms can then be combined to yield an approximation of the actual joint

frequency distribution of two attributes that depend on each other. But the severe

disadvantage against this technique is that it cannot be extended to deal with the

attribute dependence with more than two attributes involved.

Hence, in Section 2.2 we describe how to use the attribute independence assump-

tion to estimate the size of a complex predicate query. Using the assumption, it is

sufficient to know how to calculate the selectivities for two types of simple predi-

cates, namely, b# = x and b# < x, where b# is an attribute of R. These two types

are sufficient for the calculation of selectivities for any complex predicate query. As

a result, for all the representative methods in the first four categories (the last cate-

gory does not depend on the attribute independence assumption), we only consider

how to estimate the selectivities for the two simple predicates.

Likewise in Section 2.3 we describe how to estimate the size of a natural join.

The selectivity of a natural join calculated by each representative method will be

described in the corresponding sections 2.4, 2.5, 2.6, 2.7 and 2.8.

In the last section 2.10, we review previous studies on the cost model derivation

for multidatabase systems which fundamentally relies on curve-fitting techniques.

The main reason of the review is to raise the significance of query size estimation

methods to the cost model derivation problem.

2.2 Query size estimation for selections using attribute inde-

pendence assumption

Below we consider two important types of complex predicate queries: conjunctive

and disjunctive queries.

Let us first begin with a conjunctive query Q with a conjunctive predicate cpred:

cpred ≡ (pred1 and pred2 and · · · and predP1) (2.1)

where each of the predi’s is a simple predicate of the form b# relopt x and P1 is the

number of all simple predicates. Using the attribute independence assumption, the

Fundamentals and survey on query size estimation methods 29

estimated result size for the conjunctive query is calculated by sel ind ∗ N where

sel ind is the “combined” selectivity seland(cpred) for the entire conjunction:

sel ind = seland(cpred) =
P1∏
i=1

sel(predi) (2.2)

where sel(predi) is the selectivity of a simple predicate. Thus, for example,

seland(b1 > 10 and b2 6= 120 and b4 < 230)

= sel(b1 > 10) ∗ sel(b2 6= 120) ∗ sel(b4 < 230)

Now consider a disjunctive query Q of the form:

dpred ≡ (cpred1 or cpred2 or · · · or cpredP2)

where each of the cpredi’s is a conjunctive predicate as in (2.1) and P2 is the number

of all conjunctive predicates. The estimated result result size for the disjunctive

query Q is calculated by sel ind ∗ N , where sel ind is the “combined” selectivity

selor(dpred) for the entire disjunction:

sel ind = selor(dpred) =
P2∑
i=1

seland(cpredi) (2.3)

where seland(cpredi) is calculated by (2.2). Thus, for example,

selor(b1 ≤ 89 or b2 = 12 and b4 ≥ 123)

= sel(b1 ≤ 89) + seland(b2 = 12 and b4 ≥ 123)

To calculate the selectivity of a simple predicate, it is sufficient to consider two

types of simple predicates, namely of the form b# = x and b# < x. For other types

of simple predicates, i.e., >,≥,≤ and 6=, Figure 2.1 is true.

2.3 Query size estimation for natural joins

Let us consider a natural join (R′
1.bx 1 R′

2.by), where R′
1 and R′

2 can:

Fundamentals and survey on query size estimation methods 30

sel(b# > x) = 1− (sel(b# < x) + sel(b# = x))
sel(b# ≥ x) = 1− sel(b# < x)
sel(b# ≤ x) = sel(b# < x) + sel(b# = x)
sel(b# 6= x) = 1− sel(b# = x)

Figure 2.1: Selectivity calculation for >,≥,≤ and 6= relational operators

1. both be an original relation,

2. be one temporary intermediate relation due to a selection, projection, or join

operation and the other original relation,

3. or both be a temporary intermediate relation due to a selection, projection,

or join operation.

The size of the natural join (R′
1.bx 1 R′

2.by) is calculated by: sel(R1.bx 1 R2.by)∗
(NR′1 ∗NR′2), where sel(R1.bx 1 R2.by) is the selectivity of the natural join and NR′1

and NR′2 are the cardinalities of relations R′
1 and R′

2, respectively.

2.4 Parametric methods

2.4.1 Review on parametric methods

Selinger et al. [1979a]; Makinouchi et al. [1981]; Christodoulakis [1983b]

The parametric methods are ones which depend upon some underlying assumptions

of a data distribution such as Uniform, Normal, Poisson, Zipf distributions and

so on. The parametric methods proposed in [Selinger et al. 1979a; Makinouchi

et al. 1981] rely on the uniform distribution in approximating selectivities while the

method in [Christodoulakis 1983b] relies on the Normal and Pearson Type 2 and

7 distributions. The methods will approximate selectivities effectively if the actual

data distribution follows the a priori assumption. However, the data distribution in

a real database may not match the expected one; for example, the initial assumption

may be wrong, or the data may change over time so that the distribution changes.

In such cases, the resulting selectivities could be unreliable.

Fundamentals and survey on query size estimation methods 31

Epstein and Stonebraker [1980]

Epstein and Stonebraker [1980] proposed a parametric method for the join query

size estimation. Three values: 1, 1
2

and 1
10

were proposed as for join selectivities

between any two relations. The three values were then compared by using two

search algorithms – each algorithm acts as a search engine for the query optimiser

used for comparison. One is an exhaustive search algorithm [Selinger et al. 1979b]

which searches everywhere in a search space and the other is a limited search [Wong

and Youssefi 1976] which is a kind of heuristic algorithms and searches only a portion

of the entire search space.

The conclusion based on experiments with two databases is that the exhaustive

search performs dramatically better than the limited search in choosing low-cost

query execution plans. For the exhaustive search, the selectivity 1
10

seems to be the

best choice for any join between two relations. But for the limited search the results

obtained were inconclusive – there is no clear trend about which selectivity is the

best choice.

Our question here is that even though the exhaustive search algorithm can be

used as a search engine for a query optimiser, how can the proposal for the join

selectivity value 1
10

be validated for any join between two relations ?

Christodoulakis [1983a]

(In fact, this work is not under any of the five categories of methods. The reason

we classified it into here is because it is one of very primitive methods like any of

parametric methods and is related to some of the parametric work described below.)

Christodoulakis [1983a] proposed a method for the estimation of join selectivities

(see the formula for the estimation below which is taken from formula (18) in the

reference). The method can call for a very large amount of storage because the

method would keep “comprehensive” statistical information in the database profile

catalog. For some cases where an attribute does not have many distinct values

appearing in the relation, the method works fine. However, for other cases where

an attribute does have a large number of distinct values, the method will not be

practical.

The reason is that the method requires storing in the database profile catalog, all

Fundamentals and survey on query size estimation methods 32

pairs of [a distinct value, the number of its occurrences], i.e., the complete frequency

distribution for all distinct values of an attribute. Hence, a large number of distinct

values of an attribute will incur a large amount of storage to maintain all the pairs

in the profile catalog.

Conventionally, most query size estimation work attempts to reduce such a huge

storage requirement by storing “brief or summary” statistical information of the

frequency distribution of an attribute in the profile catalog, instead of the “com-

prehensive” information. For instance, histograms [Piatetsky-Shapiro and Connell

1984] require storage for summary information by the number of buckets used to

create a histogram, normally 10-20 buckets. This means that 10-20 parameters

per attribute would be required to be maintained in the catalog. A curve-fitting

method [Chen and Roussopoulos 1994] requires storage approximately by the de-

gree of the polynomial used, which is 6 and hence, 6 parameters per attribute would

be required in the catalog.

Given a natural join R1.bx 1 R2.by, the formula for the join selectivity proposed

by Christodoulakis [1983a] is given by:

∑d
i=1 fx(xi) ∗ fy(yi)
(NR1 ∗NR2)

where d is the number of distinct values in the common domain of the join attributes

R1.bx and R2.by. xi and yi, i = 1, 2, . . . , d are distinct values in the common join

domain. fx(xi) and fy(yi) are the frequency distribution of attribute bx in relation R1

and that of attribute by in relation R2, respectively. NRi
, i = 1, 2 is the cardinality

of Ri. Table 2.1 shows a calculation for a join selectivity using the formula. The

cardinalities of R1 and R2 are 9 and 8 tuples, respectively.

Although the join selectivity estimation is exact as illustrated by the example

in Table 2.1(b), due to the comprehensive information maintained, the huge storage

requirement makes the proposed method impractical to be implemented in a general

database environment.

Chao and Egyhazy [1986]

Chao and Egyhazy [1986] proposed a parametric method for the query size estima-

tion of selections and joins. There are two severe shortcomings of the work:

Fundamentals and survey on query size estimation methods 33

x’s y’s
1 1
1 3
2 3
2 3
2 4
3 4
3 4
4 4
4

(a) R1.b1
and
R2.b2

domain fx(xi) fy(yi) fx(xi) ∗ fy(yi)
value

1 2 1 = 2
2 3 0 = 0
3 2 3 = 6
4 2 4 = 8

d = 4 total= 16
(9∗8)

(b) Frequency distributions

Table 2.1: Calculation for a join selectivity

• Large storage requirement Like the work [Christodoulakis 1983a], the storage

requirement can be very large because the authors also took the same assumption

of comprehensive information as the earlier work. As for selections, although query

size estimation can be exact for simple predicate queries and very accurate for com-

plex predicate queries, the huge storage requirement makes the proposed method

impractical for a general database environment.

• Unjustified join selectivities Let us consider a natural join R′
1.bx 1 R′

2.by,

where R′
1 and R′

2 can both be original relations or one temporary intermediate

relation due to a selection or projection operation and the other original relation.

The join selectivity for this case is calculated by coeff1∗coeff2
2

where coeff1 isNR′1/(the

number of distinct values of bx) and coeff2 is NR′2/(the number of distinct values of

by). NR′i , i = 1, 2 is the cardinality of relation R′
i.

First we argue that since coeffi, i = 1, 2 in many cases (see also its formula

above) will be more than or equal to 1, the formula coeff1∗coeff2
2

will also in many

cases produce a value greater than or equal to 1. Since the join selectivity in the

worst case (i.e. the cartesian product of two relations) is always equal to one, the

above result is rather surprising.

Second even assuming that the formula is acceptable, there is no justification of

why such a formula would be accurate for any join between R′
1.bx and R′

2.by.

Consider another join R′
1.bx 1 R′

2.by, where both R′
1 and R′

2 are a temporary

intermediate relation but at least one of the two must be as a result of a join

operation. The join selectivity for this case is simply equal to 1
2
, which is also one

of the join selectivity values earlier proposed by Epstein and Stonebraker [1980]

Fundamentals and survey on query size estimation methods 34

(see above). Why does the earlier work seems to favor the join selectivity 1
10

, not

the 1
2

? We also do not see any experiments done in support of the value 1
2

for

this subsequent work. Hence we consider that 1
2

is another ad-hoc join selectivity

unjustified.

Gardy and Puech [1989]

[Gardy and Puech 1989] proposed a parametric method for the query size estima-

tion of joins, semijoins and outerjoins. The main shortcoming is that most of the

work relies on the assumption that the underlying distribution of attribute values

is uniform. This assumption is also taken by earlier work such as [Selinger et al.

1979a; Makinouchi et al. 1981]. Based on this assumption, many formulas (which

are called generating functions) for query size estimation for joins, semijoins and

outerjoins were derived. As all the formulas rely on an a priori uniform distribution

assumption, which may or may not be true for relations in a real database, the

approximated join (semijoin or outerjoin) result sizes can be unreliable.

Belussi and Faloutsos [1995]

Belussi and Faloutsos [1995] claims that Fractals [Mandelbrot 1983] can be used to

describe the behavior of real world data, more particularly data distributions and

proceeded to use the theory of Fractals for the size estimation of spatial queries.

Two kinds of spatial queries were considered: range queries and spatial join queries.

From a generalised fractal dimension, the authors picked one of the generalised

dimension D2 which is called correlation fractal dimension and used it in formulas

for selectivity estimation. The following two formulas (quoted from equations (15)

and (16) in [Belussi and Faloutsos 1995]) were given to estimate the selectivities of

a range query and a spatial join query, respectively:

Selrange(ε, “shape”) = nb(ε, “shape”) + 1

Seljoin(ε, “shape”) =
nb(ε, “shape”)

(N − 1)

where N is the number of all points in a point set and nb(ε, “shape”) is defined by:

nb(ε, “shape”) = K“shape” ∗ εD2 (2.4)

Fundamentals and survey on query size estimation methods 35

where nb(ε, “shape”) is the average number of neighbors in the radius ε for a specified

query shape “shape” which could be square, circle, diamond, etc. and K“shape” is

the proportionality constant which depends upon the specific query shape.

The following are two important issues which remain unclear in the work and

hence, make the value of the method proposed dubious.

• The derivation of (2.4) is based on the relationship that the average number

of neighbors follows the power law:

nb(ε, “shape”) ∝ εD2

It is not quite clear whether such a relationship is really true or not in practice

and whether it can be described by the correlation fractal dimension D2.

• The proportionality constant K“shape” in (2.4) is based on the unproved

assumption which the author claimed “sounds right”. Whether the assumption

is really true or not, this remains as a question.

2.4.2 Query size estimation for selections using UNF

The uniform distribution assumption assumes that the number of occurrences of any

value in a domain of an attribute is the same. Using the assumption, the following

are two selectivity formulas for simple predicates b# < x and b# = x proposed

by Selinger et al. [1979a].

sel(b# < x) =
(x− xmin)

(xmax − xmin) (2.5)

sel(b# = x) =
1

d
(2.6)

where xmin and xmax are the minimum and maximum values, respectively of at-

tribute b# and d is the number of distinct values of b# in the relation.

The first formula sel(b# < x) uses the rationale of a linear scale; every x value

in the predicate will be linerly scaled by the formula.

The second formula sel(b# = x) uses the rationale that every distinct value of

b# has roughly the same number of tuples N
d

to appear in R. Hence the selectivity

of any distinct value x would be
(N

d
)

N
which is then equal to 1

d
.

Fundamentals and survey on query size estimation methods 36

2.4.2.1 Algorithm and storage complexity for selections

Algorithm

The calculation for sel(b# < x) or sel(b# = x) in (2.5) and (2.6) can be done in a

fixed number of steps. Hence the selectivity estimation for a simple predicate can

be done in O(1).

Thus, to calculate the query result size for a complex predicate query on R with

a certain number of attributes (≤ u) involved in the query, the worst case time

complexity would be O(u), where u is the number of attributes of R.

Storage

Since there are only three fixed values xmin, xmax and d to be maintained in the

profile catalog for an attribute of R, the storage requirement for all u attributes of

R is (3 ∗ u) and by ignoring the constant factor 3, the storage complexity is O(u).

2.4.3 Query size estimation for joins using UNF

Let us consider a natural join between relations R1 and R2, namely R1.bx 1 R2.by.

Based on the uniform distribution assumption, Figure 2.2 shows the calculation

towards the estimated selectivity sel(R1.bx 1 R2.by) of the join. NRi
, i = 1, 2 is

the cardinality of relation Ri. Suppose that the number of distinct values of bx in

relation R1 is dx and thus the number of tuples per distinct value would be
NR1

dx
.

Similarly for R2.by, the number of distinct values of by in relation R2 is dy and thus

the number of tuples per distinct value would be
NR2

dy
. Also let d = min(dx, dy),

which is the smaller value between the two.

dist. freq.(R1) freq.(R2) tuples per dist.

1
NR1

dx

NR2

dy

NR1

dx
∗ NR2

dy

2
NR1

dx

NR2

dy

NR1

dx
∗ NR2

dy

.

.

d
NR1

dx

NR2

dy

NR1

dx
∗ NR2

dy

total tuples d ∗ NR1

dx
∗ NR2

dy

Figure 2.2: The estimated total number of tuples based on UNF

Fundamentals and survey on query size estimation methods 37

Using the estimated total number of tuples in Figure 2.2, the selectivity of the

natural join between R1.bx 1 R2.by, sel(R1.bx 1 R2.by), is thus defined by:

sel(R1.bx 1 R2.by) =
d ∗ NR1

dx
∗ NR2

dy

NR1 ∗NR2

=
1

max(dx, dy)
(2.7)

where max(dx, dy) is the higher value between the two.

2.4.3.1 Algorithm and storage complexity for joins

Algorithm

The retrieval of dx and dy can be done in a fixed number of steps. Hence the

selectivity estimation in (2.7) can be done in O(1).

Storage

As per relation in the join (R1.bx 1 R2.by), since the join selectivity estimation uses

the number of distinct values dx (and dy) for the calculation in (2.7), the storage

complexity per relation in the join is O(1), if only one attribute in R1 (and R2) can

be a join attribute. Even if all of the attributes are potential join attributes, the

storage overhead is not significant.

In fact, this storage complexity is shared between both selections and the join –

both are responsible for this cost – because dx (or dy) is also used by selections.

2.5 Histogram methods

2.5.1 Review on histogram methods

The basic idea behind the histogram method is to build (and store) a model of the

data distribution of attributes and then use this model as a basis for determining se-

lectivities and thus query result sizes. Typically, the models are implemented via one

frequency histogram for each attribute where the histogram contains the occurrence

frequency of ranges of values in the domain of the attribute. These histograms are

typically stored as part of the meta-data in many database management systems.

Fundamentals and survey on query size estimation methods 38

Traditional histograms

Traditional histograms in the literature of query size estimation are equi-width and

equi-height ones. A traditional histogram is built by first splitting a domain of

an attribute into a certain number of buckets (intervals) – resulting in ranges of

attribute values in the buckets – and then counting the number of tuples that fall

into the ranges of the buckets. We call a total number of tuples falling in a bucket

total frequency.

The difference between the two types of histogram is in which aspect is kept

constant. For equi-width histograms, the interval length of each bucket is the same

but the total frequency of each bucket could be different. In contrast, for equi-height

histograms, the total frequency of each bucket is the same, while the interval length

may vary. Equi-width and equi-height histograms were proposed by Piatetsky-

Shapiro and Connell [1984].

Piatetsky-Shapiro and Connell [1984] concluded that in order to control the

error in query result size estimation, the height (total frequency), not the width, of

histogram intervals is the critical factor. They suggested that keeping the interval

height constant would lead to better size estimates than using equal-width intervals.

In other words, equi-height histograms are superior to equi-width ones in estimating

query result sizes.

Single-dimensional histograms consider the frequency distribution of an individ-

ual attribute of a relation while multi-dimensional histograms are a histogram whose

construction considers the joint frequency distribution of several attributes of a re-

lation.

Multi-dimensional histograms such as those proposed by Muralikrishna and De-

Witt [1988]; Muralikrishna [1988] and Poosala [1997] are known to be superior to

single-dimensional ones in estimating result sizes of complex predicate (multiple-

attribute) queries. The superiority stems from the fact that multi-dimensional his-

tograms can deal with both (1) the attribute dependence assumption (some cor-

relation among attributes of a relation) if there is any and (2) the attribute inde-

pendence assumption (no correlation among attributes of the relation) while single-

dimensional histograms can deal very well only with the attribute independence as-

sumption but can deal poorly with the attribute dependence assumption [Christodoulakis

Fundamentals and survey on query size estimation methods 39

1984; Poosala 1997]. An obvious reason of the superiority that anyone can see is

that building multi-dimensional histograms takes into account the joint frequency

distribution among the correlated attributes of the relation while building single-

dimensional ones does not.

On the other hand, building multi-dimensional histograms to handle complex

predicate queries basically calls for an exponential amount of storage to the number

of correlated attributes in a relation. This is the major drawback preventing the

use and implementation of this type of histogram in commercial database systems.

Currently, single-dimensional equi-height and equi-width histograms are the most

commonly used query size estimation approaches employed in commercial database

systems. These systems are willing to tolerate a small storage overhead per relation

(or even per attribute), but the storage demands of multi-dimensional histograms

are well beyond this.

Serial histograms (version 1)

Ioannidis and Christodoulakis [1993]; Ioannidis [1993]; Ioannidis and Poosala [1995]

proposed a new class of histograms called serial histograms. A serial histogram is

built by grouping distinct values with similar frequencies, i.e., similar number of

tuples, into the same bucket. The distinct values falling into the same bucket may

or may not have any contiguity (proximity) in their numerical/alphabetical order

while the traditional, i.e., equi-width and -height histograms [Piatetsky-Shapiro and

Connell 1984; Muralikrishna and DeWitt 1988] do have. The theoretical foundation

developed proves that compared with other types of histograms, serial histograms

are optimal for natural join and selection queries in that they minimise the variance

of frequencies grouped into the same bucket (and thus minimise the variance for all

the buckets of the histogram).

Figure 2.3(a) shows the frequency distribution of 6 distinct values of an attribute:

1, 2, 3, 4, 5 and 6 labelled at the base of each frequency bar. Figure 2.3(b) shows a

2-bucket serial histogram as the outcome of grouping the distinct values with similar

frequencies into the two buckets. Note also the rearranging of distinct values labelled

at the base of each frequency bar in the two figures.

The criterion for the optimality of a histogram is defined by the squared error

Fundamentals and survey on query size estimation methods 40

1

frequency distribution

2 3 4 5 6

(a) A frequency dis-
tribution before
grouping

2 1

bucket 1

5 346

bucket 2

(b) After grouping, a
2-bucket serial his-
togram

Figure 2.3: A serial histogram with uncontiguous distinct values in 2 buckets

criterion:
d∑
i=1

(f(xi)− g(xi))2 (2.8)

where d is the number of distinct values of the attribute, f(xi) is the frequency

of the distinct value xi and g(xi) is its estimate by a size estimation method. In

the case of serial histograms (as a method), in a bucket of a serial histogram, a

fixed average frequency – calculated by all frequencies of the distinct values in the

bucket divided by the number of all distinct values in it – is used as g(xi) for the

bucket; that is, g(xi) in the same bucket is all the same. This means, independent

of whatever distinct value in the bucket is considered, its estimated frequency will

always be the fixed average frequency for the bucket.

The squared error in (2.8) is a significant measure for the success of a size esti-

mation method. It points that if a size estimation method can achieve the lowest

squared error, then the approximating function g(x) used by the method will best

capture the frequency distribution of the attribute. Hence, query size estimation by

such an approximating function will also yield the lowest error in size estimation.

Note that the squared error criterion in (2.8) is naturally used by any of curve-

fitting methods including local regression proposed in this thesis.

Fundamentals and survey on query size estimation methods 41

In fact, if an approximating function g(x) used is of the form:

g(x) = the fixed average frequency for 1st bucket

= the fixed average frequency for 2nd bucket

= ·
= the fixed average frequency for Ith bucket (2.9)

then this function is a polynomial with the degree 0 which is used by serial his-

tograms, where I is the number of buckets used by a serial histogram. This way of

fitting in a bucket by a constant value, i.e., an average frequency is called local con-

stant fitting [Cleveland and Loader 1996]. This polynomial in (2.9) is a special case of

a general polynomial with the degree 0. Using other higher degrees of a polynomial,

e.g., 1, 2 or 3, instead of the degree 0 is a main idea of local regression. According

to [Cleveland and Loader 1996], the local constant fitting very infrequently proves

to be the best choice in practice to fit data in a local area (bucket) and was only

widely appreciated in the early smoothing literature.

Through serial histograms, the grouping of distinct values into buckets will assist

in obtaining the lowest squared error in (2.8), compared with other ways of groupings

by other types of histograms. However, this does not necessarily mean that such

an error will be the absolute minimum compared with the squared error yielded by

other approaches such as any of curve-fitting methods and local regression.

Thus by the lowest squared error attained by serial histograms, query size estima-

tion through serial histograms will achieve the best result size estimates, compared

with other types of histograms. Once again this does not necessarily imply that such

result size estimates by serial histograms will be superior to the estimates yielded

by other approaches.

There are two disadvantages in using serial histograms. First, all distinct values

falling into a bucket must be recorded and stored in the database profile catalog

together with the average frequency for the bucket. This is a severe drawback and

makes it impractical to build and maintain such histograms in database systems

because this implies that all distinct values of an attribute must be maintained (i.e.,

stored in the catalog). This would require a substantial amount of storage for any

Fundamentals and survey on query size estimation methods 42

attribute that has a large number of distinct values, e.g., license number, social

security number.

Second, the algorithm for constructing an optimal histogram requires an ex-

haustive enumeration (namely, the exhaustive search) over all possible serial his-

tograms, which calls for an exponential time complexity. The authors then proposed

a randomised algorithm [Swami and Gupta 1988; Ioannidis and Kang 1990] for the

histogram construction. But since the randomised algorithm is not exhaustive in

nature, the resulting constructed histogram may or may not be optimal.

Serial histograms (version 2)

Poosala et al. [1996]; Poosala and Ioannidis [1997] studied a new and large taxonomy

of histograms. Among many types of histograms in the taxonomy, V-Optimal(V,A)

and MaxDiff(V,A) histograms are the most attractive, i.e., producing least errors

in query result size estimation, compared with others considered. V as the first

parameter in V-Optimal(V,A) and MaxDiff(V,A) means the grouping1 of contiguous

distinct values into the same bucket and A as the second parameter means the

attempt to minimise the variance of areas grouped into the same bucket.

Consider an attribute domain with values x1, x2, . . . , xd where d is the number

of distinct values of the attribute in a relation. Let f(x1), f(x2), . . . , f(xd) be the

frequency distribution of all the values xi’s, i = 1, 2, . . . , d. An area of a distinct

value xi is defined by (xi+1 − xi) ∗ f(xi). Note that the serial histograms described

in the previous section are characterised as V-Optimal(F,F) where the first F means

the grouping of contiguous frequencies into the same bucket (in place of the grouping

of contiguous distinct values by V-Optimal(V,A) and MaxDiff(V,A)) and the second

F means the attempt to minimise the variance of frequencies grouped into the same

bucket.

The construction of V-Optimal(V,A) histograms is similar to that of V-Optimal

(F,F) histograms and hence, uses the same randomised algorithm. The construction

of MaxDiff(V,A) histograms aims to insert bucket boundaries between two contigu-

ous distinct values whose area difference produces one of the largest area differences.

In other words, the grouping of distinct values into a bucket is to avoid grouping

1The grouping of contiguous distinct values into the same bucket by these two types of his-
tograms is the same as that by the traditional histograms.

Fundamentals and survey on query size estimation methods 43

the distinct values with vastly different areas into the same bucket.

The extensive comparison among many histogram types, including with the equi-

width, equi-height and V-Optimal(F,F) histograms, demonstrated that the most

efficient histograms are V-Optimal(V,A) and MaxDiff(V,A) both in construction

time and low error in query result size estimation.

However, both histogram types: V-Optimal(V,A) and MaxDiff(V,A) fall short

commonly in the same problem of local constant fitting – the problem against the

fitting in a bucket by a constant value, which is the average frequency for the bucket.

Figure 2.4 graphically shows the problem against the local constant fitting, com-

pared with the local fitting by a polynomial with a higher degree. The “bell-like”

graph represents the frequency distribution of an attribute. There are two dashed

lines fitting the small curve (solid line) in the jth bucket. One line (horizontal) is

the fitting by an average frequency for the jth bucket and the other line is the fitting

by local regression.

Frequency distribution

fitting by local regression

fitting by an average frequency

curve fitting in the jth bucket

Figure 2.4: Problem against local constant fitting

Regardless of any way of the groupings employed by the two histogram types,

there may still exist some small curves (a small curve is a small partition of the

entire graph for a frequency distribution) remaining in some buckets and fitting a

small curve in a bucket, such as the small curve in the jth bucket of the figure, by

the average frequency for the bucket would not basically be as efficient as fitting the

small curve in the bucket by a polynomial with a slightly higher degree, such as 1,

2, or 3.

As a consequence of the problem against local constant fitting, the second and

Fundamentals and survey on query size estimation methods 44

important clue that can be used to generally say that any histogram would be inferior

to local regression is the squared error criterion in (2.8) which is used to define an

optimal histogram. This criterion is always naturally used by any curve-fitting

method including local regression to find the best-fit coefficients of the polynomial

used which would then result in the optimal squared error between f(xi) and g(xi),

where i = 1, 2, . . . , d. The squared error yielded by the two histogram types will

very likely be higher than the squared error by local regression. The reason is as

follows.

Consider any bucket of a histogram. A fixed average frequency, e.g., the straight

horizontal line in Figure 2.4 will be used to approximate all the frequencies f(xi)’s in

the bucket, regardless of what the actual values of f(xi)’s are like. Compared with

local regression in the bucket, because the principle of least squared error always

naturally applies to any curve-fitting method, a better curve (most probably not

the straight horizontal line) with various g(xi)’s like the diagonal line in Figure 2.4

will be used to capture the corresponding actual frequencies f(xi)’s in the bucket,

instead of the fixed average frequency. Hence, the squared error by local regression

will very likely be lower than the one by the two histogram types.

2.5.2 Query size estimation for selections using histograms

In this section, we show how to build single-dimensional equi-width and equi-height

histograms for individual attributes of relation R and use these histograms together

to estimate sizes of complex predicate queries.

This section is mainly developed from [Harangsri et al. 1998] in which we used

SYSSMP to build from sample relations, more efficient histograms than the his-

tograms built by SRSWR and SRSWOR. The histograms considered in the paper

are equi-width and -height.

The description throughout this section is generalised for both equi-width and

equi-height single-dimensional histograms. We start by giving examples of equi-

width and -height histograms and histogram notations, followed by how to estimate

result sizes of complex predicate queries.

A schema of relation R consists of u attributes, namely, b1, b2, . . . , bu. A his-

togram of attribute b#, # = 1, 2, . . . , u has the structure as shown in Table 2.2.

Fundamentals and survey on query size estimation methods 45

The two histograms in Table 2.2(a) and 2.2(b) are respective examples of equi-

width and -height histograms. Each of them shows a total frequency distribution

of attribute b# of a sample relation (5% sampling) from an original relation with

10k tuples. The histograms each have 10 buckets of which each upper bound value

is shown in the middle column of the histograms. The histogram 2.2(c) shows the

histogram notations which generalise the two example equi-width and -height his-

tograms. Notation Ib# is the number of buckets desired for attribute b# (=10 in

the two histogram examples). Notation Eb#,k is the upper bound value for bucket

k where k = 0, 1, 2, . . . , Ib# . Bucket 0 contains the minimum value of attribute b#

and bucket Ib# contains the maximum value of attribute b#. Fb#,k denotes the total

frequency of bucket k (the total number of tuples falling into this bucket).

Let Q be a complex predicate query on relation R. The cardinality of relation

R is N and the size of a sample relation is n (≤ N). This sample relation is used

to build histograms for each attribute b# of relation R — one histogram is for one

attribute of R. Using the attribute independence assumption, an estimated result

size for a query Q is calculated by sel ind ∗N where sel ind is the selectivity based

on the attribute independence assumption (consult sel ind in Section 2.2).

As we noted in that section, we only need to consider how to calculate the

selectivity of an individual simple predicate in Q and it is sufficient to consider

only 2 types of simple predicates, namely, b# < x and b# = x. In the following

two sections 2.5.2.1 and 2.5.2.2, we describe the formulas for the selectivities of

sel(b# = x) and sel(b# < x), respectively.

2.5.2.1 Selectivity of sel(b# = x)

Piatetsky-Shapiro and Connell [1984] proposed that the attribute density be used

for the selectivity of b# = x instead of 1
d
, where d is the number of distinct values

of b# in relation R. An attribute density of b# is defined by
∑d

i=1
f(xi)2

N2 where f(xi)

is the frequency distribution of attribute value xi. The attribute density was used

in Piatetsky-Shapiro and Connell’s experiments and the authors justified that the

attribute density takes an unequal frequency distribution of b# into consideration (if

there is any) while the formula 1
d
, which is based on the uniform distribution, always

presumes that each distinct value of b# has the same number of tuples to appear

in relation R. In our equi-width and -height histogram implementation for the

Fundamentals and survey on query size estimation methods 46

no. upper total
bound val freq

0 38907.0 0
1 38956.3 37
2 39005.6 54
3 39054.9 48
4 39104.2 51
5 39153.5 47
6 39202.8 47
7 39252.1 55
8 39301.4 54
9 39350.7 54

10 39400.0 53

(a) Equi-width histogram
for attribute b#

no. upper total
bound val freq

0 38907 0
1 38973 50
2 39016 50
3 39070 50
4 39116 50
5 39174 50
6 39218 50
7 39263 50
8 39307 50
9 39356 50

10 39400 50

(b) Equi-height histogram
for attribute b#

no. upper bound val total freq
0 Eb#,0 (min) 0
1 Eb#,1 Fb#,1
2 Eb#,2 Fb#,2
3 Eb#,3 Fb#,3
.
.
.
.
.
Ib# − 1 Eb#,(Ib#−1) Fb#,(Ib#−1)

Ib# Eb#,Ib# (max) Fb#,Ib#

(c) Histogram notations

Table 2.2: Equi-width and equi-height histograms and histogram notations

Fundamentals and survey on query size estimation methods 47

comparison in [Harangsri et al. 1998], we followed Piatetsky-Shapiro and Connell’s

proposal.

2.5.2.2 Selectivity of sel(b# < x)

Obtaining the selectivity for predicate sel(b# < x) can be described by Figure 2.5.

It holds that sel(b# < x) is a value between sel(b# < Eb#,3) in the third bucket and

sel(b# < Eb#,4) in the fourth bucket. Generalising this, we obtain that:

sel(b# < Eb#,(j−1)) < sel(b# < x) < sel(b# < Eb#,j)

where x falls into the jth bucket. There are two estimation schemes to calculate

an average selectivity of predicate b# < x. The first is called half scheme which is

proposed by Piatetsky-Shapiro and Connell [1984] and the second is called uniform

scheme which is proposed by Muralikrishna and DeWitt [1988]; Muralikrishna [1988].

The experimental results in the latter work (multi-dimensional histograms) indicate

that the uniform scheme is superior to the half scheme, which corresponds to our

experimental results in [Harangsri et al. 1998].

bound values

Fr
eq

ue
nc

y
di

st
rib

ut
io

n

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

b# < x

Eb#,3
Eb#,4

Fb#,4

bucket (j − 1)
bucket j

min max

Figure 2.5: Selectivity calculation for simple predicate b# < x

Half scheme The half scheme calculates the average selectivity of b# < x using

the midvalue between buckets j − 1 and j by:

sel(b# ≤ Eb#,(j−1)) + sel(b# ≤ Eb#,j)

2

Fundamentals and survey on query size estimation methods 48

In the histogram example (which is equi-width) in Figure 2.5, x falls into

bucket j = 4. sel(b# ≤ Eb#,3) =
Fb#,1+Fb#,2+Fb#,3

n
. Likewise, sel(b# ≤ Eb#,4) =

Fb#,1+Fb#,2+Fb#,3+Fb#,4

n
. Generalising this, we obtain the midvalue selectivity:

(
∑j−1
l=1 Fb#,l)/n+ (

∑j
l=1 Fb#,l)/n

2

as the average selectivity of predicate b# < x.

For equi-height histograms, since each bucket contains the same number of

tuples, if x falls into bucket j, then the midvalue selectivity would be:

(j−1)
Ib#

+ j
Ib#

2
=
j − 0.5

Ib#

Uniform scheme The uniform scheme calculates the average selectivity of b# < x

by:

sel(b# ≤ Eb#,(j−1)) + ∆

where ∆:

∆ =
Fb#,j ∗

x−Eb#,(j−1)

Eb#,j−Eb#,(j−1)

n

In other words, ∆ is based on the displacement of x from the lower bound

Eb#,(j−1) relative to the entire displacement between the lower (Eb#,(j−1)) and

upper bounds (Eb#,j). Described by the equi-width histogram example in

Figure 2.5, ∆ is a fraction of the fourth partly-shaded bucket and sel(b# ≤
Eb#,(j−1)) is equal to

∑j−1

l=1
Fb#,l

n
. Therefore, for equi-width histograms, we ob-

tain the formula: ∑j−1
l=1 Fb#,l

n
+ ∆ (2.10)

as for the selectivity of b# < x.

For equi-height histograms, since each bucket contains the same number of

tuples, if x falls into bucket j, then the

sel(b# ≤ Eb#,(j−1)) =
(j − 1)

Ib#

Fundamentals and survey on query size estimation methods 49

while the ∆ is equal to:

∆ =
Fb#,j ∗

x−Eb#,(j−1)

Eb#,j−Eb#,(j−1)

n
=

n
Ib#
∗ x−Eb#,(j−1)

Eb#,j−Eb#,(j−1)

n
=

x− Eb#,(j−1)

Eb#,j −Eb#,(j−1)

∗ 1

Ib#

where Fb#,j = n
Ib#

as each bucket contains the same number of tuples, i.e., n
Ib#

.

Therefore, for equi-height histograms, we obtain the formula:

(j − 1) +
x−Eb#,(j−1)

Eb#,j−Eb#,(j−1)

Ib#
(2.11)

as for the selectivity of b# < x.

2.5.2.3 Algorithm and storage complexity for selections

Algorithm

The attribute density of b# can be retrieved in a fixed number of steps. Hence the

calculation for sel(b# = x) can be done in an O(1) time.

The calculation for sel(b# < x) is a search in primary memory to find which

bucket among Ib# buckets x in the predicate falls into. Normally the number of

Ib# buckets used by an attribute b# is small, e.g., 10-15 buckets and thus the linear

search can be used effectively for the search. The calculation for sel(b# < x) can

then be done in O(Ib#) [Ullman 1988b] by the linear search.

Consequently, to calculate the query result size for a complex predicate query on

R with a certain number of attributes (≤ u) involved in the query, the worst case

time complexity would be O(
∑u

#=1 Ib#), where u is the number of attributes of R.

In many times, the number of buckets used is the same for all the u attributes of R,

say I; therefore, the complexity O(
∑u

#=1 Ib#) can then reduce to O(u ∗ I).

Storage

Consider the example equi-width histogram in Table 2.2(a). For this histogram, the

total frequencies in each bucket vary from bucket to bucket and hence are needed

to be stored in the database profile catalog. Of the histogram, all the intervals

of the upper bound values have a fixed interval length h = Eb#,j − Eb#,(j−1) for

any j = 1, 2, . . . , Ib# and hence, all the upper bound values can be calculated by

Fundamentals and survey on query size estimation methods 50

min + j ∗ h, where j = 1, 2, . . . , Ib# . Therefore, there is no need to store the upper

bound values in the profile catalog. The storage requirement for an attribute b# of

R would be:

1 (for min) + 1 (for max) + 1 (for fixed interval length h)

+1 (for attribute density of b#) + Ib# (for total frequencies)

As a result, the storage requirement for all u attributes of R would be
∑u

#=1(4+Ib#).

In many times, the number of buckets used is the same for all the u attributes of R,

say I; therefore,
∑u

#=1(4 + Ib#) can then reduce to u ∗ (4 + I). But since I > 4 in

most of the times, the storage complexity is O(u ∗ I).
Consider the example equi-height histogram in Table 2.2(b). For this histogram,

there is no need to store the total frequencies of each bucket in the profile catalog as

they are all the same. However, each interval of the upper bound values would have

a variable interval length and hence, all the upper bound values must be stored in

the profile catalog. Therefore, the storage complexity for all u attributes of R would

be
∑u

#=1(4 + Ib#), namely:

1 (for min) + 1 (for max) + 1 (for fixed total frequency)

+1 (for attribute density of b#) + Ib# (for upper bound values)

which can then reduce to O(u ∗ I) if all the u attributes of R use the same number

of buckets I. This complexity is the same as that for the equi-width histogram.

2.5.3 Query size estimation for joins using histograms

Let us consider a natural join between relations R1 and R2, namely R1.bx 1 R2.by.

NRi
, i = 1, 2 is the cardinality of relation Ri. dx and dy are each the number of

distinct values of attributes bx and by, respectively.

Using Piatetsky-Shapiro and Connell’s proposal for the attribute density, this

inherently implies that for R1.bx instead of using
NR1

dx
(as employed by UNF) as the

number of tuples per distinct value, they use an average number of tuples per distinct

value which takes into account the unequal frequency distribution of attribute bx.

Similarly for R2.by, the unequal frequency distribution of attribute by would also be

Fundamentals and survey on query size estimation methods 51

taken into account.

Figure 2.6 shows the calculation towards the estimated selectivity sel(R1.bx 1

R2.by) of the join. Note that the calculation in this figure is similar to that in

Figure 2.2. See Figure 2.2 for comparison. The main difference between the two

figures is the number of tuples per distinct value which takes the unequal frequency

distribution into account here and which takes the equal frequency distribution into

account by UNF.

The attribute density of bx is defined by
∑dx

i=1
f(xi)2

N2
R1

where f(xi) is the frequency

distribution of attribute value xi. Thus the average number of tuples per distinct

value, taking the unequal frequency distribution of attribute bx into account would

be NR1 ∗
∑dx

i=1
f(xi)

2

N2
R1

which is then equal to
∑dx

i=1
f(xi)

2

NR1
.

Likewise, for R2.by, the average number of tuples per distinct value would be

NR2 ∗
∑dy

i=1
f(yi)

2

N2
R2

which is then equal to
∑dy

i=1
f(yi)

2

NR2
. d is min(dx, dy).

dist. freq.(R1) freq.(R2) tuples per dist.

1
∑dx

i=1
f(xi)2

NR1

∑dy
i=1

f(yi)2

NR2

∑dx
i=1

f(xi)2

NR1
∗

∑dy
i=1

f(yi)2

NR2

2
∑dx

i=1
f(xi)2

NR1

∑dy
i=1

f(yi)2

NR2

∑dx
i=1

f(xi)2

NR1
∗

∑dy
i=1

f(yi)2

NR2

.

.

d
∑dx

i=1
f(xi)2

NR1

∑dy
i=1

f(yi)2

NR2

∑dx
i=1

f(xi)2

NR1
∗

∑dy
i=1

f(yi)2

NR2

total tuples d ∗
∑dx

i=1
f(xi)

2

NR1
∗

∑dy
i=1

f(yi)
2

NR2

Figure 2.6: The estimated total number of tuples

Using the estimated total number of tuples in Figure 2.6, the selectivity of the

natural join between R1.bx 1 R2.by, sel(R1.bx 1 R2.by), is thus defined by:

d ∗
∑dx

i=1
f(xi)2

NR1
∗

∑dy
i=1

f(yi)2

NR2

NR1 ∗NR2

= d ∗
∑dx
i=1 f(xi)

2

N2
R1

∗
∑dy

i=1 f(yi)
2

N2
R2

= d ∗ (attr. density of bx) ∗ (attr. density of by) (2.12)

Fundamentals and survey on query size estimation methods 52

2.5.3.1 Algorithm and storage complexity for joins

Algorithm

Consider (2.12). The retrieval of the attribute densities of bx and by and the numbers

of distinct values dx and dy can be done in a fixed number of steps. Hence the

selectivity estimation in (2.12) can be done in O(1).

Storage

The selectivity estimation for the join (R1.bx 1 R2.by), uses the attribute density

for bx (and by) and the number of distinct values dx (and dy) for the calculation

in (2.12). Thus, these two parameters per relation need to be stored. The storage

complexity per relation in the join is O(1), if only one attribute in R1 (and R2) can

be a join attribute.

Consider now the two parameters for R1: attribute density of bx and dx. The

storage required for dx is introduced particularly for the computation of the join,

while the density of bx is shared between selections (bx = const)’s and the join.

However, as per relation in the join, the newly introduced storage for dx still

incurs the same O(1) storage complexity if only one attribute in R1 can be a join

attribute.

2.6 Curve-fitting methods

2.6.1 Review on curve-fitting methods

The main theme of curve-fitting methods [Sun et al. 1993; Chen and Roussopoulos

1994] is to attempt to fit either a frequency distribution or a cumulative frequency

distribution of an individual attribute of a relation by a polynomial with a high

degree. The principle of least square error is used to find the best-fit coefficients of a

polynomial used. The earlier study called IASE (Instant and Accurate Size Estima-

tion) in [Sun et al. 1993] proposed to fit a frequency distribution via a polynomial

g(x) =
∑p2
i=−p1 aix

i where p which is equal to p1 + p2 is the degree of the polyno-

mial and p1, p2 ≥ 0. The subsequent study called ASE (Adaptive Size Estimation)

in [Chen and Roussopoulos 1994] proposed to use a polynomial g(x) =
∑p
i=0 aix

i

where p is the degree of the polynomial used to fit a cumulative frequency distribu-

Fundamentals and survey on query size estimation methods 53

tion. In fact, by IASE if p1 = 0 and p2 is equal to p which is used by ASE, then the

two polynomials are the same.

One of the main differences between these two studies is that the earlier study

proposed to scan an entire relation for the frequency distributions of all attributes

in the relation and then fit each frequency distribution obtained by the polynomial

defined above, whereas the subsequent study proposed to use already-processed

queries together with their query result sizes as the source for acquiring the cumula-

tive frequency distributions for all the attributes in the relation. This is a clever and

simple idea which no other previous studies on query size estimation had used. The

method by the subsequent study would be particularly useful, especially for very

large databases as scanning a large database for building up statistical parameters

for all relations in the database is definitely costly and time-consuming.

Table 2.3 shows a summary of the relationship between IASE and ASE. In the

table, the polynomial degree p used by IASE is 10 (p1 = 4 and p2 = 6) in all

experiments while the degree used by ASE is 6 also in all experiments.

feature IASE ASE

polynomial g(x) =
∑p2

i=−p1
aixi

∑p

i=0
aixi

where p = p1 + p2
polynomial degree p 10 6
fitting type freq. distribution cumulative freq. distribution
building stat. parameters scan relations use query feedback

Table 2.3: Relationship between IASE and ASE

Known as the oversmoothing problem (details of the problem are described in

Chapter 5), the main drawback of these curve-fitting methods is that many times

they cannot nicely fit (cumulative) frequency distributions and therefore, the result-

ing polynomial fails to effectively capture many of the points in the (cumulative)

frequency distribution. To overcome this problem we will propose in this thesis a

new curve-fitting method called local regression to improve the quality of fitting. In

fact, the earlier curve-fitting methods are known as a global regression and can be

viewed as a special form of the local regression proposed in this thesis. The details

of local and global regression will be described in depth in Chapter 5.

Fundamentals and survey on query size estimation methods 54

2.6.2 Query size estimation for selections using IASE

In this section, we describe the method of IASE to estimate query result sizes for

selections. IASE proposed to fit frequency distributions, as opposed to ASE which

proposed to fit cumulative frequency distributions. The details of fitting frequency

distributions by IASE are described below.

f(x) is a frequency distribution function of an attribute b# of R, namely: (x1,

f(x1)), (x2, f(x2)), . . . , (xd, f(xd)) where d is the number of distinct values of b#

which appear in R. Let xmax be the maximum value in the domain of attribute b#

and xmin the minimum value in the domain. IASE uses a polynomial of the form:

g(x) =
p2∑

i=−p1
aix

i (2.13)

to fit the frequency distribution f(x), where p = p1 + p2 is the degree of the poly-

nomial used and p1, p2 ≥ 0.

The coefficients ai’s in equation (2.13) can be found by the principle of least

square error. That is, choose some ai’s values to minimise:

d∑
i=1

(g(xi)− f(xi))
2 (2.14)

This is the unweighted or ordinary least square problem. Transform the sum of

squares in (2.14) to matrix form as follows:

(Y −XA)T (Y −XA) (2.15)

Solve equation (2.15) for the coefficients in A:

Â = (XTX)−1XTY (2.16)

where XT is the transpose of X. Note that Â is an approximate value of A. This is

due to the fact that the resulting coefficients ai’s obtained may or may not be able

to make the least squares in (2.14) completely equal to zero. The following are the

definitions for all the matrices in (2.16).

Fundamentals and survey on query size estimation methods 55

X is an d× (p+ 1) matrix and defined by:

X =




x−p11 x−p1+1
1 . . . x−1

1 1 x1 x2
1 . . . xp2−1

1 xp21

x−p12 x−p1+1
2 . . . x−1

2 1 x2 x2
2 . . . xp2−1

2 xp22

. 1

x−p1d x−p1+1
d . . . x−1

d 1 xd x2
d . . . xp2−1

d xp2d




(2.17)

Matrix X consists of elements with values xi’s through the polynomial (2.13). A is

a (p+ 1)× 1 matrix of the coefficients and Y is a d× 1 response matrix, consisting

of f(x1), f(x2), . . . , f(xd). The following are A and Y :

A =




a−p1

. . .

a−1

a0

a1

. . .

ap2




, Y =




f(x1)

f(x2)

. . .

f(xd−1)

f(xd)




(2.18)

After solving the ordinary least squares in (2.16) for the coefficients ai’s i =

−p1, . . . , p2, given the solved coefficients:

• sel(b# = x) is calculated by g(x) =
∑p2
i=−p1 aix

i, divided by N .

• sel(b# < x) is calculated by:

∫ x
xmin

g(x) dx∫ xmax
xmin

g(x) dx
(2.19)

The two integrations above do not give us a simple algorithmic solution, and

so we now describe how the expression in (2.19) can be transformed into a more

tractable form.

Since g(x) =
∑p2
i=−p1 aix

i, the indefinite integral of g(x) is defined by:

G(x) =
∫
g(x) dx =

∫ p2∑
i=−p1

aix
i dx =

p2∑
i=0

aix
(i+1)

(i+ 1)
+a−1 ln(x)+

−p1∑
i=−2

aix
(i+1)

(i+ 1)
(2.20)

Fundamentals and survey on query size estimation methods 56

G(x) can be called the cumulative frequency distribution of x and ln(x) is the natural

logarithm of x. The definite integral of g(x) between x′ and x′′ is defined by:

∫ x′′

x′
g(x) dx = G(x′′)−G(x′)

=


 p2∑
i=0

aix
′′(i+1)

(i+ 1)
+ a−1 ln(x)′′ +

−p1∑
i=−2

aix
′′(i+1)

(i+ 1)




−

 p2∑
i=0

aix
′(i+1)

(i+ 1)
+ a−1 ln(x)′ +

−p1∑
i=−2

aix
′(i+1)

(i+ 1)


 (2.21)

Using (2.21), equation (2.19) can be solved for sel(b# < x).

2.6.2.1 Algorithm and storage complexity for selections

Algorithm

For sel(b# = x), consider (2.13). To retrieve all the (p + 1) coefficients for the

equation, we need (p+ 1) steps, where p = (p1 + p2).

For sel(b# < x), consider (2.21). The equation also requires the retrieval of all

the (p+ 1) coefficients.

Thus, to calculate the query result size for a complex predicate query on R with

a certain number of attributes (≤ u) involved in the query, the worst case time

would be u∗ (p+1), where u is the number of attributes of R. But since p in (p+1)

is normally more than 1, the worst case time complexity would be O(u ∗ p).
The above analysis is based on using the same polynomial degree p for all u

attributes of R. Let pb1 , pb2, . . . , pbu be the various different polynomial degrees used

by each attribute of R. Suppose that all of the degrees are bound by p (i.e., pbi ≤ p

for all i = 1, 2, . . . , u. Then the worst case time complexity by using various different

polynomial degrees for all u attributes would still be O(u ∗ p).

Storage

Both the calculation for sel(b# = x) and sel(b# < x) shares the same (p + 1)

coefficients. Hence, the storage requirement for all u attributes of R is u ∗ (p + 1),

giving a storage complexity of O(u ∗ p).

Fundamentals and survey on query size estimation methods 57

2.6.3 Query size estimation for joins using IASE

IASE proposed an idea to fit a cartesian product between two join attributes by a

two-dimensional polynomial and reduce the resulting polynomial to suit a natural

join.

Let us consider a natural join between relation R1 and R2, namely R1.bx 1 R2.by.

A function ff(x, y) is defined by a cartesian product of fx(x)∗fy(y), where fx(x) and

fy(y) are a frequency distribution function of attributes R1.bx andR2.by, respectively.

Let dx be the number of distinct values of the join attribute R1.bx and dy the number

of distinct values of the join attribute R2.by.

Figure 2.7 shows the cartesian product between the two join attributes R1.bx

and R2.by, for all combinations between attribute values which appear in the two

relations under R1.bx and R2.by.

row # x’s val y’s val ff(x, y)
1 x1 y1 fx(x1) ∗ fy(y1)
2 x1 y2 fx(x1) ∗ fy(y2)
.
dy x1 ydy fx(x1) ∗ fy(ydy)
(dy + 1) x2 y1 fx(x2) ∗ fy(y1)
(dy + 2) x2 y2 fx(x2) ∗ fy(y2)
.
2dy x2 ydy fx(x2) ∗ fy(ydy)
.
r-th xl yk fx(xl) ∗ fy(yk)
.
(dx−1dy + 1) xdx y1 fx(xdx) ∗ fy(y1)
(dx−1dy + 2) xdx y2 fx(xdx) ∗ fy(y2)
.
m = (dxdy) xdx ydy fx(xdx) ∗ fy(ydy)

Figure 2.7: Cartesian product between two join attributes

A two-dimensional polynomial is used of the form:

g(x, y) =
px2∑

i=−px1

py2∑
j=−py1

aijx
iyj (2.22)

to fit the function ff(x, y), where px1, px2 ≥ 0 and py1, py2 ≥ 0. px = (px1 + px2)

is the degree of the polynomial for the first dimension and py = (py1 + py2) is the

degree of the polynomial for the second dimension.

Fundamentals and survey on query size estimation methods 58

In order to find the “optimal” coefficients aij ’s in (2.22), the principle of least

square error can be used to minimise:

dx∑
l=1

dy∑
k=1

(g(xl, yk)− ff(xl, yk))
2 (2.23)

The least square problem in (2.23) can be transformed into matrix form as follows:

(Y −XA)T (Y −XA) (2.24)

Solve equation (2.24) for the coefficients in A:

Â = (XTX)−1XTY (2.25)

where XT is the transpose of X. The following are the definitions for all the matrices

in (2.25).

X is a ((dx × dy)× ((px + 1)× (py + 1))) matrix and defined in Figure 2.8.

X =




X1,−px1
X1,(−px1+1) . . . X1,i . . . X1,(px2−1) X1,px2

X2,−px1
X2,(−px1+1) . . . X2,i . . . X2,(px2−1) X2,px2

. .
Xr,−px1

Xr,(−px1+1) . . . Xr,i . . . Xr,(px2−1) Xr,px2

. .
Xm−1,−px1

Xm−1,(−px1+1) . . . Xm−1,i . . . Xm−1,(px2−1) Xm−1,px2

Xm,−px1
Xm,(−px1+1) . . . Xm,i . . . Xm,(px2−1) Xm,px2




(2.26)

Figure 2.8: A matrix X

In the figure, m = dxdy and the submatrix Xr,i, where r = 1, 2, . . . , m and

i = −px1 , . . . , px2, is defined by:

Xr,i =
[
xily

−py1
k xily

(−py1+1)
k . . . xil . . . xily

(py2−1)
k xily

py2
k

]
(2.27)

Here is an example of a submatrix Xr,i, given the degree of the polynomial:

px2 = 2, px1 = 2, py2 = 2 and py1 = 2. Thus the polynomial would be like: g(x, y) =∑2
i=−2

∑2
j=−2 aijx

iyj. Suppose also that the r-th row is a combination of (xl, yk).

Fundamentals and survey on query size estimation methods 59

Xr,i=−2 x−2
l y−2

k x−2
l y−1

k x−2
l x−2

l y1
k x−2

l y2
k

Xr,i=−1 x−1
l y−2

k x−1
l y−1

k x−1
l x−1

l y1
k x−1

l y2
k

Xr,i=0 y−2
k y−1

k 1 y1
k y2

k

Xr,i=1 x1
l y

−2
k x1

l y
−1
k x1

l x1
l y

1
k x1

l y
2
k

Xr,i=2 x2
l y

−2
k x2

l y
−1
k x2

l x2
l y

1
k x2

l y
2
k

In each row of the example above, xil will be fixed for the whole row while yjk will

vary from j = −2,−1, 0, 1, 2.

A is a matrix of dimension (((px+1)× (py +1))× 1) and Y is a response matrix

of dimension ((dx × dy)× 1). Matrices A and Y are shown in Figure 2.9.

A =




a−px1 ,−py1

a−px1 ,(−py1+1)

. . .
a−px1 ,py2

a(−px1+1),−py1

a(−px1+1),(−py1+1)

. . .
a(−px1+1),py2

. . .

. . .

. . .
apx2 ,−py1

apx2 ,(−py1+1)

. . .
apx2 ,py2




, Y =




ff(x1, y1) = fx(x1) ∗ fy(y1)
ff(x1, y2) = fx(x1) ∗ fy(y2)

. . .
ff(x1, ydy) = fx(x1) ∗ fy(ydy)
ff(x2, y1) = fx(x2) ∗ fy(y1)
ff(x2, y2) = fx(x2) ∗ fy(y2)

. . .
ff(x2, ydy) = fx(x2) ∗ fy(ydy)

. . .
ff(xl, yk) = fx(xl) ∗ fy(yk)

. . .
ff(xdx , y1) = fx(xdx) ∗ fy(y1)
ff(xdx , y2) = fx(xdx) ∗ fy(y2)

. . .
ff(xdx , ydy) = fx(xdx) ∗ fy(ydy)




(2.28)

Figure 2.9: Matrices A and Y

After solving for the coefficients aij ’s, to suit the natural join, the fitting poly-

nomial g(x, y) is reduced to g(x, x):

g1=(x) = g(x, x) =
px2∑

i=−px1

py2∑
j=−py1

aijx
ixj

=
px2∑

i=−px1

py2∑
j=−py1

aijx
i+j

which can be read that x must be equal to y only in order for attribute values

between R1.bx and R2.by to be joinable by the natural join and produce tuples in

the output relation.

If we consider that attribute values from the two join attributes are not neces-

sarily equal to one another in order to be joinable and produce tuples in the output

relation, then this is not the equi-join or natural join as considered above. This is

Fundamentals and survey on query size estimation methods 60

other kinds of θ-joins where θ can be any of 6=, <,≤, >,≥ and in fact, by sharing the

same polynomial in (2.22), the method for join selectivity estimation proposed by

IASE can be used to approximate any θ-join selectivity between two join attributes

where θ can be any of =, 6=, <,≤, >,≥. (In retrospect, this is the main rationale

that IASE proposed to fit the cartesian product between two join attributes.)

Thus sel(R1.bx 1 R2.by), the selectivity of the natural join between R1.bx 1 R2.by

is defined by:

sel(R1.bx 1 R2.by) =

∫ high
low g1=(x) dx∫ xmax

xmin

∫ ymax
ymin

g(x, y) dx dy
(2.29)

where xmax and xmin are the maximum and minimum values of attribute R1.bx,

respectively. Likewise, ymax and ymin are the respective maximum and minimum

values of attribute R2.by. low in (2.29) is the larger value between xmin and ymin

and high is the smaller value between xmax and ymax.

The indefinite integral of
∫
g1=(x) dx is equal to:

∫
g1=(x) dx =

px2∑
i=−px1

py2∑
j=−py1

aijx
(i+j+1)

(i+ j + 1)
such that i+ j 6= −1

+
px2∑

i=−px1

py2∑
j=−py1

aij ln(x) such that i+ j = −1 (2.30)

and the indefinite integral of
∫ ∫

g(x, y) dx dy is equal to:

∫ ∫
g(x, y) dx dy =

∫ ∫ px2∑
i=−px1

py2∑
j=−py1

aijx
iyj dx dy

=
px2∑

i=−px1

py2∑
j=−py1

aijx
(i+1)y(j+1)

(i+ 1)(j + 1)
such that i and j 6= −1

+ a−1,−1 ln(x) ln(y)

+ ln(x)
py2∑

j=−py1

a−1,jy
(j+1)

(j + 1)
such that j 6= −1

+ ln(y)
px2∑

i=−px1

ai,−1x
(i+1)

(i+ 1)
such that i 6= −1 (2.31)

The two definite integrals in (2.29) (the numerator and denominator) can easily

be obtained by the substitutions of the derived integrals in (2.30) and (2.31) which

would then give the desired join selectivity sel(R1.bx 1 R2.by).

Fundamentals and survey on query size estimation methods 61

2.6.3.1 Algorithm and storage complexity for joins

Algorithm

For sel(R1.bx 1 R2.by), consider (2.30) and (2.31). Both equations require the

retrieval of all (px + 1) ∗ (py + 1) coefficients aij ’s, where px = px1 + px2 and py =

py1 + py2 . Hence, the time requirement for the retrieval is (px ∗ py + px + py + 1).

But since px ≤ px ∗ py and py ≤ px ∗ py, the time complexity would be O(px ∗ py).

Storage

It one were to store all the coefficients (px + 1) ∗ (py + 1) in the database profile

catalog for the calculation of sel(R1.bx 1 R2.by) in (2.29), this would not, in practice,

be a practical solution and the storage complexity for just a single join selectivity

sel(R1.bx 1 R2.by) would be O(px ∗ py), which is too expensive.

A better approach is to off-line precompute sel(R1.bx 1 R2.by) in advance and

store it in the profile catalog. This would then require only O(1).

As per relation in the join (R1.bx 1 R2.by), since R1.bx (and R2.by) must share

the (1-parameter) storage cost for the precomputed join selectivity stored in the

catalog, the storage complexity per relation in the join is O(1), if only one attribute

in R1 (and R2) can be a join attribute.

Note that the storage complexity O(1) above is introduced particularly for the

computation of the join. That is, this storage requirement for the join is separate

from that for selections O(u ∗ p).

2.6.4 Query size estimation for selections using ASE

ASE (Adaptive Selectivity Estimation) [Chen and Roussopoulos 1994] uses already-

processed queries to build a fitting polynomial to capture a cumulative frequency

distribution of an attribute b# of relation R.

The resulting polynomial will then be gradually adjusted when more queries are

processed by the database system. Already-processed queries are of the form l ≤
R.b# ≤ h — i.e., select tuples on R which satisfy the selection condition l ≤ b# ≤ h,

where l and h are a value in the domain of attribute b#, l is the lower bound of the

condition, h is the upper bound and l ≤ h. Let τ be the number of such queries

which have been processed by the database system. Query feedback from a query

Fundamentals and survey on query size estimation methods 62

(in those τ queries) is information about the query of the form (li, hi, si) where

i = 1, 2, ..., τ . li is the lower bound value of the ith query, hi is the upper bound

value of the query and si is the number of tuples in relation R which satisfy the

query.

The polynomial used by ASE is of the form:

g(x) =
p∑
i=0

aix
i (2.32)

where p is the degree of the polynomial. Alternatively, g(x) is the approximating

function to fit the frequency distribution of attribute b#. Recall that G(x) is the

cumulative frequency distribution function of g(x).

G(x) =
∫
g(x) dx =

∫ p∑
i=0

aix
i dx =

p∑
i=0

aix
(i+1)

(i+ 1)
(2.33)

Using G(x) in (2.33) and given a query with (l, h), the estimated number of tuples

in R which satisfy the query would be:

G(l, h) =
p∑
i=0

aih
(i+1)

(i+ 1)
−

p∑
i=0

ail
(i+1)

(i+ 1)
=

p∑
i=0

ai[
h(i+1)

(i+ 1)
− l(i+1)

(i+ 1)
] (2.34)

and this is the function which ASE uses to fit the cumulative frequency distribution

of b#. That is, ASE uses the function G(l, h) to fit the cumulative frequency distri-

bution of b# between low and high values (namely, li’s and hi’s, respectively) of the

already-processed queries.

The coefficients ai’s in equation (2.34) can be found by the principle of least

square error. That is, choose some ai’s values to minimise:

τ∑
i=1

(G(li, hi)− si)2 (2.35)

Transform the sum of squares in (2.35) to matrix form as follows:

(Y −XA)T (Y −XA) (2.36)

Fundamentals and survey on query size estimation methods 63

Solve equation (2.36) for the optimal coefficients in A:

Â = (XTX)−1XTY (2.37)

where XT is the transpose of X. The following are the definitions for all the matrices

in (2.37).

X is a τ × (p+ 1) matrix and defined by:

X =




(
h1
1

1
− l11

1
) (

h2
1

2
− l21

2
) . . . (

h
(p+1)
1

(p+1)
− l

(p+1)
1

(p+1)
)

(
h1
2

1
− l12

1
) (

h2
2

2
− l22

2
) . . . (

h
(p+1)
2

(p+1)
− l

(p+1)
2

(p+1)
)

.

(h
1
τ

1
− l1τ

1
) (h

2
τ

2
− l2τ

2
) . . . (h

(p+1)
τ

(p+1)
− l

(p+1)
τ

(p+1)
)




(2.38)

Matrix X consists of elements with values defined inside the squared brackets of the

cumulative distribution function in (2.34). A is a (p+1)×1 matrix of the coefficients

and Y is a τ × 1 response matrix. The following are A and Y :

A =




a0

a1

. . .

ap



, Y =




s1

s2

. . .

sτ




(2.39)

After solving the ordinary least squares in (2.37) for the coefficients ai’s i =

0, 1, . . . , p, given the solved coefficients:

• sel(b# = x) is calculated by g(x) =
∑p
i=0 aix

i, divided by N .

• Using G(l, h) in (2.34), sel(b# < x) is calculated by:

sel(b# < x) =
G(xmin, x)− g(x)

N
=

∑p
i=0 ai[

x(i+1)

(i+1)
− x

(i+1)
min

(i+1)
]− g(x)

N
(2.40)

The reason for the subtraction ofG(xmin, x) by g(x) is that the selection predicate

by G(xmin, x) is xmin ≤ R.b# ≤ x. This predicate indicates the inclusion of the

number of tuples with value x; since we only want any tuples with values less than

x, we have to subtract G(xmin, x) by g(x), which is the number of tuples with value

Fundamentals and survey on query size estimation methods 64

x.

2.6.4.1 Algorithm and storage complexity for selections

Algorithm

The analysis for the algorithm complexity here is the same as that for IASE in

Section 2.6.2.1. See that section for more details.

Thus, to calculate the query result size for a complex predicate query on R with

a certain number of attributes (≤ u) involved in the query, the worst case time

complexity would be O(u ∗ p), where u is the number of attributes of R.

Storage

The analysis for the storage complexity here is the same as that for IASE in Sec-

tion 2.6.2.1. Hence the storage complexity is O(u ∗ p).

2.6.5 Query size estimation for joins using ASE

ASE does not propose any method to deal with joins. The experimental results

have been done only with simple predicate queries – no results done for complex

predicate queries.

However, it is not very hard to see that the method proposed by IASE for joins

in Section 2.6.3 could also be used for ASE for this problem with a very small

modification. The following is our modification.

The two-dimensional polynomial used by IASE is of the form:

g(x, y) =
∑px2
i=−px1

∑py2
j=−py1

aijx
iyj

which is used to fit the function ff(x, y), the cartesian product between two join

attributes. If px2 and py2 both are equal to 0, px1 is equal to px and py1 is equal to

py, then the polynomial above by IASE would reduce to the equivalent form of the

polynomial used by ASE, namely g(x) =
∑p
i=0 aix

i. Thus here could be a polynomial

(a more strict form of the above) that can be used by ASE:

g(x, y) =
∑px
i=0

∑py

j=0 aijx
iyj

to fit the cartesian product function ff(x, y) in Figure 2.7.

Fundamentals and survey on query size estimation methods 65

Like IASE, the join selectivity sel(R1.bx 1 R2.by) by ASE is also:

sel(R1.bx 1 R2.by) =

∫ high
low g1=(x) dx∫ xmax

xmin

∫ ymax

ymin
g(x, y) dx dy

(2.41)

The indefinite integral of
∫
g1=(x) dx is equal to:

∫
g1=(x) dx =

px∑
i=0

py∑
j=0

aijx
(i+j+1)

(i+ j + 1)
(2.42)

and the indefinite integral of
∫ ∫

g(x, y) dx dy is equal to:

∫ ∫
g(x, y) dx dy =

∫ ∫ px∑
i=0

py∑
j=0

aijx
iyj dx dy

=
px∑
i=0

py∑
j=0

aijx
(i+1)y(j+1)

(i+ 1)(j + 1)
(2.43)

The two definite integrals in (2.41) (the numerator and denominator) can easily

be obtained by the substitutions of the derived integrals in (2.42) and (2.43) which

would then give the desired join selectivity sel(R1.bx 1 R2.by).

2.6.5.1 Algorithm and storage complexity for joins

Algorithm

The analysis for the algorithm complexity here is the same as that for IASE in

Section 2.6.3.1. See that section for more details. Hence, the time complexity would

be O(px ∗ py).

Storage

The storage computation for ASE is the same as that for IASE in Section 2.6.3.1.

Hence, as per relation in the join (R1.bx 1 R2.by), the storage complexity per relation

in the join is O(1), if only one attribute in R1 (and R2) can be a join attribute.

Fundamentals and survey on query size estimation methods 66

2.7 Machine learning methods

2.7.1 Review on machine learning methods

Machine learning is a sub-field of artificial intelligence that aims to develop algo-

rithms that derive relationships based on examples.

Quinlan [1993b] studied an extensive number of machine learning techniques and

proposed to combine two learning techniques: model-based learning and instance-

based learning into a new combined technique. In the study,

• Among three model-based learning approaches considered, linear regression

[Draper and Smith 1966], model trees [Quinlan 1992] and neural networks

[Rumelhart et al. 1986], the best approach to the model-based learning is

through model trees.

• The instance-based learning technique proposed in the study was adopted

from Aha et al. [1991].

According to the extensive results in the study using several real-world databases

from the University of California at Irvine [Merz and Murphy 1996], any of the

three combined learning techniques (with instance-based learning): (instance-based

+ linear regression), (instance-based + neural network) or (instance-based + model

tree) performs better than its individual techniques. For example, the combined

technique (instance-based + linear regression) outperforms the pure instance-based

learning technique and the pure linear regression.

Moreover, among the three combined learning techniques above, the combined

technique (instance-based + model tree) performs the best in many of the problem

domains considered. In this thesis, we call this best combined learning technique

M5. (In fact M5 was named after Quinlan [1993b] as one of his learning machines.)

Harangsri et al. [1997] proposed M5 for the problem of query size estimation

for selections. Using feedback from already-processed queries (called instances), a

model tree is created whose leaf nodes consist of linear regression functions (one

function for one leaf node). When a new query is required to estimate its size,

the most similar queries to the new query are picked up from the stored already-

processed queries and the result size of the new query is calculated based on (1)

Fundamentals and survey on query size estimation methods 67

some linear regression functions in the model tree and (2) the actual result sizes of

the most similar already-processed queries.

Harangsri et al. [1997, 1996c] compared the performance between M5 and a

curve-fitting method ASE (Adaptive Selectivity Estimation) [Chen and Roussopou-

los 1994]. It appeared that M5 significantly outperforms ASE. The first comparison

in [Harangsri et al. 1997] was made using simple predicate queries and the second

one in [Harangsri et al. 1996c] was made using complex predicate queries. (In fact,

the second comparison was made among 3 sampling-based methods and 3 non-

sampling-based methods: UNF (parametric), ASE (curve-fitting) and M5 (machine

learning).)

A main and important strength of the combined learning technique M5 is that

like its predecessor ASE, it does not require scanning databases to build statisti-

cal parameters. This strength is very important because in recent years current

databases have been growing larger and larger and scanning entire databases is

expensive and time-consuming.

Since the presentation below is slightly different from other sections, i.e., which

comprise query size estimation for selections and joins by one or two methods in

a category, here we give the structure for the presentation of M5 below. We start

in Section 2.7.2 by giving notations and definitions that we will use to describe the

combined machine learning technique M5. Next in Section 2.7.3 we apply the tech-

nique to the query size estimation problem for selections and with a small extension

to the estimation problem for joins in Section 2.7.4.

2.7.2 Notations and definitions

Field M5 deals with data items that are composed of a number of fields. In our

context, a field is simply a component of a simple predicate query. Recall

that a simple predicate query on relation R is one of the form: b# relopt x

where b# is an attribute of R, relopt is one of the relational operators in

{<,>,≤,≥,=, 6=} and x is a value in the domain of b#. Simple predicate

queries can be viewed as (attribute, operator, value) tuples composed of three

fields. For example, (age,≤, 23) and (department,=,“Computer Systems”)

are representations of two simple predicate queries.

Fundamentals and survey on query size estimation methods 68

Numerical field A field whose values are either integer or real. For example, the

third field of the query (age,≤, 23) is numerical.

Notice that under this machine learning scheme we do not consider age to

be numerical even though its underlying domain is clearly numerical; we are

concerned primarily wth the attribute’s name, not its semantics.

Discrete field A discrete field is one whose values primarily are strings. The first

and second fields of simple predicate queries are discrete as they always contain

attribute names and relational operators while the third field could be either

numerical or string. For example, the third field of query (departname,=

,“Computer Systems”) is discrete.

Training set of queries Q A set consisting of (query, size) pairs, where query is

a simple predicate query on a certain attribute name of relation R and size

is the result size of the query. All queries in the set each must be specified

only on that particular attribute name. For simple predicate queries on other

attribute names, the treatment is the same as that for the particular attribute

name shown below.

Those queries in the training set have been collected from already-processed

queries along with their result sizes; namely, each query qi in the set is of the

form:

qi : (b#, relopt, xscaled, sqi)

where b# is a certain attribute name of R and sqi is the result size of this query

(the number of tuples in R which satisfy the query). xscaled is a linearly scaled

version of x which appears in the original query:

xscaled = x−xmin

xmax−xmin

where 0 ≤ xscaled ≤ 1, xmin is the minimum value and xmax is the maximum

value of attribute b#.

Only values of the numerical field are scaled. Thus, for any simple predicate

query, only when the third field x is numerical (while the other two fields b#

Fundamentals and survey on query size estimation methods 69

and relopt are always discrete) will the values of x be scaled by the formula

above.

For numerical computation by M5, all discrete (string) values of a discrete field

each must be assigned a rank, i.e., a numerical value. By following Quinlan’s

proposal in [Quinlan 1993b], ranks of a discrete field can be given as follows.

Supposing in a training set Q, all values of the second field (which consists of

relational operators) are either of {=, <,>, 6=}, then the respective ranks of

the relational operators can be given by: {1, 2, 3, 4}.

Unseen query qu A simple predicate query qu : (b#, relopt, xscaled) whose result

size we want to estimate. After this unseen query is processed by a database

system, it may proceed to be added to the training set of queries Q. If the

third field of the unseen query is numerical, then the value of this field must

be scaled by the formula above prior to its size estimation.

2.7.3 Query size estimation for selections using M5

To approximate the size of an unseen query (the number of tuples in R which satisfy

the query), there are two main steps. First, a model tree for attribute b# must be

constructed through a training set of queries Q. Second, using (1) the model tree

constructed and (2) three queries selected from the training set Q which are of the

most similarity to the unseen query, the result size of the unseen query can then be

approximated. Here are brief descriptions of each step.

First step (model tree construction) The construction for a model tree is de-

scribed in Section 2.7.3.1 and the resulting tree with a number of leaf nodes

will contain one linear regression function for one leaf node.

The construction for a model tree usually occurs off-line. This is analogous to

building a histogram for attribute b# off-line.

Second step (size estimation) Given the model tree constructed in the first step

and an unseen query, the unseen query will be parsed down the tree to a

leaf node where the size of the query can be approximated using the linear

regression function in the leaf node. The query parsing and size approximation

is described in Section 2.7.3.2.

Fundamentals and survey on query size estimation methods 70

Given an unseen query, the selection of the three most similar queries to the

unseen query is described in Section 2.7.3.3. We then show how to combine

the three most similar queries together with their linear regression (leaf node)

functions to produce the estimated result size of the unseen query in Sec-

tion 2.7.3.4.

As usual, this step of query size estimation occurs at query optimisation time.

2.7.3.1 Constructing a model tree (Constructing leaf node functions)

Given in Figure 2.10 is the Partition algorithm to construct a model tree — the

tree with linear regression functions in its leaf nodes. The algorithm in the figure

was implemented to suit our own use for the query size estimation problem. Two

major differences between our modified version and the original version [Quinlan

1993b] are that our version here has no pruning procedure and no smoothing proce-

dure. Furthermore, there may be other different internal fine tunings, such as the

minimum number of queries in leaf nodes, the minimum error reduction to suppress

the recursive partitioning, etc.

The modified version runs as fast as the original version due to the same algo-

rithm complexity shared by both, but the estimation by the modified version is, in

general, better with various frequency distributions we have experimented with than

the estimation by the original version. This is due to the fine tunings we have made

so that the modified version particularly suits the problem of query size estimation.

The idea to construct a model tree through the Partition algorithm is to min-

imise intra-subset variation of class values, i.e., query result sizes in our case. (In

fact such an idea is similar to building a decision tree by C4.5 [Quinlan 1993a].)

The minimisation of intra-subset variation in the algorithm (see lines 13 and 25) is

implemented by:
partition∑
i=1

|Qi|
|Q| ∗ sd(Qi)

where Q is a training query set and Qi is the ith query subset of Q, where i =

1, 2, . . . , partition and partition is the number of all query subsets. All the query

subsets Qi’s are disjoint in the queries they contain. sd(Q) is the standard deviation

Fundamentals and survey on query size estimation methods 71

Procedure: Partition(Q)
input: Q, a simple predicate query set
output: query disjoint subsets of Q

if |Q| < a certain number of queries then1

return2

endif3

Qbest = ∅4

δbest = −∞5

partition = 06

for each field i = 1 to 3 do7

if ith field is numerical then8

Q = sort Q on ith field’s values in ascending order9

for each sorted value v of ith field in Q do10

partition Q into Q1 and Q2 where all values of ith field in Q1 ≤ v and in Q2 > v11

compute an expected error reduction δ:12

δ = sd(Q)−∑2
i=1

|Qi|
|Q| ∗ sd(Qi)13

if δ > δbest then14

Qbest = {Q1,Q2}15

δbest = δ16

partition = 217

endif18

endfor19

else20

partition Q into Q1,Q2, . . . ,Qd where d is the number of distinct values21

of ith field; namely, in each query subset Qi after partitioning,22

the values of ith field now will be the same23

compute an expected error reduction δ:24

δ = sd(Q)−∑d
i=1

|Qi|
|Q| ∗ sd(Qi)25

if δ > δbest then26

Qbest = {Q1,Q2, . . . ,Qd}27

δbest = δ28

partition = d29

endif30

endif31

endfor32

if (
sd(Q)−

∑partition

i=1

|Qi|
|Q| ∗sd(Qi)

sd(Q)) ∗ 100 < a certain percentage where each Qi ∈ Qbest then33

return34

endif35

for each query subset Qi ∈ Qbest do36

Partition(Qi)37

endfor38

Figure 2.10: Partitioning algorithm

Fundamentals and survey on query size estimation methods 72

of all the result sizes of queries in the query set Q calculated by:

sd(Q) =

√√√√∑|Q|
i=1(sqi − s̄)
|Q| − 1

where s̄ =
∑|Q|

i=1
sqi

|Q| .

The fundamental rationale behind for the intra-subset variation is that the query

result sizes in each partitioned query subset Qi will be most similar to one another;

in other words, the variation of the sizes in the same query subset will be small.

Note that this rationale is similar to that in building any kind of serial histograms

by grouping distinct values with their frequencies into histogram buckets such that

the variation of frequencies – frequencies can be viewed as result sizes of the queries

of form (b#,=, x) – in the same bucket is low, thereby assisting in improving the

quality of query size estimation.

The algorithm recursively partitions the training set of queries Q into query

subsets Q1,Q2, . . . ,Qpartition (see the details of the algorithm in Figure 2.10). The

recursion stops in 2 cases (see lines 1 and 33). The first case is when there are not

enough a number of queries in Q — less than a certain minimum number of queries

in the set. The second is when the variation of result sizes in all the partitioned

query subsets Qi’s is similar to one another, i.e.,

(
sd(Q)−∑partition

i=1
|Qi|
|Q| ∗ sd(Qi)

sd(Q)
) ∗ 100 < a certain percentage

which relatively makes no significant difference from the overall variation of all the

result sizes in the entire query set Q.

Recall that simple predicate queries consist of three fields: (an attribute name, a

relational operator, a constant value). The partitioning of Q into its query subsets

depends upon whether the current ith field is numerical or discrete. If numerical,

then do a binary partitioning on Q into Q1 and Q2 (see line 11). If not, then do a

multi-way partitioning on Q into Q1,Q2, . . . ,Qd (see line 21), where d is the number

of distinct values of the ith field in the query set Q.

Figure 2.11 shows an example of a model tree for attribute b1 constructed by

the Partition algorithm. All the query subsets after the algorithm has terminated

Fundamentals and survey on query size estimation methods 73

reside in the leaf (rightmost) nodes of the tree. The labels A, B, C, . . ., L show

all the leaf nodes of the tree.

root

=

1

b1 � 0:362

A: b1 � 0:09

b1 > 0:09

3
B: b1 � 0:27

C: b1 > 0:27

4

D: b1 > 0:36

<

E: b1 � 0:27

F: b1 > 0:27

>

G: b1 � 0:27

H: b1 > 0:27

6=

b1 � 0:36

I: b1 � 0:09

b1 > 0:09

J: b1 � 0:18

K: b1 > 0:18L: b1 > 0:36

Figure 2.11: A model tree for attribute b1 constructed by the algorithm Partition

Here is the description of how the model tree in Figure 2.11 was constructed.

Recall that the query set Q contains all queries of the form (b# relopt x). Starting

from the root node, the entire query set Q was first multi-way partitioned into

4 query subsets, i.e., the query subset with “=” only as its relational operator,

the query subset with “<” only as its operator, and so on. This is a multi-way

partitioning.

In the next level (after the relational operator level), those 4 query subsets were

then binary partitioned on their constant values, i.e., values of x. For instance, after

the “<” level, at node E the constant values of b1 must be less than or equal to 0.27

while at node F those of b1 must be more than 0.27. This is a binary partitioning.

It is possible that any query subset at this stage can still be recursively parti-

tioned further until either of the two stopping conditions of the algorithm becomes

true. For example, at node b1 ≤ 0.36 the query subset at this node was binary

partitioned into 2 query subsets – the subsets with b1 ≤ 0.09 and with b1 > 0.09.

Fundamentals and survey on query size estimation methods 74

2.7.3.2 Result size estimation function in a leaf node

Suppose we have a query:

q : b1,=, 0.29

and we want to estimate its result size. The query will be parsed down the con-

structed model tree towards a leaf node. Shown in Figure 2.11, the path 1 → 2 →
3 → 4 terminated in the oval leaf node C is the one through which the query q

traverses. The traversal proceeds as follows: path 1 stems from the fact that this

model tree is for attribute b1 and the query has “=” as its relational operator, path

2 is due to the fact that the constant value 0.29 of b1 is less than 0.36, path 3 is due

to the fact that the constant 0.29 of b1 is more than 0.09 and path 4 is due to the

fact that the constant 0.29 of b1 is more than 0.27.

The oval and other leaf nodes (A, B, C, . . ., L) with their own query subsets

have their own linear regression functions for query result size estimation. That is,

each leaf node with a query subset Qi has a function of the form:

g(q) = a0 + a1xq,1 + a2xq,2 + a3xq,3 (2.44)

where xq,i, i = 1, 2, 3 takes on either (1) a numerical scaled value if the ith field of

query q is numerical or (2) a rank of the discrete value if the ith field of query q is

discrete. (Recall that all values of a numerical field in the training query set must

be scaled to have values between 0 and 1.) The one-to-one correspondence between

a query q and xq,i’s values are: (b1,=, 0.29) ≡ (xq,1, xq,2, xq,3).

With a query subset Qi in a leaf node, the coefficients ak, k = 0, 1, 2, 3 in (2.44)

are ones of the least square error found by minimising the following sum of squares:

|Qi|∑
j=1

(g(qj)− sqj)2 (2.45)

where sqj is the actual result size of the jth query in query subset Qi. Transform

the sum of squares above to a solution of least square error as follows:

Â = (XTX)−1XTY (2.46)

Fundamentals and survey on query size estimation methods 75

where XT is the transpose of X. The following are the definitions for all the matrices

in (2.46).

X =




1 xq1,1 xq1,2 xq1,3

1 xq2,1 xq2,2 xq2,3

1

1 xq|Qi|,1
xq|Qi|,2

xq|Qi|,3



, A =




a0

a1

a2

a3



, Y =




sq1

sq2

. . .

sq|Qi|




(2.47)

where X is a (|Qi| × 4) matrix, A is a (4× 1) matrix and Y is a (|Qi| × 1) matrix.

After solving the ordinary least squares in (2.45) for the coefficients ak’s k =

0, 1, 2, 3, given the solved coefficients, g(q) in (2.44) as the linear regression function

in the leaf node to which query q belongs, can be used to approximate the query

size of q.

2.7.3.3 Selecting most similar queries

Given an unseen query qu, we show how to compute a similarity value simval be-

tween the unseen query qu and a query qj in the training query setQ by the algorithm

shown in Figure 2.12.

Procedure: Compute Simval(qu, qj ∈ Q)

input: Q, a simple predicate query set,
qu, an unseen query,
qj , a query in the training set Q

output: simval similarity value of query qj to qu

distance = 0
for each field i = 1 to 3 do

if ith field is discrete then
if ith field’s value of the unseen query qu is different from that of query qj then
distance = distance+ 1

endif
else

∆ = (xqu,i − xqj ,i), i.e., the difference between ith field’s values of the unseen query qu and query qj
distance = distance+ ∆2

endif
endfor
simval = 1√

distance

Figure 2.12: An algorithm to compute a similarity

Note that in the algorithm, if the resulting distance after the for loop is zero or

approaches zero, the value of simval will be ∞ in which case the queries qu and qj

are either the same query or very similar. As a result, this query qj will be selected

as one of the most similar queries to qu.

Fundamentals and survey on query size estimation methods 76

By iterating through the whole query set Q query by query, three queries from

Q with the highest similarity values will be chosen as the most similar to the unseen

query. The reason in choosing 3 queries instead of other numbers is twofold [Quinlan

1996]:

• Choosing any number has a tradeoff between bias and variance (see the CART

book [Breiman et al. 1984] for the relationship between bias and variance);

namely, higher numbers have higher bias but lower variance.

• Generally, the instance-based learning as a KNN (K Nearest Neighbor) method

[Duda and Hart 1974; Dasarathy 1991] avoid even numbers, since that number

is more likely to lead to ties. Using 1 nearest neighbour (query) is generally

considered to have too high variance.

2.7.3.4 Combining leaf node functions and most similar queries

We then adjust the actual result sizes sqi’s of the three most similar queries to the

unseen query qu by:

s̃qi = sqi − (g(qi)− g(qu)) ; i = 1, 2, 3

prior to combining them to produce the estimated result size ŝqu of qu. The combi-

nation of the adjusted values s̃qi’s is done by:

ŝqu =
3∑
i=1

s̃qi ∗ wqi ; wqi =
simvalqi∑3
i=1 simvalqi

. (2.48)

which basically averages the estimated result size by taking the weights of the most

similar queries into consideration. Hence the selectivities sel(b# < x) and sel(b# =

x) are calculated by ŝqu

N
, where qu is either (b#, <, x) or (b#,=, x).

At this point, it is appropriate for one to ask:

• Why don’t we use g(qu) in (2.44) as the estimated query size ŝqu? This esti-

mation is the pure model tree learning technique.

Fundamentals and survey on query size estimation methods 77

• Or why don’t we use:

ŝqu =
3∑
i=1

sqi ∗ wqi ; wqi =
simvalqi∑3
i=1 simvalqi

as the estimated query size ŝqu? This estimation is the pure instance-based

learning technique.

The answer is twofold:

• Quinlan [1993b] noted that the function g(q) allows taking into account the

difference between the unseen query qu and a most similar query qi, i.e.:

g(qi)− g(qu)

and if g(q) is correct, then the adjusted value s̃qi:

s̃qi = sqi − (g(qi)− g(qu))

should be a better value in favour of the unseen query than the quantity sqi

itself. However, since each most similar query qi is not the unseen query qu

itself, the combination of their adjusted values in (2.48) based on their weights

(this is the main principle of KNN) would produce a good estimate for the

size of the unseen query.

• The second answer is pragmatic: both the experiments in [Quinlan 1993b] and

our own experiments in [Harangsri et al. 1997, 1996c] show that formula (2.48)

for the combined learning technique (instance-based + model tree) yields bet-

ter results than its individual learning techniques.

2.7.3.5 Algorithm and storage complexity for selections

Algorithm

In the worst case of constructing a model tree, the constructed tree will be a binary

tree, i.e., without any multi-way partitioning in the internal nodes. This will make

the height of the tree higher than usual, as compared to a model tree with multi-way

partitioning internal nodes. Alternatively, multi-way partitioning nodes generally

Fundamentals and survey on query size estimation methods 78

reduce the height of a model tree. Below, the time complexity analysis is based on

the worst case binary tree as a model tree.

Let qu be either (b# = x) or (b# < x). To calculate sel(qu), consider (2.48).

sel(qu) can be found by the following two steps.

1. selecting the three most similar queries to qu from the training query set Q.

This requires |Q| similarity calculations to find the most similar queries, giving

O(|Q|).

2. parsing each of the most similar queries qi, i = 1, 2, 3 and the unseen query qu

down the model tree to a leaf node for a leaf node function g(q).

Let leaf nodes be the number of leaf nodes in a model tree which is calculated

by:

leaf nodes =
|Q|

the average number of queries in each leaf node

Using the worst case binary tree as a model tree for the analysis here, since

a model tree constructed by the Partition algorithm in Figure 2.10 will be

reasonably balanced, this then requires h steps:

h = log2 (leaf nodes) (2.49)

to traverse down to a leaf node of the balanced binary model tree [Manber

1989a]. h is also the height of the tree.

Thus, the time requirement to parse the three most similar queries and the

unseen query is 4 ∗ h = 4 ∗ log2 (leaf nodes). By ignoring the constant factor

4, log2 (leaf nodes) is bounded by log2 |Q|.

Since the growth rate of |Q| in step 1 is more than log2 |Q| in step 2, the time

complexity in calculating sel(qu) is bounded by O(|Q|).
Thus, to calculate the query result size for a complex predicate query on R with

a certain number of attributes (≤ u) involved in the query, the worst case time

complexity would be O(u ∗ |Q|), where u is the number of attributes of R.

Fundamentals and survey on query size estimation methods 79

Storage

The analysis for storage requirement is based on the balanced binary tree above as

the worst case model tree. The total storage requirement is:

model tree︷ ︸︸ ︷
storage size for a balanced binary tree +

instance-based︷ ︸︸ ︷
storage size for |Q| queries (2.50)

Storage size for a balanced binary tree

For a balanced binary tree, the number of internal and leaf nodes is calculated by

Table 2.4.

Using the geometric series [Manber 1989b], the total of Ta-level nodes
0 20 = 1
1 21 = 2
2 22 = 4

.
h 2h = 2h

Table 2.4: Tree
nodes

ble 2.4 is equal to:

1 + 2 + 4 + . . .+ 2h = 2h+1 − 1

= 2h ∗ 2− 1 (2.51)

Substituting the height h of the balanced tree in (2.49) to (2.51),

we obtain:

leaf nodes ∗ 2− 1 (2.52)

as the total number of internal and leaf nodes for the tree. Each of these nodes in

h levels of the tree would require a fixed size, say c1, of storage for storing a cutting

point (i.e., one node with one cutting point). Hence the storage size for all the

cutting points is: c1 ∗ (leaf nodes ∗ 2− 1), assuming that each leaf node also stores

a cutting point.

Leaf nodes need to store information for the linear regression functions. This

simply requires storing the four coefficients a0, a1, a2 and a3 in each leaf node. The

total storage requirement for all leaf nodes is thus 4 ∗ leaf nodes.
Taking all of the preceding into account, the total storage size for a balanced

binary model tree is:

c1 ∗ (leaf nodes ∗ 2− 1) + 4 ∗ leaf nodes

Fundamentals and survey on query size estimation methods 80

Storage size for |Q| queries

Each query in |Q| queries requires a fixed storage size, say c2, to store a simple

predicate query. Hence all |Q| queries would require: c2 ∗ |Q|.
Thus the total storage requirement in (2.50) is:

c1 ∗ (leaf nodes ∗ 2− 1) + 4 ∗ leaf nodes+ c2 ∗ |Q|

which gives an O(|Q|) storage complexity.

Both the calculation for sel(b# = x) and sel(b# < x) shares a common model tree

for attribute b# with the storage complexity O(|Q|). Hence, the storage complexity

for all u attributes of relation R is O(u ∗ |Q|).

2.7.4 Query size estimation for joins using M5

The following is an approach to using existing model trees to estimate the selectivity

sel(R1.bx 1 R2.by) of a natural join between attributes R1.bx and R2.by.

Assume that two model trees are existing for the join attributes R1.bx and R2.by.

We can also imagine that a model tree encompasses an overall function which can

approximate the frequency distribution of an attribute. Thus the two model trees

have two such functions gx(x) and gy(y) for the join attributes R1.bx and R2.by,

respectively. Figure 2.13 shows the two functions.

fr
eq

ue
nc

y
di

st
ri

bu
tio

n

distinct values

low +∆ +2∆ +3∆ +4∆ +(d− 2)∆ high

gx(x)

gy(y)

gx(xi)

gy(xi)

Figure 2.13: Join selectivity calculation

Fundamentals and survey on query size estimation methods 81

Recall that xmax and xmin are the maximum and minimum values of attribute

R1.bx, respectively. Likewise, ymax and ymin are the respective maximum and mini-

mum values of attribute R2.by. low in Figure 2.13 is the larger value between xmin

and ymin and high is the smaller value between xmax and ymax. dx is the number of

distinct values of attribute R1.bx and dy is the number of distinct values of attribute

R2.by. d is the smaller value between dx and dy. NR1 and NR2 are the number of

tuples of R1 and R2, respectively. The increment value ∆ shown in the figure is

calculated by: (high−low)
(d−1)

.

sel(R1.bx 1 R2.by), the selectivity of the natural join between R1.bx 1 R2.by is

thus calculated by:

sel(R1.bx 1 R2.by) =

∑d
i=1 gx(xi) ∗ gy(xi)

(NR1 ∗NR2)
(2.53)

where xi = low + (i − 1) ∗ ∆. Figure 2.13 helps to understand how the formula

(2.53) works. The height of the two graphs – denoting the approximate frequency

distributions of the two join attributes – basically denotes the number of tuples from

R1.bx and that from R2.by which are joinable, i.e., having a common value. In the

figure, we use the notations gx(xi) and gy(xi) as the heights of the two graphs. The

two graphs start from the low value and increment by ∆ to the high value — i.e.,

low, (low + 1 ∗∆), (low + 2 ∗∆), . . . , high, where high = (low + (d − 1) ∗∆). The

height of a graph, say gx(xi), the approximate number of tuples with value xi can

always be obtained by posing an unseen query against its model tree qu : (bx,=, xi),

where i = 1, 2, . . . , d. If xi is numerical, then xi must be scaled to a value between

0 and 1 before its use.

2.7.4.1 Algorithm and storage complexity for joins

Algorithm

For sel(R1.bx 1 R2.by), consider (2.53). To obtain gx(xi) (and gy(xi)), the unseen

query qu : (bx,=, xi) (and qu : (by,=, xi)) must be posed against the model tree for

R1.bx (and R2.by). This requires O(|Q|) which is the same as the analysis for the

time complexity of sel(b# < x) and sel(b# = x).

By taking into account the repetition of d times in (2.53) for all distinct values

Fundamentals and survey on query size estimation methods 82

in the common join domain, the time complexity for sel(R1.bx 1 R2.by) would be

O(d ∗ |Q|).

Storage

The storage cost for sel(R1.bx 1 R2.by) shares the same cost for the model tree

for selections on R1.bx (and on R2.by), which is O(|Q|). See the analysis in Sec-

tion 2.7.3.5.

As per relation in the join (R1.bx 1 R2.by), the storage complexity per relation

in the join is O(|Q|), if only one attribute in R1 (and R2) can be a join attribute.

2.8 Sampling methods

2.8.1 Review on sampling methods

Over the last decade, sampling methods have received considerable attention from

many researchers. Compared with other size estimation methods described earlier,

there are a larger number of studies, e.g., [Hou et al. 1988, 1989; Lipton et al. 1990;

Haas and Swami 1992, 1995] done in support of these sampling-based methods.

Some advantages of sampling-based methods are:

• They use the least amount of storage to store statistical parameters in the

database profile catalog.

• They can handle dependence among attributes due to the fact that whole tu-

ples are considered. Other multi-dimensional techniques (e.g., multi-dimensional

histograms [Muralikrishna and DeWitt 1988; Poosala and Ioannidis 1997], the

multi-dimensional curve-fitting method [Sun et al. 1993]) can also deal with

dependence among attributes of a relation but require significant storage in

the catalog for statistical parameters.

• They do not rely on the underlying data model used by a database system.

• Compared with many other approaches, sampling-based algorithms for selec-

tivity estimation are very simple to implement – perform sampling over a

number of relations, i.e., one relation or more and use the resulting sample

relation(s) to estimate a selectivity.

Fundamentals and survey on query size estimation methods 83

• They are supported by a well-developed statistical theory which allows the

determination of the amount of sampling required to achieve a certain error

bound in the size estimate.

Most previous work [Hou et al. 1988, 1989; Lipton et al. 1990; Hou et al. 1991b;

Haas and Swami 1992, 1995] on sampling-based methods has focused on simple

random sampling (SRS) whereby each tuple in a relation has an equal probability

to be selected into a sample. Simple random sampling can be performed under two

distinct regimes. The first is with replacement; that is, the tuple which has already

been selected from the population can subsequently be selected again. We call this

scheme of sampling SRSWR. Most previous SRS work uses this scheme due to (1)

the aim of SRS that each tuple must be selected with the same probability and

(2) its simpler implementation. The second scheme does not allow replacement;

any tuple already selected can not be selected again. This scheme which we call

SRSWOR requires a more sophisticated data structure to do sampling. The simple

random sampling methods proposed so far mainly differ from one another primarily

in their stopping conditions, i.e., when to stop sampling.

Towards the end of this section, we review 4 variants of sampling methods: fixed-

step, time-constrained, double and sequential sampling. Generally any sampling

method can be used for both selection and join query size estimation problems.

In what follows, we will, however, review such 4 variants in terms of selection size

estimation.

We begin by defining some notations. N is the cardinality (size) of a relation

R and n is the size of a sample relation R′ from R. Let Y be the selectivity of a

complex predicate query defined by Y =
∑N

i=1
yi

N
where yi = 1 if the ith tuple in R

satisfies the query; otherwise yi = 0. Ŷ , the estimated selectivity of the query, is

defined similarly to Y , namely, Ŷ =
∑n

i=1
yi

n
. In the sampling literature, Y and Ŷ

are called the population mean and sample mean, respectively.

Let S2 be the population variance defined by: S2 =
∑N

i=1
(yi−Y)2

(N−1)
. With a sample

size n, let S2
n be a sample variance defined by: S2

n =
∑n

i=1
(yi−Ŷ)2

(n−1)
. Let ε be a relative

error, typically whose value provided is between 0 and 1, such that with a certain

confidence level, the error of the estimated Ŷ yielded by a sampling method is within

the relative error desired, i.e., the sampling method should guarantee abs(Y−Ŷ)

Y
≤ ε,

Fundamentals and survey on query size estimation methods 84

where abs() is the absolute value of the value given.

Fixed-step sampling

Hou and Ozsoyoglu wrote a series of papers on applying sampling techniques, more

particularly simple random sampling techniques, to the query size estimation prob-

lem. In [Hou et al. 1988; Hou and Ozsoyoglu 1991], the goal of the work is to use

simple random sampling to estimate COUNT(E) queries where E is an arbitrary

relational algebra expression. Apparently, the stopping condition is not the main

focus of the work and thus a sample size n selected is left to the discretion of the

database system administrator or a privileged user. Hence, sometimes the size of

n selected can be too large (oversampling) or too small (undersampling) and this

affects the accuracy of estimated query result sizes. This way of sampling by fixing

the number of steps (the size of n) in advance is called fixed-step sampling [Haas

et al. 1996].

The authors also proposed an enhancement called cluster sampling to the simple

random sampling proposed. That is, the unit of sampling is disk page or disk block,

instead of a tuple in a relation. The former is called page-level sampling and the

latter is called tuple-level sampling. The improvement is because of the fact that

when the database I/O system interacts with the file system, the disk page, not the

tuple, is fetched into main memory for processing and thus all tuples in a disk page

would be exploited, instead of using only one tuple in the disk page and probably

ignoring the remaining tuples if the tuple-level sampling is used. As a consequence,

a substantial amount of the I/O time can be saved.

Time-constrained sampling

Hou et al. [1989] extended their work (fixed-step sampling) to the real-time en-

vironment where time constraints are an important factor to query processing in

real-time database systems. The sample size n, which is not the main focus of the

earlier work, now is the main one of this work and is controlled by a time quota

given. The time-control algorithm will iteratively perform sampling until no time

remains. This way of sampling can be called time-constrained sampling.

Fundamentals and survey on query size estimation methods 85

Double sampling

After the time-constrained query size estimation, Hou et al. [1991a] also proposed

an error-constrained size estimation algorithm. Given a query and a relative error

ε, the proposed algorithm which is a double sampling [Cox 1952] does a two-stage

sampling. In the first stage, use a small sample size n1 to approximate the selectivity

of the query, i.e., Ŷ n1 and calculate the sample size n required by:

n = (
(t
ε
)2(1− Ŷ n1)

Ŷ n1

+
3

Ŷ n1(1− Ŷ n1

) +
t2

ε2Ŷ n1n1

where t is the abscissa of the normal curve that cuts off an area α at the tail and α

is a risk of error not within the relative error ε given.

In the second stage, if n ≤ n1, then there is no more sampling to be done and the

algorithm will terminate. That is, the sample size n1 is sufficient for this query. At

this point, substituting n in equation (2.54) below by n1 would give the estimated

selectivity for the query. If n > n1, sample the remaining tuples n − n1 which are

not yet taken. The selectivity of the query is then estimated by:

Ŷ = (
s

n
− (

ε

t
)2 s

(n− s)) (2.54)

where s (≤ n) is the total number of tuples in the sample which satisfy the query.

One problem with this algorithm is that it does not not address an oversampling

problem – too much sampling can occur when the selectivity of a query is very small.

The sequential sampling algorithms below do address this problem.

Sequential sampling

Lipton and Naughton [1989]; Lipton et al. [1990]; Lipton and Naughton [1990] pro-

posed what they call adaptive sampling. In fact, the adaptive sampling is a sequen-

tial sampling — one decides whether to continue or stop sampling after each unit

of sampling is obtained. All sequential sampling algorithms described below are

error-constrained, i.e., by a given relative error ε.

It is well known that sequential sampling algorithms excels fixed-step sampling

algorithms in terms of the sample size required [Olken 1993]. This is as a consequence

of the fact that in the derivation for a formula for a sample size n required, sequential

Fundamentals and survey on query size estimation methods 86

sampling algorithms primarily take into account the population parameters, e.g.,

variance and mean. The stopping condition of the adaptive sampling is defined by:

subcond. 1︷ ︸︸ ︷
s ≥ k1b(

1

ε
+ 1)

1

ε
or

subcond. 2︷ ︸︸ ︷
n ≥ k2h

2 (2.55)

where b > S2

Y
(the upper bound value of b is 1), h = 100∗ ε as well as k1 and k2 are a

constant which can be found in [Lipton et al. 1990]. Roughly, both constants k1 and

k2 were derived from a number of sample relations under two cases. The first case

is when the distribution of Ŷ ’s calculated from the samples around Y is normally

distributed. The second case is when such a distribution is not.

Whenever either of the two subconditions in (2.55) is satisfied, the algorithm will

terminate. The first subcondition is to deal with the number of tuples that satisfy

the given query while the second subcondition is to deal with the number of tuples

sampled so far. The reason one needs the second subcondition is that in case the

selectivity of a query is very small, the right hand side of the first subcondition,

i.e., k1b(
1
ε

+ 1)1
ε

will yield a very high value perhaps even more than the size of the

relation itself, hence leading to the oversampling problem. The second subcondition

serves as a sanity bound – bound to assure that the oversampling problem will not

arise. When the problem does occur – hence, the first subcondition will always be

false –, the second subcondition will take effect. That is, this subcondition will

control the termination of the algorithm.

The main disadvantage of the adaptive sampling algorithm is that the value of

b must be computed a priori via a pilot sample in the relation on which the query

is posed. The precomputed value b is then used in the stopping condition (2.55).

Since the relation may be dynamically changed over time, the precomputed b may

become outdated and no longer fit nicely with the current data in the relation. As

a result, the sampling for selectivity estimation of queries on the relation which is

based on the precomputed b can sometimes be too large (oversampling) or too small

(undersampling).

Haas and Swami in [Haas and Swami 1992; Haas et al. 1993; Haas and Swami

1995; Haas et al. 1996] noticed the problem with the a priori bound b and proposed

an improved stopping condition by taking into consideration the information in the

Fundamentals and survey on query size estimation methods 87

sample obtained so far, i.e., the mean and variance. Their stopping condition is:

subcond. 1︷ ︸︸ ︷
n ≥ 1 and

subcond. 2︷ ︸︸ ︷
S2
n > 0 and

subcond. 3︷ ︸︸ ︷
ε max(s, nψ) ≥ t(nS2

n)
1
2 (2.56)

When all of the three subconditions are true, then the sampling algorithm will

terminate. When the selectivity of a given query is very small, then the value of s,

the number of tuples thus far which satisfy the query, in the third subcondition will

grow very slowly. Given the very small selectivity, supposing that the given third

subcondition is just:

εs ≥ t(nS2
n)

1
2

(i.e., without the sanity bound term nψ) then the algorithm will cause the oversam-

pling problem because the rate of growth to s is so slow that even if the sample size

n reaches a certain maximum size limit which is allowed for sampling, the algorithm

still does not terminate.

The term nψ introduced in max(s, nψ) in the third subcondition will solve the

oversampling problem. That is, nψ will become more than s (as the value of n is

always incremented every time a new tuple is sampled, while the value of s may or

may not be incremented) and thus make the whole subcondition become true and

the algorithm terminates.

2.8.2 Query size estimation for selections using SS

Ling and Sun [1995] compared three representative simple random sampling algo-

rithms with replacement. Their analytical and experimental work demonstrated

that the most effective algorithm is the sequential algorithm proposed in the series

of papers by Haas and Swami [Haas and Swami 1992; Haas et al. 1993; Haas and

Swami 1995; Haas et al. 1996]. This sequential sampling algorithm for complex

predicate queries is shown in Figure 2.14.

Given a complex predicate query Q, the algorithm in Figure 2.14 will sample

tuples of the relation specified in the query tuple by tuple until the stopping condition

becomes true. The stopping condition in line 16 is the one in equation (2.56).

The variance S2
n calculated from the information in the sample so far is equal to

Fundamentals and survey on query size estimation methods 88

Procedure: Selection Selectivity Estimation
input: Q = a complex predicate query,

0 < β ≤ 1 = maximum sampling fraction,
ε = relative estimation error,
ψ ≥ 0 = sanity bound

var: s = number of tuples in the sample relation which satisfy Q (s ≤ n),
n = total number of tuples in the sample relation so far,
y = {0, 1}, 1 if the tuple sampled satisfies Q; 0 otherwise

output: the estimated selectivity of Q

n = 0; s = 0; w = 01

repeat2

y = 03

obtain an SRS tuple from R4

if the tuple satisfies Q then5

s = s+ 16

y = 17

endif8

n = n+ 19

w = (n−1)
n w + (s−ny)2

(n+1)n10

if the sample size n > 1 then11

S2
n = w

(n−1)12

else13

S2
n = 014

endif15

if S2
n > 0 and ε max(s, nψ) ≥ t(nS2

n)
1
2 then16

return s
n17

endif18

until n ≥ d(β ∗N)e19

return s
n20

Figure 2.14: Algorithm for selectivity estimation for selections

S2
n = w

(n−1)
where w := (n−1)

n
w + (s−ny)2

(n+1)n
in line 10. That is, every time a new tuple

is sampled, the new variance S2
n will be updated by the new w and n.

Note that line 11 has the condition to protect the division by zero by S2
n = w

(n−1)

when the sample size n is equal to 1. When n is equal to 1, i.e., in the first iteration

of the repeat-until loop, then S2
n would be zero.

For a practical reason, we added another stopping condition in line 19 of the

algorithm to stop sampling whenever the sample size so far exceeds the maximum

sample size limit (d(β ∗ N)e) where de is the ceiling of a value, regardless of what

the stopping condition in line 16 is like.

Fundamentals and survey on query size estimation methods 89

2.8.2.1 Algorithm and storage complexity for selections

Algorithm

Consider the repeat-until loop in Figure 2.14. In the worst case, the algorithm will

terminate at the maximum sample size limit (d(β ∗N)e). R′ is a sample relation of

R. Let NR′ = d(β ∗N)e.
To calculate the query result size for a complex predicate query on R with a

certain number of attributes (≤ u) involved in the query, the time complexity would

be O(NR′), where u is the number of attributes of R.

Note that the time complexity does not rely on the number of attributes ofR, un-

like the time complexities for all the other non-sampling-based methods considered

earlier.

Storage

For a relation in a database, it is reasonable that three parameters: β (maximum

sampling fraction), ε (relative error) and ψ (sanity bound) can be used by the

sampling algorithm to estimate selectivities of any complex predicate queries on R.

Hence, these three are needed to be stored in the database profile catalog and

the storage complexity would be O(1).

The storage complexity for sampling-based methods does not depend upon u,

the number of attributes of R, while the storage complexities for all the other non-

sampling-based methods considered earlier do depend.

2.8.3 Query size estimation for joins using SS

In this thesis, star joins are considered. The reason is justified in Section 1.4.1 of

Chapter 1. A star join is a join in which any join attribute of the two or more

participating relations can join one another on a common join domain. A star join

is a join whose qualification is of the form:

R1.a1 = R2.a2 = R3.a3 · · · = Rm.am

where R1, R2, . . . , Rm are the relations participating in the join and a1, a2, . . . , am are

the join attributes of R1, R2, . . . , Rm, respectively and m is the number of relations

Fundamentals and survey on query size estimation methods 90

participating in the star join. Let R′
i be a sample relation of Ri, where i = 1, 2, . . . , m

and let NR′i be the cardinality of R′
i.

Similar to the sequential sampling algorithm for selections in Figure 2.14, the

algorithm for star join selectivity estimation is shown in Figure 2.15.

Procedure: Join Selectivity Estimation
input: Q = a star join query,

0 < β ≤ 1 = maximum sampling fraction,
ε = relative estimation error,
ψ ≥ 0 = sanity bound

var: s = number of all tuples in the output of the join among the sample relations (s ≤ n),
n = number of all combinations of the tuples in the sample relations obtained so far

output: the estimated selectivity of Q

repeat1

obtain an SRS tuple from each Ri i = 1, 2, . . . ,m and append it into R′
i2

s =
∑NR′

1
i1=1

∑NR′
2

i2=1 . . .
∑NR′

m

im=1(ti1 1 ti2 1 · · · 1 tim)3

n =
∏m

j=1NR′
j

4

µ̂ = s
n5

S2
n = n

n−1 µ̂(1− µ̂)6

if S2
n > 0 and ε max(s, nψ) ≥ t(nS2

n)
1
2 then7

return µ̂8

endif9

until any of NR′
i
≥ d(β ∗NRi)e becomes true, where i = 1, 2, . . . ,m10

return µ̂11

Figure 2.15: Algorithm for selectivity estimation for star joins

The respective stopping conditions of the two algorithms in lines 16 and 7 are

the same; the difference between the two is the way we overload S2
n, s and n. The

details of the overloading are below.

Let µ be the selectivity of a given star join and µ̂ an estimated selectivity of the

join. The estimated selectivity µ̂ stems from:

µ̂ =

∑NR′
1

i1=1

∑NR′
2

i2=1 . . .
∑NR′m
im=1(ti1 1 ti2 1 · · · 1 tim)∏m
i=1NR′i

(2.57)

where (ti1 1 ti2 1 · · · 1 tim) is a join among tuples i1th, i2th, . . ., imth of the

participating sample relations. (ti1 1 ti2 1 · · · 1 tim) will give value 1 if all the

tuples are joinable, i.e., having a common attribute value. Otherwise it will give

value 0.

For a complex predicate query, its selectivity is s
n
. The numerator s is the

Fundamentals and survey on query size estimation methods 91

number of all tuples in the sample relation which satisfy the complex predicate.

The denominator n is the number of all tuples in the sample relation.

The selectivity for a star join is defined similarly: s
n
. The numerator in (2.57) is

the number of tuples which satisfy the join predicate – i.e., the number of all tuples

in the output of the join among the sample relations – and thus is equivalent to s.

The denominator
∏m
i=1NR′i is the size of the cross-product of all the participating

sample relations and thus is equivalent to n. Hence, (2.57) is equal to s
n
.

S2 = N
N−1

µ(1−µ). We show the derivation for this formula in Chapter 3. In the

algorithm, S2
n = n

n−1
µ̂(1− µ̂) whose derivation is similar to the derivation for S2.

Like the sequential sampling algorithm for selections, we added another stopping

condition in line 10 of the algorithm for star joins to stop sampling whenever any

sample size so far exceeds the maximum sample size limit (d(β ∗ NRi
)e) where i =

1, 2, . . . , m, regardless of what other subconditions are like.

2.8.3.1 Algorithm and storage complexity for joins

Algorithm

Since the time complexities considered earlier are all for sel(R1.bx 1 R2.by), the time

complexity considered here would also be for the binary join.

NR′1 and NR′2 are the sizes of two sample relations R′
1 and R′

2. Let R′
12 be the

output relation of the join (R′
1.bx 1 R′

2.by) and let NR′12 be the size of the output

relation.

Suppose that a hash-join algorithm [DeWitt et al. 1984] is used as a method to

join between two relations. The reason we choose the hash-join algorithm is that the

algorithm has a low algorithm complexity, O(|R′
1| + |R′

2|), i.e., only needs a single

pass through R′
1 and R′

2 to join them on the matching join attribute values.

The computation of the join (R′
1.bx 1 R′

2.by) proceeds as:

1. read in the two sample relations R′
1 and R′

2, which requires O(NR′1 +NR′2).

2. write out the matching tuples of the two relations, which requires O(NR′12).

As a result, the time complexity to calculate sel(R1.bx 1 R2.by) would be O(NR′1 +

NR′2 +NR′12).

Fundamentals and survey on query size estimation methods 92

Storage

The input part of the algorithm in Figure 2.15 indicates that there are only 3

parameters: β, ε and ψ that need to be stored in the database profile catalog for an

m-relation star join, where m (≥ 2) is the number of relations in the star join. A

binary star join like (R1.bx 1 R2.by) is a specific case of the m-relation star join.

Hence, the storage complexity for selectivity estimation for an m-relation star

join would be O(1).

As per relation in the join (R1.bx 1 R2.by), the storage complexity per relation

in the join is O(1), if only one attribute in R1 (and R2) can be a join attribute.

Note that the storage requirement O(1) above would more likely be introduced

separately for the computation of the join selectivity, i.e., separate from the storage

requirement O(1) for selections. That is, the three parameters will not be shared

between selections and the join – selections and the join would have their own version

of the three parameters.

2.9 Summary of algorithm and storage complexities

Table 2.5 shows the summary of algorithm and storage complexities consumed by

each estimation method discussed earlier.

Here is a conclusion from the table.

• For selections and joins, UNF has the least algorithm complexity and except

SS, UNF also uses the least amount of storage.

• For selections and joins, SS requires the least storage. SS will, however, most

likely require the most time in selection and join selectivity estimation.

• For selections, (equi-width and -height) histograms typically use I = 10− 15

buckets. IASE and ASE use p, normally no more than 10. M5 typically uses

the number of queries |Q| in the training set more than 15 queries. By the four

methods, the algorithm and storage complexities for selections can be ordered

from least to most as follows: IASE and ASE, histograms and M5.

• For joins, IASE and ASE will require less time in calculating sel(R1.bx 1 R2.by)

than M5 if d, the number of distinct values, is more than 7.

Fundamentals and survey on query size estimation methods 93

method algorithm storage
UNF O(u) O(u)
hist∗ O(u ∗ I) O(u ∗ I)
IASE O(u ∗ p) O(u ∗ p)
ASE O(u ∗ p) O(u ∗ p)
M5 O(u ∗ |Q|) O(u ∗ |Q|)
SS O(NR′) O(1)

(a) selections

method algorithm storage
UNF O(1) O(1)
hist∗ O(1) O(1)
IASE O(px ∗ py) O(1)
ASE O(px ∗ py) O(1)
M5 O(d ∗ |Q|) O(|Q|)
SS O(NR′1 +NR′2 +NR′12) O(1)

(b) joins

method storage sharing
UNF share storage
hist∗ half-share storage
IASE have separate storage
ASE have separate storage
M5 share storage
SS have separate storage

(c) storage sharing between selec-
tions and joins

Table 2.5: The summary of algorithm and storage complexities
hist∗ = equi-width and equi-height histograms

The reason is that given that px, py ≤ 10 and |Q| ≥ 15, px ∗py will be bounded

by d ∗ |Q|.

• For joins, M5 requires the most storage but this storage cost is also shared

between selections and joins. (Recall that the same model tree is used for

both selections and joins.)

• The storage sharing between selections and joins is summarised in Table 2.5(c).

Note that the half sharing of storage for histograms is because one part of the

total storage for joins is the one commonly used by both selections and joins,

while the other part is particularly introduced for joins.

2.10 Cost model derivation for multidatabase systems

In this section we review the previous studies on the cost model derivation for

multidatabase systems which fundamentally relies on curve-fitting techniques.

Although the review in this section is not much related as a query size estimation

method itself, the main purpose of the review below is to raise the significance of

Fundamentals and survey on query size estimation methods 94

query size estimation methods to the cost model derivation problem. That is, in

order to obtain an accurate cost model, a good query size estimation method is

required.

A number of studies [Dayal 1984; Zhu 1992; Ngu et al. 1993; Evrendilek et al.

1995; Du et al. 1995; Ozcan et al. 1996] proposed various search algorithms and

architectures for query processing and optimisation in multidatabase systems. All

such studies raise a significant problem of how to obtain the unknown cost model

of each local database which participates in a multidatabase system. This problem

is very severe as a result of the local autonomy maintained by the local systems.

That is, a local system may or may not provide any statistical information which

forms a cost model for the local database to the global query optimiser. Without

sufficient statistical information from all local databases, the cost calculation for

query execution plans by the global query optimiser is very difficult to be carried

out or may not be able to be done at all.

Du et al. [1992]; Zhu [1993]; Zhu and Larson [1994]; Harangsri et al. [1996a]

studied the derivation of the unknown cost model for a local database. The cost

model is a model for cost estimation which can be used to approximate the cost of

database operations, e.g., joins and selections in queries (and thus the cost of query

execution plans). The cost of a database operation can be measured as elapsed time

which is calculated by: (the ending time when the operation is completed - the

starting time when the operation is received) [Du et al. 1992].

The calculation for an elapsed time of an operation, however, relies on the esti-

mated size(s) of (intermediate) relation(s) in the operation (the formulas related to

the sizes will be shown shortly below). In turn, obtaining estimated sizes of interme-

diate relations is the query size estimation or selectivity estimation problem. Hence,

we feel that the crucial and perhaps more important problem of the cost model

derivation is the problem of how to obtain a good size estimation method so that

an accurate elapsed time of an operation can be obtained. This is because without

reliable estimates for the sizes of intermediate relations, how can an accurate elapsed

time of an operation be obtained ?

The following is a summary of how an estimated elapsed time of a join or selection

operation is carried out, in chronological order of the previous studies done.

Fundamentals and survey on query size estimation methods 95

• By the studies of Du et al. [1992]; Zhu [1993]; Zhu and Larson [1994], selection

operations are manually classified into a number of classes. The same was done for

join operations. Each class will then have a cost formula for the estimation of an

elapsed time taken by a selection (or join) operation falling into this class. The

manual classification requires to know a priori the local storage structures of a local

database system, which in several cases is impossible due to the local autonomy.

• Use a multiple regression, a curve-fitting technique [Du et al. 1992; Zhu 1993; Zhu

and Larson 1994], to derive the cost parameters (defined after the formula) for a

local database. The cost formula to estimate an elapsed time taken by a selection

operation belonging to a class is given by:

gσ(NR1 , NR′1) = a0 + a1NR1 + a2NR′1

where NR1 is the cardinality of the relation in the selection operation, NR′1 =

(selectivity of the selection ∗ NR1) and ai’s, i = 0, 1, 2 are the cost parameters,

namely, coefficients of least square error for the polynomial used. Likewise, the

cost formula to estimate an elapsed time taken by a join operation belonging to a

class is given by:

g1(NR1 , NR2 , NR12) = a0 + a1NR1 + a2NR2 + a3NR12

where NR1 and NR2 are the cardinalities of the two (possibly intermediate) relations

in the join operation, NR12 = (selectivity of the join∗NR1∗NR2) and ai’s, i = 0, 1, 2, 3

are the cost parameters.

• Sample queries with selection operations from each class and run them against a

database to observe the elapsed times of the queries in the class. Those observed

times would be the left-hand side of the gσ(NR1 , NR′1) function above. By the prin-

ciple of least square error, the function can be solved for the cost parameters. The

same process is done for join operations.

• To observe the elapsed times of the sample queries, Du et al. [1992] proposed to use

the synthetic database (as opposed to the actual database) to act as a local database

and hence, to derive the cost parameters from the synthetic database. Note that

Fundamentals and survey on query size estimation methods 96

the cost formulas proposed by this work, although different, are very similar to the

ones given above — they really give the same feeling that the multiple regression is

used to solve this estimation problem.

• Instead of using the synthetic database, Zhu [1993]; Zhu and Larson [1994] im-

proves the above work by using an actual local database to derive the cost parame-

ters.

• Harangsri et al. [1996a,b] improves the above two manual classifications by an auto-

matic classification and uses an actual local database. Given (sampled queries with)

selection operations, they are automatically categorised into a number of classes

where each class has a cost formula like above. (The same process is done for join

operations.) The authors proposed to use a clustering algorithm so called hierarchi-

cal clustering algorithm [Anderberg 1973] to perform the automatic classification.

This approach does not require to know a priori the local storage structures and

join methods used of a local system. The algorithm attempts to group selection

operations (the same for join operations) into classes such that the error in elapsed

time estimation is reduced for the selection operations placed in the same class.

CHAPTER 3

Query size estimation using systematic sampling

Abstract

We develop a theoretical foundation for systematic
sampling which suggests that the method gives a more
representative sample than the traditional simple random
sampling. Subsequent experimental analysis on a range
of synthetic relations confirms that the quality of sample
relations yielded by systematic sampling is higher than
those produced by the traditional simple random sam-
pling.

To ensure that the sample relations produced by
the systematic sampling indeed assist in computation
for more accurate query result sizes, we compare the
systematic sampling with the most efficient simple
random sampling called SS using a variety of relation
configurations. The results obtained are impressive
in that the systematic sampling uses an equal or less
amount of sampling but still can provide more accurate
query result sizes than SS. Furthermore, the overhead
cost incurred by systematic sampling is no more than by
SS.

97

Query size estimation using systematic sampling 98

3.1 Introduction

In this chapter, we propose a new sampling-based method called systematic sampling

(SYSSMP) for the result size estimation of two main database operations: join and

selection. The systematic sampling was earlier proposed by Zhu [1993] with no

exploitation of sortedness of data. Systematic sampling on unsorted data (which is

called a random population) proposed by the work has been statistically known to

be as efficient as SRSWOR (see the proof in [Cochran 1963; Murthy and Rao 1988]).

In addition, we have also done a preliminary study on the quality of query result

sizes approximated by the systematic sampling on unsorted data and the results we

obtained correspond with the theoretical proof.

Subsequently, Harangsri et al. [1996c] have done a preliminary investigation on

systematic sampling with exploitation of sortedness of data and compared SYSSMP

on sorted data with 5 other query size estimation methods — a parametric method

based on a uniform distribution, a curve-fitting method ASE, a machine learning

method M5 and 2 sampling methods, i.e., SRSWR and SRSWOR. The results ob-

tained from the preliminary investigation led us to a conclusion that SYSSMP is

apparently the most robust query size estimator, which can deal very well with

either join or selection queries.

The preliminary investigation, however, has three main disadvantages: (1) the

relation of interest must be sorted usually on more than one attribute, (2) the method

requires storage to store summary relations, (3) a statistical ground of the quality

of sample relations yielded by the systematic sampling is not given. The systematic

sampling proposed here utilises sorted data (if this is the case), requires no extra

storage and has a statistical ground of the quality of sample relations obtained.

We have discovered both theoretically and empirically that when data are in

order (ordered population), the quality of sample relations obtained via SYSSMP is

more likely to be superior to the quality of sample relations obtained via SRSWOR

and SRSWR. For joins, the quality of a sample relation is determined by a total

variance of estimated selectivities for all distinct values1 in a common join domain

whereas for selections, the quality is determined by a variance of an estimated selec-

1The selectivity of a distinct value is a ratio, defined by the total number of tuples in a relation
having the distinct value divided by the cardinality of the relation.

Query size estimation using systematic sampling 99

tivity for the selection. This discovery fundamentally implies that a sample relation

obtained via SYSSMP can, in general, well represent the underlying joint frequency

distribution of the attributes in the original relation. Figure 3.1 shows a “concep-

tual” example of how a sample relation represents the underlying actual frequency

distribution of an attribute in the original relation. The bottom curve in the figure

represents the frequency distribution of the attribute in the sample relation against

the actual frequency distribution (shown in the top curve) of the attribute in the

original relation.
F

re
q
u
en

cy
 D

is
tr

ib
u
ti

o
n

Sample

Distinct Values

Original

Figure 3.1: A frequency distribution of a sample against an original relation

The overall idea behind systematic sampling is: start with a relation R with

cardinality N whose tuples can be accessed in ascending or descending order of an

attribute of R; decide on the size n of a sample relation; to produce the sample

relation, select a tuple at random from the first k = dN
n
e tuples of R and every kth

tuple thereafter, where de is the ceiling of a value.

In order to create a sample relation through SYSSMP, the first two alternatives

below can be used:

• If the relation of interest has an index (such as B+-tree [Bayer and McCreight

1972] on any of its attribute, then we can use such as index to obtain a sample

relation. (Salzberg [1988] emphasizes the importance of B+-trees in page 143

that virtually no other indexing schemes are currently in use for large files

except B+-trees and hashing.) When a B+-tree is created for an attribute, it

can then be traversed systematically, for example, in every jth branch of the

tree (recall that B+-tree has several branches called fan-out) down to its leaf

nodes to retrieve tuples for a sample relation. The proposal by Lipton and

Naughton [1990] for simple random sampling also requires using such an index

Query size estimation using systematic sampling 100

in order to obtain a sample relation.

• If the relation does not contain any index but is sorted on one of its attribute,

then a systematic sample relation can also be obtained. Figure 3.2 shows a

relation with 5 disk blocks and each block can accommodate 5 fixed-length

records.

5 5 5 55

Figure 3.2: A fixed-length record relation

If the tuple required is tup required, then the ith disk block where the tuple

stays is simply calculated by:

for each disk block i = 1 to num diskblocks do

if tup required ≤ i · block factor then

return disk block i

endif

endfor

where block factor = 5 (the number of records per block is 5) and

num diskblocks = 5.

• If the relation contains no index or sorted attribute, then we can simply resort

to any of the traditional SRS methods proposed in the literature in order to

create a sample relation.

Note however, that in several database schemas, an attachment of an index

into an attribute of interest or the sort on an attribute occurs frequently (they

are not something unusual) and as a result, we expect that the method devel-

oped here can often be employed in database systems as an alternative (i.e.,

whenever data are sorted) together with the traditional sampling methods.

In the remainder of this chapter, the term index used denotes any of the two

alternative above, namely, (1) a physical index on an attribute or (2) a sorted

attribute on a relation. Whichever is available on the relation is the index for the

relation.

Query size estimation using systematic sampling 101

Tuple-level sampling is the sampling whose sampling unit is tuple as opposed

to another page-level sampling whose sampling unit is disk page or disk block. The

most efficient SRS named SS (Sequential Sampling) was proposed in a series of

papers by Haas and Swami [1992]; Haas et al. [1993]; Haas and Swami [1995]; Haas

et al. [1996]. To justify the superiority of our sampling method for both join and

selection queries, we compare SS and SYSSMP via tuple-level sampling using a

variety of relation configurations. In regard to joins, we compare the two methods

using a variety of star joins — a join in which any join attribute of the two or more

participating relations can join one another on a common join domain.

For join queries, in an extreme case of SYSSMP, each join attribute participating

in a star join requires an index on it (one index for one join attribute). This require-

ment is most likely impossible in practice to occur because some of the participating

relations may not have any index on the join attributes. To get around the prob-

lem, we propose a hybrid sampling scheme between SYSSMP and SS. The scheme

works as follows: samples of the relations with the indices on the join attributes

are created via SYSSMP and samples of the relations with no indices on the join

attributes are created via SS. (It is generally known that standard simple random

sampling schemes do not require any index as a must for the creation of sample

relations although they can also use indices for the creation.) All the samples are

then joined together to produce an estimated join selectivity of the star join.

We conduct 2 sets of experiments for join queries. The first is done for the

extreme case, by assuming that each relation has an index on its join attribute.

The results obtained from this first set are that with the same amount of sampling,

SYSSMP in the extreme case is far more superior in approximating join result sizes

than the SS procedure. With the second set of experiments, namely, some relations

participating in a star join do not have indices on their join attributes, while the rest

do have, the results obtained are that with the same amount of sampling, despite

a decreased performance to a certain degree in approximating join result sizes, the

hybrid sampling scheme between SYSSMP and SS still outperforms the pure SS

procedure.

We conduct one more set of experiments for selection queries. The results ob-

tained are impressive in that SYSSMP uses a less amount of sampling but still can

Query size estimation using systematic sampling 102

provide more accurate query result sizes.

The overhead cost (e.g., storage maintenance or sampling algorithm complexity)

incurred by SS and SYSSMP is the same because first, both of them do not require

building any extra storage structure in order to use the methods and second, both

sampling algorithms are pretty much the same. However, the major advantage

SYSSMP has over SS is that it exploits the “freely available” sortedness of data via

the index available while SS does not.

The structure of presentation can be separated into two main parts. The first

part is for joins between Sections 3.3–3.5 and the second is for selections between

Sections 3.6–3.8. Since the two parts have some common structure of presentation,

whenever they do, we put the section numbers for selections in parentheses (see

below).

Section 3.2 defines a proportion model [Cochran 1963] from which the selectivity

for joins and selections can be calculated. Section 3.3 (3.6) gives the basic idea of

SYSSMP for joins (selections) and an intuitive explanation of why SYSSMP would

be more efficient than SRS with/without replacement. The question of “how many

tuples in a relation would be required in a sampling ?” is very important for any

sampling-based method. We provide the answer in Section 3.3.1 (3.6.1). Next in Sec-

tion 3.4 (3.7) we give a theoretical foundation that when a relation can be accessed

via an index to obtain systematic tuples in ascending or descending order of an at-

tribute of the relation of interest, SYSSMP can in general yield more efficient sample

relations than SRSWOR and SRSWR. Following that, in Section 3.5.2 (3.8.2) we

do an analytical study on the quality of sample relations yielded by SYSSMP, SR-

SWOR and SRSWR in order to corroborate the foundation laid before. The detailed

experimental results to demonstrate the performance between SS and SYSSMP are

shown in Section 3.5.3 (3.8.3). Finally, we give a conclusion in Section 3.9.

3.2 Proportion model

Let the term point denote an element in a population of interest. Assume that there

are a certain number of classes in the population. A proportion in a population is the

number of points which fall into each class in the population, e.g., the proportion

of people with false teeth, the proportion of people who watch a particular TV

Query size estimation using systematic sampling 103

program, the proportion of students who prefer to learn the JAVA programming

language and etc.

For the problem of selectivity estimation for joins and selections, the number

of classes is 2. Let y be a point in a population. If a point y in the population

satisfies a condition, then the point value y would be 1; the point value y would be

0 otherwise. For example, for a selection if a point (in this case a tuple) satisfies

the selection (condition), then y = 1; otherwise y = 0. As for a star join with m

participating relations, if a join among m tuples from the m relations (one tuple

from each relation) in the star join produces an output tuple in the output relation;

i.e., all the values are in common of the join attributes in the m tuples, then y = 1;

otherwise y = 0. Note that the phrase “produces an output tuple in the output

relation” is equivalent to satisfying the condition (join predicate).

3.3 Systematic sampling for joins

Table 3.1 shows most common notations used in the main sections for joins, namely,

Sections 3.3 and 3.4 (the main sections for selections are 3.6 and 3.7). The notations

in Table 3.1(a) are used in Section 3.3 while the ones in Table 3.1(b) are used in

Section 3.4. More details of each notation are described later in the corresponding

sections.

Given a star join on

R1.a1 = R2.a2 = R3.a3 · · · = Rm.am

where R1, R2, . . . , Rm are the relations participating in the join and a1, a2, . . . , am are

the join attributes of relations R1, R2, . . . , Rm, respectively, the basic idea of system-

atic sampling is as follows: consider a relation Ri with cardinality N participating

in the star join; obtain a sample relation of Ri by the algorithm in Figure 3.3.

Repeat the algorithm in Figure 3.3 to take sample relations for all the relations

in the star join.

LetR′
i be a sample relation of relationRi, i = 1, 2, . . . , m. All the sample relations

R′
i’s obtained above are then joined together to yield an output relation. We denote

the output relation by R′
123...m. We then calculate an estimated selectivity µ̂ of the

Query size estimation using systematic sampling 104

ỹi a point in a population of a star join
R1 1 R2 1 · · · 1 Rm whose value
can be either 0 or 1

S̃2 a population variance over the population
of the join R1 1 R2 1 · · · 1 Rm

Ñ
∏m
i=1 |Ri|, a population size for the join

ñ
∏m
i=1 |R′

i|, a sample size for the join
where R′

i is a sample relation of Ri

µ a star join selectivity among R1, R2, . . . , Rm

µ̂ an estimated star join selectivity of µ
V (µ̂) the variance of the estimated µ̂

(a)

yi, yij a point in relation R, whose value
can be either 0 or 1

S2, S2
i a population variance over relation R

of a selectivity of a distinct value
S2
wsmp, a variance within systematic sample relations
S2
wsmpi

N a cardinality of R, a population size of R
n a cardinality of R′, a sample size on R

where R′ is a sample relation of R
Y the selectivity of a distinct value on R

θ̂ the selectivity of a distinct value on R′

could be Ŷ obtained via SYSSMP,

Ŷ swr obtained via SRSWR

or Ŷ swor obtained via SRSWOR

V (θ̂) the variance of the estimated θ̂
d the number of distinct values in

a common join attribute domain
T

∑d
i=1 S

2
i , the total variance of each population

variance S2
i in a common join domain

T T
d
, the average of the total variance T

Twsmp
∑d
i=1 S

2
wsmpi

,
the total variance of each S2

wsmpi

Twsmp
Twsmp

d
, the average of

the total variance Twsmp

(b)

Table 3.1: Symbol definitions

Query size estimation using systematic sampling 105

Step 1. calculate a sample size n = β ∗ N where β is a sampling fraction (0 < β ≤ 1)
required for each relation participating in the star join. (We describe details of
how to obtain β in Section 3.3.1).

Step 2. calculate a step size k = dNn e to step through relation Ri.

Step 3. sample a tuple at random from the first k tuples of Ri. For example, In Fig-
ure 3.4(b) (showing a relation on a join attribute), N = 25 and n = 5 so
k = 25

5 = 5. A starting random tuple, i.e., the first random tuple, could be
any of the tuples marked by the arrow signs. In the figure, the third tuple is
chosen as the starting random tuple.

Step 4. repeat taking a tuple, k tuples away from the current one until the sample size
obtained so far is equal to β ∗ N and terminate sampling. Figure 3.4(b) shows
all the next tuples taken from the starting random tuple.

Figure 3.3: Sample a relation

2 1 1 3 5 1 4 1 2 1 1 2 22 3 5 3 4 4 4 3 5 1 1 1

(a) Unsorted values of an attribute

1 1 1 1 1 1 1 1 1 2

k

2 2 2 2 3 3 3 3 4 4 4 4 5 5 5

k k k k

(b) Values after sorting

Figure 3.4: Unsorted and sorted values and stepping through the sorted values

star join by:

µ̂ =
|R′

123...m|
|R′

1||R′
2| · · · |R′

m|
Hence, an estimated size of the star join is calculated by µ̂ ∗ |R1||R2| · · · |Rm|.

In order to obtain an accurate estimated join selectivity for a star join, we need a

method which can yield “good” sample relations; that is, each of the sample relations

obtained can well represent the frequency distribution of the join attribute in the

original relation.

Here is an intuitive description of why a sample relation yielded by SYSSMP

would be more efficient (i.e., giving a better and more representative sample relation)

than a sample relation yielded by SRSWOR or SRSWR.

Query size estimation using systematic sampling 106

In view of Figure 3.4, one can easily see that, after all values of the attribute

have been sorted in Figure 3.4(b), we will be able to step through all the sorted

values and get the values that can well represent the underlying distribution of the

attribute in the original relation. On the other hand, with the same relation which

perhaps is unordered as shown in Figure 3.4(a), the method of SRS, which simply

picks out tuples at random to create a sample relation, would not guarantee to form

any good sample relation. The reason could be twofold as follows.

First, with the SRSWR scheme (which most previous work uses), the same tuples

may get selected again and again, thereby wasting the sampling being done. Sec-

ond, with SYSSMP some “redundant” tuples (that do not assist in forming a good

representative distribution of the original relation) after the relation got sorted, will

never be selected again because with SYSSMP, the next tuple to be selected into

a sample relation is the next kth tuple from the current one. For example, in Fig-

ure 3.4(b), the tuples with value 1 are selected twice and this kind of selection would

not be guaranteed to occur in the case of the simple random sampling with/without

replacement.

3.3.1 How many tuples to sample

Based on the theory of simple random sampling, we derive a “conservative” sample

size β ∗ |Ri| for a systematic sample relation to be taken from each relation Ri

participating in a star join. 0 < β ≤ 1 is a sampling fraction, a fraction of a total

number of tuples to be sampled from each Ri. The reason of being conservative is

that if a population of interest is arranged in some order, then the number of units

in a sample obtained via simple random sampling will be extra large as a sample

size for a systematic sample [Scheaffer et al. 1990]. That is, the number of units

needed in a systematic sample should be less than that needed by a simple random

sample.

Recall that R′
i is a sample relation of relation Ri, i = 1, 2, . . . , m participating

in a star join. Let a sample size ñ =
∏m
i=1 |R′

i| and likewise, a population size

Ñ =
∏m
i=1 |Ri|. ñ would be equivalent to

∏m
i=1 β ∗ |Ri| if each relation Ri is sampled

with the same sampling fraction β. We denote an actual star join selectivity by µ

(and an estimated join selectivity of the actual µ by µ̂).

Query size estimation using systematic sampling 107

Towards the end of Section 3.3.1.2 is the derivation for a sample size ñ and thus

a sampling fraction β. We start by defining a population mean and population

variance S̃2 of a star join in Section 3.3.1.1. The population variance S̃2 will then be

substituted into the derivation for ñ. We then show the derivation for a formula for

ñ for SRSWOR in Section 3.3.1.2 which can also be used for SYSSMP. The formula

for ñ requires a substitution of an actual join selectivity µ. We can use µ̂ obtained

from a previous sampling as an estimate (or substitute) for the actual µ. The details

of how to initialise the initial value of µ̂ are described in Section 3.3.1.4.

There are times that a star join selectivity can be very small such that a cal-

culated β can be too large, i.e., larger than a maximum sampling fraction limit

that one would want to occur in a database system. We propose a solution to this

problem in Section 3.3.1.3.

ñ was first derived by Haas and Swami [1995]. There are two differences, however,

between the derivation in [Haas and Swami 1995] and our derivation hereafter.

First, ñ in [Haas and Swami 1995] was derived based on the simple random sam-

pling with replacement (as the sampling procedure SS is sampling with replacement)

while here we show the derivation for sampling without replacement as it can be used

for SYSSMP — this is due to the fact that SYSSMP is, in fact, a sampling without

replacement.

The second difference is that in [Haas and Swami 1995], the number of tuples

to be sampled from each relation Ri in a star join is an absolute fixed number, say

X and thus ñ = Xm, while in our case ñ =
∏m
i=1 β ∗ |Ri|. With the Xm formula,

if two relations with 5 and 100 tuples, for example, are in a star join, and X = 5,

then the entire relation with 5 tuples will be sampled!, while only 5 tuples will be

sampled from the second relation with 100 tuples. We feel that a more natural

way of doing sampling over relations in a star join should be done using the same

sampling fraction over each relation in the star join.

3.3.1.1 Population mean and variance

The join selectivity µ of a star join with m participating relations R1, R2, . . . , Rm,

is calculated by:

µ =
|R123...m|

|R1||R2| . . . |Rm| =
|R123...m|∏m
i=1 |Ri| (3.1)

Query size estimation using systematic sampling 108

where R123...k is the output relation of the star join.

The actual selectivity µ stems from:

µ =
|R123...m|∏m
i=1 |Ri| =

∑|R1|
i1=1

∑|R2|
i2=1 . . .

∑|Rm|
im=1(ti1 1 ti2 1 · · · 1 tim)∏m
i=1 |Ri| (3.2)

where (ti1 1 ti2 1 · · · 1 tim) is a join among tuples i1th, i2th, . . ., imth of the

relations. The value of (ti1 1 ti2 1 · · · 1 tim) is 1 if the tuples are joinable — the

join attribute values are in common; the value is 0 otherwise.

Likewise an estimated selectivity µ̂ stems from:

µ̂ =

∑|R′1|
i1=1

∑|R′2|
i2=1 . . .

∑|R′m|
im=1(ti1 1 ti2 1 · · · 1 tim)∏m
i=1 |R′

i|
(3.3)

Using the proportion model, the population of the join R1 1 R2 1 · · · 1 Rm can

be classified into two classes, namely: ỹi = 1 if (ti1 1 ti2 1 · · · 1 tim) is joinable and

ỹi = 0 if (ti1 1 ti2 1 · · · 1 tim) is not joinable. Thus the total number of tuples in

the output relation R123...m can be defined as:

|R123...m| =
Ñ∑
i=1

ỹi =

∏m

j=1
|Rj |∑

i=1

ỹi (3.4)

where Ñ =
∏m
j=1 |Rj|. According to the definition of a population mean (namely,

the sum of each point ỹi in the population divided by the population size Ñ), the

mean of the population R1 1 R2 1 · · · 1 Rm is defined by:

∑Ñ
i=1 ỹi

Ñ
=

∑∏m

j=1
|Rj |

i=1 ỹi∏m
j=1 |Rj| =

|R123...m|∏m
j=1 |Rj | = µ (3.5)

which is, in fact, the selectivity µ of the join R1 1 R2 1 . . . 1 Rm. That is, the

population mean is equivalent to the star join selectivity µ.

Since ỹi is a 0 or 1 value, the following is valid:

Ñ∑
i=1

ỹ2
i = |R123...m| = µÑ (3.6)

The definition of a population variance S̃2 of the mean or join selectivity µ over

Query size estimation using systematic sampling 109

the entire population R1 1 R2 1 . . . 1 Rm can be stated as follows:

S̃2 =

∑Ñ
i=1(ỹi − µ)2

Ñ − 1

=

∑Ñ
i=1 ỹ

2
i − Ñµ2

Ñ − 1
(3.7)

Substitute µÑ in (3.6) to (3.7). This gives:

S̃2 =
µÑ − Ñµ2

Ñ − 1

=
Ñ

Ñ − 1
µ(1− µ) (3.8)

3.3.1.2 How many tuples to sample

In this section, we will show the derivation for ñ and β based on SRSWOR. Since

the nature of SYSSMP is a sampling without replacement, although the sample size

ñ and sampling fraction β derived here are, in fact, for SYSWOR, they can also be

used for SYSSMP.

With simple random sampling without replacement, the variance V (µ̂) of an

estimated selectivity µ̂ of a sample R′
1 1 R′

2 1 . . . 1 R′
m with size ñ is defined as:

V (µ̂) = E(µ̂− µ)2 =
Ñ − ñ
Ñ

S̃2

ñ

where Ñ =
∏m
i=1 |Ri| and ñ =

∏m
i=1 |R′

i|. Using S̃2 in (3.8), we get:

V (µ̂) =
µ(1− µ)

ñ
(
Ñ − ñ
Ñ − 1

) (3.9)

Let B be a bound on error, i.e., the difference allowed between the actual se-

lectivity (mean) µ and an estimated selectivity µ̂. Let α be a probability that the

actual error is larger than B. In estimating the actual selectivity µ, we wish:

Pr(|µ̂− µ| ≥ B) = α

With simple random sampling, if µ̂ is an unbiased, normally distributed estimator

Query size estimation using systematic sampling 110

of µ, then the error bound B is given by:

B = t
√
V (µ̂) (3.10)

where t is the abscissa of the normal curve that cuts off an area α at the tail.

Substituting V (µ̂) in (3.9) to (3.10) and solving (3.10) for ñ, we obtain:

ñ =
t2(µ)(1−µ)

B2

1 + 1
Ñ

(t
2(µ)(1−µ)

B2 − 1)
(3.11)

If Ñ is large, then the denominator of equation (3.11) will be equal to 1 and the

approximation of ñ is:

ñ0 =
t2(µ)(1− µ)

B2
(3.12)

Otherwise, ñ is defined as:

ñ =
ñ0

1 + ñ0−1
Ñ

(3.13)

As mentioned earlier, formula (3.13) requires the actual join selectivity µ and an

estimated µ̂ can be used as a substitute for the actual µ and this estimated µ̂ can

be obtained from a previous sampling.

Given that abs() is the absolute value of the given parameter, if one is concerned

about the relative error ε = abs(µ−µ̂)
µ

= B
µ

rather than the absolute error B, then B

in equations (3.11) and (3.12) can be replaced by εµ, where the ε given should be

between 0 and 1.

The sample size ñ in (3.13) and the sampling fraction β have the following

relationship:

ñ = (β ∗ |R1|) (β ∗ |R2|) · · · (β ∗ |Rm|) = βm
m∏
i=1

|Ri|

βm =
ñ∏m

i=1 |Ri|
β = (

ñ∏m
i=1 |Ri|)

1
m (3.14)

Thus, the number of tuples to be sampled from each relation Ri participating in

a star join is β ∗ |Ri|, where β is calculated by (3.14).

Query size estimation using systematic sampling 111

3.3.1.3 Oversampling problem with star joins

When a star join selectivity is very small, the calculated β in (3.14) can be too large,

i.e., larger than a maximum sampling fraction limit βmax that one would wish to

occur in a database system, where typically 0 < β ≤ βmax ≤ 1. This problem is

called the oversampling problem. Table 3.2 shows a proposal for a sanity bound, a

bound to forbid the problem to occur.

We also make sure that a value of ψ (≥ 0) used will produce a reasonable value

of ñ which is to be substituted into (3.14) to yield another reasonable size β.

if β > dβmax)e then
B = εψ [recall that B = εµ]

ñ = t2ψ(1−ψ)
B2

endif

Table 3.2: A proposal for a sanity bound

3.3.1.4 How to obtain an initial estimated selectivity µ̂

We first describe how we initialise an estimated selectivity µ̂ of a given star join

which can be substituted into the formula (3.13) in order to obtain a sample size ñ

and thus a sampling fraction β. Next we show that the total number of all possible

star join selectivities that can occur in a database is tractable, i.e., not too many

values, so we can possibly maintain them to be reused by a database system.

One way to initialise the initial value of an estimated selectivity µ̂ is that one can

always have SS run through the star join. This could be a good choice in obtaining

an accurate µ̂ since the method of SS has the “adaptive” stopping condition to

terminate sampling whenever the sample size ñ satisfies the error bound B given.

Using the formula (3.13) requires maintaining µ̂ in the database system. Here

is our justification of why all possible estimated star join selectivities µ̂’s can be

maintained to be reused by a database system.

Consider a 5-relation database. Suppose that all of the 5 relations can be joined

in a star-join like manner on a common join domain. To return a join selectivity

consulted by a query optimiser, Table 3.3 shows the total number of all possible

selectivities that can occur in any star join queries on the database. C5
m is the

number of all combinations for an m-relation star join, where m = 2, 3, 4, 5.

Query size estimation using systematic sampling 112

Suppose we have a 10-relation database and all relations can be joined in the

star-join like manner. The total number of all possible star join predicates and

thus selectivities needed to be maintained by a database system is: 2m −m − 1 =

210 − 10− 1 = 1013 values. This total number of join selectivities is practical to be

maintained and reused by a database system.

In contrast, for selection queries, the total number of selec-rels comb
2 C5

2 = 10
3 C5

3 = 10
4 C5

4 = 5
5 C5

5 = 1
total 26

Table 3.3:

tion selectivities grows too large to be maintained and reused by a

database system. The following is the justification.

The formula for a sample size n is defined by:

n =
t2predicate selectivity(1− predicate selectivity)

B2

which can be used for selection queries. (Note that it is not hard to see that the

derivation for this formula can be done similarly to the derivation for the formula

(3.13).) In the light of selection queries, we cannot maintain all possible estimated

selectivities (as substitutes to the predicate selectivity in the formula) since the total

number of selectivities (predicates) grows exponentially. Let us give an example.

Consider a relation R with a set of attributes. A simple predicate on an attribute,

say a1, of R is of the form: (R.a1, relopt, const). Let d = 250 be the number of

distinct values of a1 and suppose that all these 250 values can appear as a constant

const in a simple predicate on R. relopt can have 6 choices since a relational

operator could be any of <,>, 6=,=,≥,≤. Thus, the total number of different simple

predicates (and thus selectivities) would be 6∗250=1500. This total number is just

for a single attribute a1, not yet for other single attributes of R, i.e., a2, a3, and

so on. Moreover, we have not yet considered complex predicate (multiple attribute)

queries whose predicates are specified upon more than a single attribute. As a result,

the total number of possible predicates for selection queries grows too large to be

maintained and reused by a database system.

For the selection queries, we propose two solutions in Section 3.6 to the problem

with the formula above.

Query size estimation using systematic sampling 113

3.4 Theoretical foundation for systematic sampling

Our aim in this section is to show theoretically that systematic sampling can, in

general, guarantee to yield efficient sample relations of each relation participating

in a star join, thus producing a selectivity estimate of high quality for an actual join

selectivity.

The selectivity of a distinct value is a ratio which is defined by the total number

of tuples in a relation having the distinct value divided by the cardinality of the

relation. SYSSMP is more efficient than SRS with/without replacement if and only

if:

1. The variance of the estimated selectivity of a distinct value in the common

join domain is lower. This variance indicates the quality of the estimated

selectivity for one distinct value in the join attribute domain of the sample

relation. Lower variance indicates more accurate estimates.

2. The total variance of estimated selectivities for all distinct values in the com-

mon join domain is lower. This total variance indicates the overall quality

of a sample relation. This affects the accuracy of an estimated join selectiv-

ity, which is calculated by using estimated selectivities from all of the sample

relations participating in the join.

The proof in Section 3.4.1 shows when the variance for a single distinct value

will be lower for SYSSMP than SRS (point 1). Section 3.4.2 completes the proof

by showing that the total variance over the entire join domain will be lower for

SYSSMP than SWS (point 2).

3.4.1 Variance of estimated selectivity of a distinct value

In a star join with m participating relations, let d be the number of distinct values

in a common join domain of the attributes a1, a2, . . . , am in the join.

The following definition for a star join selectivity is the main motivation behind

why we do need an accurate estimated selectivity of a distinct value:

µ =
d∑
i=1

m∏
j=1

selectivity of the ith distinct value on relation Rj (3.15)

Query size estimation using systematic sampling 114

In view of a relation, say Rj, the selectivities of each ith distinct value i = 1, 2, . . . , d

in the relation contribute significantly to the calculation of the join selectivity µ of

the star join.

Let us consider a relation R which participates in the star join. Let R′ be a sample

relation from R. Let Y i be the selectivity of the ith distinct value (i = 1, 2, . . . d)

from relation R and let Ŷ i be the selectivity of the same distinct value from sample

relation R′. By definition, the variance V (Ŷ i)

V (Ŷi) = E(Ŷ i − Y i)
2 =

∑
(Ŷ i − Y i)

2Pr(Ŷ i)

where Pr(Ŷ i) is a probability that each sample can be selected. If a sample relation

R′ created by SYSSMP is more efficient than SRS, then the total variance of each

Ŷ i, which is called total variance of estimated selectivities for all distinct values,

must produce a lower value, namely:

d∑
i=1

V (Ŷ i) = V (Ŷ 1) + V (Ŷ 2) · · ·+ V (Ŷ d)

where each V (Ŷ i) is the variance of an estimated selectivity of the ith distinct value

on a sample relation. Towards the end of Section 3.4.2, we will show how to obtain

such an efficient sample relation R′.

Given relation R with N tuples, to select n (≤ N) tuples of the relation, the

method of systematic sampling is to choose a tuple at random from the first k =

dN
n
e tuples of R and every kth tuple thereafter. Suppose that relation R given in

Figure 3.5 is sorted on its join attribute.

1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5

Figure 3.5: Relation R sorted on the join attribute

where N = 25. Let n = 5 so k = N
n

= 5. Table 3.4(a) shows all possible systematic

sample relations R′’s which can be taken from R.

Consider Table 3.4(b). Let tij be the jth tuple of the ith systematic sample

Query size estimation using systematic sampling 115

systematic sample no.
1 2 3 4 5
1 1 1 1 1
1 1 1 1 2
2 2 2 2 3
3 3 3 4 4
4 4 5 5 5

(a)

1 2 . . . i . . . k
y11 y21 yi1 yk1

y12 y22 yi2 yk2

.
y1n y2n yin ykn∑n

j=1 yij a1 a2 ai ak

Means ȳ1 = a1
n ȳ2 = a2

n ȳi = ai

n ȳk = ak

n

(b)

Table 3.4: Systematic sample relations and notations

relation and f(tij , x) a function of a [0,1] value, i.e.:

yij = f(tij, x) =




1 if the jth tuple of the ith sample contains value x

0 if it doesn’t

For example, in view of the selectivity of the distinct value equal to x, if tuple j of the

sample relation i contains x as its value, then yij would be 1, otherwise 0. Therefore,

using systematic sample relation number 1 in Table 3.4(a) and using the [0,1] value

representation, the selectivity when the distinct value is equal to 1 is ȳ1 = a1
n

= 2
5

(there are two rows which consist of value 1 in the sample relation number 1). Using

the same distinct value (=1), the selectivities calculated using systematic sample

relations 2, 3, 4 and 5 are equal to ȳ2 = a2
n

= 2
5
, ȳ3 = a3

n
= 2

5
, ȳ4 = a4

n
= 2

5
and

ȳ5 = a5
n

= 1
5
, respectively.

By definition, a mean Y of a population of size N can be defined as:

population mean = Y =
y1 + y2 + . . . yN

N
=
A

N

Using the proportion model (each point yi in a population can have two values

0 or 1), the population mean defined above is a proportion. x is a distinct value

in a common join attribute domain and we want to know how many of tuples of

relation R satisfy x, namely, its selectivity. This is, in fact, finding a “proportion”

on relation R which contains x in the tuples. Thus the proportion of R with value

x is the selectivity Y of value x on R, namely, Y = A
N

, where A is the total number

of tuples on R having x as a value.

The main theorem which is quoted from page 209 of reference [Cochran 1963]

Query size estimation using systematic sampling 116

is applicable for a mean and hence a proportion. Since this theorem (and its two

corollaries) only state on a selectivity (proportion) of a given distinct value of relation

R, i.e., proportion of R with the given distinct value, for simplicity of notation in the

theorem and its two corollaries, we will drop the subscript i of V (Ŷ i), the variance

of the selectivity of the ith distinct value on a sample relation.

Let V (Ŷ), V (Ŷ swr) and V (Ŷ swor) be such a variance obtained via SYSSMP,

SRSWR and SRSWOR, respectively, where Ŷ , Ŷ swr and Ŷ swor are the selectivities

of the ith distinct value calculated from each individual R′ yielded by SYSSMP,

SRSWR, and SRSWOR respectively. Let the value of the ith distinct value equal

x.

Before proceeding to the theorem, let us define one more symbol S2, a population

variance. Let S2 be the variance of the selectivity of the distinct value x over the

entire relation R. S2 is thus defined as:

S2 =

∑N
i=1(yi − Y)2

N − 1
=

∑N
i=1 y

2
i −NY 2

N − 1
(3.16)

where each yi corresponds to an element yrj in Table 3.4(b) (r = 1, 2, . . . , k, j =

1, 2, . . . , n). It is straightforward to see that
∑N
i=1 y

2
i = A since each yi in the table

is a [0,1] value. Thus, the variance S2 is:

S2 =
A−NY 2

N − 1
(3.17)

Since A = NY , the substitution of this in (3.17) gives:

S2 =
NY −NY 2

N − 1

=
N

N − 1
Y (1− Y) (3.18)

The theorem can be stated as follows:

Theorem 3.4.1 The variance of the selectivity Ŷ for distinct value x on a system-

atic sample relation is:

V (Ŷ) =
N − 1

N
S2 − k(n− 1)

N
S2
wsmp (3.19)

Query size estimation using systematic sampling 117

where

S2
wsmp =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi)2 (3.20)

is the variance among tuples that lie within the same systematic sample relation

(subscript wsmp = within a systematic sample relation). Recall that yij as shown

in Table 3.4(b) is a function f(tij, x) of a [0,1] value of tuple j of systematic sample

relation i. ȳi = ai

n
is the selectivity of distinct value x calculated from the ith

systematic sample relation. The proof is not given here since it was already shown

in [Cochran 1963]. The first important result from Theorem 3.4.1 is:

Corollary 3.4.1 The selectivity for distinct value x obtained from a systematic

sample relation is more accurate than the selectivity for the same distinct value

from a simple random sample relation without replacement if and only if

S2
wsmp > S2 (3.21)

The proof was also given in the same reference. The main result from this

corollary is that SYSSMP is more efficient than SRSWOR if the variance within

systematic sample relations is greater than the variance of the actual selectivity

over the entire relation. To ensure this with a high possibility, a sort over the

population in our case, on the join attribute of the entire relation, in ascending or

descending order must be done [Murthy and Rao 1988; Scheaffer et al. 1990], which

will then result in heterogeneous tuples within the same systematic sample relation.

Next is the second result which we have derived based also on Theorem 3.4.1.

Corollary 3.4.2 The selectivity for distinct value x obtained from a systematic

sample relation is more accurate than the selectivity for the same distinct value

from a simple random sample relation with replacement if and only if

S2
wsmp >

N − 1

N
S2 (3.22)

Proof. According to the theory of simple random sampling with replacement (see in

general sampling books such as [Cochran 1963; Thomson 1992; Scheaffer et al. 1990;

Murthy and Rao 1988]), it is well-known that the variance of Ŷ swr, the selectivity

Query size estimation using systematic sampling 118

obtained from a simple random sample relation of cardinality n with replacement,

is given by:

V (Ŷ swr) =
N − 1

N

S2

n
(3.23)

From Theorem 3.4.1, V (Ŷ) < V (Ŷ swr) if and only if

N − 1

N
S2 − k(n− 1)

N
S2
wsmp <

N − 1

N

S2

n

k(n− 1)S2
wsmp > (N − 1)S2 − N − 1

n
S2

k(n− 1)S2
wsmp >

nN − n−N + 1

n
S2

k(n− 1)S2
wsmp >

N(n− 1)− (n− 1)

n
S2

S2
wsmp >

N − 1

nk
S2 (3.24)

The substitution of N = nk to the inequality (3.24) gives:

S2
wsmp >

N − 1

N
S2

If N is large, then the result above would be the same as the the result in Corol-

lary 3.4.1, namely:

S2
wsmp > S2

Hence, from the main two results in Corollaries 3.4.1 and 3.4.2, we can conclude

that if the cardinality N of relation R is large, then systematic sampling is more

efficient than simple random sampling with/without replacement if and only if the

variance within systematic sample relations is larger than the variance of the actual

selectivity of distinct value x over the entire relation. It is intuitively clear that if

there is little variation within a systematic sample relation, relative to the variation

in the entire relation, some (perhaps a lot of) tuples in the sample relation are

repeating the same information, which implies that those repetitive tuples (together

with the remaining tuples in the sample relation) will not be able to form a good

representative sample relation.

The following is an example to show how to calculate variances of a selectivity

Query size estimation using systematic sampling 119

of a distinct value, namely, V (Ŷ), V (Ŷ swr) and V (Ŷ swor). The example also serves

to add an understanding in Section 3.4.2 of how we calculated a total variance of

estimated selectivities for all distinct values.

Example 1: Using relation R on the join attribute as shown in Figure 3.5 and

given a distinct value x of the join attribute equal to 1, calculate variances V (Ŷ),

V (Ŷ swr) and V (Ŷ swor).

The selectivity Y for distinct value x = 1 on R is A
N

which is 9
25

. From Theo-

rem 3.4.1, the variance V (Ŷ) on a systematic sample relation is:

V (Ŷ) =
N − 1

N
S2 − k(n− 1)

N
S2
wsmp

where the variance S2 is:

S2 =
N

N − 1
Y (1− Y)

from equation (3.18). The variance S2
wsmp within systematic sample relations in

equation (3.20) is:

S2
wsmp =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi)2

=
1

k(n− 1)

k∑
i=1

(
n∑
j=1

y2
ij − nȳ2

i) (3.25)

Since yij is a [0,1] value,
∑n
j=1 y

2
ij = ai, the number of tuples in the ith systematic

sample relation with the distinct value equal to 1. ȳi = ai

n
is the selectivity for

distinct value x = 1 calculated from the ith systematic sample relation. Substitute

ai to equation (3.25). This gives:

S2
wsmp =

1

k(n− 1)

k∑
i=1

(ai − nȳ2
i) (3.26)

Table 3.5(b) shows how to calculate the variance in (3.26) step-by-step.

Thus,

S2
wsmp =

1

5(5− 1)
(
28

5
) = 0.28

Query size estimation using systematic sampling 120

systematic sample no.
i 1 2 3 4 5

1 1 1 1 1
1 1 1 1 2
2 2 2 2 3
3 3 3 4 4
4 4 5 5 5

ai 2 2 2 2 1
ȳi

2
5

2
5

2
5

2
5

1
5

(a) Sample selectivi-
ties

sample no. ai − nȳ2
i

i = 1 2− 5(2
5)2

i = 2 2− 5(2
5)2

i = 3 2− 5(2
5)2

i = 4 2− 5(2
5)2

i = 5 1− 5(1
5)2∑5

i=1(ai − nȳ2
i) 28

5 = 5.6

(b) S2
wsmp, variance within

sample relations

Table 3.5: Selectivities and a variance, when a distinct value = 1

S2 =
25

25− 1
(

9

25
)(1− 9

25
) = 0.24.

The variance V (Ŷ) of the selectivity of x = 1 on a systematic sample relation is:

V (Ŷ) =
25− 1

25
0.24− 5(5− 1)

25
0.28 = 0.0064.

The following two formulas for V (Ŷ swor) and V (Ŷ swr) can be found in general sam-

pling books (see [Cochran 1963; Thomson 1992; Scheaffer et al. 1990; Murthy and

Rao 1988], for examples). The variance V (Ŷ swor) of the selectivity of x = 1 on a

simple random sample relation without replacement is:

V (Ŷ swor) =
N − n
N

S2

n
=

25− 5

25
∗ 0.24

5
= 0.0384.

The variance V (Ŷ swr) of the selectivity of x = 1 on a simple random sample relation

with replacement is:

V (Ŷ swr) =
N − 1

N

S2

n
=

25− 1

25
∗ 0.24

5
= 0.04608.

Since S2
wsmp > S2, V (Ŷ) < V (Ŷ swor) (following Corollary 3.4.1), so is V (Ŷ) <

V (Ŷ swr) (following Corollary 3.4.2). As one might have expected, V (Ŷ swor) <

V (Ŷ swr).

For other distinct values of the join attribute x = 2, 3, 4 and 5, follow the same

procedure as shown above and Table 3.6 shows the results for all the distinct values.

Query size estimation using systematic sampling 121

dist val x Y S2 S2
wsmp V (Ŷ) V (Ŷ swor) V (Ŷ swr)

1 0.36 0.24 0.28 0.0064 0.038 0.046
2 0.20 0.17 0.20 2.7756e-17 0.027 0.032
3 0.16 0.14 0.16 0.0064 0.022 0.027
4 0.16 0.14 0.16 0.0064 0.022 0.027
5 0.12 0.11 0.12 0.0096 0.018 0.021

Table 3.6: Means and variances on different distinct values

3.4.2 Total variance of estimated selectivities for all distinct values

In Section 3.4.1, we have shown the variance solely for a single distinct value in a

common join attribute domain obtained via SYSSMP, SRSWOR and SRSWR. In

this section, we will show a total variance of estimated selectivities for all distinct

values in the common join domain under the three sampling methods.

Let S2
i be the variance of the actual selectivity of the ith distinct value over

the entire relation R, where i = 1, 2, . . . , d. Let S2
wsmpi

be the variance within

systematic sample relations of the ith distinct value. In this section, there are four

main results which are also based on Theorem 3.4.1. Generally, they are to claim that

the systematic sampling is more efficient (in producing a sample relation) than the

simple random sampling with/without replacement if and only if the total/average

of S2
wsmpi

’s must be larger than the total/average of S2
i ’s for all i = 1, 2, . . . , d. Let

T be the total variance of S2
i ’s, i.e.,

T = S2
1 + S2

2 + . . .+ S2
d =

d∑
i=1

S2
i

and let Twsmp be the total variance within systematic sample relations, defined as:

Twsmp = S2
wsmp1 + S2

wsmp2 + . . .+ S2
wsmpd

=
d∑
i=1

S2
wsmpi

Denote the average of T by T = T
d

and the average of Twsmp by Twsmp = Twsmp

d
. Recall

that Ŷ i, Ŷ swri and Ŷ swori are the selectivities of the ith distinct value calculated from

a sample relation obtained via SYSSMP, SRSWR, and SRSWOR respectively.

Corollary 3.4.3 SYSSMP yields a more efficient sample relation than SRSWOR

Query size estimation using systematic sampling 122

if and only if

Twsmp > T (3.27)

Proof. If SYSSMP is more efficient than SRSWOR in yielding a sample relation, it

is obvious to claim:

V (Ŷ 1) + V (Ŷ 2) + . . .+ V (Ŷ d) < V (Ŷ swor1) + V (Ŷ swor2) + . . .+ V (Ŷ sword)
d∑
i=1

V (Ŷ i) <
d∑
i=1

V (Ŷ swori) (3.28)

According to the theory of simple random sampling without replacement, it

is well-known that the variance of Ŷ swori, the selectivity obtained from a simple

random sample relation of cardinality n without replacement, is given by:

V (Ŷ swori) =
N − n
N

S2
i

n
(3.29)

The substitutions of V (Ŷ i) in equation (3.19) from Theorem 3.4.1 and of V (Ŷ swori)

in (3.29) to (3.28) give:

d∑
i=1

(
N − 1

N
S2
i −

k(n− 1)

N
S2
wsmpi

) <
d∑
i=1

N − n
N

S2
i

n

N − 1

N

d∑
i=1

S2
i −

k(n− 1)

N

d∑
i=1

S2
wsmpi

<
N − n
Nn

d∑
i=1

S2
i

k(n− 1)
d∑
i=1

S2
wsmpi

> ((N − 1)− N − n
n

)
d∑
i=1

S2
i

k(n− 1)
d∑
i=1

S2
wsmpi

>
N(n− 1)

n

d∑
i=1

S2
i (3.30)

N
n

= k so substitute k to the right hand side of (3.30). This gives:

k(n− 1)
d∑
i=1

S2
wsmpi

> k(n− 1)
d∑
i=1

S2
i

Twsmp > T

The second result basically relies on Corollary 3.4.3.

Query size estimation using systematic sampling 123

Corollary 3.4.4 SYSSMP yields a more efficient sample relation than SRSWOR

if and only if

Twsmp > T (3.31)

Proof. From Corollary 3.4.3, we have

Twsmp > T

It is valid to divide both sides of Twsmp > T by d if d > 0, namely:

Twsmp
d

>
T

d

which is equal to:

Twsmp > T

Again, to ascertain Twsmp > T and Twsmp > T , relation R must be sorted in

ascending or descending order [Murthy and Rao 1988; Scheaffer et al. 1990].

Corollary 3.4.5 SYSSMP yields a more efficient sample relation than SRSWR if

and only if

Twsmp >
N − 1

N
T (3.32)

Proof. If SYSSMP is more efficient than SRSWR in yielding a sample relation, it

is obvious to claim:

V (Ŷ 1) + V (Ŷ 2) + . . .+ V (Ŷ d) < V (Ŷ swr1) + V (Ŷ swr2) + . . .+ V (Ŷ swrd)
d∑
i=1

V (Ŷ i) <
d∑
i=1

V (Ŷ swri) (3.33)

The substitutions of V (Ŷ i) in equation (3.19) from Theorem 3.4.1 and of V (Ŷ swri)

in equation (3.23) to (3.33) give:

d∑
i=1

(
N − 1

N
S2
i −

k(n− 1)

N
S2
wsmpi

) <
d∑
i=1

N − 1

N

S2
i

n

N − 1

N

d∑
i=1

S2
i −

k(n− 1)

N

d∑
i=1

S2
wsmpi

<
N − 1

Nn

d∑
i=1

S2
i

Query size estimation using systematic sampling 124

k(n− 1)
d∑
i=1

S2
wsmpi

> ((N − 1)− N − 1

n
)

d∑
i=1

S2
i

k(n− 1)
d∑
i=1

S2
wsmpi

>
nN − n−N + 1

n

d∑
i=1

S2
i

k(n− 1)
d∑
i=1

S2
wsmpi

>
N(n− 1)− (n− 1)

n

d∑
i=1

S2
i

d∑
i=1

S2
wsmpi

>
N − 1

nk

d∑
i=1

S2
i (3.34)

Since N = nk, substitute this to (3.34), giving:

d∑
i=1

S2
wsmpi

>
N − 1

N

d∑
i=1

S2
i

Twsmp >
N − 1

N
T

If N is large, then
d∑
i=1

S2
wsmpi

>
d∑
i=1

S2
i

Twsmp > T

which is the same as the result in Corollary 3.4.3.

The last result relies on Corollary 3.4.5.

Corollary 3.4.6 SYSSMP yields a more efficient sample relation than SRSWR if

and only if

Twsmp >
N − 1

N
T (3.35)

Proof. From Corollary 3.4.5, we have

Twsmp >
N − 1

N
T

Divide both sides of Twsmp >
N−1
N
T by d if d > 0, namely:

Twsmp
d

>
N − 1

N

T

d

which is equal to:

Twsmp >
N − 1

N
T

Query size estimation using systematic sampling 125

if N is large, then

Twsmp > T

Therefore, if N is large, we can then conclude that a sample relation produced

by the systematic sampling is more efficient than that by the simple random sam-

pling with/without replacement if the total variance Twsmp within systematic sample

relations is larger than the total population variance T .

The following is an example demonstrating how to calculate Twsmp and T . Recall

that Twsmp =
∑d
i=1 S

2
wsmpi

and T =
∑d
i=1 S

2
i . The purpose of the demonstration is

merely to assist in understanding how we obtained the results in Section 3.5.2. The

results in Table 3.10 of Section 3.5.2 are calculated and tabulated in the same fashion

as the example below.

Example 2: Using relation R on the join attribute as shown in Figure 3.5 and

reproducing (from the original table 3.6 for ease in reference here) Table 3.7(a)

which consists of S2
wsmpi

, S2
i , V (Ŷ i), V (Ŷ swori) and V (Ŷ swri) for each ith distinct

value i = 1, 2, . . . , 5, Table 3.7 illustrates how to calculate total variances and sample

relation variances.

i-th dist val S2
i S2

wsmpi
V (Ŷ i) V (Ŷ swori) V (Ŷ swri)

1 0.24 0.28 0.0064 0.038 0.046
2 0.17 0.20 2.7756e-17 0.027 0.032
3 0.14 0.16 0.0064 0.022 0.027
4 0.14 0.16 0.0064 0.022 0.027
5 0.11 0.12 0.0096 0.018 0.021

(a) Variances of each distinct value

T =
∑5

i=1 S
2
i

N−1
N T Twsmp =

∑5
i=1 S

2
wsmpi

∑5
i=1 V (Ŷ i)

∑5
i=1 V (Ŷ swori)

∑5
i=1 V (Ŷ swri)

0.797 0.765 0.920 0.029 0.127 0.153

(b) Total variances and sample relation variances

Table 3.7: Total variance calculation

The results in Table 3.7(b) correspond to Corollary 3.4.3 (Twsmp > T) and and to

Corollary 3.4.5 (Twsmp >
N−1
N
T). We can then conclude that SYSSMP for relation

R sorted on the join attribute produces a sample relation of higher quality than

SRSWOR and SRSWR.

Query size estimation using systematic sampling 126

3.5 Experimental results for joins

A method is first described in Section 3.5.1 for generating synthetic data. The same

method is used to generate data in subsequent Sections 3.5.2 and 3.5.3.

Next we conduct the first 20 experiments in Section 3.5.2 in order to substantiate

the theoretical claim we have developed in Sections 3.4.1 and 3.4.2. The aim of the

experiments is to demonstrate that when relations are sorted on their join attributes,

the sample relations yielded by SYSSMP are, in general, of higher quality than those

by SRSWOR and SRSWR.

The theoretical and experimental results above are just to claim that a better

quality of sample relations can be obtained by SYSSMP. However, the claim that

sample relations with higher quality can indeed assist in computation for more ac-

curate query result size estimates for star joins still remains to be justified. We

conduct two more sets of experiments in Section 3.5.3 so as to demonstrate that we

can indeed obtain more accurate query size estimates for join queries.

3.5.1 Experimental setup

Table 3.8 shows all the parameters and their meanings for different kinds of data

distributions used in all experiments in this thesis.

Notation Meaning
norm(mean, δ) normal distribution with mean mean and standard deviation δ
unf(low, high) uniform distribution with

low the lowest random value to be generated
high the highest random value to be generated

fdist(f1, f2) F distribution with
degrees of freedom for numerator f1
degrees of freedom for denominator f2

zipf(NumDist,z) NumDist the expected number of distinct values
z, the values between 0 to 1

semizipf(NumDist,z = 0.5) NumDist the expected number of distinct values
this is a special case of the zipf distribution where z = 0.5

exp(av) exponential distribution with mean av

Table 3.8: Parameters for each distribution

The data generated in Section 3.5.2 and Section 3.5.3 for join attributes attempt

to follow work in the literature [Lipton et al. 1990; Haas and Swami 1992]; that is,

in a common join attribute domain, use different kinds of the data distributions as

shown in Table 3.8 to generate values in the domain. Randomly generated are the

Query size estimation using systematic sampling 127

parameters, e.g., low, high,mean,NumDist and so on for the distributions.

All join attribute values, except values generated by the zipf [Zipf 1949] and

semizipf distributions, are first generated at random in accordance with a given

distribution, i.e. either norm(), unf() or exp(). Then those generated values are

shifted using the following scheme:

ScaleV al =
val −minval

maxval −minval
x = LowV al + dScaleV al ∗NumDiste

where val, minval and maxval are a value, the maximum and minimum values,

respectively generated from the given distribution. x is a join attribute value which

appears in the relation being created. ScaleV al is a value scaled to the range

between 0 and 1. The LowV al is the lowest possible value on a common join

attribute domain, the NumDist is the expected number of distinct values on the

common domain. Note that the value of NumDist given for relation creation is

higher2 than or equal to the value of d, which is the actual number of distinct values

obtained after the relation has been created. The reason for the shifting is to ensure

that join attribute values of two or more relations in any star join will then stay on

the same common domain.

For the zipf and semizipf distributions, join attribute values are generated by:

x = i+ (LowV al − 1)

where i = 1, 2, . . . , NumDist and each x value generated has a frequency computed

by: N ∗ c
iz

where c = 1∑NumDist

j=1
1

jz

and N is the cardinality of the relation of interest.

3.5.2 Quality of sample relations yielded by SYSSMP, SRSWOR and SR-

SWR

Table 3.9 shows all relations used for the first set of experiments with N = 10, 000

tuples each. The number of distinct values of join attributes of the relations ranges

approximately from 10, 20, 30 and 40. Four experiments (namely R1, R2, R3 and

2This is dependent upon the distribution of ScaleV al’s which may cause the relation being
created to/not to have the same number of distinct values as the value supplied.

Query size estimation using systematic sampling 128

R4) are conducted for the exponential data distribution, another four experiments

for the zipf data distribution, ... and so on (see the table).

One may argue that since the range d of the number of distinct values used

(namely, between 10-40) is so small, the results obtained here can be biased in favor

of the systematic sampling proposed. Here are two reasons to justify the experiments

here.

• First, the experiments developed here are to provide an observation that when

data are sorted, it is more likely that SYSSMP will produce higher quality

sample relations. But such an observation is still not entirely conclusive, i.e.,

there is still also room for SRS to be better than SYSSMP and this can be

seen from the results obtained for selections in Table 3.24 of Section 3.8.2.

(However, from the table, we still find that when data are sorted, most of the

times we will be able to obtain higher quality sample relations. The symbol

in the table %(1 > 2) means the percentage that SYSSMP is superior to SRS

which is significantly better in most of the cases.)

The more solid and extensive set of experiments whose number of distinct

values is upto 900 is shown in Section 3.5.3 (see also Table 3.11 in the section

for the number of distinct values used.). It is this latter set of experiments,

not the former, to prove whether SYSSMP is really good or not in producing

better join selectivities.

• Second, despite the small range d (10-40) used, this range is still practical

enough to occur in real-world databases. According to [Turney and Jankulak

1993], in 64 real-world attribute domains whose cardinalities range from 15 to

48842 tuples, the range d of the number of distinct values is in between 2-100,

which is quite close to the one used here.

Using the 10k relations, we conducted 20 experiments using 20 different relation

configurations as shown in Table 3.9. A sample size n used in all the experiments

in this section is n = 10% of the original sizes of the relations, which is equal to

1000 tuples. Thus the step size k would be equal to N
n

= 10000
1000

= 10 in all the

experiments. k also represents the total number of all possible unique systematic

sample relations which can be obtained from an original relation.

Query size estimation using systematic sampling 129

reln. dist mode d dist mode d
R1 exp(87.346) 10 zipf(10,0.156) 10
R2 exp(123.976) 20 zipf(20,0.857) 20
R3 exp(145.866) 30 zipf(30,0.699) 30
R4 exp(104.164) 43 zipf(40,0.448) 40

(a) Relation configurations

reln. dist mode d dist mode d dist mode d
R1 unf(3847.290,3856.290) 10 semizipf(10,0.5) 10 norm(2393.555,148.650) 10
R2 unf(2604.370,2623.370) 20 semizipf(20,0.5) 20 norm(3965.942,141.974) 20
R3 unf(2527.100,2556.100) 30 semizipf(30,0.5) 30 norm(3533.447,207.898) 30
R4 unf(3765.259,3804.259) 40 semizipf(40,0.5) 40 norm(3318.726,188.213) 41

(b) Relation configurations

Table 3.9: 5 data distributions of Exponential, Zipf, Uniform, Semizipf and Normal

Table 3.10 shows all results for the relations shown in Table 3.9. The results are

calculated and can be interpreted in the same fashion as the results in example 2

in Section 3.4.2. That is, the total variance of estimated selectivities for all distinct

values on a sample relation yielded by SYSSMP is generally lower than the total

variance by SRSWOR and SRSWR. Hence, the quality of sample relations yielded

by SYSSMP would be higher than by SRSWOR or SRSWR. Alternatively, each

sample relation created by SYSSMP would well represent the underlying frequency

distribution of the join attribute in the original relation.

3.5.3 Query size estimation

Now that the quality of sample relations generated by SYSSMP is higher than that

by SRSWOR and SRSWR, in this section we will claim that sample relations with

higher quality can indeed assist in computation for more accurate query result size

estimates for star joins.

We start with a demonstration in Section 3.5.3.1 that given an index per join

attribute (the extreme case of SYSSMP) participating in a star join, the quality of

query result size estimates obtained via SYSSMP is far superior to the SS procedure.

Recall that an index on an attribute is implemented via either a physical index or

a sorted attribute on the relation.

In Section 3.5.3.2 we will show that when there are only some (not all) join

attributes indexed, the quality of query result size estimates, although degraded to

some certain extent, via the hybrid sampling scheme between SYSSMP and SS is

Query size estimation using systematic sampling 130

exp. T =
∑
S2

i
N−1

N T Twsmp =
∑
V (Ŷ i)

∑
V (Ŷ swori)

∑
V (Ŷ swri)∑

S2
wsmpi

exp,R1 0.59996930 0.59990930 0.60050851 0.00000130 0.00053997 0.00059991
exp,R2 0.78517142 0.78509290 0.78587548 0.00000330 0.00070665 0.00078509
exp,R3 0.86270787 0.86262160 0.86347968 0.00000540 0.00077644 0.00086262
exp,R4 0.90259352 0.90250326 0.90339920 0.00000746 0.00081233 0.00090250
zipf,R1 0.89877102 0.89868114 0.89957918 0.00000154 0.00080889 0.00089868
zipf,R2 0.90089257 0.90080248 0.90170070 0.00000348 0.00081080 0.00090080
zipf,R3 0.94172603 0.94163186 0.94256957 0.00000486 0.00084755 0.00094163
zipf,R4 0.96837578 0.96827894 0.96924204 0.00000614 0.00087154 0.00096828
unf,R1 0.89351981 0.89343046 0.89432292 0.00000186 0.00080417 0.00089343
unf,R2 0.94858458 0.94848972 0.94943604 0.00000312 0.00085373 0.00094849
unf,R3 0.96575104 0.96565446 0.96661562 0.00000546 0.00086918 0.00096565
unf,R4 0.97458626 0.97448880 0.97545766 0.00000660 0.00087713 0.00097449
semi,R1 0.88378740 0.88369902 0.88458198 0.00000162 0.00079541 0.00088370
semi,R2 0.93757084 0.93747708 0.93841261 0.00000288 0.00084381 0.00093748
semi,R3 0.95636568 0.95627004 0.95722262 0.00000464 0.00086073 0.00095627
semi,R4 0.96615440 0.96605778 0.96701782 0.00000698 0.00086954 0.00096606
norm,R1 0.76024058 0.76016456 0.76092392 0.00000156 0.00068422 0.00076016
norm,R2 0.89588161 0.89579202 0.89668509 0.00000362 0.00080629 0.00089579
norm,R3 0.93090947 0.93081638 0.93174334 0.00000478 0.00083782 0.00093082
norm,R4 0.95149797 0.95140282 0.95234875 0.00000642 0.00085635 0.00095140

Table 3.10: Total variances and sample relation variances

still superior to the pure SS procedure.

3.5.3.1 Index per join attribute (extreme case)

We conducted 24 experiments to demonstrate the performance between SS versus

SYSSMP. We performed each 6 experiments for star joins among 2, 3, 4, and 5

relations, respectively. For all the star joins with m = 2, 3, 4, 5 relations, a sampling

fraction β is set to 10% for each relation participating in the star joins.

If we allow for (1) a bound on error B, (2) a probability α that the error is not

within the bound given and (3) have a large population size N (=
∏m
j=1 |Rj |) (which

is the case in our experiments), then we can calculate a sample size ñ (=
∏m
i=1 |R′

i|)
for both SS and SYSSMP by using equation (3.12) in page 110 (see the derivation

of ñ for SS, namely, SRSWR in Appendix A in page 165). In the equation, an

estimated join selectivity µ̂ can be used as a substitute for the actual join selectivity

µ and can be obtained from a previous sampling. In equation (3.14), if a sample

size ñ is the same for the two sampling methods SS and SYSSMP (which is true,

assuming that both use the same previous estimated selectivity), then the sampling

fraction β of tuples to be sampled from each relation would also be the same.

Query size estimation using systematic sampling 131

Here we are trying to claim that with the same amount of sampling β, SYSSMP

would be superior to SS in producing better join selectivities (and thus result sizes).

To fulfil such a claim, we picked β = 10% sampling for all the experiments here.

β = 10% picked is thus justified under the same fair basis of comparison between

the two sampling methods. By knowing that the claim is trustworthy or reliable,

the sample size formula ñ above together with SYSSMP on sorted data should be

used on-line, instead of SS, to approximate join selectivities.

Table 3.11(a) shows 6 configurations for 2 relations in 2-relation star joins, Ta-

ble 3.11(b) shows another 6 configurations for 3 relations in 3-relation star joins, . . .,

and Table 3.11(d) shows the last 6 configurations for 5 relations in 5-relation star

joins. All the relations are of 10,000 tuple cardinality. Although these 10,000 tuple

relations that we used throughout all experiments here (Sections 3.5.3.1 and 3.5.3.2)

are of a small size, as compared to real world relations, they can produce join result

sizes upto 6.028e+08 tuples, which is extremely large.

Before proceeding to experimental results, let us define three error measures

which we have used to compare the results both for joins and selections. The three

measures are shown in Figure 3.6. Fundamentally all the three error measures aim

to gauge an average error between actual result sizes and their estimates.

All the graphs in Figures 3.7, 3.8, 3.9 and 3.10 show 30 runs (see the X-axis) of

SS against SYSSMP. The Y-axis represents the join result size. Let us clarify one

of them, e.g., graph in Figure 3.7(a). This graph is for a star join with 2 relations.

For the ith run (i = 1, 2, . . . , 30) of either SS or SYSSMP, two sample relations

are created and joined together to yield an estimated cardinality µ̂iÑ as plotted

in the graph. There are 3 lines in the graph; the solid line is for the join result

size estimates for SS, the dashed line for the join result size estimates for SYSSMP

and the straight dotted line for the actual join result size. The aim of the graph is

“the closer the graph lies in respect to the graph of the actual value, the better the

estimation method”.

One can clearly see from all those graphs that generally SYSSMP has a signifi-

cantly lower fluctuation of its estimates against the actual join result size than SS.

In other words, many peaks (or spikes) have taken place in the graphs but a lot

more peaks with high error belong to SS, rather than to SYSSMP.

Q
u
e
ry

size
e
stim

a
tio

n
u
sin

g
sy

ste
m

a
tic

sa
m

p
lin

g
1
3
2

R1 R2
exp. distrib d distrib d
SJ1 semizipf(400,0.5) 400 unf(2968,3019) 52
SJ2 zipf(500,0.237) 500 norm(3893.188,196.320) 384
SJ3 semizipf(600,0.5) 600 zipf(600,0.317) 600
SJ4 exp(106.714) 376 norm(2966.064,217.159) 548
SJ5 exp(109.277) 378 semizipf(800,0.5) 800
SJ6 norm(3227.783,257.053) 664 unf(3701.172,3798.470) 76

(a) 2 relations

R1 R2 R3
exp. distrib d distrib d distrib d
SJ1 unf(3827.271,3888.726) 62 zipf(400,0.048) 400 exp(144.960) 235
SJ2 zipf(500,0.734) 500 norm(3726.318,145.969) 376 exp(98.996) 320
SJ3 unf(3928.223,3990.802) 63 norm(3401.245,290.111) 468 exp(94.514) 383
SJ4 zipf(700,0.315) 700 unf(3585.327,3700.789) 116 norm(3092.773,268.599) 557
SJ5 zipf(800, 0.945) 800 semizipf(800,0.5) 800 norm(3097.412,171.849) 559
SJ6 semizipf(900, 0.5) 900 zipf(900,0.194) 900 exp(86.307) 454

(b) 3 relations

R1 R2 R3 R4
exp. distrib d distrib d distrib d distrib d
SJ1 zipf(500,0.775) 500 exp(99.371) 282 norm(3206.055,276.952) 407 norm(2008.545,137.766) 395
SJ2 norm(1678.223,110.155) 433 unf(2802.612,2857.233) 56 norm(2071.411,236.481) 426 zipf(600,0.682) 600
SJ3 semizipf(700,0.5) 700 unf(3015.991,3116.359) 101 norm(2284.180,208.998) 525 unf(3750.000,3923.284) 174
SJ4 semizipf(800,0.5) 800 zipf(800,0.807) 800 norm(3650.391,3724.013) 579 exp(142.209) 437
SJ5 semizipf(900,0.5) 900 exp(86.490) 464 semizipf(900,0.5) 900 unf(3366.577,3419.262) 54
SJ6 zipf(400,0.781) 400 unf(3913.940,3970.148) 58 semizipf(400,0.5) 400 unf(3842.529,3894.625) 53

(c) 4 relations

R1 R2 R3 R4 R5
exp. distrib d distrib d distrib d distrib d distrib d
SJ1 norm(3735.107,160.175) 403 exp(108.229) 313 unf(3501.831,3613.560) 113 norm(3826.293,244.107) 383 unf(2838.867,3036.646) 199
SJ2 exp(128.801) 400 exp(138.199) 343 unf(2904.297,2963.424) 60 norm(3613.647,223.311 450 norm(1719.971,329.877) 476
SJ3 norm(1684.448,286.298) 489 exp(136.253) 363 unf(3510.742,3653.385) 144 zipf(600,0.892) 600 unf(3774.170,3950.456) 177
SJ4 zipf(700,0.440) 700 exp(83.258) 413 norm(2743.530,226.974) 555 unf(3248.291,3328.311) 81 semizipf(700,0.5) 700
SJ5 zipf(800,0.654) 800 zipf(800,0.143) 800 norm(3112.183,189.890) 619 unf(3075.562,3217.562) 143 unf(2572.266,2744.348) 173
SJ6 exp(134.624) 465 exp(132.294) 497 norm(3117.065,118.102) 663 zipf(900,0.053) 900 zipf(900,0.858) 900

(d) 5 relations

Table 3.11: Relation configurations for star joins

Query size estimation using systematic sampling 133

Root Mean Square Error is defined as follows:√√√√ Z∑
i=1

(µ̂iÑ − µÑ)2

Z

where Z is the number of samplings (we used 30 in all experiments), µ an actual join selec-
tivity, µ̂i an estimated join selectivity which results from the ith sampling, Ñ =

∏m
j=1 |Rj |,

µ̂iÑ a result size estimate of a given star join in the ith sampling and µÑ an actual result
size of the star join.

Mean Residual Error is defined as follows:∑Z
i=1 abs(µ̂iÑ − µÑ)

Z
Mean Relative Error is defined as follows:∑Z

i=1 100 ∗ abs(µ̂iÑ−µÑ)

µÑ

Z
For selection queries, we also used the three error measures above where µ is substituted by an
actual selection selectivity Y , µ̂ by an estimated selection selectivity Ŷ and Z by a total number
of queries used |Q|, Ñ by a cardinality N of the relation of interest.

The reason we chose more than one measure – that is, one can use only one of the 3 measures to
do the evaluation – is that if one is suspicious of one error measure used, he/she can look at the
other two. At least two of the 3 should consistently give a good evaluation to a method in the
same direction if the method is to be good.

Figure 3.6: Three error measures

Apart from the graphs, in each experiment (24 experiments), we have also sum-

marised three kinds of error in estimation, i.e., root mean square, mean residual and

mean relative errors as shown in Table 3.12 for the 2-relation star joins, Table 3.13

for the 3-relation star joins, Table 3.14 for the 4-relation star joins and Table 3.15

for the 5-relation star joins. Note that when considering the root mean square and

mean residual errors in the tables, to compare the errors against their actual values,

see the corresponding actual values labelled in the right corner of the graphs.

3.5.3.2 Some indices among join attributes

In this section, we will demonstrate that when some (not all) join attributes partic-

ipating in a star join have indices (via either a physical index or a sorted attribute)

and the rest do not, the quality of join result size estimates obtained via the hybrid

sampling scheme between SYSSMP and SS is still superior to the pure SS procedure.

Query size estimation using systematic sampling 134

220000

230000

240000

250000

260000

270000

280000

290000

300000

310000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.syssmp"

266830

(a) SJ1

165000

170000

175000

180000

185000

190000

195000

200000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.syssmp"

178867

(b) SJ2

260000

270000

280000

290000

300000

310000

320000

330000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.syssmp"

295660

(c) SJ3

18000

20000

22000

24000

26000

28000

30000

32000

34000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.syssmp"

27034

(d) SJ4

350000

360000

370000

380000

390000

400000

410000

420000

430000

440000

450000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.syssmp"

391123

(e) SJ5

90000

95000

100000

105000

110000

115000

120000

125000

130000

135000

140000

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.syssmp"

116550

(f) SJ6

Figure 3.7: Star joins with 2 relations (binary joins)

4.5e+06

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

7.5e+06

8e+06

8.5e+06

9e+06

9.5e+06

1e+07

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.syssmp"

6684390

(a) SJ1

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.syssmp"

433090

(b) SJ2

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.syssmp"

894360

(c) SJ3

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

2.4e+06

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.syssmp"

1823341

(d) SJ4

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.syssmp"

628916

(e) SJ5

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.syssmp"

11827297

(f) SJ6

Figure 3.8: Star joins with 3 relations

Query size estimation using systematic sampling 135

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.syssmp"

10836779

(a) SJ1

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.syssmp"

39570875

(b) SJ2

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.syssmp"

23606234

(c) SJ3

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.syssmp"

13575112

(d) SJ4

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

1.1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.syssmp"

529322992

(e) SJ5

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.syssmp"

855930005

(f) SJ6

Figure 3.9: Star joins with 4 relations

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.syssmp"

333875831

(a) SJ1

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.syssmp"

74198218

(b) SJ2

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.syssmp"

165024282

(c) SJ3

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.syssmp"

602760747

(d) SJ4

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.syssmp"

77536074

(e) SJ5

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.syssmp"

371500207

(f) SJ6

Figure 3.10: Star joins with 5 relations

Query size estimation using systematic sampling 136

2 Rels
exp. SS SYSSMP
SJ1 1.817e+04 9.875e+03
SJ2 7.953e+03 5.110e+02
SJ3 1.440e+04 1.583e+03
SJ4 3.165e+03 9.950e+02
SJ5 2.227e+04 1.253e+03
SJ6 1.119e+04 2.219e+03

(a) Root mean square er-
ror

2 Rels
exp. SS SYSSMP
SJ1 1.547e+04 9.048e+03
SJ2 6.448e+03 4.290e+02
SJ3 1.157e+04 1.405e+03
SJ4 2.451e+03 7.640e+02
SJ5 1.729e+04 1.011e+03
SJ6 9.303e+03 1.903e+03

(b) Mean residual error

2 Rels
exp. SS SYSSMP
SJ1 6 3
SJ2 4 0
SJ3 4 0
SJ4 9 3
SJ5 4 0
SJ6 8 2

(c) Mean relative
error

Table 3.12: Estimation errors for 2-relation star joins

3 Rels
exp. SS SYSSMP
SJ1 1.325e+06 2.869e+05
SJ2 1.698e+05 6.526e+04
SJ3 2.321e+05 1.325e+05
SJ4 3.932e+05 5.207e+04
SJ5 1.128e+06 2.612e+05
SJ6 1.456e+06 1.341e+05

(a) Root mean square er-
ror

3 Rels
exp. SS SYSSMP
SJ1 1.106e+06 2.308e+05
SJ2 1.087e+05 6.053e+04
SJ3 1.883e+05 1.152e+05
SJ4 3.199e+05 3.909e+04
SJ5 6.291e+05 2.600e+05
SJ6 1.177e+06 1.140e+05

(b) Mean residual error

3 Rels
exp. SS SYSSMP
SJ1 17 3
SJ2 25 14
SJ3 21 13
SJ4 18 2
SJ5 100 41
SJ6 10 1

(c) Mean relative
error

Table 3.13: Estimation errors for 3-relation star joins

4 Rels
exp. SS SYSSMP
SJ1 3.099e+06 5.118e+05
SJ2 1.880e+07 4.468e+06
SJ3 1.022e+07 2.942e+06
SJ4 8.002e+07 1.256e+07
SJ5 2.135e+08 3.955e+07
SJ6 3.294e+08 1.164e+08

(a) Root mean square er-
ror

4 Rels
exp. SS SYSSMP
SJ1 2.304e+06 3.987e+05
SJ2 1.445e+07 3.549e+06
SJ3 8.489e+06 2.046e+06
SJ4 3.181e+07 1.256e+07
SJ5 1.770e+08 3.384e+07
SJ6 2.828e+08 1.105e+08

(b) Mean residual error

4 Rels
exp. SS SYSSMP
SJ1 21 4
SJ2 37 9
SJ3 36 9
SJ4 234 93
SJ5 33 6
SJ6 33 13

(c) Mean relative
error

Table 3.14: Estimation errors for 4-relation star joins

5 Rels
exp. SS SYSSMP
SJ1 2.552e+08 1.035e+08
SJ2 6.407e+07 2.502e+07
SJ3 3.113e+08 5.174e+07
SJ4 2.593e+09 4.853e+08
SJ5 2.160e+08 6.587e+07
SJ6 2.442e+09 3.503e+08

(a) Root mean square er-
ror

5 Rels
exp. SS SYSSMP
SJ1 2.113e+08 8.076e+07
SJ2 5.341e+07 1.796e+07
SJ3 1.529e+08 4.286e+07
SJ4 1.368e+09 4.825e+08
SJ5 1.252e+08 6.516e+07
SJ6 9.904e+08 3.502e+08

(b) Mean residual error

5 Rels
exp. SS SYSSMP
SJ1 63 24
SJ2 72 24
SJ3 93 26
SJ4 227 80
SJ5 161 84
SJ6 267 94

(c) Mean relative
error

Table 3.15: Estimation errors for 5-relation star joins

Query size estimation using systematic sampling 137

To obtain a result size estimate of a star join, the samples of the relations with the

indices are obtained via SYSSMP whereas the samples of the relations without any

index are obtained via the SS procedure. All the samples are then joined together

to produce a result size estimate of the star join.

The objective of all experiments done in this section is to verify the hypothesis

that:

when the number of the indexed attributes increases, the quality of join result size

estimates should be better.

We used the 5-relation configurations shown in Table 3.11(d) to conduct exper-

iments here. We experimented upon star joins over the 5 participating relations by

having 2, 4 and 5 (i.e., all) attributes indexed over the 5 relations.

Table 3.16 shows 6 experiments each of which
exp. 2 attrs indexed 4 attrs indexed

SJ1 R2, R3 R2, R3, R1, R5

SJ2 R5, R3 R5, R3, R4, R2

SJ3 R1, R5 R1, R5, R3, R2

SJ4 R2, R1 R2, R1, R5, R4

SJ5 R3, R5 R3, R5, R4, R1

SJ6 R4, R5 R4, R5, R2, R3

Table 3.16: Relations with 2 and 4

indices on them

has 2 and 4 indexed attributes. Assuming that

each relation has one join attribute on it, the

relations with the indices on them are shown in

the table. For example, in experiment SJ1, in

the light of 2 indexed attributes, R2 and R3 have

the indices on them and thus the rest of the par-

ticipating relations, i.e., R1, R4, and R5 do not.

All indexed relations shown in the table are generated at random. Note however,

that for 4 indexed attributes, two more indexed attributes are randomly generated

and added to the set of the previous two indexed attributes. For instance, in exper-

iment SJ1, R2 and R3 are randomly chosen first as the first two indexed attributes,

then R1 and R5 are added later to the first two attributes to form the 4 indexed

attribute set.

The graphs in Figures 3.11 and 3.12 can be interpreted in the same fashion as

the graphs in Section 3.5.3.1. Each graph shows a comparison between the hybrid

sampling scheme and pure SS procedure with i indexed attributes, where i = 2, 4

or 5. From left to right, the number of indexed attributes are gradually increased,

i.e., 2, 4 and all (5) indexed attributes, respectively. Note that the graphs (in

the rightmost column) for all attributes indexed are in fact reproduced from the

Query size estimation using systematic sampling 138

graphs for the 5-relation star joins presented in Section 3.5.3.1. This is for ease and

convenience in comparison and to demonstrate a trend when the number of indexed

attributes increases to the extreme case.

A clear trend that one can perceive is that the fluctuation of the graphs via the

hybrid sampling scheme (which represents the quality of result size estimates) grad-

ually reduces from left to right in all the graphs shown. This should be attributed

to the fact that when increasing more indexed attributes, we will have more sample

relations with high quality. Furthermore, three kinds of error measures that we have

used in Section 3.5.3.1, namely, root mean square, mean residual and mean relative

errors are also shown in Table 3.17(a),3.17(b) and 3.17(c), respectively. Both the

graphs and tables of error measures indicate the same trend that SYSSMP still

promises to work well when there are only some join attributes indexed.

exp. SS 2 inds 4 inds all inds
SJ1 2.552e+08 2.045e+08 1.465e+08 1.035e+08
SJ2 6.407e+07 4.789e+07 3.558e+07 2.502e+07
SJ3 3.113e+08 1.670e+08 9.727e+07 5.174e+07
SJ4 2.593e+09 1.571e+09 4.968e+08 4.853e+08
SJ5 2.160e+08 2.219e+08 1.111e+08 6.587e+07
SJ6 2.442e+09 1.630e+09 8.539e+08 3.503e+08

(a) Root mean square error

exp. SS 2 inds 4 inds all inds
SJ1 2.113e+08 1.636e+08 1.205e+08 8.076e+07
SJ2 5.341e+07 4.259e+07 2.960e+07 1.796e+07
SJ3 1.529e+08 1.167e+08 6.437e+07 4.286e+07
SJ4 1.368e+09 9.473e+08 4.959e+08 4.825e+08
SJ5 1.252e+08 1.133e+08 8.343e+07 6.516e+07
SJ6 9.904e+08 6.997e+08 5.601e+08 3.502e+08

(b) Mean residual error

exp. SS 2 inds 4 inds all inds
SJ1 63 49 36 24
SJ2 72 57 40 24
SJ3 93 71 39 26
SJ4 227 157 82 80
SJ5 161 146 108 84
SJ6 267 188 151 94

(c) Mean relative error

Table 3.17: Error trend with increment of indexed attributes

Query size estimation using systematic sampling 139

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.2.syssmp"

333875831

(a) SJ1, 2 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30
re

su
lt

si
ze

sampling #

"exsj1.seqsmp"
"exsj1.4.syssmp"

333875831

(b) SJ1, 4 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj1.seqsmp"
"exsj1.syssmp"

333875831

(c) SJ1, all indexed attrs

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.2.syssmp"

74198218

(d) SJ2, 2 indexed attrs

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.4.syssmp"

74198218

(e) SJ2, 4 indexed attrs

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj2.seqsmp"
"exsj2.syssmp"

74198218

(f) SJ2, all indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.2.syssmp"

165024282

(g) SJ3, 2 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.4.syssmp"

165024282

(h) SJ3, 4 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj3.seqsmp"
"exsj3.syssmp"

165024282

(i) SJ3, all indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.2.syssmp"

602760747

(j) SJ4, 2 indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.4.syssmp"

602760747

(k) SJ4, 4 indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj4.seqsmp"
"exsj4.syssmp"

602760747

(l) SJ4, all indexed attrs

Figure 3.11: Star joins with 5 relations with 2, 4, and all indexed attributes

Query size estimation using systematic sampling 140

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.2.syssmp"

77536074

(a) SJ5, 2 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.4.syssmp"

77536074

(b) SJ5, 4 indexed attrs

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj5.seqsmp"
"exsj5.syssmp"

77536074

(c) SJ5, all indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.2.syssmp"

371500207

(d) SJ6, 2 indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.4.syssmp"

371500207

(e) SJ6, 4 indexed attrs

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 5 10 15 20 25 30

re
su

lt
si

ze

sampling #

"exsj6.seqsmp"
"exsj6.syssmp"

371500207

(f) SJ6, all indexed attrs

Figure 3.12: Star joins with 5 relations with 2, 4, and all indexed attributes

Query size estimation using systematic sampling 141

3.6 Systematic sampling for selections

S2 a population variance over relation R
of a selectivity of a complex predicate

S2
wsmp a variance within systematic sample relations

due to the complex predicate
Y the selectivity of the complex predicate on R
θ̂ the selectivity of the complex predicate on R′

could be Ŷ obtained via SYSSMP,

Ŷ swr obtained via SRSWR

or Ŷ swor obtained via SRSWOR
V (θ̂) the variance of the estimated θ̂

Table 3.18: Symbol redefinitions

Table 3.18 shows all the notations that we redefine from their original definitions

in Table 3.1(b) for the use of selections. The details of each notation are described in

this section 3.6 and Section 3.7. The main point of the redefinitions is that instead of

being the original definitions which phrase upon “a selectivity of a distinct value” as

used for joins, now the new definitions are with respect to “a selectivity of a complex

predicate”. In spite of the redefinitions, the notations defined and descriptions given

in the main sections for joins (Sections 3.3 and 3.4) and selections (Sections 3.6

and 3.7) are self-contained so the reader should not be confused by the redefinitions

here.

Given a complex predicate query Q on R with cardinality N , the sampling

algorithm in Figure 3.13 is to obtain a systematic sample relation R′ and thus an

estimated selectivity Ŷ of Q calculated from R′.

We then calculate an estimated size of the query Q by Ŷ ∗N . Again in order to

obtain an accurate estimated selectivity Ŷ for a query Q, we need a method which

can yield “good” sample relations; that is, the sample relation obtained can well

represent the joint frequency distribution of the attributes (which are specified in

the complex predicate of query Q) in the original relation.

In what follows, we first describe the problems about the sample size n in Sec-

tion 3.6.1. Then we propose two solutions to the sample size in Sections 3.6.2

and 3.6.3, respectively.

Query size estimation using systematic sampling 142

Step 1. let n (≤ N) be a sample size of relation R′ to be sampled from R. We describe
details of problems about n for selections and how to work it out in Section 3.6.1.

Step 2. calculate a step size k = N
n to step through relation R to obtain R′.

Step 3. ň = 0; s = 0.

Step 4. sample a tuple at random from the first k tuples of R.

Step 5. ň = ň+ 1.

Step 6. check if the query Q satisfies the tuple obtained and if so, then s = s+ 1.

Step 7. take a tuple, k tuples away from the current one if there is any and go to step 5.

Step 8. return Ŷ = s
ň as the estimated selectivity of Q.

Figure 3.13: Selectivity estimation by systematic sampling

3.6.1 How many tuples to sample

The derivation for a sample size n required for a query Q can be done in a similar

fashion as the derivation we have shown in Section 3.3.1.2. More precisely, if the size

of relationR is large, then the formula (3.12), namely, ñ0 = t2(µ)(1−µ)
B2 we have derived

for joins can be reused for selections. The substitutions are shown in Table 3.19(a).

µ = join selectivity −→ Y = selection selectivity
Ñ =

∏m
j=1 |Rj | −→ N = cardinality of R

ñ =
∏m

j=1 |R′
j | −→ n = cardinality of R′

(a) Substitutions

Example
Let size of R, N = 10, 000 tuples
selectivity Y = 0.01
relative error ε = 0.1 (10%)
prob. of out-of-bound error α = 10%
confidence level = 100− α = 90%
thus t2 = 2.71

(b) Oversampling problem

Table 3.19: Substitutions and the oversampling problem

Hence a sample size n of R′ required for SYSSMP would be:

n =
t2Y (1− Y)

B2
(3.36)

where t = the abscissa of the normal curve that cuts off an area α at the tail,

B = abs(Y − Ŷ) = a bound on error desired, Y = a selectivity of a complex

predicate in query Q, Ŷ = an estimated selectivity of Y (the actual selectivity), and

α = a probability that the error is not within the bound given.

Query size estimation using systematic sampling 143

The above formula can be rephrased in terms of a relative error ε if desired.

Since an error bound B = abs(Y − Ŷ) and so a relative error ε = abs(Y−Ŷ)

Y
, the error

bound B would be equal to Y ε. Substituting B = Y ε into formula (3.36), we get:

n =
t2Y (1− Y)

Y
2
ε2

=
t2(1− Y)

Y ε2
(3.37)

There are two principal problems in using formula (3.37). The first is that Y is

unknown and we want to estimate it. Y also varies from query to query and therefore

we can’t work out its value in advance, as opposed to joins (see also the description

of the problem with the exponential number of selections in Section 3.3.1.4).

The second problem is the oversampling problem. Given an example in Ta-

ble 3.19(b) and using formula (3.37), the sample size n required would be 2.71(1−0.01)
0.01(0.1)2

=

26, 829, which is larger than the cardinality of R itself.

In order to make the formula usable for systematic sampling, we propose two

solutions as follows:

1. do a double sampling [Cox 1952] to find the estimator of Y , i.e., Ŷ in the

first sampling and use Ŷ instead of Y to calculate a sample size n in formula

(3.37). This method is called double systematic sampling. The double sampling

algorithm was first proposed by Hou et al. [1991b] mainly for simple random

sampling but the main problem against the algorithm proposed is that it may

cause the oversampling to occur when a selectivity of a selection query is very

small. The details of our extension to the original algorithm are described in

Section 3.6.2.

2. find an average size n̄ of samples needed by the SS procedure, namely:

n̄ =

∑|Q|
i=1 ni
|Q| (3.38)

where ni is the sample size of the ith previous user query in a query set Q and

use n̄ or slightly less tuples as n to terminate SYSSMP. The drawback of this

method is that we would require to run SS through the set of queries Q before

this method will work. This method is called feedback systematic sampling.

The details of the method are described in Section 3.6.3.

Query size estimation using systematic sampling 144

3.6.2 Double systematic sampling

Given a query Q on R, the following is the sketch of the main idea of the algorithm

for double systematic sampling:

1. use a small systematic sample size n1 in order to estimate Y in the formula
t2Y (1−Y)

B2 .

Let Ŷ be the selectivity due to the sample size n1. Thus a systematic sample

size n2 required would be:

n2 =
t2Ŷ (1− Ŷ)

B2

2. if n2 ≤ n1, then return Ŷ as the selectivity of Q (no more sampling needed).

3. sample the remaining tuples, i.e., n2 ← n2 − n1 and return the estimated

selectivity Ŷ of Q:

Ŷ =
(s1 + s2)

(n1 + n2)

where s1 and s2 are each the total number of tuples which satisfy Q in the

first and second samples, respectively and (n1 + n2) is, in fact, equal to the

sample size n required.

The sketch of the algorithm above has the oversampling problem — the algorithm

does not have any mechanism to stop sampling when a selectivity of Q is very small,

thus incurring too much sampling done as described in Section 3.6.1. Many modern

sampling algorithms, e.g., adaptive [Lipton and Naughton 1990] and sequential [Haas

and Swami 1992] algorithms, have known such a problem and introduced, in a

different manner, a sanity bound to cure the problem. A sanity bound is a bound

to make sure that a sampling algorithm will terminate before the problem occurs.

Table 3.20 shows our proposal for a sanity bound. 0 < βmax ≤ 1 is a maximum

sampling fraction on relation R from which the maximum number of tuples sampled

from R would be βmax ∗N .

We also make sure that a value of ψ (≥ 0) used in Table 3.20 will produce

a reasonable value of n2 which is considerably less than N . Figure 3.14 shows all

complete details of the algorithm, including the sanity bound we have just proposed.

Query size estimation using systematic sampling 145

if n2 > d(βmax ∗N)e then
B2 = εψ [recall that B = εY]

n2 = t2ψ(1−ψ)
B2

2

endif

Table 3.20: A proposal for a sanity bound

Procedure: double syssmp

input: Q = a selection query,
n1 = minimum # of tuples in the first sample,
ε = relative error,
ψ ≥ 0 = sanity bound,

output: an estimated selectivity of Q

sample the first n1 tuples from R1

(let s1 be the total number of tuples which satisfy Q)2

Ŷ = s1
n1

3

B = εŶ4

if B is not zero then5

n2 = t2Ŷ (1−Ŷ)
B26

if n2 > d(βmax ∗N)e then7

B2 = εψ8

n2 = t2ψ(1−ψ)
B2

2
9

endif10

else11

B2 = εψ12

n2 = t2ψ(1−ψ)
B2

2
13

endif14

if n2 ≤ n1 then15

return Ŷ ∗N16

endif17

sample the remaining tuples18

n2 = n2 − n119

sample the remaining tuples n2 from R20

(let s2 be the total number of tuples which satisfy Q)21

return (s1+s2)
(n1+n2)

22

Figure 3.14: Double systematic sampling

Query size estimation using systematic sampling 146

A couple of issues should be noted about the algorithm. First, when Ŷ = 0,

then B (error bound) would also be zero. Then the else block between lines 11

and 14 will get fired and a sample size n2 will be calculated using the specified

sanity bound. Likewise, when Ŷ approaches zero (not zero but a very small value),

then a sample size n2 in line 6 will produce a large value perhaps greater than the

maximum sampling size d(βmax ∗N)e. In this case, the if block between lines 7 and

10 will get fired. Note that this if block for a sanity bound has the same rationale

as the else block explained above.

3.6.3 Feedback systematic sampling

Using sample size feedback as a consequence of having run SS through a set of

queries Q, feedback systematic sampling works as follows:

Step 1. calculate an average sample size n̄ required for any new incoming query Q
by:

n̄ =

∑|Q|
i=1 ni
|Q|

where ni = the sample size of the ith previous user query in Q.

Step 2. calculate a step size k = N
n̄

to step through relation R to obtain R′. n̄ used
could be slightly smaller than the calculated value in step 1.

Step 3. ň = 0; s = 0.

Step 4. sample a tuple at random from the first k tuples of R.

Step 5. ň = ň+ 1.

Step 6. check if the query Q satisfies the tuple obtained and if so, then s = s+ 1.

Step 7. take a tuple, k tuples away from the current one if there is any and go to
step 5.

Step 8. return Ŷ = s
ň

as the estimated selectivity of Q.

Figure 3.15: Feedback systematic sampling

The drawback of this method is that we need to run SS through a set of queries

Q before this method will work.

Query size estimation using systematic sampling 147

3.7 Application of theoretical foundation of SYSSMP to selec-

tions

Recall that the main theorem (3.4.1) for SYSSMP in Section 3.4 states on a propor-

tion (which is a mean), defined by a ratio of a total number of points which satisfy

a criterion of interest divided by the total number of points in the population. Se-

lections, in essence, are a proportion of:

the total number of tuples which satisfy the selection predicate

the total number of tuples in a relation

Our aim in this section is simply to apply the foundation we have developed earlier

for joins to selections. That is, we will show that systematic sampling can, in general,

guarantee to yield an efficient sample relation, thus producing an estimate of high

quality for an actual selectivity of a complex predicate.

Like in the join case, for selections, SYSSMP would be more efficient in yielding

a sample relation than SRS with/without replacement if and only if a variance of

an estimated selectivity of a complex predicate produced by SYSSMP is lower. In

Section 3.7.1, we will show when this would occur.

3.7.1 Variance of estimated selectivity of a complex predicate

A complex predicate on relation R can be specified upon more than one attribute of

R. To simplify our description but without loss of generality, the example relation

R with respect to a single attribute of R in Figure 3.5 is reused for the description

in this section. The analogy to more than one attribute can be done in the same

manner.

Let x be a complex predicate in a query Q. Using the notations in Table 3.4(b),

we redefine the function f(tij , x) of a [0,1] value which we have used in Section 3.4.1

as follows:

yij = f(tij , x) =




1 if the jth tuple of the ith sample satisfies predicate x of Q

0 if it doesn’t

In view of the selectivity of predicate x, if the jth tuple of the ith sample relation

satisfies predicate x, then yij would be 1, otherwise 0. Using systematic sample

Query size estimation using systematic sampling 148

relation number 1 in Table 3.4(a) and using the [0,1] value representation, a se-

lectivity given predicate x = (a1 ≥ 3) is ȳ1 = a1
n

= 2
5

(there are two rows which

satisfy predicate x in the sample relation number 1). With the same predicate x,

the selectivities calculated using systematic sample relations 2, 3, 4 and 5 are equal

to ȳ2 = a2
n

= 2
5
, ȳ3 = a3

n
= 2

5
, ȳ4 = a4

n
= 2

5
and ȳ5 = a5

n
= 3

5
, respectively.

We redefine the following symbols that we have used in Section 3.4. Y is used as

the actual selectivity of a distinct value in a common join attribute domain. In this

section, we use Y as the actual selectivity of a complex predicate x in query Q. Let

V (Ŷ), V (Ŷ swr) and V (Ŷ swor) be a variance of an estimated selectivity of predicate

x on a sample relation obtained via SYSSMP, SRSWR and SRSWOR, respectively,

where Ŷ , Ŷ swr and Ŷ swor are the selectivities of predicate x calculated from each

individual R′ obtained via SYSSMP, SRSWR, and SRSWOR respectively. S2, a

population variance, is the variance of the selectivity of predicate x over the entire

relation R which is defined the same as the ones in equations (3.17) and (3.18). A

is the total number of tuples on R that satisfy predicate x; consequently, Y = A
N

.

The main theorem (3.4.1) in Section 3.4 is applicable for a proportion and the

actual selectivity Y of a complex predicate x is a proportion of tuples in R which

satisfy predicate x, namely, A
N

. The main theorem can be rephrased for a complex

predicate x as follows:

Corollary 3.7.1 The variance of the selectivity Ŷ of predicate x on a systematic

sample relation is:

V (Ŷ) =
N − 1

N
S2 − k(n− 1)

N
S2
wsmp (3.39)

where

S2
wsmp =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi)2 (3.40)

is the variance among tuples that lie within the same systematic sample relation. yij

as shown in Table 3.4(b) is a function f(tij , x) of a [0,1] value of tuple j of systematic

sample relation i. ȳi = ai

n
is the selectivity of predicate x calculated from the ith

systematic sample relation.

Like the two results for joins in Corollaries (3.4.1) and (3.4.2) in Section 3.4,

such two results can be rephrased for a complex predicate x as follows:

Query size estimation using systematic sampling 149

Corollary 3.7.2 The selectivity of predicate x obtained from a systematic sample

relation is more accurate than the selectivity of the same predicate from a simple

random sample relation without replacement if and only if

S2
wsmp > S2 (3.41)

Corollary 3.7.3 The selectivity of predicate x obtained from a systematic sample

relation is more accurate than the selectivity of the same predicate from a simple

random sample relation with replacement if and only if

S2
wsmp >

N − 1

N
S2 (3.42)

The first result in equation (3.41) above indicates that if S2
wsmp > S2, then

V (Ŷ) < V (Ŷ swor) while the second result in equation (3.42) indicates that if S2
wsmp >

N−1
N
S2, then V (Ŷ) < V (Ŷ swr).

To ensure with a high possibility that the two results above would occur, a sort

over the entire relation, in ascending or descending order must be done, which will

then result in heterogeneous tuples within the same systematic sample relation.

The following is an example demonstrating how to calculate different kinds of

the variances we have just described above. The experimental results obtained in

Section 3.8.2 need an understanding of how S2
wsmp and S2 are calculated and thus

it is important for the reader to work out the example below.

Example 3: Using relation R in Figure 3.5 and given predicate x = (a1 ≥ 3),

calculate variances V (Ŷ), V (Ŷ swr) and V (Ŷ swor).

The selectivity Y of predicate x on R is A
N

which is 11
25

. From the theorem given

in equation (3.39), the variance V (Ŷ) on a systematic sample relation is:

V (Ŷ) =
N − 1

N
S2 − k(n− 1)

N
S2
wsmp

where the variance S2 is:

S2 =
N

N − 1
Y (1− Y)

from equation (3.18). The variance S2
wsmp within systematic sample relations in

Query size estimation using systematic sampling 150

systematic sample no.
i 1 2 3 4 5

1 1 1 1 1
1 1 1 1 2
2 2 2 2 3
3 3 3 4 4
4 4 5 5 5

ai 2 2 2 2 3
ȳi

2
5

2
5

2
5

2
5

3
5

(a) Sample selectivi-
ties

sample no. ai − nȳ2
i

i = 1 2− 5(2
5)2

i = 2 2− 5(2
5)2

i = 3 2− 5(2
5)2

i = 4 2− 5(2
5)2

i = 5 3− 5(3
5)2∑5

i=1(ai − nȳ2
i) 6

(b) Variance within sample
relations

Table 3.21: Selectivities and variances of systematic sample relations

equation (3.40) is:

S2
wsmp =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi)2

=
1

k(n− 1)

k∑
i=1

(
n∑
j=1

y2
ij − nȳ2

i) (3.43)

Since yij is a [0,1] value,
∑n
j=1 y

2
ij = ai, the number of tuples in the ith systematic

sample relation satisfying predicate x. ȳi = ai

n
is the selectivity of predicate x on

the ith systematic sample relation. Substitute ai to equation (3.43). This gives:

S2
wsmp =

1

k(n− 1)

k∑
i=1

(ai − nȳ2
i)

Table 3.21(b) shows how to calculate the variance S2
wsmp in the equation above

step-by-step.

Thus,

S2
wsmp =

1

5(5− 1)
6 = 0.3

S2 =
25

25− 1
(
11

25
)(1− 11

25
) = 0.257.

The variance V (Ŷ) of the selectivity of predicate x on a systematic sample rela-

tion is:

Query size estimation using systematic sampling 151

V (Ŷ) =
25− 1

25
0.257− 5(5− 1)

25
0.3 = 0.00672.

The variance V (Ŷ swor) of the selectivity of predicate x on a simple random sample

relation without replacement is:

V (Ŷ swor) =
N − n
N

S2

n
=

25− 5

25
∗ 0.257

5
= 0.04112.

The variance V (Ŷ swr) of the selectivity of predicate x on a simple random sample

relation with replacement is:

V (Ŷ swr) =
N − 1

N

S2

n
=

25− 1

25
∗ 0.257

5
= 0.049344.

Since S2
wsmp > S2, V (Ŷ) < V (Ŷ swor) (following the result in equation (3.41)), so

is V (Ŷ) < V (Ŷ swr) (following the result in equation (3.42)). As one might have

expected, V (Ŷ swor) < V (Ŷ swr).

3.8 Experimental results for selections

A method is first described in Section 3.8.1 for generating synthetic data for selec-

tion queries. These synthetic relations and sets of queries are used subsequently in

Sections 3.8.2 and 3.8.3.

Next in Section 3.8.2, we conduct the first set of experiments for an analytical

study of variances of estimated selectivities of complex predicates which compares

among SYSSMP, SRSWOR and SRSWR. This is to support the application of the

theoretical foundation we have shown in Section 3.7 — the variance of an estimated

selectivity of a complex predicate by SYSSMP, in general, is lower than the variance

by SRSWOR and SRSWR.

Then in Section 3.8.3, we conduct the second set of experiments to demonstrate

that the lower variance can indeed assist in more accurate computation for result

sizes of selection queries.

Query size estimation using systematic sampling 152

3.8.1 Experimental setup

Functional dependency (FD) as defined by Korth and Silberschatz [1991] is a set of

constraints defined on some relations of a database and each constraint expresses

one fact about the database application we are modelling. Given that ν and γ are

a (non-strict) subset of the attributes of relation R, a functional dependency ν → γ

which holds on R can be defined as: for all pairs of tuples t1 and t2, if the attribute

values on ν of t1 are equal to the ones on ν of t2, then the attribute values on γ of

t1 must be equal to the ones on γ of t2.

Real world data may have some form of FDs which imply “attribute dependence”

of some attributes on a relation. Christodoulakis [1984] also commented that due to

the nature of database environments, attribute dependence are typical rather than

unusual. For example, attributes “degree” and “salary” of employees in a company

may have a relationship, i.e., a functional dependency: degree → salary, as shown

in Table 3.22.

Christodoulakis [1984] also showed that large errors in query
degree salary

Bachelor 10,000

Master 15,000

PhD 20,000

Table 3.22: an FD

size estimates may occur if the attribute independence assump-

tion is used to calculate query result size estimates. This ex-

actly corresponds to the results obtained in [Harangsri et al.

1996c; Poosala and Ioannidis 1997] in relation to the attribute

independence and dependence assumptions.

To our best knowledge, the synthetic relations generated in this thesis are the

first attempt to emulate real world data. The idea is similar to the data set gener-

ator [Melli 1997] employed in the machine learning community, which attempts to

generate relations based on rules. Rules can be regarded as functional dependencies.

Furthermore, in line with our belief, the author also said that real world data sets

are likely to have some implicit structure. We believe that synthetic data generators

based on this idea should be more robust than the data randomly generated whose

values among attributes of the relation are independent of one another — no any

kind of correlation among the attributes of the relation at all.

We generated several various relations with different cardinalities, FDs and num-

bers of distinct values as shown in Table 3.23. The table comprises 12 relations of 10

attributes in each relation with 10k, 50k and 100k cardinalities, each of which has a

Query size estimation using systematic sampling 153

10k 50k 100k
reln funcdep dist mode funcdep dist mode funcdep dist mode

R1 a2 → a3 a4 a5 unf(3959,4159) a3 → a4 a5 a7 fdist(30,15) a1 a6 → a4 exp(117)
a9 → a8 a7 fdist(30,11) a2 → a6 a8 norm(129,244) a5 → a10 chisq(8)

R2 a3 a9 → a7 exp(80) a3 a5 → a8 a9 unf(3099,4099) a3 a6 → a8 a10 norm(103,308)
a1 a4 → a6 a8 chisq(5) a10 → a1 a2 norm(92,347) a4 → a5 a7 chisq(9)

R3 a3 a5 → a7 norm(101,142) a9 a2 → a5 fdist(30,15) a8 → a9 fdist(30,13)
a2 a6 a4 → a9 chisq(19) a1 a3 a6 → a4 exp(88) a1 a3 a4 → a5 chisq(12)

R4 a3 a7 → a9 exp(138) a7 → a8 a6 a5 chisq(5) a7 → a8 a10 exp(98)
a5 → a10 unf(3177,3377) a1 a3 → a2 unf(3573,4573) a1 a2 → a6 norm(146,177)

(a) Functional dependencies

reln numbers of distinct values of a1, a2, . . ., a10
R1-10k 494, 201, 159, 159, 165, 536, 10, 10, 10, 854
R2-10k 26, 504, 435, 26, 474, 26, 334, 25, 435, 854
R3-10k 494, 47, 801, 47, 801, 47, 489, 488, 45, 854
R4-10k 494, 504, 677, 492, 201, 536, 677, 488, 448, 182
R1-50k 494, 1523, 10, 10, 10, 505, 10, 466, 707, 854
R2-50k 487, 497, 1001, 492, 1001, 536, 724, 412, 546, 2085
R3-50k 606, 8, 606, 342, 8, 606, 724, 488, 8, 854
R4-50k 1001, 429, 1001, 492, 28, 28, 28, 24, 707, 854
R1-100k 858, 504, 474, 417, 35, 858, 724, 488, 707, 33
R2-100k 494, 504, 2022, 38, 37, 2022, 36, 478, 707, 773
R3-100k 45, 504, 45, 45, 43, 536, 724, 12, 12, 854
R4-100k 1215, 1215, 474, 492, 474, 480, 730, 385, 707, 506

(b) numbers of distinct values

Table 3.23: Relations with different cardinalities, FDs, distributions and distinct values

different set of FDs with various kinds of data distributions and different numbers

of distinct values in it.

For example, relation R1 with cardinality 10k (see Table 3.23(a)) has two FDs,

the first of which is a2 → a3 a4 a5 with uniform distribution unf(3959,4159) and

the second is a9 → a8 a7 with F distribution fdist(30,11).

For the rest of attributes of R1 with 10k, i.e., a1, a6 and a10, they are all in-

dependent of any others (and thereby suit the attribute independence assumption)

and each attribute has its own single-attribute frequency distribution which is ran-

domly picked from any of the data distributions shown in Table 3.8. For all these

attributes, we ignore to show their frequency distributions here.

3.8.2 Variance of estimated selectivity of a complex predicate

In this section, we use only the 10k relations in Table 3.23 to study selectivity

variances by SYSSMP compared against those by SRSWR and SRSWOR. These

10k and the other remaining relations together with their queries will be used again

later in Section 3.8.3.

Query size estimation using systematic sampling 154

Using the 10k relations with 10 attributes on each relation, we have conducted

40 experiments on 4 relations, R1, R2, R3 and R4 — 10 experiments are for one

relation and therefore one experiment is for one attribute. A sample size n used in

all experiments in this section is n = 10% of the original sizes of the relations, which

is equal to 1000 tuples. Thus the step size k would be equal to N
n

= 10000
1000

= 10

in all the experiments. k also represents the total number of all possible unique

systematic sample relations which can be obtained from an original relation.

For an attribute of relation R, an index (via either a physical index or a sorted

attribute on R) is created on the attribute. Then apply the procedure in Figure 3.16

in order to find:

1. when SYSSMP is more efficient than SRS with and without replacement,

namely, S2
wsmp > S2,

2. when the latter is better, namely, S2 > S2
wsmp,

3. and when they are as good, namely, S2
wsmp = S2.

input: Q = a set of queries,
output: percentages for three cases

countS2 = 0; countS2
wsmp

= 0; counteqi = 0

for each query Q ∈ Q do
run Q through k systematic samples of relation R to find S2

wsmp

run Q through relation R to find S2

if S2
wsmp > S2 then

countS2
wsmp

= countS2
wsmp

+ 1

else
if S2 > S2

wsmp then
countS2 = countS2 + 1

else
countequi = countequi + 1

endif
endif

endfor

return 100 ∗
count

S2
wsmp

|Q| , 100 ∗ count
S2

|Q| , 100 ∗ countequi

|Q|

Figure 3.16: Procedure to count the number of times that SYSSMP/SRS outperforms

Repeat creating an index on another attribute of relation R and applying the

same procedure in Figure 3.16 until all the attributes of R are exhausted. Table 3.24

shows by percentage in three columns when (1) S2
wsmp > S2, (2) S2 > S2

wsmp and (3)

S2
wsmp = S2, respectively.

Query size estimation using systematic sampling 155

attr % (1 > 2) % (2 > 1) % (1 = 2)
a1 42.25 48.25 9.5
a2 79.75 10.75 9.5
a3 75.75 14.75 9.5
a4 75 15.5 9.5
a5 81.25 9.25 9.5
a6 57.75 32.75 9.5
a7 72 18.5 9.5
a8 73.25 17.25 9.5
a9 74 16.5 9.5
a10 44.75 45.75 9.5

(a) R1-10k

attr % (1 > 2) % (2 > 1) % (1 = 2)
a1 76.25 20.75 3
a2 52.5 44.5 3
a3 86.5 10.5 3
a4 76.5 20.5 3
a5 60.5 36.5 3
a6 76.5 20.5 3
a7 85.5 11.5 3
a8 79.5 17.5 3
a9 84.75 12.25 3
a10 56 41 3

(b) R2-10k

attr % (1 > 2) % (2 > 1) % (1 = 2)
a1 62 36 2
a2 77.75 20.25 2
a3 73.25 24.75 2
a4 73 25 2
a5 82.75 15.25 2
a6 73 25 2
a7 84.5 13.5 2
a8 53.75 44.25 2
a9 74 24 2
a10 63.5 34.5 2

(c) R3-10k

attr % (1 > 2) % (2 > 1) % (1 = 2)
a1 70.25 29.25 0.5
a2 56.75 42.75 0.5
a3 78 21.5 0.5
a4 60 39.5 0.5
a5 81 18.5 0.5
a6 64.75 34.75 0.5
a7 87.25 12.25 0.5
a8 58.25 41.25 0.5
a9 77 22.5 0.5
a10 79.5 20 0.5

(d) R4-10k

*** 1 = S2
wsmp , 2 = S2.

Table 3.24: Selectivity variances on each indexed attribute over 400 queries

For example, with a relation, say R1, a set Q of 400 queries is used to perform

experiments and this same set of queries is also used when repeating experiments

with other indexed attributes a2, a3, . . ., a10. The same process is also employed

for the other relations R2, R3 and R4. All the queries used in Q are in conjunctive

normal form as follows:

∧
some ai ∈ {a1, a2,...,a10}

ai relopt xai (3.44)

According to Table 3.24, one can clearly see that over 400 queries used, the

probability (percentage) that SYSSMP is more efficient than SRS in most of the

cases is significantly higher. Let us emphasise here again that when S2
wsmp > S2,

the variances of estimated selectivities of queries due to SYSSMP would be lower

than SRS with/without replacement and, hence, the quality of sample relations

yielded by SYSSMP would be higher. We also note in the table that when SRS and

SYSSMP are as efficient, i.e., S2
wsmp = S2, the selectivities of the queries used are

zero. When query selectivities are zero, whatever sampling method used will always

Query size estimation using systematic sampling 156

give the same variance of zero. Therefore, it is insignificant for this case and can be

disregarded.

Furthermore, Table 3.24 gives a feeling that SYSSMP will be at least as efficient

as SRS with/without replacement. For instance, in Table 3.24(a) at attributes a1

and a10, the performance of the two is as good, i.e., about 50% by 50%.

3.8.3 Query size estimation

As for the join queries, for selection queries we also used the three error measures

as defined in Figure 3.6 in page 133, where µ is substituted by an actual selection

selectivity Y , µ̂ by an estimated selection selectivity Ŷ and Z by a total number

of queries used |Q| (we used 400 in all experiments), Ñ by a cardinality N of the

relation of interest.

We used all the relations shown in Table 3.23 and the same sets of 400 queries as

used in Section 3.8.2 to do experiments here. There are three issues for comparison to

demonstrate in this section, namely, (1) a scatter plot between actual and estimated

query result sizes, (2) the three error measures as defined above and (3) a total

number of tuples accessed by each sampling method. The aim of a scatter plot

is that the closer to the diagonal line the points, the better the method. A total

number of tuples accessed is defined by the sum of the sample sizes used by a set

of 400 queries, i.e.,
∑|Q|
i=1 ni, where ni is the sample size of a query. In the graphs

and tables following, we denote double systematic sampling by DSYS and feedback

systematic sampling by FSYS.

With regard to the small sample size n1 required by DSYS to estimate the

actual selectivity Y of a query in the first sampling, we used n1 = 300 tuples for

all experiments. Table 3.25 shows all sampling parameters used in all experiments

both for SS and DSYS. (FSYS does not require any of the parameters in the table.

It simply requires n̄.)

For each relation, we created 4 indices on the 4 most frequently used attributes

of the relation. The reason in choosing the top most frequently used attributes to

create an index on is that normally an attribute on which the DBA would consider

to create a physical index or which the DBA would consider to sort3, is usually

3In SQL, queries may contain ORDER BY attribute name which calls for the sort on the
attribute. Sorting is normally expensive and time-consuming and if this sorting must be done very

Query size estimation using systematic sampling 157

accessed/appears most frequently in user queries. In addition, the reason we chose

4 is just to ensure that we perform sufficient experiments (i.e., enough variety to

the different attributes of the same relation) for one relation since a physical index

or a sorted attribute could possibly be created on any one of the attributes of the

relation. Figure 3.17 is the procedure we used for comparison among the three

sampling methods: SS, DSYS and FSYS.

for each attribute a in the 4 most frequently used attributes of R do
attach an index to attribute a of R
run 400 queries to find the actual result sizes Y iN of the queries, i = 1, 2, . . . , 400
with the same index on attribute a

run 400 queries via SS to find the estimated query result sizes Ŷ iN of the queries, i = 1, 2, . . . , 400

run 400 queries via DSYS to find the estimated query result sizes Ŷ iN of the queries, i = 1, 2, . . . , 400
calculate average sample size n̄ by formula (3.38)
run 400 queries via FSYS using a slightly smaller value than n̄ as the sample size for all the queries

compare the results obtained using the three comparison issues
endfor

Figure 3.17: Procedure to compare three sampling methods

Since we have 12 different configuration
α=0.05, prob. of out-of-bound error

ψ = 0.1, sanity bound

ε = 0.1, relative estimation error

βmax = 0.1, maximum sampling fraction

Table 3.25: Sampling parameters

relations (4 for 10k, 4 for 50k and 4 for

100k) and each relation has 4 different in-

dices on it, the total number of experiments

performed is 48.

Since the scatter plots between actual

and estimated query result sizes for all 48 experiments give the same “look and

feel”, we show only the ones for R1-100k, R2-100k, R3-100k, R4-100k. The plots

are shown in Figures 3.18, 3.19, 3.20 and 3.21.

The three different error measures are shown in Tables 3.26, 3.27, 3.28, 3.29, 3.30,

3.31, 3.32, 3.33, 3.34, 3.35, 3.36 and 3.37.

The total number of tuples accessed by each sampling method is shown in Ta-

bles 3.38, 3.39, 3.40 and 3.41.

3.9 Conclusion

The main novel achievement in this chapter is that compared with SRSWOR and

SRSWR, with regard to joins, SYSSMP using sorted data proves to provide a lower

often, then DBA should consider to sort the relation on this attribute in advance so as to improve
the speed of query processing.

Query size estimation using systematic sampling 158

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.simple"
x

(a) SS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.sysdouble"
x

(b) DSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.syssort"
x

(c) FSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.simple"
x

(d) SS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.sysdouble"
x

(e) DSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.syssort"
x

(f) FSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.simple"
x

(g) SS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.sysdouble"
x

(h) DSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.syssort"
x

(i) FSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.simple"
x

(j) SS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.sysdouble"
x

(k) DSYS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex31/estcard.syssort"
x

(l) FSYS, attr#4

Figure 3.18: R1-100k, estimated & actual

R1-10k

attr# SS DSYS FSYS
1 183 160 130
2 193 153 121
3 187 128 81
4 188 117 88

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 111 104 83
2 114 95 80
3 113 76 47
4 114 73 53

(b) Mean residual error

attr# SS DSYS FSYS
1 22.69 17.07 16.88
2 13.39 14.28 17.47
3 15.26 11.14 15.07
4 17.21 15.07 12.00

(c) Mean relative error

Table 3.26: Estimation errors

Query size estimation using systematic sampling 159

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.simple"
x

(a) SS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.sysdouble"
x

(b) DSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.syssort"
x

(c) FSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.simple"
x

(d) SS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.sysdouble"
x

(e) DSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.syssort"
x

(f) FSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.simple"
x

(g) SS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.sysdouble"
x

(h) DSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.syssort"
x

(i) FSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.simple"
x

(j) SS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.sysdouble"
x

(k) DSYS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex32/estcard.syssort"
x

(l) FSYS, attr#4

Figure 3.19: R2-100k, estimated & actual

R2-10k

attr# SS DSYS FSYS
1 206 143 114
2 202 101 75
3 182 124 96
4 192 123 78

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 131 96 78
2 125 69 48
3 116 85 59
4 122 80 49

(b) Mean residual error

attr# SS DSYS FSYS
1 11.71 8.56 11.77
2 10.53 6.31 9.38
3 12.34 8.39 9.06
4 9.81 9.38 8.50

(c) Mean relative error

Table 3.27: Estimation errors

Query size estimation using systematic sampling 160

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.simple"
x

(a) SS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.sysdouble"
x

(b) DSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.syssort"
x

(c) FSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.simple"
x

(d) SS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.sysdouble"
x

(e) DSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.syssort"
x

(f) FSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.simple"
x

(g) SS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.sysdouble"
x

(h) DSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.syssort"
x

(i) FSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.simple"
x

(j) SS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.sysdouble"
x

(k) DSYS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex33/estcard.syssort"
x

(l) FSYS, attr#4

Figure 3.20: R3-100k, estimated & actual

R3-10k

attr# SS DSYS FSYS
1 215 141 123
2 207 132 103
3 210 164 135
4 216 126 94

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 133 103 88
2 134 88 69
3 132 112 92
4 137 88 60

(b) Mean residual error

attr# SS DSYS FSYS
1 7.91 9.61 12.25
2 9.30 6.35 6.55
3 7.78 11.45 9.81
4 9.60 6.69 7.18

(c) Mean relative error

Table 3.28: Estimation errors

Query size estimation using systematic sampling 161

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.simple"
x

(a) SS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.sysdouble"
x

(b) DSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.syssort"
x

(c) FSYS, attr#1

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.simple"
x

(d) SS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.sysdouble"
x

(e) DSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.syssort"
x

(f) FSYS, attr#2

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.simple"
x

(g) SS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.sysdouble"
x

(h) DSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.syssort"
x

(i) FSYS, attr#3

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.simple"
x

(j) SS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.sysdouble"
x

(k) DSYS, attr#4

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

re
su

lt
si

ze

estimated & actual

"./ex34/estcard.syssort"
x

(l) FSYS, attr#4

Figure 3.21: R4-100k, estimated & actual

R4-10k

attr# SS DSYS FSYS
1 182 135 101
2 182 128 98
3 208 153 124
4 195 143 95

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 113 91 71
2 117 88 68
3 132 107 87
4 125 96 64

(b) Mean residual error

attr# SS DSYS FSYS
1 8.73 8.28 11.16
2 8.60 6.63 7.94
3 9.66 9.16 10.41
4 9.28 7.21 9.46

(c) Mean relative error

Table 3.29: Estimation errors

Query size estimation using systematic sampling 162

R1-50k

attr# SS DSYS FSYS
1 962 682 286
2 903 569 220
3 960 555 234
4 902 608 267

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 511 370 172
2 469 327 137
3 491 313 151
4 471 350 169

(b) Mean residual error

attr# SS DSYS FSYS
1 9.11 7.79 6.99
2 8.97 7.02 5.61
3 8.01 9.56 6.75
4 6.55 6.99 8.95

(c) Mean relative error

Table 3.30: Estimation errors

R2-50k

attr# SS DSYS FSYS
1 1007 613 238
2 915 620 277
3 1004 626 227
4 896 640 230

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 584 395 158
2 526 395 172
3 589 378 149
4 523 396 147

(b) Mean residual error

attr# SS DSYS FSYS
1 5.35 4.81 4.10
2 5.01 4.49 3.80
3 5.46 4.92 4.27
4 5.51 4.62 4.48

(c) Mean relative error

Table 3.31: Estimation errors

R3-50k

attr# SS DSYS FSYS
1 1103 720 347
2 1021 759 379
3 972 758 381
4 1022 435 193

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 638 455 237
2 577 469 256
3 541 459 258
4 576 252 109

(b) Mean residual error

attr# SS DSYS FSYS
1 8.14 8.26 9.49
2 8.16 7.30 7.90
3 8.18 8.37 9.63
4 7.64 5.69 5.58

(c) Mean relative error

Table 3.32: Estimation errors

R4-50k

attr# SS DSYS FSYS
1 968 693 331
2 968 530 262
3 1022 523 244
4 979 675 392

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 592 450 234
2 580 302 143
3 611 309 137
4 606 420 273

(b) Mean residual error

attr# SS DSYS FSYS
1 5.28 5.39 6.08
2 4.89 4.20 3.71
3 5.11 4.50 3.15
4 5.38 5.36 8.08

(c) Mean relative error

Table 3.33: Estimation errors

R1-100k

attr# SS DSYS FSYS
1 1750 1178 397
2 2001 1466 512
3 1677 1282 572
4 1871 1354 516

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 990 662 240
2 1109 892 347
3 941 805 394
4 1098 854 357

(b) Mean residual error

attr# SS DSYS FSYS
1 5.19 4.74 3.44
2 5.71 6.27 4.79
3 5.35 5.53 4.25
4 5.63 6.12 5.24

(c) Mean relative error

Table 3.34: Estimation errors

Query size estimation using systematic sampling 163

R2-100k

attr# SS DSYS FSYS
1 1652 1286 393
2 1858 1173 426
3 2091 1193 385
4 1948 1406 525

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 958 785 268
2 1068 695 264
3 1188 732 268
4 1104 866 345

(b) Mean residual error

attr# SS DSYS FSYS
1 4.98 5.18 3.59
2 5.18 5.53 3.90
3 4.74 5.43 3.59
4 4.87 5.65 4.25

(c) Mean relative error

Table 3.35: Estimation errors

R3-100k

attr# SS DSYS FSYS
1 1969 1402 407
2 1938 1482 444
3 2195 776 274
4 1924 795 317

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 1103 808 259
2 1074 858 298
3 1182 414 140
4 1117 392 151

(b) Mean residual error

attr# SS DSYS FSYS
1 5.28 9.84 5.14
2 5.69 7.88 5.35
3 6.56 5.18 4.06
4 6.77 4.91 3.37

(c) Mean relative error

Table 3.36: Estimation errors

R4-100k

attr# SS DSYS FSYS
1 1857 1067 324
2 1896 1154 355
3 2027 1370 369
4 1982 1455 461

(a) Root mean square er-
ror

attr# SS DSYS FSYS
1 1087 617 203
2 1093 705 218
3 1144 760 227
4 1120 883 321

(b) Mean residual error

attr# SS DSYS FSYS
1 4.94 4.63 3.93
2 5.03 5.61 3.56
3 5.36 4.85 3.94
4 5.33 6.71 5.26

(c) Mean relative error

Table 3.37: Estimation errors

attr# SS DSYS FSYS
1 273954 301827 250000
2 273158 301198 250000
3 273547 301522 250000
4 273891 301166 250000

(a) R1-10k

attr# SS DSYS FSYS
1 260768 289797 250000
2 259654 289905 250000
3 259411 290003 250000
4 260233 289722 250000

(b) R2-10k

attr# SS DSYS FSYS
1 251911 282153 250000
2 252210 282335 250000
3 253288 281093 250000
4 252331 281720 250000

(c) R3-10k

Table 3.38: Total numbers of tuples accessed

Query size estimation using systematic sampling 164

attr# SS DSYS FSYS
1 258934 288738 250000
2 260286 286403 250000
3 259188 287811 250000
4 259871 286599 250000

(a) R4-10k

attr# SS DSYS FSYS
1 1149769 831232 1000000
2 1149523 829678 1000000
3 1148202 831731 1000000
4 1147160 839036 1000000

(b) R1-50k

attr# SS DSYS FSYS
1 877373 631867 800000
2 877989 630832 800000
3 875147 632065 800000
4 881242 630768 800000

(c) R2-50k

Table 3.39: Total numbers of tuples accessed

attr# SS DSYS FSYS
1 988038 714880 800000
2 985112 725092 800000
3 984954 725387 800000
4 987376 717957 800000

(a) R3-50k

attr# SS DSYS FSYS
1 892626 647554 800000
2 892142 644204 800000
3 891579 637310 800000
4 890797 645282 800000

(b) R4-50k

attr# SS DSYS FSYS
1 1681264 783015 1600000
2 1688559 781884 1600000
3 1689155 772681 1600000
4 1686694 790580 1600000

(c) R1-100k

Table 3.40: Total numbers of tuples accessed

attr# SS DSYS FSYS
1 1647615 809140 1600000
2 1640351 803205 1600000
3 1639484 824567 1600000
4 1647529 829081 1600000

(a) R2-100k

attr# SS DSYS FSYS
1 1816384 839129 1600000
2 1811852 832546 1600000
3 1811673 825897 1600000
4 1814197 852198 1600000

(b) R3-100k

attr# SS DSYS FSYS
1 1635813 768138 1600000
2 1635073 763627 1600000
3 1634745 764981 1600000
4 1634976 765399 1600000

(c) R4-100k

Table 3.41: Total numbers of tuples accessed

Query size estimation using systematic sampling 165

total variance of estimated selectivities for all distinct values in a common join

attribute domain. With regard to selections, SYSSMP using sorted data proves to

provide a lower variance of an estimated selectivity of a complex predicate. Thus,

the quality of a sample relation yielded by SYSSMP for both join and selection

queries would be higher than that by SRSWOR and SRSWR.

For joins, the more we have sample relations of high quality, the more accurate

the estimated join selectivity we will attain. This has been verified by the exper-

iments done for SYSSMP and the hybrid sampling scheme between SYSSMP and

SS. SYSSMP for join queries uses the same amount of sampling as SS but still can

provide more accurate query result size estimates.

For selections, the double and feedback systematic sampling algorithms proposed

also demonstrate that SYSSMP uses a less amount of sampling than SS while still

giving higher accuracy of result sizes of selection queries.

Appendix

A How many tuples needed by SRSWR

With simple random sampling with replacement, the variance V (µ̂) of an estimated

selectivity µ̂ of a sample R′
1 1 R′

2 1 . . . 1 R′
m with size ñ is defined as:

V (µ̂) = E(µ̂− µ)2 =
Ñ − 1

Ñ

S̃2

ñ
(3.45)

where Ñ =
∏m
i=1 |Ri| and ñ =

∏m
i=1 |R′

i|. Using S̃2 in (3.8), we get:

V (µ̂) =
µ(1− µ)

ñ
(3.46)

The error bound B is defined in the same fashion as in (3.10), i.e.: B = t
√
V (µ̂).

Substituting V (µ̂) in (3.45) to the error bound B given above and solving B for ñ,

we obtain:

ñ =
t2(µ)(1− µ)

B2
(3.47)

If the relative error ε is required instead of the absolute error B, then B in

equation (3.47) can be replaced by εµ. The number of tuples to be sampled from

Query size estimation using systematic sampling 166

each relation participating in a star join is β ∗ |Ri|, where β is calculated by (3.14)

and ñ in (3.14) is replaced by ñ above in (3.47).

CHAPTER 4

Improving join selectivities by bootstrap method

“A new technique that involves powerful computer
calculations is greatly enhancing the statistical analysis
of problems in virtually all fields of science. The method,
which is now surging into practical use after a decade
of refinement, allows statisticians to determine more
accurately the reliability of data analysis in subjects
ranging from politics to medicine to particle physics.”

Quoted from page 4 of [Simon and Bruce 1997].

In this chapter, we describe a new method called bootstrap which can be used to

improve join selectivities obtained from the earlier Chapter 3. We will first give the

motivation in Section 4.1 for the improvement before we begin on the major section

of the chapter which is the introduction.

4.1 Motivation in improving join selectivities

Let µ be the selectivity of a star join and µ̂ be an estimated selectivity of the star

join. A bias is defined by |E(µ̂) − µ|, where E(µ̂), an expected value of the µ̂, is

defined by:

E(µ̂) =
∑
µ̂

µ̂p(µ̂) (4.1)

167

Improving join selectivities by bootstrap method 168

where p(µ̂) is the probability associated with µ̂. We can also call E(µ̂) a weighted

average or simply an average for short.

A desirable property of an estimator (here an estimated selectivity) is unbiased.

An estimator µ̂ is unbiased if |E(µ̂) − µ| = 0. This statement basically suggests

that an obtained estimated join selectivity would be in the vicinity of the actual

join selectivity µ, but perhaps not the actual join selectivity itself.

On the other hand, an estimator µ̂ is biased if |E(µ̂) − µ| 6= 0. It is considered

that such an estimator is not desirable.

By the bias definition |E(µ̂)− µ|, any one-time sampling which creates a single

sample will naturally produce a bias. That is, normally the average E(µ̂) of a

single sample obtained will not be equal to the actual join selectivity µ. In other

words, an estimated join selectivity of a sample would be very difficult to be equal

to the actual join selectivity. This further suggests that any sampling methods

proposed in the literature for selectivity estimation, including systematic sampling,

will normally produce a bias because they all do only one-time sampling for an

estimated selectivity.

The unbiasedness definition, |E(µ̂) − µ| = 0, also implies that a collection of

samples obtained by resampling – sampling is done in a number of times – will

result in the convergence of |E(µ̂)−µ| to 0. Typically, we would prefer our samples

obtained to satisfy the unbiasedness as this implies that the average (expected value)

by the samples would be equal to the actual join selectivity.

The bootstrap method is known to reduce the bias |E(µ̂) − µ| [Smith and

Belle 1984]. By the nature of the bootstrap sampling which entails resampling

many times, the statement of bias reduction basically implies that the more samples

taken (more resampling done), the smaller the difference between E(µ̂) and µ would

be. Alternatively, the more samples taken, the better the convergence to zero of

|E(µ̂)− µ| would be.

Assuming that (1) resampling has been done η (≥ 1) times, thus taking η samples

from the population and that (2) each of the η samples is picked from the population

with the same probability, the expected value E(µ̂) above in (4.1) would be reduced

to: E(µ̂) =

∑
µ̂
µ̂

η
. This expected value is, in fact, the average value used by the

bootstrap method as the estimator of µ.

Improving join selectivities by bootstrap method 169

In the join selectivity estimation problem, the knowledge of bias reduction by

the bootstrap method suggests us that the more we increase the number of times in

sampling for a star join selectivity, the more accurate to the actual join selectivity,

the average of all estimated join selectivities for the star join we will be able to

obtain.

4.2 Introduction

Loosely, the bootstrap method [Efron 1979] is the method which involves resampling

sample data with replacement many and many times in order to produce an empirical

estimate of the entire sampling distribution of a parameter of interest [Grichting

1995]. The technique has been successfully and widely applied to many fields of

science and a number of its applications are mentioned in [Efron 1979]. In the

literature of query size estimation, the method was proposed for the estimation of

the number of distinct values in an attribute domain by Haas et al. [1995]. To our

best knowledge, none of any previous studies has proposed this method for the join

selectivity estimation problem.

Following from the previous Chapter 3, the formula for calculating a sample size

ñ (and thus a sampling fraction β with which all relations participating in a star

join are sampled) calls for the substitution of an estimated join selectivity µ̂ into

the formula. For ease in reference, let us reproduce the formula here again. Given

a star join with m participating relations, a sampling fraction β is calculated by:

β = (
ñ∏m

i=1 |Ri|)
1
m (4.2)

where ñ is defined by:

ñ =
t2(µ)(1− µ)

B2
(4.3)

(B is the desired error bound and t is the abscissa of the normal curve.) µ in

(4.3) can be substituted by an estimated µ̂. The formula for β implies that the

more accurate a value of µ̂, the more precise the values of ñ and β we will gain.

Moreover, such an accurate value µ̂ will also be in favor of the cost calculation for

query execution plans in order to select the optimal plan in a search space.

Recall that it is possible to store all possible estimated star join selectivities in a

Improving join selectivities by bootstrap method 170

database profile catalog. (It is, however, not possible to store all possible selection

selectivities as a result of the exponential number of selections which can occur in

queries.) Substitute an estimated stored value for the selectivity of a star join into

formula (4.3) and as a consequence, apply the resulting sampling fraction calculated

by formula (4.2) to all the participating relations; a new estimated selectivity for

the star join will be calculated as the outcome.

The main aim in this chapter is that we are not just to obtain a new estimated

selectivity of a star join, but we are also attempting to improve the new estimated

selectivity by the bootstrap method. The general concept of the method is that

given a star join, sampling would be done in a number of times, say η (≥ 1) times;

in each time an estimated join selectivity µ̂i, i = 1, 2, . . . , η will be produced; and

the average µ̂ of all the obtained estimated join selectivities in η times will be used

as a better selectivity estimate for the star join than the individual µ̂i’s. That is,

the better estimate is µ̂ =
∑η

i=1
µ̂i

η
.

An obvious question anyone can see here is: How are we going to implement

the method which apparently looks expensive due to the η-time sampling policy, as

opposed to the one-time sampling policy used by all the sampling methods proposed

earlier, including the systematic sampling proposed in this thesis ? The answer is the

delay of resampling – we do not do the η-time sampling all at once. The query size

estimator (as part of the query optimiser) will wait until a query which incorporates

the star join comes to the database system and do only one-time sampling for the

star join included in the query in order to obtain an estimated selectivity, i.e., one of

those µ̂i’s. In this fashion, the initial µ̂’s obtained for the star join will perhaps be

less accurate but then when more times of resampling have been done, the µ̂’s will

gain better and better values. This is as a result of the convergence |E(µ̂)− µ| → 0

of the average estimated join selectivity.

Database updates will not much affect the accuracy of the bootstrap method.

The reason is that whenever any update takes place, especially one which sub-

stantially changes the contents of the database, the current average estimated join

selectivities stored in the profile catalog will be reset back to the beginning again.

That is, resampling will be restarted at η = 0 again.

In all experiments, we use only a small number of times, i.e., η = 15 times

Improving join selectivities by bootstrap method 171

in resampling, before any update will take place to the database, to study the

improvement of join selectivities by the bootstrap method. The reason we do not

use higher numbers than η = 15 is that the database at that point may possibly

undergo significant changes on it and resampling will then be reset back to start at

η = 0 again. All the results from the experiments give the same impression that the

average estimated selectivity µ̂ by the bootstrap method for i = 1, 2, . . . , η = 15, is

generally more accurate than the individual estimated selectivity µ̂i by the one-time

sampling.

There is no other overhead cost incurred by the bootstrap method, except the

already-known storage cost which is required to keep all possible estimated join

selectivities in the database profile catalog. However, since we have already accepted

such a cost in Chapter 3 in order to use systematic sampling (one-time sampling)

regardless of whether or not we will introduce the bootstrap method here, we do

not really make any other extra overhead cost in order to use the bootstrap method

proposed here.

Using the bootstrap method, one can benefit from the following:

• The bootstrap method is well-known in reducing the bias of an estimator,

therefore being able to improve the quality of a join selectivity over time.

• For retrieval-intensive databases1, in each one-time sampling to obtain an es-

timated selectivity of a star join, one can use a small sampling fraction for

all the relations participating in the star join, i.e., even smaller than the cal-

culated sampling fraction by the formula (4.2). Thus at runtime, when the

query optimiser consults for the selectivity of the star join, the sampling for it

can be done more quickly than ever before. This is due to the smaller sample

sizes used by those relations.

Here is the structure of presentation in this chapter. In Section 4.3, we de-

scribe the bootstrap method and apply it to the join selectivity estimation problem.

Section 4.4 contains 4 sets of experimental results comparing between:

• one-time SRSWR and bootstrap SRSWR.

1A database to which updates do not occur as frequently as queries to the database.

Improving join selectivities by bootstrap method 172

• one-time SRSWOR and bootstrap SRSWOR.

• one-time SYSSMP and bootstrap SYSSMP.

• one-time HYBRID and bootstrap HYBRID.

Suppose that x is one of the sampling schemes: SRSWR, SRSWOR, SYSSMP

and HYBRID (the combination between SS and SYSSMP). One-time sampling with

x scheme is sampling via the x scheme which is done only one time to obtain an

estimated join selectivity. Bootstrap sampling with x scheme is sampling via the x

scheme which is done η times to obtain an average estimated join selectivity. The

results obtained are convincing and in great favor of the bootstrap method for all

the different sampling schemes studied.

Although in the original bootstrap work, sampling is done with replacement,

there are also ongoing studies investigating other sampling schemes [Grichting 1995].

Here the last three schemes, namely, SRSWOR, SYSSMP and HYBRID, are our

experimental work in support of the bootstrap method via other sampling schemes.

We summarise the work in Section 4.5.

4.3 Bootstrap method

Denote by R123...m the output relation of a star join among m participating relations,

namely, Ri, i = 1, 2, . . . , m. µ, the selectivity of a star join, is calculated by: µ =
|R123...m|

|R1||R2|···|Rm| .

R′
i is a sample relation taken from relation Ri, i = 1, 2, . . . , m. R′

123...m is the

output relation of a star join among m sample relations, R′
i, i = 1, 2, . . . , m. µ̂, the

estimated star join selectivity, as a result of the join among the m sample relations,

is calculated by: µ̂ =
|R′123...m|

|R′1||R′2|···|R′m| .

Suppose we are interested in approximating a parameter of interest θ by using

an estimator θ̂ = f(y1, y2, y3, . . . , yñ). (y1, y2, y3, . . . , yñ) is a sample of size ñ in the

population. The parameter θ could be a population mean, a population proportion,

a population median, an error rate in discriminant analysis and so on. The basic

idea of the bootstrap method is as follows:

1. produce a sample with replacement from the population. This sample is called

a bootstrap sample.

Improving join selectivities by bootstrap method 173

2. from the bootstrap sample obtained, calculate an estimator of θ.

3. repeat steps 1 and 2 η times so as to obtain η bootstrap samples and thus η

estimators of θ. Let θ̂j be an estimator of θ by the jth resampling number,

where j = 1, 2, . . . , η. Then calculate the final average estimator θ̂ by:

θ̂ =

∑η
j=1 θ̂j

η

Using the bootstrap method above with no modification to calculate an average

estimated selectivity µ̂ (θ̂) of a star join is probably too expensive. The reason is that

given a star join whose µ̂ the query optimiser wants to know, the query size estimator

has to do η-time sampling all at once for η selectivities, i.e., µ̂1, µ̂2, . . . , µ̂η, as opposed

to only one-time sampling (which all previous sampling methods proposed so far for

selectivity estimation need to do), in order to return an average estimated join

selectivity µ̂ to the optimiser.

We utilise the fact that a common star join will appear again and again in many

user queries. Each time the common star join occurs in a query, the query size

estimator will do only one-time sampling for the star join. By accumulation of

sampling on many processed queries with the star join, this process is equivalent to

resampling many times all at once.

Given a star join with m participating relations, let µ̂old be an average estimated

selectivity of the star join stored in the profile catalog and let j be the current

resampling number of the star join. Initially, when there is no sampling done yet for

the star join, set j = 1 and set the initial value of µ̂old by SS (recall that initialising

the initial value of an estimated join selectivity can be done through having SS

run through the star join). Figure 4.1 shows our modified version of the original

bootstrap method.

After the procedure in Figure 4.1 terminates, the old estimated selectivity µ̂old

stored in the profile catalog will now be replaced by the new µ̂, instead of µ̂j since

it is believed that overall, µ̂ is a better estimate than µ̂j. Subsequently, when a new

query comes to the database system which incorporates the star join, this current µ̂

will proceed to become µ̂old in order to calculate a new µ̂ for the query optimiser.

Improving join selectivities by bootstrap method 174

Step 1. obtain each sample relation R′
i from Ri, i = 1, 2, . . . , m by a sampling frac-

tion β:

β = (ñ∏m

i=1
|Ri|)

1
m where ñ = t2(µ̂old)(1−µ̂old)

B2

Step 2. join together all the sample relations R′
i’s obtained to produce an output

relation and calculate an individual estimated selectivity µ̂j of the star join
by:

µ̂j =
|R′

123...m|
|R′

1||R′
2| · · · |R′

m|
Step 3. calculate the final average join selectivity estimator µ̂ by:

µ̂ =
(j − 1)µ̂old + µ̂j

j
(4.4)

where µ̂old is, in fact, the average estimated selectivity which was returned
to the query optimiser in the last time resampling (j−1), where j ≥ 2. Like
µ̂old, µ̂ is the current average estimated selectivity which is being returned
to the optimiser. We can also write that:

µ̂old =
µ̂1 + µ̂2 + . . .+ µ̂(j−1)

(j − 1)

Step 4. increment j by 1.

Step 5. return µ̂ to the query optimiser.

Figure 4.1: Join selectivity estimation by the bootstrap method

4.4 Experimental results

The database configurations for all experiments here are reused from Table 3.11(d)

in Chapter 3. See also the table near page 131. The table consists of 6 different

database configurations each of which comprises 5 relations. All the relations are of

10k cardinality.

Like all experiments in Chapter 3, the sampling fraction β = 10% is used

throughout all experiments in this chapter. That is, each time a resampling is

done, it is done with the 10% sampling fraction. Resampling is done with η = 15

times in all experiments.

For each database configuration SJi i = 1, 2, 3, 4, 5, 6, we experiment with star

joins among 2 relations (2rels), 3 relations (3rels), 4 relations (4rels) and 5 relations

(5rels) in the database. With star joins among jrels from a database where j =

Improving join selectivities by bootstrap method 175

2, 3, 4, 5, the j relations are randomly picked from the database prior to proceeding

to do experiments.

In the experiments for SYSSMP, all the j relations in jrels star joins are sorted,

where j = 2, 3, 4, 5 (recall that this is the extreme case of SYSSMP). In the ex-

periments for HYBRID (the combination between SS and SYSSMP), only 2 of all

the relations in a star join are sorted on their join attributes, irrespective of 2rels,

3rels, 4rels or 5rels star joins considered. The 2 sorted relations are randomly picked

from the database. Sample relations of the two are thus created via SYSSMP. The

remaining relations in the star join are unsorted and hence, their sample relations

are created via SS.

There are 4 pages of graphs, i.e., in Figures 4.3, 4.4, 4.5 and 4.6, respectively.

Each page is a comparison between one-time sampling with sampling scheme x and

bootstrap sampling with scheme x (η-time sampling), where x is one of the sampling

schemes: SRSWR, SRSWOR, SYSSMP and HYBRID.

Let us consider one page, e.g., in Figure 4.3. The graphs 4.3(a), 4.3(b), 4.3(c)

and 4.3(d) show the experiments using the database configuration SJ1 for star joins

among 2rels, 3rels, 4rels and 5rels, respectively from left to right. Now consider

one of the graphs, say graph 4.3(a). We reproduce this graph in Figure 4.2 because

we want to magnify it (like using a magnifying glass) to make it easy to see and

understand the description below.

The X-axis of the graph in Figure 4.2 labels the resampling number from 1,2,3,. . .

till 15 to the rightmost of the axis. The Y-axis is for the estimated join selectivity.

There are 3 lines in the graph; the solid line is for the join selectivity estimates

produced by the one-time sampling via SRSWR scheme; the dashed line is for the

join selectivity estimates produced by the bootstrap sampling via SRSWR; and the

straight dotted line from left to right is for the actual join selectivity. The aim of

the graph is “the closer a line by a method lies in respect to the line of the actual

join selectivity, the better the estimation method”.

In the line by the bootstrap sampling, each point µ̂ (an average estimated selec-

tivity) is calculated by:

µ̂ =
(j − 1)µ̂old + µ̂j

j

(reproduced from equation (4.4)) where j = 1, 2, 3, . . . , η. That is, once a resampling

Improving join selectivities by bootstrap method 176

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswr-r4r3"
"pl-bsm-srswr-r4r3"

2.05122

Figure 4.2: SJ1, 2rels, SRSWR

has been done, the current µ̂ will proceed to become µ̂old and the value of j will be

incremented by 1.

Note also that for any graph when j = 1, the µ̂ for the first time resampling is

equal to µ̂1 (see in the graph 4.2 for an example).

For all graphs, one can also see that the fluctuation by the bootstrap sampling is

clearly a lot lower than that by the one-time sampling. (The fluctuation represents

the quality of the method.) Generally the line in a graph by the bootstrap sampling

tends to be smoother than the line by the one-time sampling which tends to be

spike-like.

The spike-likeness of a line can be ascribed to the fact that the one-time sampling

will principally produce a high bias |E(µ̂)− µ| which is equal to |µ̂j − µ| for any j

from 1,2, . . . till 15.

The claim that the bootstrap method can reduce the bias of an estimator is also

fulfilled. Given an example in graph 4.2, as more sampling has been done from

resampling number 1,2,3, . . . till 15, the line by the bootstrap sampling tends to

Improving join selectivities by bootstrap method 177

converge to the line of the actual join selectivity, whereas the line by the one-time

sampling tends to converge nowhere.

As usual, apart from the graphs, three kinds of error are summarised in Ta-

ble 4.1 for SRSWR, Table 4.2 for SRSWOR, Table 4.3 for SYSSMP and Table 4.4

for HYBRID. In the tables, we use the notations 1-x and b-x. The former repre-

sents one-time sampling with sampling scheme x and the latter represents bootstrap

sampling with sampling scheme x.

However, we slightly changed the 3 error measures defined in Figure 3.6 (see the

figure in page 133). The changes are made basically to leave out the sample size Ñ

(see the original figure for comparison) because here we compare the join selectivity,

not the join result size. Here are 3 slightly modified error measures:

Root Mean Square Error is defined by:
√∑Z

i=1
(est vali−µ)2

Z where Z is the num-

ber of resamplings which is 15 in all experiments, µ an actual join selectivity,

est vali is either (1) an estimated join selectivity which results from the ith

sampling, i.e., µ̂i by the one-time sampling or (2) an estimated join selectivity

µ̂ by the bootstrap sampling.

Mean Residual Error is defined by:
∑Z

i=1
abs(est vali−µ)

Z .

Mean Relative Error is defined by:
∑Z

i=1
100∗abs(est vali−µ)

µ

Z .

All the graphs and tables demonstrate in the same direction that the bootstrap

sampling with any sampling scheme outperforms, in join selectivity estimation, the

one-time sampling with the same sampling scheme.

4.5 Conclusion

In this chapter we have achieved applying the bootstrap sampling method to the

join selectivity estimation problem. The theoretical studies of the bootstrap method,

e.g., by [Singh 1981; Bickel and Freedman 1981] show the accuracy of the bootstrap

estimation in many problem domains. Our experimental study here is one in support

of the effectiveness and efficiency of the bootstrap method to a database problem.

Improving join selectivities by bootstrap method 178

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswr-r4r3"
"pl-bsm-srswr-r4r3"

2.05122

(a) SJ1, 2rels

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswr-r4r3r5"
"pl-bsm-srswr-r4r3r5"

4.599324

(b) SJ1, 3rels

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
8

sampling #

"pl-pure-srswr-r4r3r5r1"
"pl-bsm-srswr-r4r3r5r1"

2.19173429

(c) SJ1, 4rels

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswr-r4r3r5r1r2"
"pl-bsm-srswr-r4r3r5r1r2"

3.33875831

(d) SJ1, 5rels

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-srswr-r2r5"
"pl-bsm-srswr-r2r5"

2.9748

(e) SJ2, 2rels

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswr-r2r5r3"
"pl-bsm-srswr-r2r5r3"

5.35105

(f) SJ2, 3rels

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-srswr-r2r5r3r4"
"pl-bsm-srswr-r2r5r3r4"

1.2465542

(g) SJ2, 4rels

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-srswr-r2r5r3r4r1"
"pl-bsm-srswr-r2r5r3r4r1"

7.4198218

(h) SJ2, 5rels

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-srswr-r1r2"
"pl-bsm-srswr-r1r2"

3.9238

(i) SJ3, 2rels

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswr-r1r2r3"
"pl-bsm-srswr-r1r2r3"

6.44705

(j) SJ3, 3rels

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswr-r1r2r3r4"
"pl-bsm-srswr-r1r2r3r4"

8.171796

(k) SJ3, 4rels

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswr-r1r2r3r4r5"
"pl-bsm-srswr-r1r2r3r4r5"

1.65024282

(l) SJ3, 5rels

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswr-r3r1"
"pl-bsm-srswr-r3r1"

1.06647

(m) SJ4, 2rels

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswr-r3r1r5"
"pl-bsm-srswr-r3r1r5"

1.140073

(n) SJ4, 3rels

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-srswr-r3r1r5r4"
"pl-bsm-srswr-r3r1r5r4"

2.0286401

(o) SJ4, 4rels

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswr-r3r1r5r4r2"
"pl-bsm-srswr-r3r1r5r4r2"

6.02760747

(p) SJ4, 5rels

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswr-r1r5"
"pl-bsm-srswr-r1r5"

1.31371

(q) SJ5, 2rels

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswr-r1r5r4"
"pl-bsm-srswr-r1r5r4"

8.64127

(r) SJ5, 3rels

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswr-r1r5r4r3"
"pl-bsm-srswr-r1r5r4r3"

2.035374

(s) SJ5, 4rels

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-srswr-r1r5r4r3r2"
"pl-bsm-srswr-r1r5r4r3r2"

7.7536074

(t) SJ5, 5rels

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswr-r2r4"
"pl-bsm-srswr-r2r4"

1.63994

(u) SJ6, 2rels

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswr-r2r4r3"
"pl-bsm-srswr-r2r4r3"

2.27154

(v) SJ6, 3rels

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswr-r2r4r3r1"
"pl-bsm-srswr-r2r4r3r1"

2.109609

(w) SJ6, 4rels

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswr-r2r4r3r1r5"
"pl-bsm-srswr-r2r4r3r1r5"

3.71500207

(x) SJ6, 5rels

Figure 4.3: One-time SRSWR against bootstrap SRSWR

Improving join selectivities by bootstrap method 179

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswor-r2r3"
"pl-bsm-srswor-r2r3"

1.98489

(a) SJ1, 2rels

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswor-r2r3r5"
"pl-bsm-srswor-r2r3r5"

3.666234

(b) SJ1, 3rels

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-srswor-r2r3r5r4"
"pl-bsm-srswor-r2r3r5r4"

1.1797259

(c) SJ1, 4rels

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswor-r2r3r5r4r1"
"pl-bsm-srswor-r2r3r5r4r1"

3.33875831

(d) SJ1, 5rels

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswor-r5r4"
"pl-bsm-srswor-r5r4"

3.62993

(e) SJ2, 2rels

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswor-r5r4r1"
"pl-bsm-srswor-r5r4r1"

1.040072

(f) SJ2, 3rels

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswor-r5r4r1r2"
"pl-bsm-srswor-r5r4r1r2"

4.121012

(g) SJ2, 4rels

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-srswor-r5r4r1r2r3"
"pl-bsm-srswor-r5r4r1r2r3"

7.4198218

(h) SJ2, 5rels

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-srswor-r2r1"
"pl-bsm-srswor-r2r1"

3.9238

(i) SJ3, 2rels

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswor-r2r1r4"
"pl-bsm-srswor-r2r1r4"

5.40205

(j) SJ3, 3rels

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-srswor-r2r1r4r5"
"pl-bsm-srswor-r2r1r4r5"

1.1965217

(k) SJ3, 4rels

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswor-r2r1r4r5r3"
"pl-bsm-srswor-r2r1r4r5r3"

1.65024282

(l) SJ3, 5rels

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswor-r5r4"
"pl-bsm-srswor-r5r4"

1.50478

(m) SJ4, 2rels

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswor-r5r4r1"
"pl-bsm-srswor-r5r4r1"

6.739358

(n) SJ4, 3rels

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-srswor-r5r4r1r3"
"pl-bsm-srswor-r5r4r1r3"

2.0286401

(o) SJ4, 4rels

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswor-r5r4r1r3r2"
"pl-bsm-srswor-r5r4r1r3r2"

6.02760747

(p) SJ4, 5rels

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-srswor-r2r4"
"pl-bsm-srswor-r2r4"

1.24633

(q) SJ5, 2rels

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-srswor-r2r4r3"
"pl-bsm-srswor-r2r4r3"

1.413313

(r) SJ5, 3rels

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswor-r2r4r3r5"
"pl-bsm-srswor-r2r4r3r5"

2.037882

(s) SJ5, 4rels

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-srswor-r2r4r3r5r1"
"pl-bsm-srswor-r2r4r3r5r1"

7.7536074

(t) SJ5, 5rels

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-srswor-r3r2"
"pl-bsm-srswor-r3r2"

2.0751

(u) SJ6, 2rels

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-srswor-r3r2r4"
"pl-bsm-srswor-r3r2r4"

2.27154

(v) SJ6, 3rels

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-srswor-r3r2r4r1"
"pl-bsm-srswor-r3r2r4r1"

2.109609

(w) SJ6, 4rels

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-srswor-r3r2r4r1r5"
"pl-bsm-srswor-r3r2r4r1r5"

3.71500207

(x) SJ6, 5rels

Figure 4.4: One-time SRSWOR against bootstrap SRSWOR

Improving join selectivities by bootstrap method 180

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-syssmp-r3r5"
"pl-bsm-syssmp-r3r5"

2.23367

(a) SJ1, 2rels

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-syssmp-r3r5r2"
"pl-bsm-syssmp-r3r5r2"

3.666234

(b) SJ1, 3rels

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-syssmp-r3r5r2r4"
"pl-bsm-syssmp-r3r5r2r4"

1.1797259

(c) SJ1, 4rels

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-syssmp-r3r5r2r4r1"
"pl-bsm-syssmp-r3r5r2r4r1"

3.33875831

(d) SJ1, 5rels

3.75

3.8

3.85

3.9

3.95

4

4.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-syssmp-r4r1"
"pl-bsm-syssmp-r4r1"

3.8897

(e) SJ2, 2rels

3.5

4

4.5

5

5.5

6

6.5

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-syssmp-r4r1r3"
"pl-bsm-syssmp-r4r1r3"

5.72543

(f) SJ2, 3rels

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-syssmp-r4r1r3r2"
"pl-bsm-syssmp-r4r1r3r2"

5.418832

(g) SJ2, 4rels

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-syssmp-r4r1r3r2r5"
"pl-bsm-syssmp-r4r1r3r2r5"

7.4198218

(h) SJ2, 5rels

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-syssmp-r4r5"
"pl-bsm-syssmp-r4r5"

1.90896

(i) SJ3, 2rels

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
5

sampling #

"pl-pure-syssmp-r4r5r2"
"pl-bsm-syssmp-r4r5r2"

1.3074658

(j) SJ3, 3rels

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-syssmp-r4r5r2r1"
"pl-bsm-syssmp-r4r5r2r1"

1.1965217

(k) SJ3, 4rels

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-syssmp-r4r5r2r1r3"
"pl-bsm-syssmp-r4r5r2r1r3"

1.65024282

(l) SJ3, 5rels

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51

1.52

1.53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-syssmp-r1r4"
"pl-bsm-syssmp-r1r4"

1.48445

(m) SJ4, 2rels

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-syssmp-r1r4r2"
"pl-bsm-syssmp-r1r4r2"

8.441007

(n) SJ4, 3rels

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
8

sampling #

"pl-pure-syssmp-r1r4r2r5"
"pl-bsm-syssmp-r1r4r2r5"

7.13492629

(o) SJ4, 4rels

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-syssmp-r1r4r2r5r3"
"pl-bsm-syssmp-r1r4r2r5r3"

6.02760747

(p) SJ4, 5rels

1.23

1.235

1.24

1.245

1.25

1.255

1.26

1.265

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-syssmp-r5r2"
"pl-bsm-syssmp-r5r2"

1.24785

(q) SJ5, 2rels

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-syssmp-r5r2r4"
"pl-bsm-syssmp-r5r2r4"

1.97351

(r) SJ5, 3rels

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-syssmp-r5r2r4r3"
"pl-bsm-syssmp-r5r2r4r3"

2.037882

(s) SJ5, 4rels

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-syssmp-r5r2r4r3r1"
"pl-bsm-syssmp-r5r2r4r3r1"

7.7536074

(t) SJ5, 5rels

1.95

2

2.05

2.1

2.15

2.2

2.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-syssmp-r3r2"
"pl-bsm-syssmp-r3r2"

2.0751

(u) SJ6, 2rels

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-syssmp-r3r2r1"
"pl-bsm-syssmp-r3r2r1"

1.6106

(v) SJ6, 3rels

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-syssmp-r3r2r1r4"
"pl-bsm-syssmp-r3r2r1r4"

2.109609

(w) SJ6, 4rels

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-syssmp-r3r2r1r4r5"
"pl-bsm-syssmp-r3r2r1r4r5"

3.71500207

(x) SJ6, 5rels

Figure 4.5: One-time SYSSMP against bootstrap SYSSMP

Improving join selectivities by bootstrap method 181

2

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-hybrid-r3r4"
"pl-bsm-hybrid-r3r4"

2.05122

(a) SJ1, 2rels

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
6

sampling #

"pl-pure-hybrid-r3r4r1"
"pl-bsm-hybrid-r3r4r1"

9.173625

(b) SJ1, 3rels

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-hybrid-r3r4r1r2"
"pl-bsm-hybrid-r3r4r1r2"

1.7193364

(c) SJ1, 4rels

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-hybrid-r3r4r1r2r5"
"pl-bsm-hybrid-r3r4r1r2r5"

3.33875831

(d) SJ1, 5rels

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-hybrid-r2r3"
"pl-bsm-hybrid-r2r3"

1.70133

(e) SJ2, 2rels

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
5

sampling #

"pl-pure-hybrid-r2r3r1"
"pl-bsm-hybrid-r2r3r1"

1.3177763

(f) SJ2, 3rels

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-hybrid-r2r3r1r4"
"pl-bsm-hybrid-r2r3r1r4"

5.418832

(g) SJ2, 4rels

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-hybrid-r2r3r1r4r5"
"pl-bsm-hybrid-r2r3r1r4r5"

7.4198218

(h) SJ2, 5rels

1.63

1.64

1.65

1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-hybrid-r1r3"
"pl-bsm-hybrid-r1r3"

1.6752

(i) SJ3, 2rels

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-hybrid-r1r3r2"
"pl-bsm-hybrid-r1r3r2"

6.44705

(j) SJ3, 3rels

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-hybrid-r1r3r2r4"
"pl-bsm-hybrid-r1r3r2r4"

8.171796

(k) SJ3, 4rels

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-hybrid-r1r3r2r4r5"
"pl-bsm-hybrid-r1r3r2r4r5"

1.65024282

(l) SJ3, 5rels

3.185

3.19

3.195

3.2

3.205

3.21

3.215

3.22

3.225

3.23

3.235

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-hybrid-r1r5"
"pl-bsm-hybrid-r1r5"

3.20069

(m) SJ4, 2rels

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
5

sampling #

"pl-pure-hybrid-r1r5r2"
"pl-bsm-hybrid-r1r5r2"

2.5874885

(n) SJ4, 3rels

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-hybrid-r1r5r2r3"
"pl-bsm-hybrid-r1r5r2r3"

9.686502

(o) SJ4, 4rels

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-hybrid-r1r5r2r3r4"
"pl-bsm-hybrid-r1r5r2r3r4"

6.02760747

(p) SJ4, 5rels

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
3

sampling #

"pl-pure-hybrid-r3r4"
"pl-bsm-hybrid-r3r4"

1.22874

(q) SJ5, 2rels

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-hybrid-r3r4r1"
"pl-bsm-hybrid-r3r4r1"

9.47022

(r) SJ5, 3rels

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
9

sampling #

"pl-pure-hybrid-r3r4r1r2"
"pl-bsm-hybrid-r3r4r1r2"

1.2243392

(s) SJ5, 4rels

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
3

sampling #

"pl-pure-hybrid-r3r4r1r2r5"
"pl-bsm-hybrid-r3r4r1r2r5"

7.7536074

(t) SJ5, 5rels

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
4

sampling #

"pl-pure-hybrid-r1r3"
"pl-bsm-hybrid-r1r3"

1.6784

(u) SJ6, 2rels

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-0
7

sampling #

"pl-pure-hybrid-r1r3r2"
"pl-bsm-hybrid-r1r3r2"

1.6106

(v) SJ6, 3rels

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
0

sampling #

"pl-pure-hybrid-r1r3r2r4"
"pl-bsm-hybrid-r1r3r2r4"

2.109609

(w) SJ6, 4rels

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo
in

 s
ltv

t x
 e

-1
2

sampling #

"pl-pure-hybrid-r1r3r2r4r5"
"pl-bsm-hybrid-r1r3r2r4r5"

3.71500207

(x) SJ6, 5rels

Figure 4.6: One-time HYBRID against bootstrap HYBRID

Improving join selectivities by bootstrap method 182

2rels 3rels 4rels 5rels
exp. 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr
SJ1 1.065e-04 3.204e-05 9.818e-07 3.575e-07 6.461e-09 1.771e-09 2.548e-12 9.558e-13
SJ2 2.838e-05 1.171e-05 2.159e-07 6.738e-08 5.931e-10 3.565e-10 7.590e-13 1.495e-13
SJ3 4.638e-05 1.723e-05 1.555e-07 5.272e-08 9.196e-10 5.057e-10 1.718e-12 8.600e-13
SJ4 5.968e-05 2.180e-05 1.003e-07 6.294e-08 4.910e-10 3.089e-10 9.610e-12 5.120e-12
SJ5 1.197e-04 1.985e-05 4.984e-07 2.812e-07 1.804e-10 1.615e-10 3.427e-12 6.515e-13
SJ6 8.421e-05 3.662e-05 5.144e-08 2.000e-08 4.157e-10 1.380e-10 4.225e-12 3.277e-12

(a) Root mean square error

2rels 3rels 4rels 5rels
exp. 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr
SJ1 7.741e-05 2.871e-05 7.892e-07 3.099e-07 5.563e-09 1.380e-09 2.059e-12 9.084e-13
SJ2 2.370e-05 8.476e-06 1.812e-07 5.168e-08 4.855e-10 3.279e-10 6.301e-13 1.012e-13
SJ3 4.059e-05 1.214e-05 1.216e-07 3.283e-08 5.023e-10 4.429e-10 1.195e-12 7.359e-13
SJ4 4.617e-05 1.735e-05 9.280e-08 5.686e-08 3.838e-10 2.870e-10 6.318e-12 3.245e-12
SJ5 8.639e-05 1.578e-05 4.302e-07 2.428e-07 1.719e-10 1.596e-10 1.519e-12 6.227e-13
SJ6 6.566e-05 1.987e-05 3.716e-08 1.832e-08 2.287e-10 1.175e-10 3.931e-12 3.249e-12

(b) Mean residual error

2rels 3rels 4rels 5rels
exp. 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr 1-srswr b-srswr
SJ1 3.774 1.400 17.158 6.738 25.382 6.296 61.657 27.209
SJ2 7.967 2.849 33.872 9.658 38.944 26.303 84.917 13.637
SJ3 10.345 3.095 18.858 5.092 61.472 54.204 72.400 44.592
SJ4 4.329 1.627 8.140 4.987 18.921 14.147 104.810 53.841
SJ5 6.576 1.202 49.789 28.095 84.437 78.400 195.952 80.308
SJ6 4.004 1.212 16.361 8.066 108.392 55.696 105.803 87.457

(c) Mean relative error

Table 4.1: One-time SRSWR against bootstrap SRSWR

2rels 3rels 4rels 5rels
exp. 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor
SJ1 1.741e-04 9.667e-05 7.290e-07 1.702e-07 9.457e-10 8.728e-10 3.854e-12 5.675e-13
SJ2 9.156e-05 4.897e-05 1.122e-07 3.897e-08 1.330e-10 6.436e-11 4.566e-13 1.907e-13
SJ3 4.669e-05 2.714e-05 2.307e-07 4.541e-08 9.311e-10 5.050e-10 9.794e-13 7.864e-13
SJ4 1.449e-04 6.388e-05 1.794e-06 4.500e-07 2.134e-09 1.830e-09 1.029e-11 3.624e-12
SJ5 1.005e-04 1.896e-05 2.191e-07 5.283e-08 2.262e-10 9.744e-11 9.441e-13 6.656e-13
SJ6 2.267e-05 6.374e-06 5.673e-08 1.103e-08 9.639e-11 5.683e-11 4.853e-12 3.416e-12

(a) Root mean square error

2rels 3rels 4rels 5rels
exp. 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor
SJ1 1.398e-04 7.937e-05 6.008e-07 1.307e-07 6.479e-10 5.325e-10 2.333e-12 4.623e-13
SJ2 7.448e-05 3.141e-05 9.161e-08 3.209e-08 9.618e-11 6.122e-11 3.936e-13 1.618e-13
SJ3 4.151e-05 1.581e-05 1.224e-07 3.899e-08 5.706e-10 2.866e-10 8.426e-13 6.779e-13
SJ4 1.027e-04 5.673e-05 1.470e-06 3.034e-07 1.364e-09 1.322e-09 7.355e-12 2.867e-12
SJ5 6.960e-05 1.217e-05 1.852e-07 4.451e-08 1.771e-10 4.096e-11 8.684e-13 6.516e-13
SJ6 2.050e-05 5.595e-06 4.539e-08 9.127e-09 8.252e-11 3.374e-11 4.176e-12 3.404e-12

(b) Mean residual error

2rels 3rels 4rels 5rels
exp. 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor 1-srswor b-srswor
SJ1 7.044 3.999 16.386 3.566 54.918 45.135 69.867 13.848
SJ2 2.052 0.865 8.808 3.086 23.339 14.855 53.046 21.802
SJ3 10.579 4.030 22.651 7.218 47.685 23.956 51.060 41.081
SJ4 6.822 3.770 21.818 4.502 67.219 65.190 122.025 47.562
SJ5 5.584 0.977 13.102 3.149 86.913 20.102 112.005 84.038
SJ6 9.880 2.696 19.982 4.018 39.116 15.993 112.420 91.640

(c) Mean relative error

Table 4.2: One-time SRSWOR against bootstrap SRSWOR

Improving join selectivities by bootstrap method 183

2rels 3rels 4rels 5rels
exp. 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp
SJ1 4.935e-05 3.176e-05 1.465e-07 5.113e-08 3.030e-10 9.260e-11 1.102e-12 7.030e-13
SJ2 5.799e-06 1.238e-06 9.958e-08 3.632e-08 2.306e-10 3.359e-11 3.769e-13 1.171e-13
SJ3 5.386e-05 3.317e-05 3.627e-07 6.960e-08 1.566e-09 3.502e-10 5.181e-13 4.851e-13
SJ4 2.035e-05 1.141e-05 2.347e-07 1.315e-07 3.208e-09 1.598e-09 1.657e-11 1.335e-11
SJ5 7.780e-06 1.956e-06 3.002e-08 1.488e-08 4.128e-11 1.700e-11 2.337e-12 5.601e-13
SJ6 7.692e-06 1.093e-06 3.229e-08 1.983e-08 5.000e-11 3.655e-11 1.133e-11 9.009e-12

(a) Root mean square error

2rels 3rels 4rels 5rels
exp. 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp
SJ1 4.402e-05 2.346e-05 1.261e-07 3.742e-08 2.679e-10 6.239e-11 7.949e-13 6.125e-13
SJ2 4.931e-06 9.133e-07 9.030e-08 2.682e-08 1.486e-10 2.695e-11 2.549e-13 1.023e-13
SJ3 4.373e-05 2.394e-05 2.835e-07 4.668e-08 9.354e-10 2.688e-10 4.370e-13 4.595e-13
SJ4 1.658e-05 1.088e-05 1.874e-07 1.239e-07 2.847e-09 1.531e-09 1.008e-11 8.963e-12
SJ5 5.990e-06 1.753e-06 2.460e-08 8.660e-09 3.717e-11 1.500e-11 1.375e-12 5.341e-13
SJ6 6.299e-06 8.319e-07 2.606e-08 1.123e-08 4.630e-11 3.626e-11 6.990e-12 5.479e-12

(b) Mean residual error

2rels 3rels 4rels 5rels
exp. 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp 1-syssmp b-syssmp
SJ1 1.971 1.050 3.438 1.021 22.705 5.289 23.810 18.346
SJ2 1.268 0.235 15.772 4.684 27.421 4.973 34.350 13.787
SJ3 2.291 1.254 2.168 0.357 78.175 22.467 26.480 27.844
SJ4 1.117 0.733 2.220 1.468 3.990 2.146 167.210 148.691
SJ5 0.480 0.140 12.463 4.388 18.238 7.363 177.362 68.880
SJ6 3.036 0.401 16.182 6.970 21.949 17.188 188.161 147.479

(c) Mean relative error

Table 4.3: One-time SYSSMP against bootstrap SYSSMP

2rels 3rels 4rels 5rels
exp. 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid
SJ1 2.633e-05 1.417e-05 3.925e-07 2.154e-07 9.703e-10 3.908e-10 1.945e-12 6.499e-13
SJ2 2.834e-05 1.261e-05 1.379e-06 4.751e-07 3.187e-10 2.151e-10 5.074e-13 2.651e-13
SJ3 3.075e-05 2.449e-05 1.215e-07 2.686e-08 2.342e-10 1.602e-10 1.931e-12 1.160e-12
SJ4 1.288e-05 5.590e-06 2.318e-06 1.442e-06 1.549e-09 4.512e-10 8.835e-12 3.887e-12
SJ5 2.410e-05 6.794e-06 1.600e-07 5.574e-08 7.986e-10 3.565e-10 3.789e-12 1.023e-12
SJ6 8.059e-06 6.443e-06 4.117e-08 1.694e-08 5.443e-11 5.208e-11 1.536e-11 3.093e-12

(a) Root mean square error

2rels 3rels 4rels 5rels
exp. 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid
SJ1 2.122e-05 9.779e-06 3.305e-07 2.028e-07 7.154e-10 3.268e-10 1.669e-12 5.356e-13
SJ2 2.016e-05 1.098e-05 1.151e-06 3.076e-07 2.672e-10 1.998e-10 4.324e-13 1.665e-13
SJ3 2.581e-05 2.310e-05 1.012e-07 2.184e-08 1.759e-10 1.363e-10 1.269e-12 1.106e-12
SJ4 1.058e-05 3.723e-06 1.941e-06 1.409e-06 8.790e-10 3.725e-10 6.275e-12 3.734e-12
SJ5 1.962e-05 5.986e-06 1.235e-07 3.962e-08 6.036e-10 3.415e-10 1.666e-12 9.055e-13
SJ6 7.059e-06 5.602e-06 3.454e-08 1.101e-08 4.278e-11 4.801e-11 9.846e-12 2.746e-12

(b) Mean residual error

2rels 3rels 4rels 5rels
exp. 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid 1-hybrid b-hybrid
SJ1 1.035 0.477 3.603 2.211 41.608 19.008 49.993 16.043
SJ2 1.185 0.645 8.731 2.334 49.315 36.874 58.275 22.437
SJ3 1.541 1.379 15.694 3.388 21.529 16.682 76.879 67.015
SJ4 0.331 0.116 7.501 5.444 90.741 38.457 104.112 61.951
SJ5 1.597 0.487 13.045 4.184 49.298 27.894 214.928 116.786
SJ6 4.206 3.338 21.444 6.838 20.277 22.756 265.042 73.929

(c) Mean relative error

Table 4.4: One-time HYBRID against bootstrap HYBRID

CHAPTER 5

Query size estimation using local regression

Abstract

Local regression proves to provide very robust query size estimation
due to its adaptive features of polynomials and windows used. The
simple but effective idea of local regression is to select a number
of local windows to work on and in each local window, fit the data
points falling into the window by a polynomial with a low degree
(2 or 3, normally). It is easy to see why such a small degree would
normally suffice to handle a small curve in the local window (i.e., a
partition of the whole graph). Hence, this is the main strength of
why local regression works well in many real-life problem domains.

Many previous techniques such as uniform distribution based,
histogram, curve-fitting and machine learning, are shown to be sub-
sumed under local regression. In order to make use of different
strengths of the previous techniques, we propose a data structure
in order to gracefully and generically implement together all the
previous techniques in a single framework.

To our best knowledge, neural networks are new in the setting
of query size estimation. Query optimisation researchers may like
to know how neural networks perform in this scenario. We show
how to apply them to the query size estimation problem.

With a variety of relation configurations, a number of experi-
ments using both simple and complex predicate queries have been
conducted to see the efficiency of 7 estimation methods. Many of
them are proposed earlier and the rest are proposed here.

184

Query size estimation using local regression 185

Since the introduction section 5.1 below is very long, to make it easy to get all

the points we want to make, we briefly describe them here:

• Notations and definitions define some notations and definitions to be used throughtout

the chapter.

• Concept of local regression describe the basic underlying idea of local regression.

• Global regression and its problem Global regression is a specific case of local regres-

sion. Here we identify a main problem against global regression.

• Overview of local regression variants give an overview of many variants of local

regression.

• Multi-dimensional regression models and their storage problem identify the storage

requirement problem against multi-dimensional models. This prevents the use in

practice of multi-dimensional models provided by local regression methods. Hence,

only are single-dimensional regression models in use in practice for query size esti-

mation.

• Background for neural networks give a background for neural networks. We will

also use them for query size estimation.

• Background for a machine learning method M5 give a background for a machine

learning method called M5. M5 is also a variant of local regression. We will modify

the original M5 for query size estimation here.

• Query size estimation by local regression variants and neural networks describe the

overall idea of how to apply local regression variants and neural networks to the

query size estimation problem.

• Single implementation framework for local regression variants describe an implemen-

tation for all local regression variants that can be done under a single framework.

• Method evaluation evaluate those local regression variants and neural networks.

• Local regression with join selectivity is the the idea of how to use local regression to

approximate join selectivities.

Query size estimation using local regression 186

5.1 Introduction

For systems where sampling-based query size estimation methods are not appro-

priate, e.g., distributed database systems (either multidatabase systems or homo-

geneous distributed systems) or any system which wants an instant and quick way

of query size estimation, we propose that a novel curve-fitting method called local

regression be used for size estimation of selection queries.

After decades of refinement by many researchers, e.g., by Cleveland [1979]; Cleve-

land and Devlin [1988]; Cleveland and Grosse [1991]; Cleveland and Loader [1996]),

local regression has now surged into practical use. It has been applied to many fields

of science and many applications since late 19th century. Work by Cleveland [1979]

is the one which makes local regression become very popular.

• Notations and definitions

Let us first define some notations and definitions that we will use throughout the

chapter. Let R be a relation in a database of interest with N as its cardinality (the

number of tuples). Suppose that relation R has u attributes, namely, b1, b2, . . . , bu.

Let f(x) be either a function of a frequency distribution of x – how many times the

x value appears in relation R – or a function of a cumulative frequency distribution

of x which does not include the frequency of x itself – how many times any value

less than x appears in R. We will use f(x) in one of the two contexts. Note that

we slightly abuse the term “cumulative frequency distribution” which is supposed

to include the frequency of x as well.

Let (x1, f(x1)), (x2, f(x2)), . . . , (xd, f(xd)) be a data set. We call it “data set”

because we want to generalise the term over the two contexts of f(x). For all the

data points (xj , f(xj)) j = 1, 2, . . . , d in the data set, f(x) used must be either a

frequency distribution function or a cumulative frequency distribution function but

not both at the same time. Each xj , j = 1, 2, . . . , d in the data set is a distinct

value in the domain of an attribute, say b#, which is one of the attributes of R. d is

the number of distinct values which appear in R under b#. Assume also that each

xj in the sequence defined in the data set is in ascending order.

Query size estimation using local regression 187

• Concept of local regression

The underlying idea of local regression can be roughly described as follows:

• select a number of windows numwin to work on. (“A number of windows” is

equivalent to “a number of buckets” used by histograms. In the literature of

local regression, the former is used rather than the latter.)

• define upper bound values for the windows, i.e., upper boundaries for each

window. One can also imagine similarly of upper bound values of histograms.

• partition all the data points in the data set into their corresponding windows

based on xi’s values.

• locally fit the data points which fall into a local window by a polynomial with

a low degree, normally 2 or 3. Repeat this step with the remaining windows.

Although the attribute domains considered here are all numerical which could be

either discrete or continuous, the application to alphanumeric domains (string value

domains) can also be done. Prior to applying the local regression methods proposed

in this chapter, the only additional process involved and needed to be done is a

conversion by a function from alphanumeric values to their corresponding floating

point numbers. A database system that uses such a conversion is IBM’s DB2-6000

system, for example [Poosala 1997].

• Global regression and its problem

Two curve-fitting methods earlier proposed by Sun et al. [1993]; Chen and Rous-

sopoulos [1994] are a special form of local regression proposed in this chapter. They

are called global regression. The methods build only a single window (as opposed to

multiple windows by local regression) which holds all the data points in the data set

defined above in the single window and fit them all with a single polynomial with

a high degree, namely, degree 10 for [Sun et al. 1993] and degree 6 for [Chen and

Roussopoulos 1994].

The main drawback against the global curve-fitting methods is that many times

they cannot fit data nicely, e.g., multimodal data (data with many curves), hence

missing many points in the data set. This drawback is known as oversmoothing

Query size estimation using local regression 188

problem (see Figure 5.1(a) for a “conceptual” example). In the figure, we introduce

a new term bandwidth which simply means a window width. The more windows

used for fitting, the smaller the bandwidth for the windows.

The oversmoothing problem is mollified when more windows are used to fit the

same data set. Figure 5.1(b) shows a local regression model with a good number of

windows used.

However, fitting the same data set with too many windows (too small bandwidth)

can also yield too noisy results and thus poor results as shown in Figure 5.1(c). The

reason is that there are insufficient data points which fall into local windows and

hence, the fit is too sensitive to the individual data points in the windows. See also

Figure 2.3 in page 14 of Chapter 2 in [Loader 1997d] for the bandwidth problem in

which the data used are real and the graphs plotted are from the real data.

xi

f(xi)

(a) A single window,
too large bandwidth,
missing many points

xi

f(xi)

(b) A good number of
windows, good band-
width, good results

xi

f(xi)

(c) Too many windows,
too small bandwidth,
too noisy results

Figure 5.1: Local regression with different numbers of windows used

• Overview of local regression variants

We describe a general method for local regression in Section 5.2. Three variants

of local regression are proposed here; one is called Locally Weighted Regression

(LWR) [Cleveland and Loader 1996]; the second is called Instant and Accurate Size

Estimation (IASE) [Sun et al. 1993]; and the last is called Adaptive Size Estimation

(ASE) [Chen and Roussopoulos 1994]. All the three variants are in general a poly-

nomial regression; as a result, the principle of least square error is used to find the

best-fit coefficients of the polynomial used. While IASE and ASE do not consider

any weight for data points used, LWR does consider. That is, points have higher

weights if they are closer to a fitting point – a fixed point in a local window; points

Query size estimation using local regression 189

have lower weights if they are further away from the fitting point. The least square

error by LWR is so called weighted least square error while the one by IASE and

ASE is so called ordinary least square error.

We will show in this chapter that equi-height histograms (HIST) [Piatetsky-

Shapiro and Connell 1984], the most popular type of histograms used by commercial

database systems (see Table 1 in Chapter 3 of [Poosala 1997]), are also a special

form of local regression which employs local constant fitting [Cleveland and Loader

1996] where a polynomial degree 0 is used in each local window (bucket). The

local constant fitting is, in fact, the uniform distribution assumption used inside

each bucket for query size estimation. That is, any distinct values that are grouped

into a bucket would have an identical frequency which is averaged from the total

of frequencies of all the distinct values inside the bucket. According to [Cleveland

and Loader 1996], the local constant fitting very infrequently proves to be the best

choice in practice and was only widely appreciated in the early smoothing literature.

In [Poosala et al. 1996; Poosala and Ioannidis 1997], a new and large taxonomy

of histograms were studied. Among many types of histograms in the taxonomy, V-

Optimal(V,A) and MaxDiff(V,A) histograms are the most attractive and the best

choice of all, i.e., producing less errors in query result size estimation compared with

others considered. These two types of histograms are also a form of local regression

with the local constant fitting.

For all such histograms: HIST, V-Optimal(V,A) and MaxDiff(V,A), they are the

same in (1) a window type used which is called adaptive – the window width varies

from bucket to bucket – and (2) the local constant fitting used. They are different

in grouping of distinct values into buckets (windows). However, they all fall short

commonly in the same problem with the local constant fitting. That is, in spite

of any kind of grouping employed, there may still exist some small curves (a small

curve is a small partition of the entire graph of a data distribution) remaining in

some buckets and fitting a small curve, such as a straight line with a slope (which

is not the straight horizontal line), a hill-like curve, etc, by the polynomial degree

0 (i.e., the average frequency in the bucket) would not basically be as efficient as

fitting it by a polynomial with a slightly higher degree, such as 1 or 2.

We will also show that a parametric method [Selinger et al. 1979a] based on

Query size estimation using local regression 190

the uniform distribution (UNF) is actually a single-window histogram method or a

global constant fitting method.

• Multi-dimensional regression models and their storage problem

Multi-dimensional local regression models are, most probably, more appropriate to

deal with size estimation of complex predicate queries than single-dimensional local

regression models. The reason is that multi-dimensional models can deal with both

an attribute dependence assumption (some correlation among attributes in a relation)

if there is any and an attribute independence assumption (no correlation among

attributes in the relation), whereas single-dimensional models basically can deal only

with the attribute independence assumption. The rationale behind is that building

multi-dimensional models takes into account the joint frequency distribution among

a number of attributes whether or not those attributes really depend on one another

– they may even be independent of one another. However, the main drawback of

such models is their storage complexity, namely, the storage requirement. Building

multi-dimensional models even for a global regression (single window) requires an

exponential amount of storage to the number of attributes involved. We analyse

their storage complexity below.

Let us take a look at an example of a multi-dimensional global regression model.

For 2-attribute conjunctive queries of the form (some lower bound ≤ R.b1 ≤
some upper bound) ∧ (some lower bound ≤ R.b2 ≤ some upper bound), to esti-

mate sizes of the queries, a 2-dimensional regression model can be used, as proposed

by Sun et al. [1993]. The 2-dimensional model can be simplified to:
∑pb1
i=0

∑pb2
j=0 aijx

i
b1x

j
b2

.

xib1 together with xjb2 is a pair of joint values of attributes b1 and b2 that appear to-

gether in relation R. aij is a coefficient and pb1 and pb2 are the polynomial degrees of

attributes b1 and b2 respectively used by the model. Suppose that a degree for both

pb1 and pb2 is equal to 10 (as used in the paper). The total number of coefficients aij ’s

needed to be maintained in the database profile catalog would be (10+1)× (10+1)

or 112.

For 2-attribute disjunctive queries of the form (some lower bound ≤ R.b1 ≤
some upper bound)∨ (some lower bound ≤ R.b2 ≤ some upper bound), the storage

requirement would be the same, i.e., 112. As a result, for K−attribute conjunctive

(disjunctive) queries, a K-dimensional regression model would require to maintain

Query size estimation using local regression 191

11K coefficients in order to do size estimation for the K-attribute queries.

A multi-dimensional histogram is a multi-dimensional model for size estimation

of complex predicate queries. The derivation for the storage complexity for multi-

dimensional histograms [Muralikrishna and DeWitt 1988; Muralikrishna 1988; Poos-

ala and Ioannidis 1997; Poosala 1997] is similar to that for the multi-dimensional

regression model shown above. Let K be the number of attributes considered to

build aK-dimensional histogram. If bucket is the number of buckets allowed for each

of the K attributes, then the total number of buckets required to build the multi-

dimensional histogram is bucketK . To calculated this, one can think of K nested

loops each of which has bucket iterations, hence giving such a value bucketK . This

storage complexity could be the main reason prohibiting the use of multi-dimensional

histograms in commercial database systems (e.g., INGRES, Sybase, DB2, Informix,

MS-sqlserver, Oracle and Teradata) and only single-dimensional histograms which

call for a linear size of storage are currently in use in those commercial database

systems. The same reason could also apply to multi-dimensional regression models.

As a consequence, here we will focus only on building single-dimensional regres-

sion models for individual attributes of relation R and use those models together to

estimate sizes of complex predicate queries. The storage size required by a single-

dimensional regression model is linear, proportional to the number of windows used.

That is, for a model, the storage size for all necessary parameters comprises 1) all

upper bound values of the local windows used and 2) a fixed number of polynomial

coefficients used by each local window.

• Background for neural networks

Backpropagation neural networks (NNs) [Rumelhart et al. 1986] are a nonlinear

regression function approximator that has been successfully used in many fields of

science and applications. To our best knowledge, NNs have never been used in

the query optimisation literature, more particularly to the query size estimation.

In Section 5.3, we describe a general method for NNs whereby many regression

problems are solved.

We also describe the most well-known and popular training algorithm called

backpropagation which is used to train neural networks so that a network can learn

how to handle the regression problem at hand, basically an estimation problem.

Query size estimation using local regression 192

• Background for a machine learning method M5

Harangsri et al. [1997] proposed a machine learning method called M5 [Quinlan

1992, 1993b]. M5 is also a form of local regression with a linear regression in each

leaf node (window) – a polynomial degree 1 is used in each local window, instead of

using a higher degree, such as 2 or higher. M5 combines two distinguished learning

techniques: model tree learning [Quinlan 1992] and instance-based learning [Kibler

et al. 1989; Aha 1990; Aha et al. 1991] into a new combined learning technique.

Using feedback from already-processed queries, M5 creates a model tree whose leaf

nodes consist of linear regression functions.

To approximate the size of a new unseen query, the most similar queries to the

unseen query are selected from the stored already-processed queries and the result

size of the unseen query is calculated based on 1) some linear regression functions

in the model tree built and 2) the result sizes of the most similar queries.

M5 in its original implementation [Harangsri et al. 1997] basically uses a great

deal of storage to maintain query feedback. Since a main and important aim in

this thesis is to make any method proposed most practical to commercial database

systems – use a small amount of storage, M5 in this chapter does not maintain any

user feedback but merely creates model trees from which query size estimation can

be carried out. The complete details of M5 can be found in Section 2.7 of Chapter 2.

• Query size estimation by local regression variants and neural networks

Section 5.4 illustrates how the general methods for local regression and neural net-

works can be applied to our problem domain which is to estimate query result sizes.

Here we show how to build single-dimensional regression models from which query

size estimation can be carried out. To build a model say for an attribute b# of R, it

is sufficient to consider two simple predicates of the forms b# = x and b# < x. For

all 7 methods: IASE, ASE, LWR, M5, HIST, NN and UNF, a single-dimensional

model is built for the two simple predicates. In general, using single-dimensional

regression models to estimate query result sizes implies that the attribute indepen-

dence assumption is relied on. (Perhaps, this may not entirely be the case if the SVD

technique proposed in [Poosala and Ioannidis 1997; Poosala 1997] is used to create

single-dimensional models. But the severe disadvantage against this technique is

Query size estimation using local regression 193

that it cannot be extended to deal with the attribute dependence with more than

two attributes involved.)

Like building histograms with a sample size n (≤ N), a single-dimensional model

created by any of local regression variants and a neural network can also be built from

a sample size n. That is, a data set with frequencies: (x1, f(x1)), (x2, f(x2)), . . . , (xd,

f(xd)) which is the source of creating a single-dimensional model, can be created

from a sample size n, in place of the size N of an entire relation.

• Single implementation framework for local regression variants

Just like the claim in Poosala’s thesis (see page 94 of [Poosala 1997]), it is our

experience that there is, at least so far, no single universal estimation method which

can universally handle all kinds of data distributions. That is, among the 7 available

methods: IASE, ASE, LWR, M5, HIST, NN and UNF although in most of the times

with the data experimented with, LWR seems to perform the best, there are times

that others (one of those) perform better than LWR. With (1) the unknown nature of

data distributions in future perhaps difficult to fit and (2) different strengths of the

local regression methods, instead of proposing LWR as the best single method for any

database system, we propose a data structure in Section 5.5 which makes it possible

to gracefully and generically implement together all the methods IASE, ASE, LWR,

M5, HIST and UNF (or even V-Optimal(V,A) as well as MaxDiff(V,A) histograms

because both are only different from HIST in the grouping of distinct values into

buckets) in a single framework. The implementation would not be difficult as all of

these methods are a form of local regression.

• Method evaluation

Section 5.6 contains three extensive sets of experiments with a variety of relation

configurations. The aim of the first set is to compare local regression models against

global models. The aim of the second set is to compare the efficiency among the 7

methods using simple predicate queries. The aim of the last set is similar to that of

the second set except the queries used. Complex predicate queries are used here.

Since a significant aim in this chapter is the amount of storage required by a

method, all the comparisons among the 7 methods have been made basically using

the same number of parameters. We summarise the main achievements of this

Query size estimation using local regression 194

chapter in Section 5.8.

• Local regression with join selectivity

For the join selectivity estimation problem, since the experimental work is not yet

done, we will give very sound justifications in Section 5.7 of why local regression

would perform for joins equally as well as when it performs for selections.

5.2 Method for local regression

In this section, we describe a general method for local regression. Three vari-

ants of local regression are described here; one is Locally Weighted Regression

(LWR) [Cleveland and Loader 1996]; the second is Instant and Accurate Size Estima-

tion (IASE) [Sun et al. 1993]; and the last is Adaptive Size Estimation (ASE) [Chen

and Roussopoulos 1994].

Loader [1997b,d] has proposed 3 partitioning schemes to partition x’s values in

an attribute domain into a number of windows. Recall that the width of windows

is called bandwidth. The most simple scheme is called fixed-width bandwidth. The

next more sophisticated one is called nearest neighbour bandwidth and the most

sophisticated one is adaptive bandwidth. For our current work, we adopt the most

simple scheme fixed-width bandwidth.

Let us define a fixed-width bandwidth h by (xmax−xmin)
nunwin

where xmax is the maxi-

mum value in the domain of an attribute b#, xmin is the minimum value of attribute

b# and numwin is the number of windows one wants to use for fitting. The lo-

cation of a window j is thus defined by (xmin + (j − 1) ∗ h, xmin + j ∗ h], where

j = 1, 2, . . . , numwin. xmin + (j − 1) ∗ h is the lower bound value of window j and

xmin + j ∗ h is the upper bound value of window j. The data points which fall into

a local window are fitted by a polynomial with a low degree p, normally p = 2 or

3 [Loader 1997b]. Intuitively, with a small number of data points in a local window,

it is sufficient to fit them with a polynomial with the low degree.

d is the number of distinct values of attribute b#. A given entire data set

is: (x1, f(x1)), (x2, f(x2)), . . . , (xd, f(xd)). Recall that all xi’s in the given data set are

already in ascending order. Let data points (xk, f(xk)), (xk+1, f(xk+1)), . . . , (xl−1,

f(xl−1), (xl, f(xl)), i.e., a partition in the entire data set, fall into a fitting win-

Query size estimation using local regression 195

dow, say j, where 1 ≤ k ≤ d and 1 ≤ l ≤ d but k ≤ l. As a result, all of

xk, xk+1, . . . , xl−1, xl must be in the range (xmin +(j− 1) ∗h, xmin + j ∗h] of window

j.

Let m be the number of data points in window j which is equal to (l − k + 1).

Let fitpnt be the fitting point in window j, which is the point in the middle of the

window, defined by fitpnt = xmin +(j− 1) ∗h+ h
2
. A polynomial g(x) that one can

use to fit the m data points in window j could be:

g(x) =
p∑
i=0

ai(x− fitpnt)i
i!

(5.1)

which is used by LWR, or:

g(x) =
p∑
i=0

aix
i (5.2)

which is used by ASE and IASE. p in (5.1) and (5.2) is a degree of the polynomial

used. In fact, IASE uses a polynomial of the form g(x) =
∑p2
i=−p1 aix

i, where p =

p1 + p2 and p1, p2 ≥ 0. Thus if p1 = 0, then the form of the polynomial is reduced

to the same polynomial as ASE.

With LWR, a data point at xi in window j is weighted by w(xi−fitpnt
h

), where

w(x) is a weight function. There are a number of weight functions that one can

use such as Gaussian function w(x) = exp(−(2.5x)2/2), Triweight function w(x) =

(1 − abs(x)2)3 and etc. (abs(·) is the absolute value of the parameter given.) See

various functions in [Loader 1997d]. A weight function used must be symmetrical

and decreasing in the range [0, 1] and satisfy two conditions, w(0) = 1 and w(1) =

0. The weight function used in our implementation is called Tricube, defined by

w(x) = (1− abs(x)3)3, where abs(x) < 1.

A common rationale of the different weight functions is that by assigning different

weights to different data points, the points closer to the fitting point fitpnt have

more weights and the points further away have lower weights.

The coefficients ai’s in equation (5.1) or (5.2) can be found by locally weighted

least squares. That is, choose some ai’s values to minimise:

l∑
i=k

w(xi)(f(xi)− g(xi))2 (5.3)

Query size estimation using local regression 196

Transform the weighted sum of squares (5.3) to matrix form as follows:

(Y −XA)TW (Y −XA) (5.4)

Solve equation (5.4) for A:

Â = (XTWX)−1XTWY (5.5)

where XT is the transpose of X. Note that Â is an approximate value of A. This is

due to the fact that the resulting coefficients ai’s obtained may or may not be able

to make the least squares in (5.3) completely equal to zero. The following are the

definitions for all the matrices in (5.5).

X is an m× (p+ 1) matrix and one of the following:

X =




(xk−fitpnt)0

0!
(xk−fitpnt)1

1! . . . (xk−fitpnt)p

p!
(xk+1−fitpnt)0

0!
(xk+1−fitpnt)1

1! . . . (xk+1−fitpnt)p

p!

.
(xl−1−fitpnt)0

0!
(xl−1−fitpnt)1

1! . . . (xl−1−fitpnt)p

p!
(xl−fitpnt)0

0!
(xl−fitpnt)1

1! . . . (xl−fitpnt)p

p!



, X =




x0
k x1

k . . . xp
k

x0
k+1 x1

k+1 . . . xp
k+1

.

x0
l−1 x1

l−1 . . . xp
l−1

x0
l x1

l . . . xp
l




(5.6)

The first X matrix on the left which is used by LWR consists of elements derived

from polynomial (5.1) while the second X on the right which is used by ASE and

IASE consists of elements derived from polynomial (5.2).

W is an m × m diagonal matrix, which has weights along the diagonal and 0

elsewhere. A is a (p + 1) × 1 matrix of the coefficients of the polynomial used and

Y is an m× 1 response matrix. The following are all the matrices:

W =




w(xk) 0 0 0

0 w(xk+1) 0 0

0 0 w(xk+2) 0

. 0

0 0 0 0 w(xl−1) 0

0 0 0 0 0 w(xl)



, A =




a0

a1

. . .

ap−1

ap



, Y =




f(xk)

f(xk+1)

. . .

f(xl−1)

f(xl)




(5.7)

If we do not take any weight into consideration (in other words, we treat W as the

identity matrix) and use the right side matrix X in (5.6) (employed by ASE and

IASE) – implying that this is the unweighted or ordinary least squares problem –,

Query size estimation using local regression 197

then the least square problem here would be the same as that of ASE and IASE.

Hence, the least squares in (5.5) would then reduce to:

Â = (XTX)−1XTY (5.8)

The main differences from previous work is that we introduce (1) local regression in

place of global regression (more windows used for fitting), (2) an approach to solve

the query size estimation by the weighted least squares in addition to the unweighted

least squares and (3) a new type of polynomial (other types can also be used).

In the remainder of this chapter, for ASE and IASE, the solution Â for coefficients

is the solution to the least squares by (5.8) where the matrix X used is the right

side one of (5.6). For LWR, the solution Â is by (5.5) where the matrix X used is

the left side one of (5.6).

Overall, LWR outperforms ASE and IASE in estimation [Cleveland and Loader

1996]. This is due to 1) the closed form of the polynomial (5.1) which is easier to fit

than the normal polynomial (5.2) and 2) different weights assigned to data points.

We will also show by experiments that among the three variants: LWR, ASE and

IASE, the most superior one is LWR.

5.3 Method for backpropagation NN

Figure 5.2 shows a typical architecture of the well-known multi-layer feed-forward

network. The network is unidirectional; the flow of the network is only in a single

direction (in the figure from left to right). The network dimension is numinp ×
numout which maps numinp inputs to numout outputs. Circles in the network are

each a neuron which serves as a computing unit.

The first layer (the first column of neurons) is the input layer which performs

no computation but feeds input patterns to the network. Neurons in other layers

do perform computation by receiving their input from the neurons in the previous

layer. Hidden layers are any layer after the input layer but not the output layer.

The output layer is the last layer (last column of neurons) in the network which

typically produces approximate output patterns, namely, computed output patterns

of the form (Z1,Z2, . . . ,Znumout). An input pattern is a vector of inputs of the form

Query size estimation using local regression 198

i
j

θj

wijI1
I2

Inuminp

Z1 O1

Z2 O2

Znumout Onumout

Figure 5.2: A typical multi-layer neural network architecture

(I1, I2, . . . , Inuminp). A desired output pattern is a vector of outputs of the form

(O1,O2, . . . ,Onumout). A desired output pattern consists of actual output values

Oi’s which occur in reality and normally can be observed from the application,

whereas an approximate output pattern consists of approximate output values to

the actual ones computed by the neural network.

A neuron j (see also Figure 5.2) is activated to compute its output activation

value Aj by:

Aj = F(Ij) (5.9)

where:

Ij =
∑
i

wijAi + θj (5.10)

where wij is the weight from neuron i to j whose value is between 0 and 1, θj is a

bias for neuron j and F(Ij) is a sigmoid activation function, e.g., F(Ij) = 1

1+exp−Ij

which is used in our implementation.

In the first hidden layer where actual computation commences, the activation

values Ai’s in equation (5.10) are, in fact, the input values Ii’s, where i = 1, 2, . . . ,

numinp from the input layer. Equations (5.9) and (5.10) are recursive in their com-

putation through the activation values. These activation values propagate forward

toward the output layer of the network. At the output layer, each Ai computed is

each Zi as shown in the figure, where i = 1, 2, . . . , numout. This is actually how the

network operates on-line to compute approximate output patterns. Note that when

a neural network is in operation on-line, all the weights among connections must be

Query size estimation using local regression 199

fixed. This mode of operation is called working mode.

The other mode of network operation is called training mode. As the name

implies, the network will not be in actual use while being trained. The network is

fed by a number of input patterns and will attempt to adjust the weights over the

network by the well-known backpropagation learning algorithm [Rumelhart et al.

1986] so that errors are minimised, due to the differences between the computed

(approximate) output patterns and the desired (actual) output patterns.

The backpropagation algorithm proceeds to reduce the errors as follows. First,

an input pattern consisting of (Ii, I2, . . . , Inuminp) is given to the network and prop-

agates forward by the recursive computation in (5.9) and (5.10) through the network

to the output layer, yielding a computed output pattern (Z1,Z2, . . . ,Znumout) in the

output layer. This is called forward propagation which is exactly the same as the

working mode described above.

Next is error correction due to the pairwise difference between the desired value

Oi and the computed value Zi at the output neuron i, where i = 1, 2, . . . , numout.

The error δi by neuron i (= 1, 2, . . . , numout) in the output layer is computed by:

δi = Zi (1−Zi) (Oi −Zi) (5.11)

and likewise the error δi by neuron i in a hidden layer is computed by:

δi = Ai (1−Ai)
∑
j

wij δj (5.12)

where Ai’s value is computed by the forward propagation.

Figure 5.3 best explains how to compute δi in a hidden layer. Note the direction of

error correction in the figure which is from rear to front – propagate errors back in the

network for weight adjustment. This is why the algorithm is called backpropagation.

Using the errors defined in (5.11) and (5.12), the network then adjusts a weight

wij by:

wij ← wij + γ Ai δj
where γ is a learning rate used by the network. A learning rate used in each layer

of the network could be different.

Query size estimation using local regression 200

I1
I2

Inuminp

wi1

wi2

wi,numout

Aiδi

δj=1

δj=2

δj=numout

γ

Figure 5.3: Backpropagation of error (rear to front) to adjust network weights

Similar to the weight adjustment, the bias to neuron i, i.e., θi is adjusted by:

θi ← θi + γ δi

For a next input pattern, the same process as described above is repeated of

1) forward propagation and 2) backpropagation to reduce the pattern error and

adjust the network’s weights. Repeat until all input and desired output patterns

are exhausted. We call one pass of the network through all the input and desired

output patterns one iteration.

The method described above is that of the standard backpropagation neural net-

work which can be applied to many problem domains. In our problem domain, our

input patterns have only one dimension, namely, numinp = 1, which consists of x’s

values and our output patterns also have only one dimension, namely, numout = 1,

which consists of f(x)’s values. Recall that a given data set is: (x1, f(x1)), (x2, f(x2)),

. . . , (xd, f(xd)). The network architecture used in our implementation is shown in

Figure 5.4.

Normally, in many applications, 1 or 2 hidden layers are sufficient. In our case,

we decided to use one hidden layer and 4 hidden neurons for the hidden layer. How

many neurons used in each hidden layer would be sufficient is hard to determine and

still remains an open problem in the neural network community. Although using too

small a number of hidden neurons may produce poor results, using too many can

also produce poor results. This is because it is more difficult to train the network

with more hidden neurons.

Query size estimation using local regression 201

x f(x)

wx,1

wx,2

wx,3

wx,4

w1,f(x)

w2,f(x)

w3,f(x)

w4,f(x)

Figure 5.4: 3-layer, 1 input and 1 output network

5.4 Query size estimation

Let Q be a complex query on relation R. Using the independence assumption,

the size of Q can be approximated from its composite simple predicates. (Refer to

Section 2.2 of Chapter 2 for the calculation of the size.) Recall that we consider

two types of simple predicates, namely of the form b# = x and b# < x, where x is

a value in the domain of b#. They are sufficient to cover other types of predicates

(b# relopt x) in estimating sizes of any complex predicate queries, where relopt is

any of the relational operators. Based on the two simple predicates, we build a

single-dimensional regression model for selectivity estimation of sel(b# = x) and

sel(b# < x) in Section 5.4.1.

In Section 5.2, we have proposed 3 different local regression methods: LWR, ASE

and IASE each of which uses a fixed-width bandwidth scheme. Any description,

whenever referring to these 3 local regression methods, hence implies that windows

built for local regressions by these methods are fixed-width.

M5 proposed in [Harangsri et al. 1997] is a form of local regression with a linear

regression (polynomial degree 1) used in each local window. M5 uses a form of

adaptive windows, i.e., variable-width windows and employs a partitioning algorithm

to create them. The rationale in building adaptive windows is to have the data points

in a local window have similar frequencies (or similar cumulative frequencies), i.e.,

Query size estimation using local regression 202

similar f(x)’s values in the window. The partitioning algorithm to create adaptive

windows can be found near the page 70 of Chapter 2. Any description, whenever

referring to M5, hence implies that windows built for local regressions by M5 are

variable-width.

The original version of M5 implemented requires to maintain user query feed-

back. Feedback by a query is of the form (simple predicate, query result size).

M5’s accuracy when estimating sizes of new unseen queries, is very high due to the

great assistance of the feedback from many already-processed queries maintained

but perhaps with the tradeoff of a large amount of storage required. Since the main

concern of this thesis is storage requirement used by different methods, the version

of M5 here does not maintain any query feedback and simply creates a model tree

consisting of a number of linear regression functions for the local windows built (one

function for one window).

5.4.1 Building a single-dimensional regression model for b#

In this section, we will show how to build a single-dimensional regression model for

attribute b#. This involves deriving two formulas for the selectivities of sel(b# = x)

and sel(b# < x).

To build a single-dimensional model, one can select to:

• fit the frequency distribution of b# or

• fit the cumulative frequency distribution of b#.

Different methods, e.g., ASE, IASE, LWR, M5, NN and HIST employ either of

the two fittings above to build a single-dimensional model. We will shortly describe

what kind of fitting a method employs.

Let (x1, f1), (x2, f2), . . . , (xd, fd) be data points for a frequency distribution of

xi’s. Likewise, let (x1, F1), (x2, F2), . . . , (xd, Fd) be data points for a cumulative

frequency distribution of xi’s which does not include the frequency of xi itself. That

is, an Fj is equal to the total number of times that any x’s value less than xj occurs in

relation R under b#. Mathematically, an Fj is equal to
∑j−1
i=1 fi, where j = 2, 3, . . . , d

and when j = 1, Fj = 0.

Figure 5.5(a) shows a frequency distribution of xi’s values while Figure 5.5(b)

Query size estimation using local regression 203

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

x’s values

fr
eq

ue
nc

y
di

st
ri

bu
ti

on

N1

N2 N3

N4

xlow xhighx

window j

(a) A frequency distribution

����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
di

st
ri

bu
tio

n

x’s values
xlow xhighx

window j

(b) A cumulative frequency distribution

Figure 5.5: A frequency distribution against its cumulative frequency distribution

shows a corresponding cumulative frequency distribution. Both of the distributions

have 4 windows.

Below in Sections 5.4.1.1, 5.4.1.2, 5.4.1.3 5.4.1.4, 5.4.1.5 and 5.4.1.6, we will

show how 7 respective methods: IASE, ASE, LWR, M5, NN and HIST (UNF)

build a single-dimensional regression model for the selectivities of sel(b# = x) and

sel(b# < x).

5.4.1.1 IASE

IASE proposed to fit frequency distributions. From a given data set, (x1, f1), (x2, f2),

. . . , (xd, fd), let data points (xk, fk), (xk+1, fk+1), . . . , (xl−1, fl−1), (xl, fl) (a partition

of the entire data set) fall into a fitting window, say j (see Figure 5.5(a) also). xlow

in the figure thus is equal to xmin+(j−1)∗h and xhigh is equal to xmin+j ∗h, where

h is a fixed-width bandwidth. N1, N2, N3 and N4 in the figure each denote the total

number of tuples which fall into windows 1, 2, 3 and 4, respectively. Mathematically,

Nj =
∑l
i=k fi, where j = 1, 2, . . . , numwin. In this case, the number of windows

used numwin is equal to 4. The following are all matrices needed to be prepared

Query size estimation using local regression 204

for the least squares in (5.8).

X =




x0
k x1

k x2
k

x0
k+1 x1

k+1 x2
k+1

.

x0
l−1 x1

l−1 x2
l−1

x0
l x1

l x2
l



, A =



a0

a1

a2


 , Y =




fxk

fxk+1

. . .

fxl−1

fxl




(5.13)

We then solve the ordinary least squares in (5.8) for the coefficients ai’s. Suppose

that x in the two simple predicates b# = x and b# < x falls into window j. Given

the solved coefficients, sel(b# = x), the selectivity of predicate b# = x, is calculated

by g(x) =
∑2
i=0 aix

i, divided by N . sel(b# < x), the selectivity of predicate b# < x,

is calculated by the sum of
∑j−1
i=1

Ni

N
and:

Nj ∗
∫ x

xlow
g(x)d(x)∫ xhigh

xlow
g(x)d(x)

N
(5.14)

In Figure 5.5(a), the shaded area of window j = 3 equivalently denotes the selectivity

calculated by equation (5.14). All the three shaded areas together in windows 1,

2 and 3 form sel(b# < x). Recall that g(x) =
∑p
i=0 aix

i. With polynomial degree

p = 2, the indefinite integral of g(x) is defined by:

G(x) =
∫
g(x)d(x) =

∫ 2∑
i=0

aix
id(x) =

2∑
i=0

aix
(i+1)

(i+ 1)
(5.15)

G(x) can be called the cumulative frequency distribution of x. The definite integral

of g(x) between x′ and x′′ is defined by:

∫ x′′

x′
g(x)d(x) = G(x′′)−G(x′) =

2∑
i=0

aix
′′(i+1)

(i+ 1)
−

2∑
i=0

aix
′(i+1)

(i+ 1)
(5.16)

Using (5.16), equation (5.14) can be solved for sel(b# < x).

With IASE, the number of parameters per window needed to be maintained in

the database profile catalog is 4, i.e., a0, a1, a2 and Ni.

Query size estimation using local regression 205

5.4.1.2 ASE

ASE proposed to fit cumulative frequency distributions and uses the cumulative

frequency distribution function G(x) in (5.15) to fit data points in a fitting window,

say j. Let data points (xk, Fk), (xk+1, Fk+1), . . . , (xl−1, Fl−1), (xl, Fl) fall into window

j located between xlow and xhigh (see also Figure 5.5(b)). The following are all

matrices needed to be prepared for the least squares in (5.8).

X =




x1
k

1

x2
k

2

x3
k

3
x1

k+1

1

x2
k+1

2

x3
k+1

3

.
x1

l−1

1

x2
l−1

2

x3
l−1

3
x1

l

1

x2
l

2

x3
l

3



, A =



a0

a1

a2


 , Y =




Fxk

Fxk+1

. . .

Fxl−1

Fxl




(5.17)

Note that elements in matrix X above are derived from function G(x) in (5.15).

We solve the ordinary least squares in (5.8) for the coefficients ai’s. Suppose that

x in the predicates b# = x and b# < x falls into window j. Given the solved coeffi-

cients, sel(b# < x) is calculated by G(x) =
∑2
i=0

aix(i+1)

(i+1)
, divided by N . sel(b# = x)

is calculated by g(x) =
∑2
i=0 aix

i, divided by N .

With ASE, the number of parameters per window needed to be maintained in

the profile catalog is 3, i.e., a0, a1 and a2, which is one parameter less than IASE.

As opposed to IASE, ASE does not need to maintain Ni for a local window.

We decided that the following 3 methods below: LWR, M5 and NN, also fit the

cumulative frequency distribution. Although LWR, M5 and NN (as well as ASE and

IASE) can fit either the frequency distribution or cumulative frequency distribution

(by simply changing from fi’s in matrix Y to Fi’s or vice versa), we selected to fit the

cumulative frequency distribution for the three methods. The main reason is simply

that we can save one parameter (which is Ni) per window but without sacrificing

for the accuracy obtained.

5.4.1.3 LWR

LWR fits cumulative frequency distributions and uses the polynomial g(x) defined in

(5.1), i.e., g(x) =
∑p
i=0

ai(x−fitpnt)i

i!
. Let data points (xk, Fk), (xk+1, Fk+1), . . . , (xl−1,

Fl−1), (xl, Fl) fall into a fitting window, say j located between xlow and xhigh. The

Query size estimation using local regression 206

following are all matrices needed to be prepared for the weighted least squares in

(5.5).

X =




(xk−fitpnt)0
0!

(xk−fitpnt)1
1!

(xk−fitpnt)2
2!

(xk+1−fitpnt)0
0!

(xk+1−fitpnt)1
1!

(xk+1−fitpnt)2
2!

.
(xl−1−fitpnt)0

0!
(xl−1−fitpnt)1

1!
(xl−1−fitpnt)2

2!

(xl−fitpnt)0
0!

(xl−fitpnt)1
1!

(xl−fitpnt)2
2!



, A =



a0

a1

a2


 , Y =




Fxk

Fxk+1

. . .

Fxl−1

Fxl




(5.18)

The weight matrix W is defined in (5.7). We then solve the weighted least squares

in (5.5) for the coefficients ai’s. Suppose that x in the predicates b# = x and b# < x

falls into window j. Given the solved coefficients, sel(b# < x) is calculated by

g(x) =
∑p
i=0

ai(x−fitpnt)i

i!
, divided by N . sel(b# = x) is calculated by g(x+4)−g(x)

N
,

where 4 is defined by xmax−xmin

(d−1)
.

With LWR, the number of parameters per window needed is 3, i.e., a0, a1 and

a2.

5.4.1.4 M5

M5 fits cumulative frequency distributions and uses a polynomial degree 1 for fitting,

namely, g(x) = a0+a1x. Let data points (xk, Fk), (xk+1, Fk+1), . . . , (xl−1, Fl−1), (xl, Fl)

fall into a fitting window, say j located between xlow and xhigh. Using Figure 5.5(b)

for the description here, we slightly abuse the fixed-width windows in the figure for

the adaptive (variable-width) windows used by M5. That is, the windows shown

in the figure are originally meant to be fixed-width. The following are all matrices

needed to be prepared for the least squares in (5.8).

X =




x0
k x1

k

x0
k+1 x1

k+1

.

x0
l−1 x1

l−1

x0
l x1

l



, A =


 a0

a1


 , Y =




Fxk

Fxk+1

. . .

Fxl−1

Fxl




(5.19)

We then solve the ordinary least squares in (5.8) for the coefficients ai’s. The

ordinary least squares is the typical way that M5 uses to find best-fit coefficients.

Query size estimation using local regression 207

Suppose that x in the predicates b# = x and b# < x falls into window j. Given

the solved coefficients, sel(b# < x) is calculated by g(x) = a0 + a1x, divided by N .

Similar to LWR, sel(b# = x) is calculated by g(x+4)−g(x)
N

, where 4 is defined by

xmax−xmin

(d−1)
.

With M5, the number of parameters per window needed to be maintained in the

database profile catalog is (2+1) = 3. The first 2 parameters come from the two

coefficients a0 and a1. The last parameter comes from the upper bound value for a

local adaptive (variable-width) window.

Note that unlike the fixed-width windows (employed by IASE, ASE and LWR)

whose upper bound values (i.e., xmin + j ∗h) can be calculated from xmin and h, for

the variable-width windows one has to keep these upper bound values in the profile

catalog. The purpose of the upper bound values is to check in which window among

numwin windows the x’s value in the given predicate (b# relopt x) lies.

In case the reader is aware that one has to store h in the catalog, the value of

h can be calculated from xmax−xmin

numwin
. Normally xmin and xmax are always assumed

to be in the catalog for any attribute in any database system. For numwin, since

nowadays the most popular method implemented in commercial database systems

is histogram-based, numwin is also a usual and regular value in the catalog for any

attribute.

5.4.1.5 NN

NN fits cumulative frequency distributions. A neural network for an attribute b#

is rudimentarily a global regression. One can imagine that only a single window is

used. Thus all the data points in the data set (x1, F1), (x2, F2), . . . , (xd, Fd) are used

by a network, where each xi, (i = 1, 2, . . . , d) is an input pattern fed to the input

neuron x and Fi is the corresponding desired output pattern at the output neuron

f(x) (see Figure 5.4).

There are a few reasons of why we globally fit the entire data set. First, the

nature of neural networks themselves is nonlinear. By the backpropagation learning

algorithm, a network should be able to adjust itself (weights) to well fit the entire

data set given, no matter what kind of data distribution handled is like. Second,

the backpropagation network described in Section 5.3 is the standard one which

has been successfully used to solve many nonlinear regression problems and which

Query size estimation using local regression 208

is typically fed with the entire data set. Last, training a neural network which

is finding the optimal weights over the network, is exceedingly time-consuming.

Finding the optimal weights is analogous to finding the optimal coefficients by the

least squares used by any of the local regression methods. However, finding the

optimal coefficients can be done in an instant time.

In the training mode of a network, both xi and Fi are scaled to values between

0 and 1 before being used by the network. xi is scaled by xi−xmin

xmax−xmin
and Fi is scaled

by Fi

N
(as Fi is always less than N). Note that Fi

N
is a selectivity sel(b# < x). Thus

in the working mode (from which to approximate query sizes), every output value

produced by neuron f(x) is a sel(b# < x), where x must be scaled by x−xmin

xmax−xmin

before being fed to the input neuron x of the network.

4 is defined by xmax−xmin

(d−1)
. sel(b# = x) is calculated by:

(resulting selectivity at neuron f(x), given
x+4− xmin
xmax − xmin to the input neuron x)−

(resulting selectivity at neuron f(x), given
x− xmin

xmax − xmin to the input neuron x)

Consider the network architecture in Figure 5.4. The number of parameters

needed to be maintained in the profile catalog for a neural network is (1) the number

of weights over connections in the network, (2) the number of biases for all neurons

and (3) the number of all learning rates for each layer.

The first consists of (4+4) = 8 parameters. 4 parameters come from 4 weights

from the input neuron x to the hidden layer and another 4 come from the remaining

4 weights from the hidden layer to the output neuron f(x).

The second consists of (4+1) = 5 parameters. 4 parameters are biases for the

neurons in the hidden layer and 1 parameter is the bias for the output neuron f(x).

For the third, the network uses a single learning rate for the whole network.

Thus only 1 parameter is required.

Therefore, the total number of parameters per network for an attribute b# needed

to be maintained in the database profile catalog is (8+5+1) = 14.

Query size estimation using local regression 209

5.4.1.6 HIST and UNF

The current and most popular implementation of histograms in commercial database

systems [Poosala 1997], HIST fits frequency distributions and uses a polynomial

degree 0 for fitting. Each bucket of equi-height histograms is comparable to a fitting

window. The width of equi-height histogram buckets varies which is analogous to

adaptive windows used by M5. Equi-height histograms are, in fact, a specific form

of local regression that employs local constant fitting [Cleveland and Loader 1996].

The following is the reason.

HIST uses the polynomial degree 0, namely, g(x) = c to locally fit data points in

a fitting window, say j located between xlow and xhigh, where c is the fitting constant

in window j (use Figure 5.5(a) to which to relate the following description). The

use of a constant c for a local fitting is the reason why the fitting is called local

constant fitting.

Let data points (xk, fk), (xk+1, fk+1), . . . , (xl−1, fl−1), (xl, fl) fall into window j.

Suppose that x in the predicates b# = x and b# < x falls into window j. sel(b# = x)

is the fitting constant c in window j, divided by N .

Like IASE (see also Section 5.4.1.1), sel(b# < x) is calculated by the sum of∑j−1
i=1

Ni

N
and:

Nj ∗
∫ x

xlow
g(x)d(x)∫ xhigh

xlow
g(x)d(x)

N
(5.20)

Due to the equi-height nature of equi-height histograms, eachNi, i = 1, 2, . . . , numwin

is identical, namely, approximately equal to N
numwin

.
∑j−1
i=1

Ni

N
is therefore reduced to

(j − 1) ∗ (N
numwin

)

N
= (j−1)

numwin
. Nj in (5.20) is also reduced to N

numwin
. This reduces

(5.20) to: ∫ x
xlow

g(x)d(x)∫ xhigh
xlow

g(x)d(x)
∗ 1

numwin
(5.21)

In equation (5.21), since g(x) = c, the indefinite integral of g(x) is equal to G(x) =

c x. The definite integral of g(x) between x′ and x′′ is defined by:

∫ x′′

x′
g(x)d(x) = G(x′′)−G(x′) = c x′′ − c x′ = c(x′′ − x′) (5.22)

Query size estimation using local regression 210

Using (5.22), equation (5.21) is reduced to:

c(x− xlow)

c(xhigh − xlow)
∗ 1

numwin
=

(x− xlow)

(xhigh − xlow)
∗ 1

numwin
(5.23)

As a result, sel(b# < x) is equal to:

(j − 1)

numwin
+

(x− xlow)

(xhigh − xlow)
∗ 1

numwin
(5.24)

This formula (5.24) is exactly the same as the one (2.11) in page 49. Note that this

formula is based on the uniform scheme which is originally proposed by Muralikr-

ishna and DeWitt [1988] and is found superior by Muralikrishna and DeWitt [1988];

Harangsri et al. [1998] to the formula based on the half scheme. (See Section 2.5.2

in Chapter 2 for more details about the uniform and half schemes.)

If one looks closely at formula (5.24), given that the number of windows used is

1 and so numwin = 1 and j = 1, the formula will reduce to:

(x− xmin)
(xmax − xmin) (5.25)

where xhigh = xmax and xlow = xmin. This is exacty the same as the formula for the

same predicate (b# < x) used by UNF.

In fact, UNF is a special case of histograms with only one fitting window. When

there is only one window used for a global regression, formula (5.24) will reduce to

(5.25).

In addition, if the fitting constant c in the single window is equal to N
d

(as a

result of the equal number of tuples for any distinct value of b#), then sel(b# = x)

would be 1
d

which is another formula for the predicate b# = x used by UNF.

All adaptive numwin windows of HIST use a single identical fitting constant, say

c, i.e., share the same fitting constant c across all the windows [Piatetsky-Shapiro

and Connell 1984]. The single fitting constant c, divided by N , namely c
N

(which

represents sel(b# = x)) could be either the attribute density (defined below), 1
d
, or

etc.

Piatetsky-Shapiro and Connell [1984] (the original work for HIST) proposed that

the attribute density be used for sel(b# = x) instead of 1
d

which is used by UNF. The

Query size estimation using local regression 211

attribute density is defined by:

∑d

j=1
f2

j

N2 where fj is the frequency of distinct value

xj . The attribute density was used in Piatetsky-Shapiro and Connell’s experiments

and the authors justified that the attribute density takes an unequal frequency

distribution of b# into consideration (if there is any) while the formula 1
d
, which

is based on the uniform distribution, always presumes that each distinct value in

the domain of b# has the same frequency (number of tuples) to appear in relation

R. In all experiments in this chapter with HIST, we follow Piatetsky-Shapiro and

Connell’s proposal.

Due to the adaptiveness of each equi-height histogram bucket, the number of

parameters per bucket (window) needed to be maintained in the database profile

catalog is 1, which is the upper bound value for a bucket. Like M5, the upper bound

value is also maintained in the catalog for a local adaptive window used by M5.

Table 5.1 shows a summary of how many parameters per window are needed to

be maintained in the profile catalog for the different methods described above.

method fitting window parameters what parameter ?
type type per window

IASE fd fixed-width 4 a0, a1, a2, Ni

ASE cfd fixed-width 3 a0, a1, a2
LWR cfd fixed-width 3 a0, a1, a2
M5 cfd adaptive 3 a0, a1, an upper bound value
NN∗ cfd one window 8 weights, biases, a learning rate
HIST fd adaptive 1 an upper bound value
UNF∗ fd one window - -

fd = frequency distribution, cfd = cumulative frequency distribution
∗ = global regression only

Table 5.1: Fitting and window types and number of parameters required per window.

5.5 Implementation

Figure 5.6 is the data structure we propose for local regression so that all different

local regression methods: IASE, ASE, LWR, M5, HIST, UNF, V-Optimal(V,A),

MaxDiff(V,A) and etc. can be implemented together in a database system under a

single framework. Each record of the data structure keeps information of a local

regression method used by an attribute of relation R.

Below we describe that such a structure can be used in order to deal with any

unseen, perhaps difficult-to-fit data distributions in future. The main flexibility of

the structure is that we can control (1) the degree of the polynomial used, i.e.,

Query size estimation using local regression 212

struct est_scheme {
int est_method;
int numwin;
int wintype;
int poly_deg;
double coeff[0 .. numwin-1][0 .. poly_deg];
double upbound[0 .. numwin];
int base_est_func_equi;
int base_est_func_less;

}

Figure 5.6: A data structure for the implementation of many local regression methods
under a single framework

poly deg in the figure and (2) the window type, i.e, wintype (fixed, nearest neigh-

bour or adaptive).

Loader [1997c] provides a local regression software package called locfit on his

home page with the three kinds of user-selected bandwidths: fixed, nearest neighbour

and adaptive so that users can experiment it with their own data. Furthermore, he

demonstrated with success the strengths of local regression with many real-life data.

The reason for the proposal of the structure is that we have observed that some

local regression methods are good for some data distributions and others are good for

some other data distributions. In other words, we believe that there is no universal

method which is optimal for all kinds of data distributions. However, with the

combination of many variants of local regression, we can hope to deal with any

unseen data distributions that can occur in future. The reason is similar to that of

the locfit software package in changing bandwidths and polynomial degrees (2 or 3

normally) in order to suit the data at hand.

Here are a few advantages of why the data structure would be able to cope with

any unseen future data distributions:

• Many times we have noticed that polynomial degree 3 can assist in building

more accurate single-dimensional regression models but of course, with more

storage to pay for.

• Loader [1997b] commented on when to use each window type. For example,

when data (x’s value) are clumped in some of the areas over the entire attribute

Query size estimation using local regression 213

domain, the nearest neighbour window would normally be the best choice. See

also Chapter 9 on Bandwidth Selection on the web [Loader 1997a].

• There are times that adaptive windows by M5 contribute to the improvement

of single-dimensional regression models. This is perhaps as a result of the nice

rationale in building adaptive windows by the partitioning algorithm of M5

(see the algorithm in page 70 of Chapter 2). Such a rationale is similar to

the rationale of MaxDiff(V,A) histograms [Poosala et al. 1996; Poosala and

Ioannidis 1997] in grouping distinct values into buckets which attempts to

avoid grouping the distinct values with vastly different frequencies into the

same bucket.

• If the data at hand is of the uniform distribution, then the structure with

numwin=1 with the global constant fitting can be used. This implies that the

UNF method is used for estimation.

• If the data at hand is of the Zipf distribution [Zipf 1949] which was claimed to

occur most frequently in real-life databases, by observing from many experi-

ments with different forms of the Zipf distribution, LWR is the most suitable

choice.

Here is the description of how one can use the structure. Table 5.2 shows 3

examples of est scheme records in Figures 5.2(a) and 5.2(b) which can be uploaded

to the database profile catalog of a database system. Let us describe the records.

The first record is for the LWR method which uses 4 windows for estimation.

The window type wintype is fixed-width. The degree of a polynomial used is 2 for

all local windows. With this estimation method, the field upbound for upper bound

values is not applicable which is denoted by NA. The base estimation function for the

“<” operator is estimation function 3 as shown in Table 5.2(c). The base estimation

function for the “=” operator is function 3 as well. We use the term base such as in

base est func equi to imply that for the “=” operator, the estimation can be done

by sharing the same base function 3 as the one used by the “<” operator, namely,
g2(x+4)−g2(x)

N
. The p value in (where p = poly deg) is the polynomial degree to be

passed to the corresponding estimation function.

Query size estimation using local regression 214

field value value
est method LWR M5
numwin 4 4
wintype fixed adaptive
poly deg 2 1
coeff a list of coeffs with degree 2 a list of coefficients with degree 1
upbound NA a list of upper bound values
base est func equi 3 (where p = poly deg) 1 (where p = poly deg)
base est func less 3 (where p = poly deg) 1 (where p = poly deg)

(a) est scheme records 1 and 2

field value
est method HIST
numwin 12 (buckets)
wintype adaptive
poly deg 0
coeff NA
upbound a list of upper bound values
base est func equi 1 (where p = poly deg)
base est func less 2 (where p = poly deg)

(b) est scheme record 3

base est func {equi,less}
1 g1(x) =

∑p
i=0 aix

i

2 G1(x) =
∑p

i=0
aix

(i+1)

(i+1)

3 g2(x) =
∑p

i=0 ai
(x−fitpnt)i

i!

(c) Base estimation functions

Table 5.2: 3 est scheme records and base estimation functions

The second record is for M5. The window type wintype built by M5 is adaptive

and the polynomial degree used is 1 for all local windows. With this method, one

needs to have a list of upper bound values upbound (from which to locate to which

window x in a predicate (b# relopt x) belongs) stored in the database profile catalog.

The base estimation function for the “=” and “<” operators is the same, sharing

the same base function 1.

The third record is for HIST. The number of windows (buckets) used is 12. Equi-

height histograms are adaptive so the window type wintype is adaptive. Since HIST

is local constant fitting, the polynomial degree poly deg used is zero in each local

window. Due to the adaptiveness of equi-height histograms, one needs to have a

list of upper bound values stored in the catalog. The estimation function for the

“=” operator is function 1 where the polynomial degree passed to the function is p

= poly deg. The estimation function for the “<” operator is function 2 where the

polynomial degree passed to the function is p = poly deg.

Next is the question of how the records are created. Given data sets of the form

(xi, fi), i = 1, 2, . . . , d for all attributes # = 1, 2, . . . , u of relation R, the following

is the idea in order to combine variants of local regression into the catalog.

Query size estimation using local regression 215

The idea is to select the best method per attribute among IASE, ASE, LWR,

M5, HIST, UNF, V-Optimal(V,A) and MaxDiff(V,A). Over all the methods (IASE,

ASE, LWR, M5, HIST, UNF, V-Optimal(V,A), MaxDiff(V,A)), repeat one by one to

build a single-dimensional model by a method for attribute b#. Then find out which

method produces the best model by examining from its average square error [Poosala

1997] which is calculated by:
d∑
i=1

(fi − g(xi))2

where fi is the frequency of the distinct value xi and g(xi) is its estimate by the

method. Whichever is the best model by a method, save the record of the method

for its subsequent upload to the profile catalog.

For any other attributes of relation R, do the same thing as attribute b# to build

a model. Then all the best combined single-dimensional models will be ready to

upload to the profile catalog.

5.6 Experimental results

We describe the generation of two sets of relations in Section 5.6.1. There are a

few relations and their query sets newly generated in this chapter. This is for the

sake of more variety and extensiveness of data used to test the robustness of each

estimation method.

In Section 5.6.2, the aim is to compare local regression against global regression.

For each of the methods: LWR, ASE and IASE, we will compare and see how the

results are improved when increasing the number of windows used.

In Section 5.6.3, we aim at comparing among 7 available methods: IASE, ASE,

LWR, M5, HIST, NN and UNF, based on the same number of parameters used.

(Actually, NN and UNF are a global regression, namely, one window methods, and

thus the number of parameters used by them is always fixed.) In other words, all the

methods will be strictly compared using the same number of parameters. Queries

used here for the comparison are all with simple predicates.

In Section 5.6.4, the aim is similar to Section 5.6.3 except the queries used. The

queries used here are with complex predicates in conjunctive normal form. All the

descriptions made in Section 5.6.3 are hence applicable to this section.

Query size estimation using local regression 216

Except the global regression (one window) experiments in Section 5.6.2, the

polynomial degree p locally used in each window for methods LWR, ASE and IASE

is 2 throughout all experiments.

Basically the experiments for the UNF method are conducted so as to be base

results and hence, the results of other estimation methods can be compared with

the base checkpoint results.

5.6.1 Experimental setup

We first describe the generation of two sets of synthetic relations. Then at the end

of the section, to evaluate the efficiency of each estimation method, we use the three

error measures defined previously but with a slight modification for the purpose

here.

Table 5.3 shows different kinds of data distributions and their necessary param-

eters used throughout all experiments. We repeat this table here again as there

are a few more new notations needed to be defined and for ease in reference to the

notations used in Table 5.4 for relation configurations.

Notation Meaning
norm(mean, δ) normal distribution with mean mean and standard deviation δ
chisq(df) chi-square distribution with degrees of freedom df
unf(low, high) uniform distribution with

low the lowest random value to be generated
high the highest random value to be generated

fdist(df1, df2) F distribution with
degrees of freedom for numerator df1
degrees of freedom for denominator df2

zipf(NumDist,z) NumDist the expected number of distinct values
z, the values between 0 to 1

semizipf(NumDist,z = 0.5) NumDist the expected number of distinct values
this is a special case of the zipf distribution where z = 0.5

exp(av) exponential distribution with mean av
bimod(meani, δi, i = 1, 2) bi-modal distribution by two overlapping normal distributions
trimod(meani, δi, i = 1, 2, 3) tri-modal distribution by three overlapping normal distributions

Table 5.3: Parameters for each distribution.

There are two sets of relations generated. The first set is shown in Table 5.4.

The purpose of this set is to test the efficiency of each estimation method on the

relations configured with a variety of data distributions (F, normal, exponential and

so on) by using simple predicate queries. In the table, some of the relations with ∗’s

are newly generated in this chapter and the rest are simply taken from [Harangsri

et al. 1997].

The first set is used in Sections 5.6.2 which is the test between local regression

Query size estimation using local regression 217

relation data distribution # of distinct card
parameter values N

R-unf∗ unf(30, 363) 333 10,000
R-exp∗ exp(70) 340 10,000
R-norm norm(200,150) 539 10,000
R-chi chisq(10) 38 20,000
R-bimod bimod((250,150), (450,50)) 530 12,500
R-trimod∗ trimod((198,43), (348,43), (498,43)) 540 10,000
R-semizipf∗ semizipf(350,0.5) 350 10,000
R-zipf∗ zipf(240,0.6) 240 10,000

Table 5.4: Relations with different configurations.

against global regression and is also used in Section 5.6.3 which is the test for simple

predicate queries.

The purpose of the second set of relations is to test the efficiency of each es-

timation method by using complex predicate queries and this is demonstrated in

Section 5.6.4. Created via functional dependencies, the second set of relations to-

gether with their query sets (with complex predicates) is reused from Table 3.23 in

Chapter 3 (see the table near page 153).

Here we slightly modified the three error measures as follows. The modification

is the change of µ̂i to sel indi and of Ñ to N (see also the original error measures

in Figure 3.6 near page 133 for comparison). The first change is due to the current

consideration of selection selectivities based on the independence assumption, in

place of the join selectivities. The second change is due to the current consideration

of a relation cardinality, in place of the cartesian product of all the cardinalities of

the relations which participate in a star join.

Root Mean Square Error (rms) is defined as:

√∑|Q|
i=1

(sel indi∗N−Y iN)2

|Q| where

Q is a query set, |Q| is the total number of queries in the set (400 queries

used in all experiments), Y i the actual selectivity of a query Qi, sel indi

an estimated selectivity of the query, based on the attribute independence

assumption, calculated by the equation in (2.2) in Chapter 2, N the cardinality

of the relation on which the query is posed, as well as sel indi ∗ N and Y iN

an estimated result size and the actual result size of the query, respectively.

Mean Residual Error (mrsd) is defined as:
∑|Q|

i=1
abs(sel indi∗N−Y iN)

|Q|

Mean Relative Error (mrlt) is defined as:

∑|Q|
i=1

100∗abs(sel indi∗N−Y iN)

Y iN

|Q|

Query size estimation using local regression 218

5.6.2 Local against global regression

The aim of this set of experiments is to show that local regression does a better job

in fitting data rather than global regression. The relations in Table 5.4 are used to

conduct experiments, together with their simple predicate query sets (one set with

400 queries is for one relation).

Three local regression methods, LWR, ASE and IASE are compared. Recall

that local regression with one window used, i.e., the largest bandwidth, is the global

regression. More windows (smaller bandwidths) used tend to improve query result

sizes (i.e., with lower errors). However, too many windows (too small bandwidths)

will possibly sometimes make the results too noisy and thus poorer [Cleveland and

Loader 1996; Loader 1997b]. This is chiefly because there are insufficient numbers

of data points falling into the local windows.

In Tables 5.5 and 5.6 we increment by 1 the number of windows used to fit

a data set from 1 to 5 windows, namely, from the largest bandwidth (1 window)

to the smallest bandwidth (5 windows). Most of the results shown in the tables

demonstrate that local regression for all the three methods is, in general, superior

to their global regression in fitting the same data set. However, there are some

experiments such as the results by LWR for R-norm for 4 and 5 windows, and the

ones by LWR and ASE for R-bimod for 4 and 5 windows. The errors for 5 windows

of both R-norm and R-bimod are higher than the ones for 4 windows. This could

be as the consequence of “too noisy” fitting for the 5 windows, which then results

in worse errors (instead of improved errors).

For one window used (global regression case), the errors in Table 5.5(a) are based

on global regression by:

• polynomial degree p = 6 for ASE and LWR. For ASE, the polynomial is

g(x) =
∑p
i=0 aix

i and for LWR, the polynomial is g(x) =
∑p
i=0

ai(x−fitpnt)i

i!
.

This degree of polynomial was proposed and used in the original work [Chen

and Roussopoulos 1994].

• polynomial degree p = 10 for IASE, where g(x) =
∑p2
i=−p1 aix

i where p = p1+p2

and p1 > 0, p2 > 0. This degree of polynomial was also used in the original

work [Sun et al. 1993].

Query size estimation using local regression 219

error LWR ASE IASE

R-unf
rms 2403 3078 3214
mrsd 1417 1842 2013
mrlt 88 105 92

R-exp
rms 5673 4812 5186
mrsd 3696 3148 3363
mrlt 1767 1525 985

R-norm
rms 3516 770 36
mrsd 2213 481 33
mrlt 146 54 58

R-chi
rms 7179 6547 1466
mrsd 4469 4711 1381
mrlt 315 138 55

R-bimod
rms 2662 324 236
mrsd 1754 211 102
mrlt 70 22 426

R-trimod
rms 3738 3297 3533
mrsd 2237 1911 2179
mrlt 3187 3217 450

R-semizipf
rms 5182 3831 4209
mrsd 3520 2483 2771
mrlt 444 371 130

R-zipf
rms 5282 4000 4666
mrsd 3642 2724 3208
mrlt 373 317 153

(a) 1 window

error LWR ASE IASE

R-unf
rms 42 108 70
mrsd 27 68 42
mrlt 8 28 6

R-exp
rms 97 355 71
mrsd 46 173 36
mrlt 9 96 10

R-norm
rms 87 118 50
mrsd 58 64 35
mrlt 17 15 13

R-chi
rms 866 1370 542
mrsd 662 1194 418
mrlt 23 38 29

R-bimod
rms 526 452 399
mrsd 303 257 203
mrlt 30 22 17

R-trimod
rms 126 144 158
mrsd 78 95 100
mrlt 19 31 26

R-semizipf
rms 84 319 149
mrsd 43 192 79
mrlt 7 53 8

R-zipf
rms 112 314 171
mrsd 63 201 95
mrlt 9 47 10

(b) 2 windows

error LWR ASE IASE

R-unf
rms 35 66 59
mrsd 22 42 38
mrlt 5 26 6

R-exp
rms 52 283 54
mrsd 23 161 25
mrlt 6 55 7

R-norm
rms 102 72 27
mrsd 63 46 18
mrlt 21 14 13

R-chi
rms 738 1290 441
mrsd 530 1109 334
mrlt 22 36 9

R-bimod
rms 186 229 122
mrsd 99 120 83
mrlt 14 15 11

R-trimod
rms 81 84 91
mrsd 48 59 55
mrlt 14 30 14

R-semizipf
rms 71 203 90
mrsd 35 128 44
mrlt 7 35 6

R-zipf
rms 92 173 126
mrsd 50 110 64
mrlt 8 36 7

(c) 3 windows

Table 5.5: Three kinds of errors for 1, 2 and 3 windows.

For more than one window (local regression case), all the three methods use

polynomial degree p = 2. With the same number of windows used, IASE uses one

more parameter per window than LWR and ASE for the value of Ni, i.e., the total

number of tuples which fall into window i. By the degree p = 2, the usual values in

a local window used by all the three methods are coefficients, a0, a1 and a2.

5.6.3 Simple predicate queries

The aim of experiments in this section is to demonstrate that with simple predicate

queries, which of the 7 available methods gives the best results. The relations

and their query sets used in Section 5.6.2 are reused for experiments here. Since in

practical database systems, the number of parameters used by a method is significant

to the success of the method – such a number reflects how much storage is required

for the method, all the comparisons here are strictly based on the same number of

parameters used.

Assuming that the number of distinct values, maximum and minimum values

for all attributes of all the relations in a database are the basic usual parameters

maintained in any database profile catalog of any database system, the UNF method

Query size estimation using local regression 220

error LWR ASE IASE

R-unf
rms 27 74 70
mrsd 18 47 40
mrlt 6 27 6

R-exp
rms 43 213 52
mrsd 19 132 24
mrlt 5 40 5

R-norm
rms 17 23 28
mrsd 12 17 21
mrlt 14 12 12

R-chi
rms 483 1295 288
mrsd 281 1101 218
mrlt 9 35 7

R-bimod
rms 94 90 127
mrsd 58 55 76
mrlt 12 10 10

R-trimod
rms 42 94 63
mrsd 26 63 38
mrlt 31 29 12

R-semizipf
rms 55 154 70
mrsd 27 99 33
mrlt 7 30 5

R-zipf
rms 80 152 92
mrsd 39 103 48
mrlt 8 30 7

(a) 4 windows

error LWR ASE IASE

R-unf
rms 27 44 44
mrsd 18 36 27
mrlt 7 26 6

R-exp
rms 38 121 51
mrsd 18 86 23
mrlt 6 34 5

R-norm
rms 29 22 24
mrsd 18 15 19
mrlt 14 11 12

R-chi
rms 228 1291 419
mrsd 172 1094 298
mrlt 6 35 7

R-bimod
rms 141 150 56
mrsd 78 83 35
mrlt 12 12 8

R-trimod
rms 24 58 41
mrsd 15 42 25
mrlt 19 26 10

R-semizipf
rms 50 82 80
mrsd 24 58 39
mrlt 6 27 4

R-zipf
rms 77 128 74
mrsd 36 81 38
mrlt 7 28 5

(b) 5 windows

Table 5.6: Three kinds of errors for 4 and 5 windows.

requires no parameter to be maintained.

Table 5.1 in Section 5.4 shows the number of parameters per window used by the

different methods. Consult the table also for the calculation below. Given a certain

number of parameters we want to maintain in a database profile catalog, here we

show how many windows each method can have. For LWR, ASE and M5, they all

require 3 parameters per window; if we want 12 parameters to be maintained in the

profile catalog, then all the methods can have 4 windows (namely, 12
3
). For IASE,

since 4 parameters are needed (one extra parameter is Ni for the window), it can

only have 3 windows (12
4
) in order to have 12 parameters maintained. For HIST,

an equi-height histogram requires only 1 parameter per window (or bucket); thus,

it can have 12 windows for 12 parameters to be maintained. The calculation for 15

parameters can be done in the same fashion as that for 12 parameters. The errors

for 12 and 15 parameters are shown respectively in Tables 5.7 and 5.8.

By the calculation shown above, the results with 12 parameters of IASE in Ta-

ble 5.7 are the same ones for 3 windows of IASE as shown in Table 5.5(c). Likewise,

the results with 15 parameters of IASE in Table 5.8 are the same ones for 4 windows

of IASE as shown in Table 5.6(a).

Query size estimation using local regression 221

For NN, the architecture of the neural network used is 3-layer network (see

Figure 5.4) with 1 input neuron in the input layer for xi’s values and 1 output

neuron for f(xi)’s values and 4 neurons in the hidden layer to perform a nonlinear

regression in the network. The method is required to maintain 14 parameters for

weights, biases and a learning rate as described in Section 5.4.1.5. We trained

each network (one network is for one single-dimensional regression model) for 10000

iterations; that is, 1 iteration is one pass through the whole data set. A learning rate

of 0.001 is used throughout a network — the connection from the input to hidden

layer and the connection from the hidden to output layer both use the same learning

rate 0.001. With the very low learning rate, we hope that any network used will

learn slowly but gradually improve its error while more iterations are gone through

without getting stuck in local minima.

The errors for UNF and NN (both are global methods, i.e., single window meth-

ods) shown in Tables 5.7 and 5.8 are reproduced for ease in reference when comparing

the errors.

For all the results shown in Tables 5.7 and 5.8, the trend from the best to worst

performance is as follows. LWR performs the best. HIST, ASE and IASE perform

equally well; each takes turn to be better than the other two but generally they

perform quite similarly. M5 performs slightly worse than the three. NN is next

from M5 and UNF as expected performs worst.

The reason LWR performs the best could be as a consequence of the polynomial

used and different weights assigned to data points. The reason the three: HIST,

ASE and IASE performs similarly could be because they use the same number of

parameters and same type of polynomial (see more description about HIST in the

next paragraph). The reason M5 performs slightly worse than the three could be

because of the low fitting power by the polynomial degree 1 used inside windows.

NN does not perform very nicely; the reason could be that it is difficult and perhaps

time-consuming to train a network to find the optimal weights over the network.

UNF is a parametric method which always assumes that any distinct value in the

domain would have the same frequency to appear in the relation. Hence, the only

relation with which UNF performs satisfactorily is R-unf !!.

Our observation reveals that HIST would have performed much worse than LWR,

Query size estimation using local regression 222

error LWR HIST ASE IASE M5 NN UNF

R-unf
rms 27 32 74 59 44 228 60
mrsd 18 20 47 38 28 145 38
mrlt 6 5 27 6 7 43 6

R-exp
rms 43 96 213 54 126 186 2411
mrsd 19 71 132 25 70 101 1494
mrlt 5 120 40 7 20 24 269

R-norm
rms 17 78 23 27 336 134 1165
mrsd 12 36 17 18 166 86 742
mrlt 14 39 12 13 25 17 82

R-chi
rms 483 662 1295 441 752 1544 4534
mrsd 281 534 1101 334 489 1045 3062
mrlt 9 54 35 9 22 104 135

R-bimod
rms 94 111 90 122 563 682 1795
mrsd 58 59 55 83 270 398 1115
mrlt 12 37 10 11 24 28 66

R-trimod
rms 42 92 94 91 103 330 379
mrsd 26 48 63 55 55 206 232
mrlt 31 39 29 14 18 183 83

R-semizipf
rms 55 48 154 90 53 227 1218
mrsd 27 36 99 44 30 147 782
mrlt 7 32 30 6 6 30 33

R-zipf
rms 80 103 152 126 69 236 1594
mrsd 39 71 103 64 40 162 1061
mrlt 8 50 30 7 7 25 47

Table 5.7: Three kinds of errors for 12 parameters.

ASE and IASE if we had compared them by the number of windows used in place of

the number of parameters. This is generally because of the insufficient fitting power

of the polynomial degree 0 used by histograms. This also implies that fitting data

by histograms really does need more windows in order to make curves inside buckets

become straight enough (not much curvy) so that each of the more straight curves

can be fitted by the average frequency of the bucket. Compared with methods like

LWR, ASE and IASE which can make use of the fitting power by a higher polynomial

degree for their fitting perhaps non-straight-line curves inside buckets, histograms

much more rely on the number of windows used than do the three methods.

5.6.4 Complex predicate queries

The aim of this last set of experiments is similar to that for simple predicate queries

demonstrated in Section 5.6.3 – test the efficiency among 7 available methods. The

differences are twofold. The first is that queries used here are complex in conjunc-

tive normal form. The second difference is that relations on which to test these

complex queries are the ones created via functional dependencies from Table 3.23

near page 153.

The errors in Tables 5.9 and 5.10 can be interpreted in the same fashion as in

Query size estimation using local regression 223

error LWR HIST ASE IASE M5 NN UNF

R-unf
rms 27 26 44 70 44 228 60
mrsd 18 16 36 40 28 145 38
mrlt 7 5 26 6 7 43 6

R-exp
rms 38 73 121 52 126 186 2411
mrsd 18 57 86 24 70 101 1494
mrlt 6 117 34 5 20 24 269

R-norm
rms 29 56 22 28 336 134 1165
mrsd 18 25 15 21 166 86 742
mrlt 14 37 11 12 25 17 82

R-chi
rms 228 594 1291 288 752 1544 4534
mrsd 172 496 1094 218 489 1045 3062
mrlt 6 53 35 7 22 104 135

R-bimod
rms 141 79 150 127 563 682 1795
mrsd 78 47 83 76 270 398 1115
mrlt 12 35 12 10 24 28 66

R-trimod
rms 24 69 58 63 103 330 379
mrsd 15 37 42 38 55 206 232
mrlt 19 34 26 12 18 183 83

R-semizipf
rms 50 49 82 70 53 227 1218
mrsd 24 37 58 33 30 147 782
mrlt 6 32 27 5 6 30 33

R-zipf
rms 77 106 128 92 69 236 1594
mrsd 36 74 81 48 40 162 1061
mrlt 7 50 28 7 7 25 47

Table 5.8: Three kinds of errors for 15 parameters.

Tables 5.7 and 5.8. Also consult the descriptions in Section 5.6.3 for more details

about each method.

For all the results shown in Tables 5.9 and 5.10, the trend from the best to worst

performance is similar to the experiments for simple predicate queries (see above

also). LWR performs the best. HIST, ASE, IASE and M5 perform equally well;

each takes turn to be better than the other two but generally they perform quite

similarly. NN is next from the four and UNF as expected performs worst.

5.7 Why local regression would assist in obtaining accurate

join selectivities

For join selectivity estimation by local regression, the same method as the one

we proposed for M5 in Section 2.7.4 of Chapter 2 can be used to approximate

join selectivities. Although we have not conducted any experiments to confirm the

effectiveness of local regression in approximating join selectivities – the experiments

demonstrated above in Section 5.6 is solely for selection selectivity estimation –,

the following is an attempt to show that if an estimation method is accurate for

selections in approximating selection selectivities, then it should also very likely be

Query size estimation using local regression 224

error LWR HIST ASE IASE M5 NN UNF

R1-10k
rms 550 774 547 548 550 582 1552
mrsd 220 333 222 224 229 307 851
mrlt 66 140 69 69 74 98 1691

R2-10k
rms 270 353 272 278 281 351 919
mrsd 152 189 159 164 165 247 520
mrlt 77 48 89 59 146 283 106

R3-10k
rms 197 217 269 259 246 493 477
mrsd 121 128 175 159 152 354 283
mrlt 82 157 109 152 35 239 206

R4-10k
rms 63 65 94 122 125 298 182
mrsd 38 40 59 70 74 225 103
mrlt 7 7 8 9 83 109 10

R1-50k
rms 2330 3409 2337 2337 2353 2492 11052
mrsd 804 1282 838 842 850 1173 5616
mrlt 1093 1850 1094 1095 1099 1113 8266

R2-50k
rms 169 178 295 377 619 1257 473
mrsd 106 116 189 223 298 910 306
mrlt 9 7 10 8 13 92 9

R3-50k
rms 2345 2616 2360 2363 2364 2600 7516
mrsd 1156 1270 1217 1216 1206 1645 4147
mrlt 150 138 151 151 150 177 1740

R4-50k
rms 1736 2071 1754 1767 1765 1998 3698
mrsd 961 1106 988 1008 1011 1367 2304
mrlt 222 228 226 225 225 254 454

R1-100k
rms 1943 1645 2083 2124 2131 3175 4664
mrsd 1042 863 1165 1181 1279 2318 2435
mrlt 175 88 168 168 193 218 102

R2-100k
rms 1855 2268 1906 1935 1925 2796 5152
mrsd 977 1093 1059 1087 1080 2071 2574
mrlt 30 27 30 30 31 69 37

R3-100k
rms 3978 5683 4423 4392 4124 4971 16887
mrsd 2218 2510 2663 2549 2406 3285 9606
mrlt 570 473 591 581 591 624 2081

R4-100k
rms 556 578 842 1181 1082 3060 2024
mrsd 350 372 517 642 604 2283 1165
mrlt 16 7 15 12 41 195 15

Table 5.9: Three kinds of errors for 12 parameters.

Query size estimation using local regression 225

error LWR HIST ASE IASE M5 NN UNF

R1-10k
rms 557 668 553 555 558 582 1552
mrsd 230 274 231 234 242 307 851
mrlt 49 154 52 52 57 98 1691

R2-10k
rms 306 346 306 308 317 351 919
mrsd 158 185 159 165 172 247 520
mrlt 73 64 92 67 152 283 106

R3-10k
rms 190 200 262 253 246 493 477
mrsd 115 115 173 150 152 354 283
mrlt 75 120 105 102 35 239 206

R4-10k
rms 54 62 71 102 125 298 182
mrsd 35 39 47 60 74 225 103
mrlt 9 6 7 9 83 109 10

R1-50k
rms 2315 3410 2321 2327 2349 2492 11052
mrsd 886 1147 910 929 945 1173 5616
mrlt 1664 1704 1664 1665 1671 1113 8266

R2-50k
rms 156 170 198 281 619 1257 473
mrsd 98 111 136 174 298 910 306
mrlt 8 7 9 8 13 92 9

R3-50k
rms 2210 2575 2204 2214 2238 2600 7516
mrsd 1021 1113 1045 1067 1091 1645 4147
mrlt 124 117 124 124 124 177 1740

R4-50k
rms 1589 1936 1588 1593 1611 1998 3698
mrsd 826 1046 837 848 872 1367 2304
mrlt 240 209 242 241 242 254 454

R1-100k
rms 1768 1760 1788 1886 1996 3175 4664
mrsd 948 867 969 1091 1234 2318 2435
mrlt 131 57 132 133 159 218 102

R2-100k
rms 1946 2360 1967 1971 2007 2796 5152
mrsd 974 1156 1022 1032 1083 2071 2574
mrlt 24 24 25 25 25 69 37

R3-100k
rms 3683 5377 3964 3722 3765 4971 16887
mrsd 1870 2349 2173 1951 2032 3285 9606
mrlt 139 565 234 208 220 624 2081

R4-100k
rms 500 534 754 967 1082 3060 2024
mrsd 319 339 457 597 604 2283 1165
mrlt 16 9 15 11 41 195 15

Table 5.10: Three kinds of errors for 15 parameters.

Query size estimation using local regression 226

accurate in approximating join selectivities.

We first show to use local regression to estimate join selectivities in Section 5.7.1

and by the end of the section we will justify why local regression would indeed

help to obtain accurate join selectivities. We then give an additional evidence in

Section 5.7.2 that previous studies, e.g., in [Poosala 1997] also used the similar

approach as used by local regression to estimate join selectivities.

5.7.1 How to use local regression to estimate join selectivities

In Figure 5.7 is the reproduction of the graph originally used by M5 from Figure 2.13

of Section 2.7.4 in Chapter 2 for the description here.

fr
eq

ue
nc

y
di

st
ri

bu
tio

n

distinct values

low +∆ +2∆ +3∆ +4∆ +(d− 2)∆ high

gx(x)

gy(y)

gx(xi)

gy(yi)

Figure 5.7: Join selectivity calculation

Consider a natural join between attributes R1.bx and R2.by. Let xmax and xmin

be the maximum and minimum value of attribute R1.bx, respectively. Likewise, ymax

and ymin are the respective maximum and minimum value of attribute R2.by. low

in Figure 5.7 is the larger value between xmin and ymin and high is the smaller value

between xmax and ymax. dx is the number of distinct values of attribute R1.bx and

dy is the number of distinct values of attribute R2.by. d is the smaller value between

dx and dy. NR1 and NR2 are the number of tuples of R1 and R2, respectively. The

increment value ∆ shown in the figure is calculated by: (high−low)
(d−1)

.

sel(R1.bx 1 R2.by), the selectivity of a natural join between R1.bx 1 R2.by is thus

Query size estimation using local regression 227

calculated by:

sel(R1.bx 1 R2.by) =

∑d
i=1 gx(xi) ∗ gy(xi)

(NR1 ∗NR2)
(5.26)

where xi = low+(i−1)∗∆. The height of the two graphs – denoting the approximate

frequency distributions of the two join attributes – basically denotes the number of

tuples from R1.bx and that from R2.by which are joinable — having a common

value. In the figure, we use the notations gx(xi) and gy(yi) as for the height of the

two graphs.

As one can see, inherently to obtain an accurate estimated join selectivity in

(5.26), one requires two approximating functions gx(xi) and gy(xi) which very well

capture the frequency distributions of attributes R1.bx andR2.by, respectively. These

two functions can be obtained from any of the methods, e.g., IASE, ASE, LWR, M5,

HIST, UNF, V-Optimal(V,A), MaxDiff(V,A), and etc, all of which are subsumed

under local regression.

In Section 5.5, we have proposed an idea to select the best method among IASE,

ASE, LWR, M5, HIST, UNF, V-Optimal(V,A) and MaxDiff(V,A). That is, over all

the methods (IASE, ASE, LWR, M5, HIST, UNF, V-Optimal(V,A), MaxDiff(V,A)),

repeat one by one to build a function gx(xi) by the method for attribute bx (and

likewise a function gy(xi) for attribute by). Then find out which method produces

the best function by examining from its average least square error which is calculated

by:
dx∑
i=1

(fx(xi)− gx(xi))2 (5.27)

where fx(xi) is the frequency of the distinct value xi and gx(xi) is its estimate by the

method. One of those methods with the least square error will give the “optimal”

function gx(xi) (and likewise the “optimal” function gy(xi)).

We use the most accurate functions gx(xi) and gy(xi) as suggested by local re-

gression to compute a join selectivity, on the basis that those functions produce

the most accurate selection selectivities. This should then assist in obtaining an

accurate estimated join selectivity.

Considered above is a binary join. For other k-way joins where k ≥ 2, one must

also rely on the accuracy of frequency distribution approximating functions gbj(xi)’s

for all attributes bj ’s in the k-way join for the estimation of a join selectivity. Thus,

Query size estimation using local regression 228

if all such functions are accurate, namely, giving the minimum least square error,

then the estimated join selectivity would also be accurate.

5.7.2 Sharing the same histograms for selection and join selectivities

Poosala [1997] also used the idea of sharing the same approximating frequency dis-

tribution functions for both selection and join selectivities. That is, he used his

serial histograms which are equivalent to the approximating frequency distribution

functions gx(xi) and gy(xi) above, to approximate both selection and join selectiv-

ities, like the method proposed above in Section 5.7.1. The proof in his thesis is

that serial histograms are optimal for natural join and selection selectivities, i.e.,

compared with many other types of histograms considered, serial histograms give

the lowest square error 1 in approximating natural join and selection selectivities.

Note that the square error is defined in (5.27) and also that we have already defined

the optimality of a histogram by equation 2.8 near page 39 of Chapter 2.

Poosala [1997]’s approach above fits very well with our proposal that one should

share the same approximating frequency distribution functions to the estimation of

both join and selection selectivities. But since local regression can suggest the best

method which produces the “optimal” approximating function with the least square

error among all local regression methods considered such as IASE, ASE, LWR, M5,

HIST, UNF, V-Optimal(V,A), MaxDiff(V,A), and etc, local regression should then

win in the estimation of both join and selection selectivities with higher accuracy

than the estimation by serial histograms.

5.8 Conclusion

Local regression has been proposed to improve the quality of query size estimation

for selection queries. The following are the main achievements contributed by this

chapter:

• Local regression proves to provide more robust quesy size estimation than the

global one.

• Never before in the literature of non-sampling methods for query size estima-

1This lowest square error is just in comparison with different types of histograms only.

Query size estimation using local regression 229

tion have comparisons been as comprehensive as the ones demonstrated in this

chapter.

• For the first time, we have applied the standard backpropagation neural net-

work method to the query size estimation problem. This has been done as a

case study to manifest its performance to our problem domain.

• A generic data structure has been proposed so as to (1) make use of different

strengths of local regression methods in the same place of a database system

and (2) prepare in advance for any future unseen, perhaps difficult-to-fit data

distributions which can happen in data stored in databases. This is the first

and foremost attempt to combine and mix several variants of local regression

into a single framework.

CHAPTER 6

Query optimisers that use sampling methods

Abstract

Some query optimisation researchers have suggested that sampling incurs too
much run-time overhead to be a feasible technique for selectivity estimation in a
query optimiser, even though it can generate more accurate estimates than other
approaches. In this chapter, we aim to address these concerns and demonstrate
that sampling is not only feasible, but can also be a reasonably efficient and a very
effective technique in query size estimaton for real query optimisers.

First for the feasibility issue, it is crucial to address that the total time spent for
sampling for selectivity estimaton particularly for joins (as a join is a most time-
consuming operation) just slightly interferes in the total time to execute a join query
which consists of selection and join operations.

For selections in a join query, although it is not too hard to see that sampling
for selection selectivities is likely to be done, we even have an evidence that the
sampling is already in practical use by a commercial database system. For joins in
the join query we will show by a simplified analysis that a sampling fraction can be
selected such that on-line sampling to estimate all necessary join selectivities will
just slightly interferes in the total time to execute a join query.

Second for the efficiency and effectiveness issue, we then proceed to demon-
strate that our more accurate size estimaton technique HYBRID can generally yield
cheaper query execution plans than a less accurate technique SRSWR, by using join
queries with 4-5 relations involved in the queries.

The last finding in this chapter is that the cost of the resampling technique in
resampling to obtain more accurate join selectivities is acceptable and thus the
technique should be introduced for the practical use by database systems.

230

Query optimisers that use sampling methods 231

In this chapter, we describe a query optimiser that uses sampling as selectivity

estimation. We first give the overall cost of query execution in Section 6.1 before

we begin on the major section of the chapter which is the introduction.

6.1 The overall cost of query execution

A multi-stage process is involved in the execution of a join query, as we described

in Chapter 1. The query is first parsed into an internal form, which is itself a naive

execution plan. This is then transformed to an “optimal” execution plan which is

passed to the database engine to be evaluated. An example of a join query is shown

in Figure 1.2 of Chapter 1.

The overall cost of executing a query is then determined by the cost of performing

the optimisation and the cost of actually evaluating the query execution plan to

obtain the final result. Let us define:

cost(eval’) = cost of executing query without optimisation

cost(opt) = cost of determining the “optimal” query plan

cost(eval) = cost of executing the “optimal” query plan

It is generally known that the difference in amount between the two costs cost(eval’)

and cost(eval) can be several orders of magnitude. That is, the cost cost(eval’)

in the worst case, namely, the cartesian product, can be very expensive. Thus, it is

no doubt that any database system would need a query optimiser in order to quest

for at least a plan which is far from the worst-case query plan. As a consequence,

there are only cost(opt) and cost(eval) to be considered for a given query and

we will no longer consider cost(eval’).

In this chapter, we consider the query optimisation algorithm that employs an

exhaustive search algorithm as the approach to searching everywhere in a search

space to find the “optimal” plan. The reason we consider the exhaustive search

instead of other search algorithms is that:

• First in this chapter, one of the issues about which we want to ascertain is

that a more accurate query size estimation technique would generally result

in selection of cheaper query execution plans than the plans resulting from a

less accurate estimation technique.

Query optimisers that use sampling methods 232

Unlike the limited search, since the exhaustive search does not cut down any

part of the entire search space from consideration, there would be no side

effect as a consequence of the cut-down search space. Recall the limited search

algorithms (described in Chapter 1) cuts down part of the entire search space

and only consider a portion of the entire space.

The view of good and bad plans in the entire space by the two estimation

techniques compared in the same query optimiser can be different. The cut-

down search space may disregard some good or even the optimal plans from

consideration which would otherwise be selected by the query optimiser using

the size estimation technique (one of the two).

Thus through the use of the exhaustive search, the comparison results obtained

by the two estimation techniques would be without the side effect of the cut-

down search space.

• Second, if the number of relations involved in join queries is low (less than or

equal to 7), then exhaustive search would be applicable. That is, the query

optimiser will not spend excessive time for optimising the queries.

In addition, all experiments in this chapter are only conducted by using join

queries with 4–5 relations involved in the queries.

With regard to the term “optimal” plan, given the use of the exhaustive search

by the optimiser, since the optimiser must rely on estimated (as opposed to actual)

selectivities in order to determine the optimal plan, this implies that the “optimal”

plan obtained may or may not be truly optimal – depending upon the quality of

estimated selectivities produced by the selectivity estimation method used. Recall

that the estimation of a plan cost is calculated from the sum of each subplan cost

whose calculation in turn relies on estimated selectivities. Clearly we need a good

estimation method for an accurate plan cost estimation.

We noted above that the total cost in executing a join query consists of:

cost(opt) + cost(eval) (6.1)

Let m be the number of relations involved in a join query. The exhaustive search

Query optimisers that use sampling methods 233

algorithm considers the entire search space to find the “optimal” execution plan for

a join query. If the number of relations involved in the join query is not too large

(m ≤ 7), then the entire search space considered by the query optimiser will be

small. This small search space will contain a small number of plans, namely ≤ 7!

plans, considered by the query optimiser.

However, when m > 7, then the exhaustive search will not be practical and

many more recent limited search algorithms described in Chapter 1 will replace the

exhaustive search algorithm and play the role to find a near-optimal plan.

New limited search algorithms like Simulated Annealing [Ioannidis and Wong

1987; Swami and Gupta 1988; Swami 1989b,a; Ioannidis and Kang 1990] will attempt

to aggressively cut down the very large search space, i.e., with m ≥ 10 involved in

a join query, to a small search space. This small search space will contain a small

number of plans considered by the query optimiser.

In summary, regardless of any search algorithm (limited or exhaustive) used by a

query optimiser, the total number of plans considered by the optimiser will be kept

small but yet likely to incorporate many low-cost plans in the small search space.

Therefore, the CPU time cost can be ignored to iterate over the small number of

plans to find a near-optimal or the “optimal” plan because compared with the more

weighted I/O cost incurred by cost(eval), the CPU time cost will be negligible.

Hence, in what follows we will no longer consider the CPU time cost as part of

cost(opt).

However, in each iteration of the limited or exhaustive search, cost(opt) is still

involved with the cost for selectivity estimation by a selectivity estimation method

used. Here are two scenarios for cost(opt) when non-sampling-based and sampling-

based selectivity estimation methods are used for selectivity estimation.

6.1.1 Non-sampling-based methods

The majority of the cost of non-sampling-based methods occurs off-line, in the col-

lection and maintenance of the statistical information used by the method. Size

estimation by these methods would have a very small and negligible cost at run-

time, assuming that:

• the statistical information is held in memory which is the case for many non-

Query optimisers that use sampling methods 234

sampling-based methods, e.g., histogram, ASE, IASE, etc.

• and the total number of execution plans considered by the query optimiser is

small.

If we wish to compare two non-sampling-based estimation methods, A and B, to

prove that A is better than B, using (6.1) for the total cost of a join query, we start

by considering whether:

cost(opt[A]) + cost(eval[A]) < cost(opt[B]) + cost(eval[B])

Since both estimation methods are employed by the same search algorithm (implying

that the same search space is considered) and if the total number of plans considered

by the optimiser is small, then it would be reasonable to disregard the following two

terms on the basis that they will both be similar,

cost(opt[A]) ≈ cost(opt[B])

and they are fairly small, compared with cost(eval), namely:

cost(opt[method]) << cost(eval[method])

where method is either A or B and << is the symbol for “much less than”. That

is, the cost(eval[A]) and cost(eval[B]) will have much more weight than cost

(opt[A]) and cost(opt[B]) because the first two are involved with doing I/O

operations, while the second two are involved with computation in memory for

selectivities. Thus, the overall comparison between A and B reduces to:

cost(eval[A]) < cost(eval[B]) (6.2)

In other words, we are simply interested in which method produces the “best” query

execution plan.

Query optimisers that use sampling methods 235

6.1.2 Sampling-based methods

The cost(opt) for sampling-based methods clearly includes the sampling procedure

which entails disk I/O operations. Since this must be performed on-line, this cost

component can no longer be considered insignificant.

If HYBRID, a sampling-based method, and UNF, a non-sampling-based method,

are compared in the same query optimiser, then one should consider:

cost(opt[HYBRID])+cost(eval[HYBRID]) < cost(opt[UNF])+cost(eval[UNF])

to justify that HYBRID generally outperforms UNF. But since the cost(opt[UNF])

of UNF is considered a negligible cost as justified by the two reasons above, the

inequality would then reduce to:

cost(opt[HYBRID]) + cost(eval[HYBRID]) < cost(eval[UNF]) (6.3)

If HYBRID and SRSWR (or SRSWOR), a sampling-based method are compared,

then one should look at:

cost(opt[HYBRID])+cost(eval[HYBRID])< cost(opt[SRSWR])+cost(eval[SRSWR])

(6.4)

to justify that HYBRID generally outperforms SRSWR. The inequality (6.4) can

however, be further reduced to:

cost(eval[HYBRID]) < cost(eval[SRSWR]) (6.5)

if the sampling for both selection and join selectivities by both approaches is done

with the same sampling fraction. (It makes sense to compare both of them using the

same sampling fraction.) Note that this inequality (6.5) is similar to the inequality

(6.2) that we derived for non-sampling-based methods. Note also that we are not

required to use the same sampling fraction for selections and joins; it is sufficient

that the sampling fraction for selections be the same for each approach, and similarly

the sampling fraction for joins.

Query optimisers that use sampling methods 236

It is one of the main aims in this chapter to confirm (6.3) and (6.5).

6.2 Introduction (structure of presentation)

The following is a logical series for the presentation in this chapter.

We first give the background of how join selectivities are calculated by sampling

and UNF methods in Section 6.3.

Olken [Olken 1993] mentioned in his thesis that Antoshenkov [Antoshenkov 1993]

uses sampling for the estimation of selectivities of range selection predicates in

Rdb/VMS, a commercial database system. This indicates that there exists a practi-

cal use of on-line sampling for selection selectivity estimation. This further suggests

that sampling for selection selectivities is feasible to be used in real database systems.

Some query optimisation researchers, e.g., [Ioannidis and Poosala 1995; Ioannidis

1993; Chen and Roussopoulos 1994] question about how feasible it is to use sampling

particularly for the estimation of join selectivities (as a join is a most time-consuming

operation). This is due to that fact that the query optimiser has to consult the

selectivity estimator frequently for both join and selection selectivities. We will

show by a simplified analysis in Section 6.4 that a sampling fraction can be selected

such that the total cost for all necessary sampling would be much less than the total

query execution cost. This further implies that the total sampling time will only

slightly interfere in the total query execution time.

Such an analysis is important to give a reasonable upper bound on the sampling

fraction (i.e., maximum sampling fraction) used. Any sampling-based join selectivity

estimator should never perform sampling beyond this upper bound because the

overall time spent for optimising join queries can be excessive. To our knowledge,

to date there has been no such analysis in the literature of query optimisation and

selectivity estimation.

Working from our simplified analysis, we propose in Section 6.5 two possible

approaches to the implementation of a query optimiser which uses on-line sampling

for the selectivity estimation. The first approach is called semi-dynamic and the

second is called fully dynamic. We also discuss the advantages and disadvantages of

each approach. In the current work here, we will only evaluate the performance of

the former approach. Therefore two selectivity estimation sampling-based methods

Query optimisers that use sampling methods 237

HYBRID and SRSWR considered here will be employed by the query optimiser with

the former approach.

In Section 6.6, we consider the exhaustive search as the query optimisation al-

gorithm. The reason we select this search algorithm was described earlier in Sec-

tion 6.1. As mentioned in Chapter 1, even though the search space is small and

the optimiser employs the exhaustive search, the optimiser can produce more costly

query plans if the selectivity estimation method used is inaccurate. We compare

UNF (a less accurate estimation method) and HYBRID in the query optimiser with

the exhaustive search algorithm by using a small size of 5-relation databases so as to

see the effectiveness in producing query execution plans of each estimation method.

In Section 6.7, we describe how to calculate the cost of a query execution plan

generated by the exhaustive search algorithm, both for the estimated and actual

cost of a plan. The estimated cost of a plan is used by the query optimiser to

determine the optimal plan in the search space whereas the actual cost, which is

observed while executing the query, is used for comparison between two selectivity

estimation methods in the same query optimiser.

Since a major main aim in this chapter is to test whether one selectivity estima-

tion method is superior to another, all of the experimental setup must be identical

except the two selectivity estimation methods used in the individual query opti-

misers. The factors that we have to control are: the search strategy (exhaustive

search in both cases), the databases, the query sets and the join algorithm. Among

many join algorithms, e.g., nested loop, sort merge and hash (see a very extensive

survey of join algorithms in [Mishra and Eich 1992]), we choose the hash-join algo-

rithm [DeWitt et al. 1984] as the method to join relations. The reason is that the

hash-join algorithm has been shown to work well with many kinds of databases (see

the study of three variants of hash-join algorithms in [Shapiro 1986] for example);

it does not rely on the sortedness of data; and it has a low algorithm complexity,

O(|R1| + |R2|) (i.e., only needs a single pass through each relation R1 and R2 to

compute the join). Hence, calculating the actual/estimated cost for a join, we base

the calculation on the complexity of the hash-join algorithm.

In each step of the calculation for the estimated/actual cost of a query plan, a

temporary intermediate relation will be produced. Section 6.8 shows how to create

Query optimisers that use sampling methods 238

schemas for the temporary relations produced. Calculating the estimated/actual

cost of a plan requires the knowledge of the schemas of intermediate temporary

relations produced in each step of the calculation. Let us define a notation attrlen(an

(intermediate) relation) as the sum of all attributes’ lengths in the (intermediate)

relation.

As described in Section 6.1.2, the sampling cost for selection and join selectivities

incurred by any sampling-based method must be added on to the actual cost of

executing the join query if one were to compare between a sampling-based and

non-sampling-based method. We describe how to add it in Section 6.9.

In Section 6.10, using the query optimiser with the exhaustive search, we conduct

a set of experiments whose aims are as follows.

• A query optimiser with a better selectivity estimation method used can in

general produce cheaper query execution plans. We demonstrate this by com-

paring (1) HYBRID and UNF and (2) HYBRID and SRSWR.

• With the resampling technique, the cost in resampling for more accurate join

selectivities is relatively low, compared with the total of query execution costs.

Thus it is practical to introduce the technique into actual use of query opti-

misers by real database systems.

• The resampling technique for join selectivities can assist in improving query

execution plans.

We propose that HYBRID be implemented in database systems as the selectiv-

ity estimation method of choice. The first reason is that HYBRID can exploit any

sortedness of the data to produce better query size estimates. Second the experi-

mental results both for join and selection selectivity estimation in Chapter 3 and in

this chapter for the quality of query execution plans, demonstrate the capability of

HYBRID.

Section 6.11 contains possible future directions that we plan to work on.

6.3 Notations and background for join selectivities

Given a database D with |D| relations, R1, R2, . . . , R|D| and given a star join with

m (2 ≤ m ≤ |D|) participating relations (Ri1 1 Ri2 1 · · · 1 Rim), let Ri1,i2,...,im

Query optimisers that use sampling methods 239

be the output relation of the star join, where 1 ≤ ij ≤ |D|, j = 1, 2, . . . , m. The

selectivity µi1,i2,...,im of the star join is defined by:

µi1,i2,...,im =
|Ri1,i2,...,im|

|Ri1 ||Ri2| · · · |Rim |
(6.6)

6.3.1 Heuristic procedure: performing selections before joins

In this section, since the proposal for the query optimiser prototype in this chap-

ter relies on a heuristic procedure which is widely used in many current database

systems [Ullman 1988a; Elmasri and Navathe 1991; Ozsu and Valduriez 1991; Heller-

stein and Stonebraker 1993], we will justify why the heuristic procedure is reasonable.

The heuristic procedure is that selections are always done first before any joins; that

is, relations would be reduced by the selection predicates in the given query prior

to proceeding to do any joins in the query.

This heuristic procedure is generally reasonable to be based on and used by

database systems although it is not always the case; for example, it was reported

in [Hellerstein and Stonebraker 1993] that some expensive selection predicates, e.g.,

functions implemented in a general-purpose programming language such as C or

C++, cause the use of the heuristic to produce more expensive plans.

Still the heuristic procedure is reasonable for many database query classes which

are not involved with the use of expensive functions because it helps to reduce the

complexity of the query optimisation problem – makes the problem tractable. The

following is a justification and an example.

Given an example of a join query between R1 and R2 with two simple predi-

cates pred1 and pred2 on relations R1 and R2, respectively, if we use the heuristic

procedure, then the query is only executed by:

• reduce the two relations by σpred1(R1) → R′
1 and σpred2(R2) → R′

2, and join

R′
1 1 R′

2 to produce the final result.

However, if the selections can be done before or after the join, then here are

three more alternatives to execute this simple join query:

• R1 1 R2 → R12 and reduce σ
(pred1 and pred2)

(R12).

• Reduce σpred1(R1)→ R′
1, join R′

1 1 R2 → R′
12, and reduce σpred2(R

′
12).

Query optimisers that use sampling methods 240

• Similarly, reduce σpred2(R2)→ R′
2, joinR1 1 R′

2 → R′
12, and reduce σpred1(R

′
12).

The number of alternatives above each of which can produce the same final result

is still quite a lot, considering that this is just to process a simple join query. Imagine

that if the number of relations in a given join query is more than 2 and there are

more selections in the query, then the number of alternatives will become extremely

large.

6.3.2 Star joins after applying selections (actual results)

Let R̆ij be a reduced relation as a result of applying a reduction by the selection

predicate on relation Rij , j = 1, 2, . . . , m. Given a star join after the reductions

(R̆i1 1 R̆i2 1 · · · 1 R̆im), let R̆i1,i2,...,im be the output relation of the join among the

reduced relations. The size of R̆i1,i2,...,im is calculated by:

|R̆i1,i2,...,im | = µ̆i1,i2,...,im ∗ (|R̆i1||R̆i2 | · · · |R̆im |) (6.7)

where µ̆i1,i2,...,im is the selectivity of this star join. In actuality, while optimising for

the optimal execution plan for a join query, the optimiser will never know the actual

star join selectivity µ̆i1,i2,...,im, not until the database system has finished executing

the star join and observed the output size |R̆i1,i2,...,im|. It is a main function of

any query optimiser to use any kind of selectivity estimation methods in order to

approximate such a star join selectivity.

In comparing between two estimation methods, say A and B, in a query optimiser

to see which one outperforms in producing cheaper execution plans, we need to know

the intermediate relation sizes |R̆i1,i2,...,im|’s, generated in each step of a join. The

sizes of all the intermediate relations partly form a query execution plan cost for an

estimation method used (any of the two). Two query execution plan costs by the

two methods can then be compared.

6.3.3 Star joins after applying selections (estimated results)

Let R̂ij be a reduced estimated relation as a result of applying a reduction by the

selection predicate on relation Rij , j = 1, 2, . . . , m. Given a star join (R̂i1 1 R̂i2 1

· · · 1 R̂im) among the estimated relations, let R̂i1,i2,...,im be the output estimated

Query optimisers that use sampling methods 241

relation of the join. The size of R̂i1,i2,...,im is calculated by:

|R̂i1,i2,...,im | = µ̂i1,i2,...,im ∗ (|R̂i1||R̂i2 | · · · |R̂im |) (6.8)

where µ̂i1,i2,...,im is the estimated selectivity of this star join. Since we typically do

not know this selectivity, we need some method for estimating it. The following

two sections 6.3.4 and 6.3.5 describe two approaches to estimating the star join

selectivity µ̂i1,i2,...,im .

6.3.4 Estimated join selectivities by a sampling method

Let R′
ij

be a sample relation of relation Rij , j = 1, 2, . . . , m. Given a star join

(R′
i1
1 R′

i2
1 · · · 1 R′

im) among the sample relations, let R′
i1,i2,...,im

be the output

relation of the join. The selectivity µ′i1,i2,...,im of this star join is defined by:

µ′i1,i2,...,im =
|R′

i1,i2,...,im|
|R′

i1 ||R′
i2| · · · |R′

im |
(6.9)

This is an approach to the estimated selectivity µ̂i1,i2,...,im .

6.3.5 Estimated join selectivities by UNF

Based on the uniform distribution assumption [Selinger et al. 1979a; Swami and

Schiefer 1994] and given a star join (R̂i1 1 R̂i2 1 · · · 1 R̂im), Figure 6.1 shows

the calculation towards the estimated selectivity µ̂i1,i2,...,im of the join. Using the

uniform distribution assumption, suppose that the number of distinct values in

relation Rij is equal to dj, where j = 1, 2, . . . , m and thus the number of tuples per

distinct value would be
|Rij

|
dj

. In Figure 6.1, each element under a column freq.(Rij)

represents the number of tuples per distinct value
|Rij

|
dj

, where j = 1, 2, . . . , m. Also

let d = min(d1, d2, . . . , dm).

Given an ith distinct value, where i = 1, 2, . . . , d, the total number of tuples

in the output relation as a result of the join on this distinct value among the m

relations is calculated by:

|Ri1|
d1
∗ |Ri2 |

d2
∗ · · · ∗ |Rim|

dm
which is equal to:

m∏
j=1

|Rij |
dj

Query optimisers that use sampling methods 242

dist. freq.(Ri1) freq.(Ri2) · · · freq.(Rim) tuples per dist.

1
|Ri1

|
d1

|Ri2
|

d2
· · · |Rim |

dm

∏m
j=1

|Rij
|

dj

2
|Ri1

|
d1

|Ri2
|

d2
· · · |Rim |

dm

∏m
j=1

|Rij
|

dj

.

.

d
|Ri1

|
d1

|Ri2
|

d2
· · · |Rim |

dm

∏m
j=1

|Rij
|

dj

total tuples d ∗∏m
j=1

|Rij
|

dj

Figure 6.1: The estimated total number of tuples based on UNF

as shown under the “tuples per dist.” column in Figure 6.1.

Note that the calculation in the figure uses the full relationsRij ’s, not the reduced

estimated relations R̂ij ’s. This is due to the independence assumption between

the join and selection operations [Christodoulakis 1984] used by System-R’s query

optimiser1 — join selectivities are estimated independently of selection selectivities.

That is, irrespective of whatever has resulted by earlier selections on some relations,

the estimated join selectivity µ̂i1,i2,...,im, which is calculated from the full relations,

can be used to approximate the size of the output relation R̂i1,i2,...,im.

The independence assumption between join and selection operations in a join

query can be implied from the usual attribute independence assumption that any

attribute in a relation is independent of one another. Given a join query which

consists of (1) a join operation with a join attribute in the relation and (2) a simple

selection predicate on another attribute of the same relation, these two attributes

(one join attribute and one selection attribute) will also be treated independently of

each other, like other attributes in this relation. The approximate frequency distri-

butions of each attribute in this relation would thus be maintained independently

of one another for selection and join selectivity estimation. Due to the attribute

independence assumption used, the estimated size of the join operation after the

selection in the given join query will not take account of the dependence between

the two attributes (even if there is) and will be worked out from the individual

approximate frequency distributions of the two attributes.

Using the estimated total number of tuples in Figure 6.1 (the last row in the

1UNF was proposed as the query size estimator of System-R’s query optimiser.

Query optimisers that use sampling methods 243

figure), the selectivity µ̂i1,i2,...,im for the star join (R̂i1 1 R̂i2 1 · · · 1 R̂im) would be:

µ̂i1,i2,...,im =
d ∗∏m

j=1

|Rij
|

dj∏m
j=1 |Rij |

=
d∏m

j=1 dj
(6.10)

In fact, the formula (2.7) which we have derived earlier for join selectivity near

page 37 of Chapter 2 is subsumed under the formula here.

6.4 Sampling cost vs subplan cost

In this section, we will illustrate, by a simple example, the relative costs of sampling

and executing a subplan. We will also show that:

Statement 6.1 A sampling fraction can be selected such that the sam-

pling cost for a subplan would be much less than the execution cost for

the subplan.

We define the sampling cost and execution cost for a subplan below. If the statement

is correct, then it is reasonable to draw a conclusion that:

• The total cost for all necessary sampling for selectivity estimation would be

much less than the total execution cost for a join query.

• As a result of the first point, the total sampling time will only slightly interfere

in the total query execution time.

For illustration purposes throughout the chapter, we consider a database with

5 relations each with a star join attribute on it. All possible star joins (namely,

combinations of star joins in the database) which could occur in user queries are

shown in Table 6.1. Let all the relations in the database have the same cardinality

x.

Given a join query (R1 1 R2 1 R3 1 R4 1 R5) and given also that the query

optimiser uses a sampling method to estimate selectivities, to select what is the

optimal order in executing the query, the join selectivities for all combinations of

the star joins as shown in Table 6.1 must be approximated by sampling. Let the

following be the optimal order in executing the join query specified by the optimiser:

((((R1 1 R3) 1 R4) 1 R2) 1 R5)

Query optimisers that use sampling methods 244

rels combinations total
2 R1R2, R1R3, R1R4, R1R5 C5

2 = 10
R2R3, R2R4, R2R5, R3R4

R3R5, R4R5

3 R1R2R3, R1R2R4, R1R2R5 C5
3 = 10

R1R3R4, R1R3R5, R1R4R5

R2R3R4, R2R3R5, R2R4R5

R3R4R5

4 R1R2R3R4, R1R2R3R5 C5
4 = 5

R1R2R4R5, R1R3R4R5

R2R3R4R5

5 R1R2R3R4R5 C5
5 = 1

total 26

Table 6.1: All combinations of star joins for a 5-relation database

Consider a subplan of the whole order, ((R1 1 R3) 1 R4). If it is worth doing a

sampling for this subplan, then this:

samp. cost for subplan ((R1 1 R3) 1 R4) << exe. cost for the subplan ((R1 1 R3) 1 R4)

should hold and it is also reasonable to say:

samp. cost for the subplan ((R11R3)1R4)︷ ︸︸ ︷
µ123(βx)

3 + µ124(βx)
3 + µ125(βx)

3 + · · ·+ µ345(βx)
3 <<

exe. cost for the subplan︷ ︸︸ ︷
µ134x

3 (6.11)

That is, the sum of sizes for all the output relations each of which is created by a

sampling with the sampling fraction β for one of the star joins as shown in Table 6.1

where rels = 3, should be much less than the size of the output relation created by

executing the subplan ((R1 1 R3) 1 R4).

(6.11) can be arranged to:

(µ123 + µ124 + · · ·+ µ345)(βx)
3 << µ134x

3 (6.12)

Let:

µ̄ = (µ123+µ124+···+µ345)
C5

3

The inequality (6.12) can thus reduce to:

C5
3 µ̄(βx)3 << µ134x

3 (6.13)

Now consider the right hand side of the inequality (6.13). In fact, any subplan with

3 relations other than the subplan ((R1 1 R3) 1 R4) can also be selected by the

Query optimisers that use sampling methods 245

query optimiser as part of the entire order. In other words, any star joins with 3

relations as shown in the table can be selected by the query optimiser as the optimal

subplan for the join query given. That is, all of the following inequalities are also

correct:

C5
3 µ̄(βx)3 << µ123x

3

C5
3 µ̄(βx)3 << µ124x

3

C5
3 µ̄(βx)3 << µ125x

3

· · · · · · << · · ·
C5

3 µ̄(βx)3 << µ345x
3 (6.14)

if the optimal subplans selected by the optimiser are: ((R1 1 R2) 1 R3), ((R1 1

R2) 1 R4), ((R1 1 R2) 1 R5), . . . , ((R3 1 R4) 1 R5), respectively. The left hand

side of (6.14) is all the same no matter what optimal subplan is selected.

To further simplify all the inequalities in (6.14) for more analysis, we can use the

average case for all the inequalities. That is, we can use µ̄ as the representative selec-

tivity value for all the selectivities on the right hand side, i.e, µ123, µ124, µ125, . . . , µ345.

We can then reduce all the inequalities (6.14) to:

samp. cost for a subplan︷ ︸︸ ︷
C5

3 µ̄(βx)3 <<

exe. cost for the subplan︷︸︸︷
µ̄x3

which is reduced to: C5
3β

3 << 1. Multiplying both sides by 100 to turn them to

percentage, this gives:

samp. cost for a subplan in %︷ ︸︸ ︷
(100 ∗ C5

3β
3)% <<

exe. cost for the subplan in %︷ ︸︸ ︷
100% (6.15)

(6.15) says that if it is worthwhile doing a sampling for a subplan, then a sampling

fraction β selected should make 100 ∗ C5
3β

3% (the left-hand side) much less than

100% (the right-hand side). In fact, by the average case the inequality (6.15) is also

correct no matter what subplan is considered.

Query optimisers that use sampling methods 246

We can then generalise that with a database of m relations and with a subplan

of y relations involved, if it is worthwhile doing sampling for the subplan, then a

sampling fraction β selected should make:

samp. cost for a subplan in %︷ ︸︸ ︷
(100 ∗ Cm

y β
y)% <<

exe. cost for the subplan in %︷ ︸︸ ︷
100% (6.16)

Using the left-hand side of formula (6.16), we create Table 6.2 where m = 10

and the sampling fraction β ranges from 3, 5, 7, 10, 12 and 15 %, respectively. The

purpose of the table is to give us an idea of which sampling fraction should be selected

as the upper bound for the sampling fraction to be used by the query optimiser.

Any sampling fraction beyond the bound should not be attempted because the query

optimiser may spend excessive time for optimising join queries.

sampling cost for a subplan in % = (100 ∗ Cm
y β

y) %

y Cm
y β = 0.03 β = 0.05* β = 0.07 β = 0.10 β = 0.12 β = 0.15

2 45 4.05 11.25 22 45 64.8 101.25
3 120 .3240 1.5 4.116 12 20.736 40.5
4 210 .01701 .13125 .50421 2.1 4.35 10.63
5 252 .00061 .007875 .04235 .252 .62705 1.91
6 210 .15309e-4 .000328 .00247 .021 .06271 .23920
7 120 .26244e-6 .9375e-5 .0000988 .0012 .00430 .02050
8 45 .29525e-8 .17578-6 .25942e-5 .000045 .00019 .00115
9 10 .19683e-10 .1953e-8 .40354e-7 1e-6 .51598e-5 .38443e-4

10 1 .59049e-13 .97656-11 .28248e-9 1e-8 .61917e-7 .57665e-6

Table 6.2: Sampling cost for a subplan in percent

Let us describe Table 6.2. The first column y shows the number of relations

involved in a subplan and the second column Cm
y shows the number of all combina-

tions for the star joins with y relations involved. Given an example, when β = 0.03

(3% sampling fraction) and y = 2, the number of all combinations for 2-relation star

joins is C10
2 = 45 and the sampling cost for the subplan with 2 relations is 4.05%.

We can draw the following conclusion from Table 6.2.

• The more relations y involved in a subplan, the less the sampling cost for the

subplan. The reason is that the growth of βy grows considerably faster than

the growth of the number of star join combinations Cm
y . The sampling cost in

Query optimisers that use sampling methods 247

percent dramatically decreases when y increases from 2 to 10. See the decrease

under any sampling fraction column.

• The sampling cost for 2 relations involved, namely, y = 2 is the most expensive,

especially when the sampling fraction is more than 5%, i.e., β > 0.05.

Consider the first row when y = 2 from left to right. When β = 0.03, the

sampling cost is 4.05%; when β = 0.05, the sampling cost is 11.25%; when

β = 0.07, the sampling cost is 22% and so on. The clear trend is that with

the subplan with two relations involved (y = 2), the sampling cost increases

from left to right, i.e., when increasing the sampling fraction.

Note that the sampling cost for a subplan can be so large that this cost itself is

even more than the execution cost of the subplan. When y = 2 and β = 0.15

(15%), the sampling cost for this subplan is 101.25% which is more than the

execution cost.

This number of relations y = 2 is very significant and very fundamental to any

join queries because all join queries must begin from 2 relations involved. We

believe that any sampling fraction selected should not incur more than 10% of

the execution cost of any subplan in the database. As a result, any sampling

fraction from 7% onwards (see the first row of the table where y = 2 for an

example) should be avoided as the time spent for sampling can be excessive

and hence, too much competes with the time to execute the query itself. (The

aim in do sampling for selectivity estimation is not to interfere too much in the

time spent to execute the query itself.) Although the 5% sampling fraction is

a bit expensive – incurring the sampling cost 11.25% –, we believe that it still

can be used in any database system and also for the sake of more accurate

selectivities than any sampling fraction lower than 5%. Hence, we use the 5%

sampling fraction for all experiments in Section 6.10 both for join and selection

selectivity estimation.

• From the table, given that only 3 and 5% sampling fractions are considered

to be used by a query optimiser (other sampling fractions incur excessive

optimisation cost), any number of relations involved in a subplan with y =

Query optimisers that use sampling methods 248

3, 4, . . . , 10, incurs an insignificant sampling cost. See the two columns under

β = 0.03 and β = 0.05.

6.5 Semi-dynamic and fully dynamic approaches for query op-

timisers

In this section, we propose two approaches to the implementation of a query opti-

miser which uses sampling for selectivity estimation. The first is semi-dynamic and

the second is fully dynamic.

Semi-dynamic approach

A join query we have defined consists of two operations in it: selection and join.

The term incoming query used below is a join query.

The semi-dynamic approach works as follows:

• For the join operation, do resampling a number of times through any incoming

queries to build all possible join selectivities that can occur in the database

and store them in the profile catalog. With a small sampling fraction used, for

each join selectivity, one may consider to do η-time resampling so that each

join selectivity would be more reliable and accurate enough, where η is an

integer whose value is more than or equal to 1.

After all the join selectivities are built into the profile catalog, stop doing any

sampling for them to any incoming queries and use the stored join selectivities

in the profile catalog for optimising any incoming queries. Do the resampling

process again periodically to update the join selectivities stored in the catalog.

• For the selection operation, use one-time sampling to estimate the selectivities

for selection predicates in any incoming queries. Recall that one-time sampling

is the typical sampling procedure proposed by all of previous sampling-based

methods. As a result, despite a high bias as a consequence of a single sam-

ple used for approximating a selectivity, the selectivities for selections would

always be up-to-date for being used by the query optimiser. Recall that re-

sampling in the case of selections would be infeasible due to the exponential

Query optimisers that use sampling methods 249

storage requirement to store all possible selection selectivities in the profile

catalog.

With this approach, the selection and join operations are treated independently

of one another. This is the independence assumption between the selection and join

operations as used by many current database systems. Many current systems main-

tain approximate frequency distributions by single-dimensional histograms for the

individual attributes of a relation. This clearly implies that two attributes in a join

query, namely one join attribute and one selection attribute, from the same relation

would have their own single-dimensional histograms from which the join selectivity

and the selection selectivity of the two attributes are estimated independently of

one another.

Fully dynamic approach

The fully dynamic approach works as follows:

• For both selection and join operations, use one-time sampling to estimate the

selectivities for (1) selection predicates and (2) all combinations of star joins

in a given join query. For example, if a join query is involved with 5 relations,

then the selectivities for all combinations of star joins as shown in Table 6.1

must be approximated by the one-time sampling. Unlike the semi-dynamic

approach, the reason one cannot use resampling for join selectivities for the

fully dynamic approach would be described shortly below.

As sampling is newly done every time a new join query arrives at the database

system, the selectivities for both joins and selections would always be up-to-

date for being used by the query optimiser but of course, with a high bias for

each estimated selectivity used.

Using the typical heuristic procedure that selections are always done first before

joins, relations would be reduced by selections prior to doing any joins. Given a

join query, sampling would then work on the reduced relations in order to estimate

the join selectivities for all combinations of star joins in the join query. With this

approach, the selection and join operations would depend on one another because

the sampling for join selectivities would work on the reduced relations, i.e., takes

Query optimisers that use sampling methods 250

account of the results of selections in the query. (Unlike the semi-dynamic approach,

sampling works on the original full relations for all join selectivities and does not take

account of the results of selections in the query.) This is the dependence assumption

between the selection and join operations.

By the dependence assumption used, it would be infeasible to use resampling for

any join selectivity. The reason can be described as follows. Because join selectivities

must be computed after the reductions of relations by selection predicates in a given

join query and there are an innumerable number of possible reduced relations as

a result of the reductions, the possible number of join selectivities on the reduced

relations will also be innumerable. Similar to the exponential storage requirement

for selection selectivities to be stored in the profile catalog, the storage requirement

for join selectivities after selections would also be too large.

Semi-dynamic approach’s advantages and disadvantages

Here are the advantage and disadvantage of the semi-dynamic approach:

Advantage The query optimiser runs, i.e., optimises a join query, much faster,

perhaps several orders of magnitude, than the query optimiser that uses the

fully dynamic approach, in finding an optimal query execution plan. This is

because at optimisation time for a join query, we save the major sampling cost

for join selectivities which are already stored in the profile catalog. (In general,

the sampling cost for join selectivities would be far more than the sampling

cost for selection selectivities.)

Disadvantage The query optimiser should, in principle, produce poorer query ex-

ecution plans than the optimiser that uses the fully dynamic approach. First,

this is due to the independence assumption that treats joins and selections in-

dependently of one another. Second, the join selectivities in the profile catalog

can be out-of-date after some time. Third, there is a storage cost for a number

of join selectivities stored in the catalog for which this approach has to pay.

Fully dynamic approach’s advantages and disadvantages

Here are the advantage and disadvantage of the fully dynamic approach:

Query optimisers that use sampling methods 251

Advantage The query optimiser should, in principle, produce cheaper query exe-

cution plans due to the dependence assumption used that treats selections and

joins together. This approach never suffers with out-of-date join selectivities.

Unlike the semi-dynamic approach, there is no storage cost for join selectivities

by this approach as they are obtained by on-line sampling.

Disadvantage The query optimiser runs perhaps much slower than the semi-dynamic

approach, in finding an optimal query execution plan. This is because at op-

timisation time for a join query, sampling must be done for both join and

selection selectivities in the query, especially the sampling for join selectivities

which can take much more time than the one for selection selectivities. In

addition, each estimated join selectivity obtained can have a high bias as a

consequence of one-time sampling used.

6.6 Query optimisation algorithm

Given a join query Q, an optimisation algorithm is shown in Figure 1.5 near page 9

of Chapter 1. The algorithm is general for any kind of selectivity estimation methods

used.

Due to the exhaustiveness of the algorithm, the query optimiser considers the

entire search space. An entire search space of a join query Q consists of a factorial

number of plans m!, where m is the number of relations involved in the query.

There are two optimisation objectives commonly used by query optimisers: min-

imum total cost and minimum response time [Hevner and Yao 1979]. Here we choose

the former as the optimisation objective for the experimental query optimiser. In

the algorithm in Figure 1.5, the optimiser will therefore seek to minimise the total

cost estcost(plan).

The details of the cost calculation for a plan, estcost(plan), are described in

Section 6.7.

Query optimisers that use sampling methods 252

6.7 Cost calculation for query execution plans

Given a join query, it is reasonable to consider that the total estimated cost estcost(plan)

for a query plan consists of:

estcost(plan) = estcost(selection) + estcost(exeplan) (6.17)

where estcost(selection) is the total estimated cost for all selections in the query

and estcost(exeplan) is the estimated execution plan cost, which is the estimated

cost for a join order2 in the query. Equation (6.17) is thus the optimisation objective

we want to minimise.

6.7.1 Estimated cost for selections

Since all selections are performed independently of one another, the total estimated

cost for selections is simply the sum of the estimated cost of the individual selections.

Consider, for example, join query Q shown in Figure 6.3 of Section 6.8. There

are three selection predicates R1.a3 > 40932, R3.c3 6= 6377 and R4.d2 < 11264. If

the estimated cost for selection on relation Ri is denoted by est select(Ri), then

the total estimated cost for all the three selections can be expressed as:

estcost(selection) =
∑

∀i ∈ {1,3,4}
est select(Ri) (6.18)

Recall that the notation R̂i is the estimated reduced relation as a result of ap-

plying a reduction by the selection predicate on relation Ri. If there is no selection

predicate on Ri, then the notation R̂i is simply equivalent to Ri itself. For any

execution plan in the search space, namely, any join order among the 4 relations in

Q, e.g.:

(((R̂1 1 R̂3) 1 R̂4) 1 R̂2), (((R̂2 1 R̂1) 1 R̂4) 1 R̂3), or (((R̂2 1 R̂1) 1 R̂4) 1 R̂3)

the total estimated cost estcost(selection) for the three selections would be the

same in (6.18) for all of the plans in the search space. This will hold for any query

optimiser that applies the heuristic of performing selections before joins in the query.

2There are a number of “equivalent” join orders (or query execution plans) for the given join
query each of which can produce the same final output relation.

Query optimisers that use sampling methods 253

Of course, the query optimiser will attempt to optimise how to perform selections

on each relation most efficiently. For example, if a relation has an index on an

attribute specified in a simple predicate of the query, then the query optimiser will

most probably use the index on the attribute to retrieve data in the relation, rather

than performing the linear scan on the relation.

In summary, given certain storage structures used by the relations in a given

join query (e.g., B+-trees, hash structures and so on) and a set of selections in the

query, whatever execution plan selected from the search space would always have an

identical total estimated cost for all the selections. This also implies that the total

estimated cost for all the selections does not depend on the ordering of joins in the

query.

Thus, either using

estcost(plan) =

fixed for all plans︷ ︸︸ ︷
estcost(selection) +estcost(exeplan)

from (6.17) or simply

estcost(plan) = estcost(exeplan) (6.19)

as the optimisation objective, makes no difference in the optimal plan selection.

That is, if a plan, say optimal plan is optimal by the former equation, then the plan

optimal plan would also still be optimal by the latter equation.

As a result, in calculating an estimated cost for an execution plan of a join query

in Section 6.7.3, we will ignore the total estimated cost for the selections in the

query and thus use (6.19) as the optimisation objective.

6.7.2 Actual cost for selections

Like the total estimated cost for all selections in a join query, the total actual cost

for all selections in a join query would also be the same, regardless of whatever

execution plan is selected from the search space. This is because of the heuristic

procedure used by many database systems.

In comparing between two estimation methods, say A and B, to see which one

Query optimisers that use sampling methods 254

outperforms in producing cheaper execution plans, given the optimal execution plan

for a query by a method method, one can look at the actual total cost of the optimal

plan, i.e.:

cost(eval[method]) =

fixed for A or B︷ ︸︸ ︷
cost(selection[method])+cost(exeplan[method])

(6.20)

where method is either A or B to see which total cost(eval[method]) between

the two is lower. cost(selection[method]) is the actual cost for all selections in

the query and cost(exeplan[method]) is the actual execution plan cost. Logically

the equation (6.20) is the same as the optimisation objective (6.17), except that the

equation (6.20) specifies on the actual cost, while the optimisation objective specifies

on the estimated cost.

Due to the heuristic procedure used, the cost(selection[method]) in (6.20)

will always be the same no matter what estimation method is used (A, B or what-

ever). This is also under the condition that the comparison between two estimation

methods must be done by using relations with the same storage structures. (In

comparing between two methods, it makes sense that one would use the same set of

storage structures on the relations.)

As a result, for the comparison purpose between any two methods we can ignore

the cost cost(selection[method]) and simply use:

cost(eval[method]) = cost(exeplan[method])

for the comparison. In Section 6.7.4, we will consider this actual execution plan

cost.

6.7.3 Estimated cost for an execution plan

Given a join query (R̂1 1 R̂2 1 R̂3 1 R̂4), a possible join order to execute the query,

namely, a query execute plan, is: (((R̂1 1 R̂3) 1 R̂4) 1 R̂2). This order will proceed

to execute as shown in Figure 6.2.

To calculate the intermediate size |R̂i| in Figure 6.2 where i = 1, 2, 3, 4, if HY-

BRID is used and the relation Ri is sorted, then apply systematic sampling with a β

Query optimisers that use sampling methods 255

Step 1) (((R̂1 1 R̂3) 1 R̂4) 1 R̂2)

Step 2) ((R̂13 1 R̂4) 1 R̂2)

Step 3) (R̂134 1 R̂2)

R̂1234

Figure 6.2: A join order to execute a join query

sampling fraction to obtain and use the systematic sample relation to approximate

the size |R̂i|. But if Ri has none of its attributes sorted, then apply simple random

sampling with replacement with the same sampling fraction to obtain and use the

sample relation to approximate the size |R̂i|. As for UNF, the intermediate size |R̂i|
is calculated by formula (2.2) multiplied by |Ri| which we have derived near page 29

of Chapter 2.

Recall that through HYBRID an estimated selectivity of a star join is calculated

as follows: samples of the relations with the sorted join attributes are created via

SYSSMP and samples of the relations with the unsorted join attributes are created

via SRSWR. All the samples are then joined together to produce the estimated

selectivity of the star join.

To calculate the intermediate size |R̂i1,i2,...,im | (m ≥ 2) in each step of the figure,

use equation (6.8) in Section 6.3.3. Let us reproduce it here for ease in reference:

|R̂i1,i2,...,im | = µ̂i1,i2,...,im ∗ (|R̂i1||R̂i2 | · · · |R̂im |)

where µ̂i1,i2,...,im is the estimated selectivity of the star join (R̂i1 1 R̂i2 1 · · · 1 R̂im).

If HYBRID is used for selectivity estimation, then use formula (6.9) in Section 6.3.4

for the estimated join selectivity. If UNF is used, then use formula (6.10) in Sec-

tion 6.3.5 for the estimated join selectivity.

In what follows, we show how to calculate the estimated cost for the query exe-

cution plan in Figure 6.2. Recall that the hash-join algorithm is used for any join

and thus given that (R̂i1 1 R̂i2), the read cost for the two estimated relations would

be the cost in reading |R̂i1 | and |R̂i2 | tuples into memory.

Cost1 (in Step 1): The cost of the join (R̂1 1 R̂3) is the cost of reading |R̂1| and

|R̂3| tuples from disk to memory and of writing the output temporary relation R̂13,

Query optimisers that use sampling methods 256

which is |R̂13| tuples back to disk.

Convert the number of tuples read/written to a total number of bytes. The read

cost for R̂1 is thus attrlen(R̂1) ∗ |R̂1|. attrlen(an (intermediate) relation) is the sum

of all attributes’ lengths in the (intermediate) relation. Likewise, the read cost for

R̂3 is attrlen(R̂3) ∗ |R̂3|. The write cost for R̂13 is attrlen(R̂13) ∗ |R̂13|.
Instead of measuring the read and write costs above in terms of “bytes”, another

way which is most commonly used is to convert the number of tuples read/written

to in terms of “pages” by:

attrlen(R̂i1,i2,...,im) ∗ |R̂i1,i2,...,im|
PageSize

wherem ≥ 1 and PageSize is the number of bytes per disk page used in the database

system. However, since either conversion used makes no change in selection of the

optimal plan – it is just a matter of linearly scaling straight through any read/write

cost in bytes by the constant PageSize to turn each into a cost in pages –, we will

still use the conversion in terms of “bytes”.

Cost2 (in Step 2): The cost of the join (R̂13 1 R̂4) is the cost of reading R̂13,

attrlen(R̂13) ∗ |R̂13| bytes and reading R̂4, attrlen(R̂4) ∗ |R̂4| bytes into memory and

of writing R̂134, attrlen(R̂134) ∗ |R̂134| bytes back to disk.

Cost3 (in Step 3): The cost of the join (R̂134 1 R̂2) is the cost of reading R̂134,

attrlen(R̂134) ∗ |R̂134| bytes and reading R̂2, attrlen(R̂2) ∗ |R̂2| bytes into memory

and of writing R̂1234, attrlen(R̂1234) ∗ |R̂1234| bytes back to disk.

Hence, the estimated cost in executing the query execution plan: (((R̂1 1 R̂3) 1

R̂4) 1 R̂2) is the sum of Cost1+Cost2+Cost3.

6.7.4 Actual cost for the optimal execution plan

Recall that the notation R̆i is the actual reduced relation as a result of applying a

reduction by a selection predicate on relation Ri. If there is no selection predicate

on Ri, then the notation R̆i is simply equal to Ri. Suppose that the order (((R̂1 1

R̂3) 1 R̂4) 1 R̂2) defined above is the one which provides the cheapest estimated

cost to execute the query.

The steps to calculate the actual cost in executing the query execution plan: (((R̆1

1 R̆3) 1 R̆4) 1 R̆2) would be the same as the ones in Section 6.7.3 and the only

Query optimisers that use sampling methods 257

change that needs to be done is to substitute the notation R̂ by R̆.

To calculate the intermediate size |R̆i|, one just has to observe the actual size

|R̆i| after reducing relation Ri by the selection predicate on Ri.

To calculate the intermediate size |R̆i1,i2,...,im | (m ≥ 2) in each step of Figure 6.2,

use formula (6.7) in Section 6.3.2.

6.8 Schemas of temporary relations

To calculate attrlen(an intermediate relation), one needs the knowledge of the

schema for the intermediate relation. Here in this section, we describe the creation

of schemas for intermediate temporary relations.

Table 6.3 shows the relational schemas of 5 relations in a database. Query Q in

Figure 6.3 is a star join query from which all join attributes R3.c2, R1.a2, R2.b3, R4.d3

and R3.c2 which appear in the join predicates can join one another.

R1(a1, a2, . . . , au1), R2(b1, b2, . . . , bu2)
R3(c1, c2, . . . , cu3), R4(d1, b2, . . . , du4)
R5(e1, e2, . . . , eu5)

where au1 , bu2 , cu3 , du4 and eu5 each
are the last attribute of the relations.

Table 6.3: Schemas of 5 relations in a database

Query Q:
select R1.a5, R2.b1, R2.b4, R3.c4, R4.d1

from R1, R2, R3, R4

where R3.c2 = R1.a2 and
R2.b3 = R1.a2 and
R4.d3 = R3.c2 and
R1.a3 > 40932 and
R3.c3 6= 6377 and
R4.d2 < 11264;

Figure 6.3: A star join query

By the heuristic procedure (applying selections as soon as possible), before any

join in query Q begins its execution, the respective schemas of R1, R3 and R4

would be: R1(a2, a5), R3(c2, c4), R4(d1, d3) while the schema of R2 would still re-

main unchanged in its original form. That is, after a selection on a relation is

Query optimisers that use sampling methods 258

done, the attributes of the relation which would appear in the schema of a tem-

porary reduced relation are (1) the ones that will be in use in any join predicates

of the query and (2) the ones that appear in the select clause of Q, i.e., select

R1.a5, R2.b1, R2.b4, R3.c4, R4.d1. Given an example, consider the resulting schema of

R1 after the selection R1.a3 > 40932 has been done, namely R1(a2, a5). a2 of R1

will be in use in the join predicate R3.c2 = R1.a2 and a5 of R1 appears in the select

clause of Q.

In what follows, we consider the creation of schemas of temporary relations as

a result of executing a join. A schema of a temporary relation is created based on

two kinds of attributes:

join attributes Any join attributes appearing in subsequent joins must be “car-

ried over” by keeping them in the schema of the temporary relation. Let us

illustrate by an example: if the join (R3.c2 1 R1.a2) is performed before the

join (R2.b3 1 R1.a4), then the schema of R13 must “carry” attribute a4 because

the next join (R2.b3 1 R1.a4) requires the attribute a4.

select-clause attributes Any attributes appearing in the select clause must also

be “carried over” by keeping them in the schema of the temporary relation.

Let us illustrate by using query Q: the attributes R1.a5 and R3.c4 must appear

in the result of the join (R3.c2 1 R1.a2) (i.e. R13) because the two attributes

appear in the select clause of Q.

Using the optimal join order in executing query Q as described in Section 6.7,

i.e., (((R̂1 1 R̂3) 1 R̂4) 1 R̂2), Table 6.4 shows an example of how schemas of

temporary relations are created.

schema of temp. rel.
Step A remaining order temp. rel. join select-clause

1 (((R̂1 1 R̂3) 1 R̂4) 1 R̂2)) R̂13 (a2, a5, c4)

2 ((R̂13 1 R̂4) 1 R̂2) R̂134 (a2, a5, c4, d1)

3 (R̂134 1 R̂2) R̂1234 (a2, a5, c4, d1, b1, b4)

Table 6.4: Schemas of temporary relations

As Q is a star join query from which all join attributes R3.c2, R1.a2, R2.b3, R4.d3

and R3.c2 can join one another, we can rename those join attributes to a single name.

Query optimisers that use sampling methods 259

Suppose we rename them to a2. As a result, in Table 6.4 the column named “join”

would always carry the attribute a2 but this is not necessary for general cases of join

queries as the schema creation approach described above is applicable to handling

all kinds of join queries.

6.9 Overall cost of query optimisation

We have demonstrated that sampling can produce accurate query size estimates,

which, in turn, lead the query optimiser to generate efficient query execution plans.

However, this accuracy comes at a cost – the amount of time spent performing query

optimisation increases considerably. In order to make a definitive statement that

sampling methods are superior to other methods, we need to show that the total

cost (query optimisation plus query evaluation) is lower for sampling than for other

methods.

Let us consider a comparison between query optimisation based on UNF query

size estimation and query optimisation using sampling. UNF is a parametric method

with very little overhead in generating query size estimates for query optimisation.

On the other hand, a query optimiser that uses any sampling method (such as

HYBRID) would incur sampling overhead for selectivity estimation.

In order to justify that HYBRID generally outperforms UNF, we must demon-

strate the following inequality:

cost(opt[HYBRID]) + cost(eval[HYBRID]) < cost(eval[UNF])

which we have defined and justified earlier in (6.3). We have shown the calculation

for cost(eval) for both HYBRID and UNF in Section 6.7. Here we will show the

calculation for cost(opt[HYBRID]) due to the sampling cost.

For sampling-based methods, there are two types of sampling cost for cost(opt)

that must be summed up with the cost of an optimal query execution plan. The first

is a sampling cost as a consequence of sampling to estimate all join selectivities that

must be stored in the profile catalog. This is described in Section 6.9.1. The second is

a sampling cost as a consequence of sampling to estimate selection selectivities whose

selection predicates appear in a given join query. This is described in Section 6.9.2.

Query optimisers that use sampling methods 260

By the end of Section 6.9.2, we will know the total cost for the optimal plan of a

join query, say Q, which incorporates the two types of sampling cost.

6.9.1 Sampling cost for join selectivities

The following is the procedure to calculate the sampling cost for all join selectivities

that must be stored in the profile catalog.

Using the semi-dynamic approach for query optimisation and using the 5-relation

database for illustration here, all combinations of star joins as shown in Table 6.1

imply the total number of join selectivities needed to be stored in the profile catalog.

Given a star join (R′
1 1 R′

2 1 R′
3 1 R′

4) from the table, here are steps to calculate

the sampling cost for this star join.

Step 1) (((R′
1 1 R′

2) 1 R′
3) 1 R′

4)

Step 2) ((R′
12 1 R′

3) 1 R′
4)

Step 3) (R′
123 1 R′

4)

R′
1234

In fact, the sampling cost calculation here is the same as the cost calculation for

query execution plans as shown in Section 6.7 (see also Figure 6.2 for comparison).

From the steps shown above, notice that we do not attempt to optimise the order

of the star join (R′
1 1 R′

2 1 R′
3 1 R′

4); we simply use a simple and straightforward

order of the star join from left to right. That is, join the relations together from left

to right.

In regard to the creation of intermediate temporary schemas in each step, a

resulting temporary schema of the output relation only needs to carry a single star

join attribute which is to be joined with the sample relation in the next step.

The size |R′
i| is calculated by β∗|Ri|. To calculate the intermediate size |R′

i1,i2,...,im |
(m ≥ 2) in each step above, arrange equation (6.9) in Section 6.3.4 to:

|R′
i1,i2,...,im

| = µ′i1,i2,...,im ∗ (|R′
i1
||R′

i2
| · · · |R′

im |)

Each step incurs a sampling cost as follows:

SampCost1 (in Step 1): The cost of the join (R′
1 1 R′

2) is the cost of reading

Query optimisers that use sampling methods 261

R′
1, attrlen(R′

1) ∗ |R′
1| bytes and reading R′

2, attrlen(R′
2) ∗ |R′

2| bytes into memory

and of writing the output temporary relation R′
12, attrlen(R′

12) ∗ |R′
12| bytes back to

disk.

SampCost2 (in Step 2): The cost of the join (R′
12 1 R′

3) is the cost of reading

R′
12, attrlen(R′

12)∗ |R′
12| bytes and reading R′

3, attrlen(R′
3)∗ |R′

3| bytes into memory

and of writing R′
123, attrlen(R′

123) ∗ |R′
123| bytes back to disk.

SampCost3 (in Step 3): The cost of the join (R′
123 1 R′

4) is the cost of reading

R′
123, attrlen(R′

123)∗|R′
123| bytes and readingR′

4, attrlen(R′
4)∗|R′

4| bytes into memory

and of writing R′
1234, attrlen(R′

1234) ∗ |R′
1234| bytes back to disk.

Hence, the sampling cost for the star join (R′
1 1 R′

2 1 R′
3 1 R′

4) is the sum of

SampCost1+SampCost2+SampCost3. Let SampCost(R′
1 1 R′

2 1 R′
3 1 R′

4) be the

sampling cost for the star join, i.e., equal to the sum of SampCost1+SampCost2+

SampCost3.

To calculate a sampling cost for other star joins shown in Table 6.1, apply the

same process like shown above for the star join (R′
1 1 R′

2 1 R′
3 1 R′

4).

As a result, the total of the sampling costs for all the star joins in the table is

equal to:

∑
star join combinations

SampCost(a star join combination) (6.21)

In case the number of resamplings done for these star joins is η times, then the total

would be:
η∑
i=1

(equation (6.21)) (6.22)

Recall that the query optimiser with the semi-dynamic approach must perform

resampling η times for each join selectivity stored in the profile catalog. After

that, the query optimiser will stop sampling (for the join selectivities) and use the

stored join selectivities in the profile catalog to optimise any incoming join queries.

(Sampling to update the current join selectivities will be resumed periodically.) The

cost of η-time resamplings in (6.22) will therefore be carried over to any of incoming

queries, i.e., they all must be responsible for this cost.

In all our experiments in Section 6.10, we use 100 queries and these 100 queries

must be responsible for the total join sampling cost in (6.22). That is, each of the

Query optimisers that use sampling methods 262

queries (also for query Q in Figure 6.3) will need to pay cost(joinsamp):

cost(joinsamp) =
equation (6.22)

100

on average for its join sampling cost.

6.9.2 Sampling cost for selection selectivities

Using query Q in Figure 6.3, there are 3 selection predicates, namely, R1.a3 > 40932,

R3.c3 6= 6377, and R4.d2 < 11264. The sampling cost cost(selsamp) for all the

selections would then be:

cost(selsamp) =
∑

∀i ∈ {1,3,4}
(β ∗ |Ri|) ∗ attrlen(all attributes of Ri)

bytes to read the 3 relations with the sampling fraction β into memory for selectivity

estimation. Notice that unlike joins, for selections there is no cost for writing a

temporary output relation back to disk.

As a consequence, the total cost for the optimal execution plan for query Q

would be:

cost(opt[HYBRID]) + cost(eval[HYBRID])

where cost(opt[HYBRID]) is:

cost(opt[HYBRID]) = cost(joinsamp[HYBRID]) + cost(selsamp[HYBRID])

and cost(eval[HYBRID]) is:

cost(exeplan[HYBRID])

where cost(exeplan[HYBRID]) is the cost in executing Q by the optimal plan with

no sampling cost added. Compared with UNF, since cost(opt[UNF]) is a negligible

cost and there is no sampling cost for UNF, the cost in executing Q is simply

cost(exeplan[UNF]).

Query optimisers that use sampling methods 263

6.10 Experimental results

6.10.1 Experimental setup

All of the five-relation databases (six databases) described in Table 3.11(d) near

page 3.5.3.1 of Chapter 3 are reused for all experiments in this chapter. The con-

figurations for the join attributes (their frequency distributions) are described in

the table. These databases were also earlier used in Chapter 4 (Improving join

selectivities by bootstrap method) for all the experiments in the chapter.

All relations in the databases have five attributes and a cardinality of 10,000.

100 join queries are used in all experiments, each of which is of the form like the

query in Figure 6.3 and is a star join query among 4–5 relations.

The data in the relations and the queries are generated in such a way as to

cover a wide range of various frequency distributions, various numbers of distinct

values, various join predicates and various selection predicates that can appear in

join queries.

Christodoulakis [1984] commented that due to the nature of database environ-

ments, functional dependencies (FD) are something typical rather than unusual to

appear on relations. Real data tend to have some relationships among attributes in

relations. (We have raised the significance in Section 3.8.1 of Chapter 3 that data

generated in a relation should have some forms of FDs on them.) To make data in

all relations in Table 6.5 more like realistic data, FDs are added on those relations.

Since each relation has only 5 attributes, only one functional dependency defined on

a few attributes is added on each of those relations. See Table 6.5 for the functional

dependencies on the relations.

Table 6.6 shows the numbers of distinct values for all attributes in the six

databases. In Table 3.11(d) near page 3.5.3.1 which shows the configurations for

the five-relation databases, we only show the numbers of distinct values for the join

attributes, but not for other attributes.

All sampling is done with β = 5% sampling fraction – based on the analysis in

Section 6.4 – for both selection and join selectivities.

Since each database has five relations, for the HYBRID sampling scheme (some

relations are sorted and the rest unsorted) three relations out of the five are selected

Query optimisers that use sampling methods 264

funcdep dist mode
R1 a4 → a3 zipf(260,0.266)
R2 b5 → b2 norm(3661.377,257.170)
R3 c5 → c1c3 unf(3403.931,3590.454)
R4 d1 → d2d5 semizipf(160,0.5)
R5 e1 → e3 exp(139.064)

(a) SJ1, star join DB 1

funcdep dist mode
R1 a1 → a3 exp(120.850)
R2 b4b5 → b2 zipf(450,0.118)
R3 c1 → c4 norm(2734.131,206.915)
R4 d5 → d1 semizipf(750,0.5)
R5 e3 → e1 unf(3977.661,4177.661)

(b) SJ2, star join DB 2

funcdep dist mode
R1 a3a4 → a5 unf(3169.800,3369.800)
R2 b4 → b1b5 norm(3223.145,124.649)
R3 c5 → c3c4 zipf(220,0.922)
R4 d1d4 → d2 exp(81.317)
R5 e5 → e3e4 semizipf(320,0.5)

(c) SJ3, star join DB 3

funcdep dist mode
R1 a3a5 → a4 semizipf(520,0.5)
R2 b1 → b2 norm(2459.717,327.025)
R3 c1c3 → c4 unf(2755.615,2955.615)
R4 d1d2 → d4 zipf(872,0.069)
R5 e1 → e3 fdist(30,10.789)

(d) SJ4, star join DB 4

funcdep dist mode
R1 a1 → a5 exp(120.213)
R2 b2 → b1 semizipf(380,0.5)
R3 c1 → c3c4 zipf(560,0.289)
R4 d2 → d5 norm(2675.293,331.425)
R5 e3 → e1e4 fdist(30,11.302)

(e) SJ5, star join DB 5

funcdep dist mode
R1 a1a4 → a5 norm(1817.017,167.010)
R2 b1 → b2 unf(3076.050,3276.050)
R3 c1c5 → c3 zipf(660,0.998)
R4 d4 → d1d2 exp(139.485)
R5 e4 → e5 semizipf(390,0.5)

(f) SJ6, star join DB 6

Table 6.5: FDs on databases

distinct values of 5 attrs
R1 260, 403, 112, 260, 99
R2 491, 747, 313, 456, 1297
R3 5, 113, 176, 308, 201
R4 160, 4, 383, 201, 113
R5 686, 199, 24, 131, 169

(a) SJ1, star join DB 1

distinct values of 5 attrs
R1 600, 400, 26, 8, 1085
R2 598, 375, 343, 450, 450
R3 1077, 60, 661, 567, 1085
R4 429, 1026, 450, 731, 750
R5 111, 476, 201, 8, 1085

(b) SJ2, star join DB 2

distinct values of 5 attrs
R1 330, 489, 201, 201, 183
R2 417, 1026, 363, 695, 442
R3 487, 144, 190, 197, 220
R4 442, 374, 600, 442, 697
R5 330, 177, 23, 6, 320

(c) SJ3, star join DB 3

distinct values of 5 attrs
R1 330, 700, 520, 7, 520
R2 1591, 823, 413, 731, 697
R3 201, 555, 201, 173, 1085
R4 872, 872, 81, 495, 697
R5 13, 700, 11, 8, 1085

(d) SJ4, star join DB 4

distinct values of 5 attrs
R1 608, 800, 33, 8, 453
R2 286, 380, 800, 731, 697
R3 560, 619, 391, 406, 1085
R4 598, 1609, 143, 731, 629
R5 8, 173, 9, 3, 1085

(e) SJ5, star join DB 5

distinct values of 5 attrs
R1 907, 465, 33, 907, 600
R2 201, 171, 497, 731, 697
R3 660, 663, 418, 722, 660
R4 406, 511, 900, 679, 697
R5 330, 900, 33, 390, 329

(f) SJ6, star join DB 6

Table 6.6: Numbers of distinct values

Query optimisers that use sampling methods 265

as the sorted relations, assuming that the other two relations are unsorted. This

poses a question which are the three sorted relations ? The answer is that the three

are randomly selected from the five relations.

To sufficiently cover a few other cases, not just one combination of the three

relations randomly selected, we randomly generated three combinations altogether

for the sorted relations, i.e., R1R2R3, R1R4R5, and R2R3R5. These three combi-

nations are then used throughout all experiments.

With the use of the resampling technique, 15-time resampling is performed for

all experiments which compare HYBRID with SRSWR. Given that each of the

100 queries is involved with 4–5 relations, approximately in the first 15 queries

the selectivity estimator will spend time resampling to estimate and improve all

possible star join selectivities and store them in the profile catalog. Thus, probably

the accuracy of join selectivities at the outset may be low due to too high a bias on

a single sample used but after more queries are processed by the database system

towards the 15th query, the accuracy will be incrementally higher.

Note that we use the term “query execution plan” throughout Section 6.10 to

mean the optimal execution plan.

We have attempted to summarise the results of the experiments by partitioning

the 100 queries into five categories based on the “size” of actual query execution

costs. In Figure 6.4, we give the routine used to calculate total query execution

costs for the five categories, i.e., one total cost for one category.

The categorisation using the size of query executionsize category

≤ 106 1

> 106 but ≤ 107 2

> 107 but ≤ 108 3

> 108 but ≤ 109 4

> 109 5

Table 6.7: 5 categories

costs is shown in Table 6.7. In the comparison (1) be-

tween HYBRID and UNF and (2) between HYBRID and

SRSWR, the routine is applied to calculate total query ex-

ecution costs for the five categories.

The following are the meanings of the symbols which appear in many result

tables in Section 6.10.2.

samp-cost means the sampling cost per query (i.e., cost(joinsamp) + cost(selsamp)

incurred by HYBRID whose calculation we have introduced in Section 6.9.

no-samp-cost There are times that we consider the query execution plan by HY-

Query optimisers that use sampling methods 266

input: ExeCost[i][method], actual execution cost for query i by method, which is either
method A, selectivity estimation method A or
method B, selectivity estimation method B

output: total[method], total actual execution cost for 100 queries by method
total[method][class], total actual execution cost for

a method in a class of { 1stClass, 2ndClass, 3rdClass, 4thClass, 5thClass }
total[queries][class], total number of queries in a class

foreach method { method A, method B } do
total[method] = 0
foreach class { 1stClass, 2ndClass, 3rdClass, 4thClass, 5thClass } do

total[method][class] = 0
total[queries][class] = 0

endforeach
endforeach
for query i = 1 to 100 do

total[method A] += ExeCost[i][method A]
total[method B] += ExeCost[i][method B]
if ExeCost[i][method A] ≤ 106 then

total[method A][1stClass] += ExeCost[i][method A]
total[method B][1stClass] += ExeCost[i][method B]
total[queries][1stClass] += 1

else if ExeCost[i][method A] > 106 and ExeCost[i][method A] ≤ 107 then
total[method A][2ndClass] += ExeCost[i][method A]
total[method B][2ndClass] += ExeCost[i][method B]
total[queries][2ndClass] += 1

else if ExeCost[i][method A] > 107 and ExeCost[i][method A] ≤ 108 then
total[method A][3rdClass] += ExeCost[i][method A]
total[method B][3rdClass] += ExeCost[i][method B]
total[queries][3rdClass] += 1

else if ExeCost[i][method A] > 108 and ExeCost[i][method A] ≤ 109 then
total[method A][4thClass] += ExeCost[i][method A]
total[method B][4thClass] += ExeCost[i][method B]
total[queries][4thClass] += 1

else
total[method A][5thClass] += ExeCost[i][method A]
total[method B][5thClass] += ExeCost[i][method B]
total[queries][5thClass] += 1

endif
endfor

Figure 6.4: Routine to calculate total query execution costs for 5 categories

BRID without including its sampling cost and hence we use the symbol no-

samp-cost for that purpose.

#q means the number of queries in a category.

diff% and imp% are the difference and improvement by percentage, respectively,

both of which are defined as:

(the cost by the right hand approach - the cost by the left hand approach)
(the cost by the left hand approach)

∗ 100

The left and right hand approaches can be described by examples. Consider,

for example, Table 6.8(a). The left hand approach is HYBRID and the right

hand approach is UNF (see the table heading). As another example, consider

Table 6.9(a). The left hand approach is no-samp-cost and the right hand

approach is samp-cost.

Query optimisers that use sampling methods 267

The symbol diff% is literally just the difference of two values in percentage but

is not meant to carry any meaning of improvement, whereas the symbol imp%

is the difference which is meant to carry an improvement when one estimation

method is used to compare with the other method. The meanings of diff%

and imp% will become clearer when seeing the result tables.

If the value of diff% or imp% is positive (we ignore the + symbol), then the

result of the left hand approach has a smaller value than the result of the right

hand approach. If the value is negative, then the opposite way is true.

There are total values which we reproduce in two places. There are some

rounding-off errors in computation which make the two total values slightly dif-

ferent.

6.10.2 Improvement of query execution plans

A series of experiments has been conducted whose aims are as follows:

1st aim

Compare the UNF and HYBRID approaches. HYBRID uses the one-time sampling

(i.e, 1-time resampling which all previous sampling work proposes) to estimate all

join selectivities. Apart from its query execution cost, each query execution plan

produced by HYBRID must also take account of its sampling cost which we described

in Section 6.9. Given a join query, the aim is to see that generally:

cost(joinsamp[HYBRID]) + cost(selsamp[HYBRID]) + cost(exeplan[HYBRID])

< cost(exeplan[UNF])

The results obtained in Table 6.8 confirm the aim above and overall HYBRID im-

proves the quality of query execution plans over UNF by several orders of magnitude,

and the cost of sampling does not outweigh the gains from improved query execution.

2nd aim

Show that the cost for both one-time sampling (1-time resampling) and 15-time

resampling for all both join and selection3 selectivities is comparatively low, namely,

3The sampling for selection selectivities is only one-time sampling.

Query optimisers that use sampling methods 268

far less than 1%, relative to the total of query execution plan costs for 100 queries.

See Tables 6.9 and 6.10 for the cost. Therefore, it seems practical to introduce the

resampling technique into real-life query optimisers.

Comparing Tables 6.9 and 6.10 in the column diff% at the same sorted relations,

it is natural to see that the cost of 15-time resampling would be more expensive

than that of 1-time resampling.

3rd aim

Show that the resampling technique assists in improving query execution plans.

(Earlier in Chapter 4 we have claimed that it improves join selectivities by reducing

bias.) We compare HYBRID between 1-time and 15-time resampling for all join

selectivities. All query execution plans by both 1-time and 15-time resampling take

account of sampling cost. Note that for the 15-time resampling, each query execution

plan takes account of its 15-time resampling cost for all join selectivities while for

the 1-time resampling, each query plan takes account of its 1-time resampling cost

for all join selectivities.

The results in Table 6.11 in general confirm the reliability of the resampling

technique in obtaining better query plans. There is only one place which has the

worse result in Table 6.11(e) for the sorted relations R1R4R5. Probably this is

because the 15-time resampling still does not help much improve the overall quality

of join selectivities, compared with the higher resampling cost that must be paid

for. However this is the only one place out of all and the rest all produce better

results.

In fact, Table 6.11 is the reproduction of the samp-cost column with 1-time

resampling from Table 6.9 and the samp-cost column with 15-time resampling from

Table 6.10. This is to make it easy to compare the results to check against the 3rd

aim.

4th aim

Due to the improvement by the resampling technique in the 3rd aim, we then proceed

to compare between HYBRID and SRSWR with 15-time resampling for both of

Query optimisers that use sampling methods 269

them. For a join query, the aim is to see that generally:

cost(joinsamp[HYBRID]) + cost(selsamp[HYBRID]) + cost(exeplan[HYBRID])

< cost(joinsamp[SRSWR]) + cost(selsamp[SRSWR]) + cost(exeplan[SRSWR])

However, since both of the sampling techniques incur a similar sampling cost, i.e.,

cost(joinsamp) + cost(selsamp) because of the fact that they both do sampling

with the same sampling fraction for both join and selection selectivities. The sim-

plified aim is thus reduced to:

cost(exeplan[HYBRID]) < cost(exeplan[SRSWR])

The results in Table 6.12 in general confirm the aim above. HYBRID, which uses

the sortedness of data whenever possible, proves to provide slightly better query

execution plans with the same sampling cost as SRSWR.

Miscellaneous issues

Table 6.9 is the table for HYBRID with 1-time resampling. In this table, the column

samp-cost is the reproduction from Table 6.8 at the last row of the column hybrid.

Let us see an example. Consider the sorted relations R1R2R3 at the samp-cost

column of Table 6.9(a). The total cost is equal to 1.0748e+11 which comes from

Table 6.8(a) at the last row in the column hybrid.

Similarly, Table 6.10 is the table for HYBRID with 15-time resampling. In this

table, the column no-samp-cost is the reproduction from Table 6.12 at the last row

of the column hybrid. Let us see an example. Consider the sorted relations R1R2R3

at the no-samp-cost column of Table 6.10(a). The total cost is equal to 1.0727e+11

which comes from Table 6.12(a) at the last row in the column hybrid.

6.11 Conclusion

We have shown that more accurate selectivity estimation techniques can indeed

assist in the selection of better query execution plans.

We believe that for next-generation databases where there may be a large number

of relations, i.e., more than 10 relations involved in join queries, more accurate

Query optimisers that use sampling methods 270

hybrid unf imp% #q
5.8221e+06 6.2685e+06 7.667 10
3.1266e+07 5.3694e+07 71.733 8
1.0080e+09 1.2537e+09 24.379 21
1.3671e+10 1.8462e+10 35.044 33
9.2759e+10 1.0583e+11 14.095 28
1.0748e+11 1.2561e+11 16.872 100

(a) SJ1, R1R2R3

hybrid unf imp% #q
5.8222e+06 6.2685e+06 7.665 10
3.1286e+07 5.3694e+07 71.622 8
9.1454e+08 1.1528e+09 26.052 20
1.4039e+10 1.8563e+10 32.222 34
9.4017e+10 1.0583e+11 12.569 28
1.0901e+11 1.2561e+11 15.229 100

(b) SJ1, R1R4R5

hybrid unf imp% #q
6.4616e+06 6.7824e+06 4.965 11
3.4248e+07 5.3180e+07 55.281 7
9.5356e+08 1.2537e+09 31.476 21
1.2689e+10 1.7379e+10 36.963 32
9.3970e+10 1.0692e+11 13.777 29
1.0765e+11 1.2561e+11 16.680 100

(c) SJ1, R2R3R5

hybrid unf imp% #q
6.0436e+06 5.4858e+06 -9.229 11
5.6807e+07 1.0251e+08 80.459 13
1.6126e+09 1.8317e+09 13.588 38
9.0717e+09 9.5860e+09 5.669 31
9.9079e+09 1.0132e+10 2.262 7
2.0655e+10 2.1658e+10 4.854 100

(d) SJ2, R1R2R3

hybrid unf imp% #q
7.1687e+06 6.6712e+06 -6.940 13
6.5096e+07 1.1640e+08 78.806 14
1.6207e+09 1.9769e+09 21.979 37
8.7012e+09 1.0353e+10 18.980 30
8.0393e+09 9.2050e+09 14.501 6
1.8433e+10 2.1658e+10 17.491 100

(e) SJ2, R1R4R5

hybrid unf imp% #q
6.4844e+06 5.9961e+06 -7.530 12
6.8621e+07 1.1707e+08 70.603 15
1.5807e+09 1.9769e+09 25.067 37
8.7117e+09 1.0353e+10 18.837 30
7.8631e+09 9.2050e+09 17.066 6
1.8231e+10 2.1658e+10 18.798 100

(f) SJ2, R2R3R5

hybrid unf imp% #q
4.6402e+06 3.9708e+06 -14.425 9
3.5065e+07 4.0720e+07 16.129 9
1.2578e+09 1.5497e+09 23.202 27
1.5180e+10 1.6689e+10 9.941 43
2.6546e+10 2.5482e+10 -4.009 12
4.3024e+10 4.3765e+10 1.724 100

(g) SJ3, R1R2R3

hybrid unf imp% #q
4.0694e+06 3.5280e+06 -13.304 8
5.1469e+07 5.0984e+07 -0.943 11
1.2420e+09 1.5398e+09 23.985 26
1.4841e+10 1.6689e+10 12.450 43
2.5332e+10 2.5482e+10 0.593 12
4.1470e+10 4.3765e+10 5.534 100

(h) SJ3, R1R4R5

hybrid unf imp% #q
3.9377e+06 3.5280e+06 -10.405 8
4.5537e+07 5.0984e+07 11.962 11
1.2380e+09 1.5398e+09 24.382 26
1.4648e+10 1.6689e+10 13.931 43
2.4876e+10 2.5482e+10 2.436 12
4.0812e+10 4.3765e+10 7.237 100

(i) SJ3, R2R3R5

Table 6.8: Results between UNF and HYBRID with 1-time resampling with samp-cost
added

1-time resampling = Resampling has been done only once for all star join selectivities.

Query optimisers that use sampling methods 271

hybrid unf imp% #q
6.5036e+06 6.5624e+06 0.904 12
2.4585e+07 3.0808e+07 25.311 6
1.4801e+09 2.5073e+09 69.404 29
1.0367e+10 1.2404e+10 19.647 27
1.2763e+11 1.3221e+11 3.587 26
1.3951e+11 1.4715e+11 5.483 100

(j) SJ4, R1R2R3

hybrid unf imp% #q
5.8409e+06 6.0883e+06 4.235 11
2.9927e+07 3.1282e+07 4.528 7
1.4254e+09 2.3170e+09 62.551 28
9.9385e+09 1.2594e+10 26.724 28
1.2781e+11 1.3221e+11 3.442 26
1.3921e+11 1.4715e+11 5.710 100

(k) SJ4, R1R4R5

hybrid unf imp% #q
6.1697e+06 6.3668e+06 3.194 12
2.8864e+07 3.1004e+07 7.414 6
1.3872e+09 2.3170e+09 67.026 28
9.9435e+09 1.2594e+10 26.659 28
1.2714e+11 1.3221e+11 3.988 26
1.3850e+11 1.4715e+11 6.247 100

(l) SJ4, R2R3R5

hybrid unf imp% #q
1.2417e+07 4.1976e+08 3280.6 24
3.3225e+07 1.2565e+08 278.18 9
9.7540e+08 1.8214e+09 86.735 27
1.4057e+10 1.9077e+10 35.710 34
7.7252e+09 9.9362e+09 28.621 6
2.2804e+10 3.1380e+10 37.611 100

(m) SJ5, R1R2R3

hybrid unf imp% #q
1.2239e+07 5.3844e+08 4299.2 24
3.3815e+07 1.2649e+08 274.08 10
1.0560e+09 1.9318e+09 82.933 28
1.3796e+10 1.8847e+10 36.617 32
7.7281e+09 9.9362e+09 28.571 6
2.2626e+10 3.1380e+10 38.691 100

(n) SJ5, R1R4R5

hybrid unf imp% #q
1.2254e+07 4.1976e+08 3325.621 24
3.2811e+07 1.2565e+08 282.955 9
9.7628e+08 1.8214e+09 86.565 27
1.4068e+10 1.9077e+10 35.612 34
7.7252e+09 9.9362e+09 28.621 6
2.2814e+10 3.1380e+10 37.548 100

(o) SJ5, R2R3R5

hybrid unf imp% #q
3.1258e+06 2.3966e+06 -23.326 6
9.9405e+07 2.3585e+08 137.262 19
1.2281e+09 3.5998e+09 193.115 27
6.1427e+09 6.5575e+09 6.754 16
2.3684e+11 3.2153e+11 35.755 32
2.4432e+11 3.3192e+11 35.857 100

(p) SJ6, R1R2R3

hybrid unf imp% #q
2.8548e+06 2.4111e+06 -15.542 6
9.1157e+07 2.2780e+08 149.896 17
1.1565e+09 2.5998e+09 124.801 26
5.6485e+09 6.3672e+09 12.725 18
2.3883e+11 3.2272e+11 35.126 33
2.4573e+11 3.3192e+11 35.075 100

(q) SJ6, R1R4R5

hybrid unf imp% #q
3.7334e+06 2.9063e+06 -22.154 7
9.8305e+07 2.3534e+08 139.397 18
1.1292e+09 2.5998e+09 130.231 26
6.2518e+09 7.5576e+09 20.886 17
2.3631e+11 3.2153e+11 36.059 32
2.4380e+11 3.3192e+11 36.147 100

(r) SJ6, R2R3R5

Table 6.8: Results between UNF and HYBRID with 1-time resampling with samp-cost
added

1-time resampling = Resampling has been done only once for all star join selectivities.

Query optimisers that use sampling methods 272

sorted rel no-samp-cost samp-cost diff%
R1R2R3 1.0747e+11 1.0748e+11 0.005
R1R4R5 1.0900e+11 1.0901e+11 0.005
R2R3R5 1.0765e+11 1.0765e+11 0.005

(a) SJ1

sorted rel no-samp-cost samp-cost diff%
R1R2R3 2.0650e+10 2.0655e+10 0.026
R1R4R5 1.8428e+10 1.8433e+10 0.029
R2R3R5 1.8225e+10 1.8231e+10 0.030

(b) SJ2

sorted rel no-samp-cost samp-cost diff%
R1R2R3 4.3018e+10 4.3024e+10 0.012
R1R4R5 4.1465e+10 4.1470e+10 0.013
R2R3R5 4.0806e+10 4.0812e+10 0.013

(c) SJ3

sorted rel no-samp-cost samp-cost diff%
R1R2R3 1.3950e+11 1.3951e+11 0.004
R1R4R5 1.3920e+11 1.3921e+11 0.004
R2R3R5 1.3850e+11 1.3850e+11 0.004

(d) SJ4

sorted rel no-samp-cost samp-cost diff%
R1R2R3 2.2798e+10 2.2804e+10 0.023
R1R4R5 2.2621e+10 2.2626e+10 0.023
R2R3R5 2.2809e+10 2.2814e+10 0.023

(e) SJ5

sorted rel no-samp-cost samp-cost diff%
R1R2R3 2.4431e+11 2.4432e+11 0.002
R1R4R5 2.4573e+11 2.4573e+11 0.002
R2R3R5 2.4379e+11 2.4380e+11 0.002

(f) SJ6

Table 6.9: Total costs by HYBRID with 1-time resampling before and after adding sam-
pling costs

Total cost = A total of query execution costs for all 100 queries used.
1-time resampling = Resampling has been done only once for all star join selectivities.
no-samp-cost = Consider only the query execution cost per query without samp-cost.

techniques will play a more important role in selecting the optimal execution plans.

This is because one can no longer employ the exhaustive search algorithm to search

for the optimal plan (as the factorial number m! of plans grows too large for the

thorough search to be done in a practical time) and instead, has to use any of the

limited search algorithms which basically searches only a portion of an entire search

space for a near-optimal plan, hence leaving out the other portion of the search space

unsearched. As a consequence, by the limited search space one should very much

rely on the quality obtained of the estimated cost for execution plans calculated

by an accurate estimation technique so that such estimated costs will be reliable

and thus the plan selected as near-optimal will be trustworthy in most of the times,

namely, will be the best among all plans in the limited space.

Either the exhaustive or limited search algorithm can plug in the query optimiser

architecture we have proposed in this chapter. The analysis for the query evaluation

cost and optimisation cost we have derived is also flexible to handle both search

algorithms.

Interesting future work consists of (1) comparing the optimiser with the semi-

dynamic and fully dynamic approaches and (2) comparing the semi-dynamic or

fully dynamic query optimiser with HIST, the most popular histogram technique

Query optimisers that use sampling methods 273

sorted rel no-samp-cost samp-cost diff%
R1R2R3 1.0727e+11 1.0729e+11 0.016
R1R4R5 1.0703e+11 1.0705e+11 0.016
R2R3R5 1.0737e+11 1.0738e+11 0.016

(a) SJ1

sorted rel no-samp-cost samp-cost diff%
R1R2R3 1.8075e+10 1.8094e+10 0.104
R1R4R5 1.8063e+10 1.8082e+10 0.103
R2R3R5 1.8051e+10 1.8069e+10 0.104

(b) SJ2

sorted rel no-samp-cost samp-cost diff%
R1R2R3 4.0543e+10 4.0560e+10 0.042
R1R4R5 4.0538e+10 4.0555e+10 0.042
R2R3R5 4.0598e+10 4.0615e+10 0.042

(c) SJ3

sorted rel no-samp-cost samp-cost diff%
R1R2R3 1.3867e+11 1.3869e+11 0.013
R1R4R5 1.3854e+11 1.3856e+11 0.013
R2R3R5 1.3831e+11 1.3833e+11 0.013

(d) SJ4

sorted rel no-samp-cost samp-cost diff%
R1R2R3 2.2538e+10 2.2555e+10 0.075
R1R4R5 2.2614e+10 2.2631e+10 0.075
R2R3R5 2.2470e+10 2.2487e+10 0.075

(e) SJ5

sorted rel no-samp-cost samp-cost diff%
R1R2R3 2.4286e+11 2.4288e+11 0.008
R1R4R5 2.4156e+11 2.4158e+11 0.008
R2R3R5 2.4156e+11 2.4158e+11 0.008

(f) SJ6

Table 6.10: Total costs by HYBRID with 15-time resampling before and after adding
sampling costs

Total cost = A total of query execution costs for all 100 queries used.
15-time resampling = Resampling has been done 15 times for all star join selectivities.
no-samp-cost = Consider only the query execution cost per query without samp-cost.

implemented in many commercial database systems.

Query optimisers that use sampling methods 274

resamp.
sorted rel 15 1 imp%
R1R2R3 1.0729e+11 1.0748e+11 0.175
R1R4R5 1.0705e+11 1.0901e+11 1.828
R2R3R5 1.0738e+11 1.0765e+11 0.251

(a) SJ1

resamp.
sorted rel 15 1 imp%
R1R2R3 1.8094e+10 2.0655e+10 14.155
R1R4R5 1.8082e+10 1.8433e+10 1.946
R2R3R5 1.8069e+10 1.8231e+10 0.892

(b) SJ2

resamp.
sorted rel 15 1 imp%
R1R2R3 4.0560e+10 4.3024e+10 6.073
R1R4R5 4.0555e+10 4.1470e+10 2.256
R2R3R5 4.0615e+10 4.0812e+10 0.484

(c) SJ3

resamp.
sorted rel 15 1 imp%
R1R2R3 1.3869e+11 1.3951e+11 0.587
R1R4R5 1.3856e+11 1.3921e+11 0.467
R2R3R5 1.3833e+11 1.3850e+11 0.124

(d) SJ4

resamp.
sorted rel 15 1 imp%
R1R2R3 2.2555e+10 2.2804e+10 1.101
R1R4R5 2.2631e+10 2.2626e+10 -0.023
R2R3R5 2.2487e+10 2.2814e+10 1.455

(e) SJ5

resamp.
sorted rel 15 1 imp%
R1R2R3 2.4288e+11 2.4432e+11 0.590
R1R4R5 2.4158e+11 2.4573e+11 1.719
R2R3R5 2.4158e+11 2.4380e+11 0.915

(f) SJ6

Table 6.11: Total costs by HYBRID between 1-time and 15-time resampling with samp-
cost added

Total cost = A total of query execution costs for all 100 queries used.
15-time resampling = Resampling has been done 15 times for all star join selectivities.

Query optimisers that use sampling methods 275

hybrid srswr imp% #q
5.3174e+06 5.3174e+06 0.000 10
3.0848e+07 3.0848e+07 0.000 8
1.0058e+09 1.0066e+09 0.080 21
1.3661e+10 1.4419e+10 5.545 33
9.2566e+10 9.3915e+10 1.457 28
1.0727e+11 1.0937e+11 1.964 100

(a) SJ1, R1R2R3

hybrid srswr imp% #q
5.3174e+06 5.3174e+06 0.000 10
3.0848e+07 3.0848e+07 0.000 8
1.0014e+09 1.0066e+09 0.526 21
1.3680e+10 1.4419e+10 5.398 33
9.2315e+10 9.3915e+10 1.733 28
1.0703e+11 1.0937e+11 2.189 100

(b) SJ1, R1R4R5

hybrid srswr imp% #q
5.3174e+06 5.3174e+06 0.000 10
3.0848e+07 3.0848e+07 0.000 8
9.5421e+08 1.0066e+09 5.499 21
1.3666e+10 1.4419e+10 5.509 33
9.2709e+10 9.3915e+10 1.300 28
1.0736e+11 1.0937e+11 1.873 100

(c) SJ1, R2R3R5

hybrid srswr imp% #q
5.7544e+06 5.6778e+06 -1.331 12
5.8784e+07 5.4083e+07 -7.997 14
1.5561e+09 1.6716e+09 7.421 38
8.5915e+09 9.1758e+09 6.800 30
7.8627e+09 8.8382e+09 12.406 6
1.8075e+10 1.9745e+10 9.241 100

(d) SJ2, R1R2R3

hybrid srswr imp% #q
6.4295e+06 8.0516e+06 25.229 13
5.6366e+07 5.1709e+07 -8.261 13
1.5588e+09 1.6716e+09 7.239 38
8.5786e+09 9.1758e+09 6.961 30
7.8627e+09 8.8382e+09 12.406 6
1.8063e+10 1.9745e+10 9.314 100

(e) SJ2, R1R4R5

hybrid srswr imp% #q
5.7544e+06 5.6778e+06 -1.331 12
5.6964e+07 5.4083e+07 -5.058 14
1.5589e+09 1.6716e+09 7.229 38
8.5661e+09 9.1758e+09 7.118 30
7.8627e+09 8.8382e+09 12.406 6
1.8050e+10 1.9745e+10 9.390 100

(f) SJ2, R2R3R5

hybrid srswr imp% #q
4.1845e+06 4.6321e+06 10.696 9
4.3895e+07 4.9913e+07 13.710 10
1.3323e+09 1.3339e+09 0.120 27
1.4428e+10 1.4677e+10 1.728 42
2.4734e+10 2.5328e+10 2.401 12
4.0543e+10 4.1394e+10 2.100 100

(g) SJ3, R1R2R3

hybrid srswr imp% #q
4.6430e+06 4.6321e+06 -0.235 9
4.3851e+07 4.9913e+07 13.825 10
1.3316e+09 1.3339e+09 0.169 27
1.4426e+10 1.4677e+10 1.741 42
2.4731e+10 2.5328e+10 2.413 12
4.0538e+10 4.1394e+10 2.112 100

(h) SJ3, R1R4R5

hybrid srswr imp% #q
4.6430e+06 4.6321e+06 -0.235 9
4.9913e+07 4.9913e+07 0.000 10
1.3312e+09 1.3339e+09 0.197 27
1.4478e+10 1.4677e+10 1.378 42
2.4734e+10 2.5328e+10 2.403 12
4.0597e+10 4.1394e+10 1.962 100

(i) SJ3, R2R3R5

Table 6.12: Results with 15-time resampling and with no-samp-cost between HYBRID
and SRSWR

For both HYBRID and SRSWR,
15-time resampling = Resampling has been done 15 times for all star join selectivities.
no-samp-cost = Consider only the query execution cost per query without samp-cost.

Query optimisers that use sampling methods 276

hybrid srswr imp% #q
5.2529e+06 5.4131e+06 3.050 11
2.9286e+07 2.5063e+07 -14.418 7
1.4842e+09 1.4967e+09 0.838 29
9.8338e+09 1.0306e+10 4.808 27
1.2732e+11 1.2831e+11 0.778 26
1.3867e+11 1.4014e+11 1.062 100

(j) SJ4, R1R2R3

hybrid srswr imp% #q
5.8563e+06 6.1951e+06 5.785 12
2.4281e+07 2.4281e+07 0.000 6
1.5736e+09 1.5733e+09 -0.020 30
1.0023e+10 1.0230e+10 2.061 26
1.2691e+11 1.2831e+11 1.102 26
1.3854e+11 1.4014e+11 1.159 100

(k) SJ4, R1R4R5

hybrid srswr imp% #q
5.2529e+06 5.4131e+06 3.050 11
2.9564e+07 2.5063e+07 -15.224 7
1.4834e+09 1.4967e+09 0.897 29
9.8338e+09 1.0306e+10 4.808 27
1.2696e+11 1.2831e+11 1.065 26
1.3831e+11 1.4014e+11 1.326 100

(l) SJ4, R2R3R5

hybrid srswr imp% #q
1.1683e+07 1.5030e+08 1186 25
3.2747e+07 3.4280e+07 4.683 9
1.0283e+09 1.0898e+09 5.988 28
1.3740e+10 1.3798e+10 0.418 32
7.7248e+09 7.7248e+09 0.000 6
2.2538e+10 2.2797e+10 1.150 100

(m) SJ5, R1R2R3

hybrid srswr imp% #q
1.1683e+07 1.5030e+08 1186 25
3.2747e+07 3.4280e+07 4.683 9
1.0508e+09 1.0898e+09 3.709 28
1.3794e+10 1.3798e+10 0.029 32
7.7248e+09 7.7248e+09 0.000 6
2.2614e+10 2.2797e+10 0.810 100

(n) SJ5, R1R4R5

hybrid srswr imp% #q
1.1683e+07 1.5030e+08 1186 25
3.3204e+07 3.4280e+07 3.242 9
1.0324e+09 1.0898e+09 5.566 28
1.3735e+10 1.3798e+10 0.455 32
7.6571e+09 7.7248e+09 0.884 6
2.2470e+10 2.2797e+10 1.457 100

(o) SJ5, R2R3R5

hybrid srswr imp% #q
3.2927e+06 3.2865e+06 -0.190 7
9.7999e+07 9.3528e+07 -4.563 18
1.1368e+09 1.1832e+09 4.081 26
6.2470e+09 6.1989e+09 -0.770 17
2.3537e+11 2.3738e+11 0.852 32
2.4286e+11 2.4486e+11 0.824 100

(p) SJ6, R1R2R3

hybrid srswr imp% #q
4.6230e+06 4.2685e+06 -7.666 8
9.3402e+07 9.2546e+07 -0.917 17
1.2090e+09 1.2535e+09 3.688 27
6.0310e+09 6.1286e+09 1.618 16
2.3422e+11 2.3738e+11 1.350 32
2.4156e+11 2.4486e+11 1.368 100

(q) SJ6, R1R4R5

hybrid srswr imp% #q
3.7247e+06 3.7589e+06 0.916 7
9.5085e+07 9.3055e+07 -2.135 18
1.1147e+09 1.1510e+09 3.262 26
6.1335e+09 6.2311e+09 1.592 17
2.3421e+11 2.3738e+11 1.352 32
2.4156e+11 2.4486e+11 1.366 100

(r) SJ6, R2R3R5

Table 6.12: Results with 15-time resampling and with no-samp-cost between HYBRID
and SRSWR

For both HYBRID and SRSWR,
15-time resampling = Resampling has been done 15 times for all star join selectivities.
no-samp-cost = Consider only the query execution cost per query without samp-cost.

CHAPTER 7

Conclusion

In this thesis, we examined the general problem of efficiently determining accurate

estimates of query result sizes to assist in the task of query optimisation. The thesis

contributes the following results:

• For both join and selection selectivity estimation, we have proposed and demon-

strated the capability of HYBRID, a variant of sampling-based methods. The

method is meant for centralised database systems where on-line sampling is

appropriate.

• When on-line sampling is inappropriate, such as in distributed database sys-

tems, selectivity estimation by local regression, as a non-sampling-based method

can be used. Local regression appears to generalise other major non-sampling-

based methods proposed in the literature, e.g., UNF, all kinds of histogram

methods, IASE and ASE such that they can all be implemented under a sin-

gle framework. The main strength of the single framework implementation is

that different methods have different strengths in dealing with different data

distributions. Individual methods handle only some classes of data distribu-

tion well; however, their strengths are complementary and it appears that a

combined scheme under our proposed framework might well provide a general

277

Conclusion 278

solution.

• Two possible approaches semi-dynamic and fully dynamic are proposed to the

implementation of a query optimiser that uses sampling for selectivity esti-

mation. To date, there have been a large number of studies about selectivity

estimation based on sampling techniques but to our best knowledge, no pre-

vious work has studied and analysed the feasibility of on-line sampling as a

technique for join and selection selectivity estimation that can be used by

query optimisers in database systems.

The remaining future work consists mainly of experimental work to clarify the

following points:

• Compare many of the local regression variants proposed in Chapter 5 with

serial histograms V-Optimal(V,A) and MaxDiff(V,A) to determine the perfor-

mance of these methods with respect to different kinds of data distributions.

• Compare the query optimiser that uses the semi-dynamic and fully dynamic

approaches.

• Compare the semi-dynamic query optimiser with non-sampling-based methods

such as histogram and local regression. Likewise, compare the fully dynamic

query optimiser with such non-sampling-based methods.

Bibliography

Aha, D. W. [1990], A Study of Instance-Based Algorithms for Supervised Learning

Tasks: Mathematical, Empirical, and Psychological Evaluations, PhD thesis, Depart-

ment of Information and Computer Science, University of California, Irvine, CA

92717.

Aha, D. W., Kibler, D. and Albert, M. K. [1991], ‘Instance-Based Learning Algo-

rithms’, Machine Learning 6(1), 37–66.

Aho, A. V., Sethi, R. and Ullman, J. D. [1985], Compilers: Principles, Techniques

and Tools, Addison-Wesley.

Anderberg, M. R. [1973], Cluster Analysis for Applications, Academic Press.

Antoshenkov, G. [1993], Dynamic Query Optimization in rdb/VMS, in ‘Proc. IEEE

Int’l. Conf. on Data Engineering’, Vienna, Austria, pp. 538–547.

Bayer, R. and McCreight, E. M. [1972], ‘Organization and maintenance of large or-

dered indexes’, Acta Informatica, Springer Verlag (Heidelberg, FRG and NewYork

NY, USA) Verlag 1(3), ˙Also published in/as: ACM SIGFIDET 1970, pp.107–141.

Belussi, A. and Faloutsos, C. [1995], Estimating the Selectivity of Spatial Queries us-

ing the Correlation’s Fractal Dimension, in U. Dayal, P. M. D. Gray and S. Nishio,

eds, ‘VLDB ’95: proceedings of the 21st International Conference on Very Large

279

BIBLIOGRAPHY 280

Data Bases, Zurich, Switzerland, Sept. 11–15, 1995’, Morgan Kaufmann Publish-

ers, Los Altos, CA 94022, USA, pp. 299–310.

Bennett, K. P., Ferris, M. C. and Ioannidis, Y. E. [1991], A Genetic Algorithm for

Database Query Optimization, Technical Report TR 1004, Computer Sciences

Department, University of Wisconsin, Madison, Wisconsin.

Bickel, P. J. and Freedman, D. A. [1981], ‘Some Asymtotic Theory for the Boot-

strap’, Annals of Statistics 9, 1196–1217.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. [1984], Classification

and Regression Tress, Chapman & Hall, Inc.

Chakravarthy, S. [1991], Divide and conquer: A basis for augmenting a conventional

query optimizer with multiple query processing capabilities, in ‘International Con-

ference on Data Engineering’, IEEE Computer Society Press, Los Alamitos, Ca.,

USA, pp. 482–490.

Chao, T. J. and Egyhazy, C. J. [1986], Estimating temporary files sizes in distributed

relational database systems, in ‘Proc. IEEE Int’l. Conf. on Data Engineering’, Los

Angeles, CA, pp. 4–12.

Chen, C. M. and Roussopoulos, N. [1994], Adaptive Selectivity Estimation using

Query Feedback, in ‘Proceedings of 1994 ACM-SIGMOD International Conference

on Management of Data’.

Choenni, R., Kersten, M. L., van den Akker, J. F. P. and Saad, A. [1996], On

Multi-Query Optimization, Technical Report CS-R9638, National Research Insti-

tute for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB

Amsterdam, Netherlands.

Christodoulakis, S. [1983a], Estimating Block Transfers and Join Sizes, in D. J.

DeWitt and G. Gardarin, eds, ‘SIGMOD’83, Proceedings of Annual Meeting’,

San Jose, California, pp. 40–54.

Christodoulakis, S. [1983b], ‘Estimating Record Selectivities’, Information System

8(2), 105–115.

BIBLIOGRAPHY 281

Christodoulakis, S. [1984], ‘Implications of certain assumptions in data base perfor-

mance evaluation’, ACM Transactions on Database Systems 9(2), 163–186.

Cleveland, W. S. [1979], ‘Robust Locally Weighted Regression and Smoothing Scat-

terplots’, Journal of the American Statistical Association 74, 829–836.

Cleveland, W. S. and Devlin, S. J. [1988], ‘Locally Weighted Regression: An ap-

proach to regression analysis by local fitting’, Journal of the American Statistical

Association 83, 596–610.

Cleveland, W. S. and Grosse, E. H. [1991], ‘Computational Methods for Local Re-

gression’, Statistics and Computing 1, 47–62.

Cleveland, W. S. and Loader, C. R. [1996], Smoothing by local regression: Principles

and methods, in W. Hardle and M. G. Schimek, eds, ‘Statistical Theory and

Computational Aspects of Smoothing’, Physica Verlag, Heidelberg.

Cochran, W. G. [1963], Sampling Techniques, second edition edn, John Wiley &

Sons, Inc.

Cosar, A., Lim, E.-P. and Srivastava, J. [1993], Multiple query optimization with

depth-first, branch-and-bound and dynamic query ordering, in B. Bhargava,

T. Finin and Y. Yesha, eds, ‘Proceedings of the 2nd International Conference

on Information and Knowledge Management’, ACM Press, New York, NY, USA,

pp. 433–438.

Cox, D. R. [1952], ‘Estimation by Double Sampling’, Biometrika 39, 217–227.

Dasarathy, B. V., ed. [1991], Nearest Neighbor (NN) Norms : NN Pattern Classifi-

cation Techniques, IEEE Computer Society Press.

Dayal, U. [1984], Query Processing in a Multidatabase System, in W. Kim, D. S.

Reiner and D. S. Batory, eds, ‘Query Processing in Database Systems’, Springer

Verlag, pp. 81–108.

Delobel, C., Lécluse, C. and Richard, P. [1995], Databases: From Relational to

Object-Oriented Systems, International Thomson Computer Press.

BIBLIOGRAPHY 282

DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R. and

Wood, D. [1984], ‘Implementation Techniques for Main Memory Database Sys-

tems’, SIGMOD Record (ACM Special Interest Group on Management of Data)

14(2), 1–8.

Dogac, A., Halici, U., Kilic, E., Ozhan, G., Ozcan, F., Nural, S., Dengi, C., Man-

cuhan, S., Arpinar, B., Koksal, P. and Evrendilek, C. [1996], Metu Interoperable

Database System, Demo Description, in ‘Proceedings of ACM Sigmod Intl. Conf.

on Management of Data’. Montreal.

Draper, N. R. and Smith, H. [1966], Applied Regression Analysis, John Wiley &

Sons, Inc.

Du, W., Chan, M. C. and Dayal, U. [1995], Reducing Multidatabase Query Response

Time by Tree Balancing, in ‘ACM SIGMOD Intl. Conf. on Management of Data’.

Du, W., Krishnamurthy, R. and Shan, M. [1992], Query Optimization in Heteroge-

neous DBMS, in ‘Proceedings of the 18th VLDB Conference’, pp. 277–291.

Duda, R. O. and Hart, P. E. [1974], Pattern Classification and Scene Analysis, John

Wiley and Sons, New York.

Efron, B. [1979], ‘Bootstrap Methods: Another Look at the Jackknife’, Annals of

Statistics 7, 1–26.

Elmasri, R. and Navathe, S. B. [1991], Fundamentals of Database Systems, Ben-

jamin/Cummings, chapter 18, pp. 501–534. Query Processing and Optimization.

Epstein, R. and Stonebraker, M. [1980], Analysis of Distributed Data Base Pro-

cessing Strategies, in ‘VLDB 1980’, pp. 92–101. Proceedings of the Very Large

Database Conference.

Evrendilek, C., Dogac, A., Nural, S. and Ozcan, F. [1995], Query Decomposition,

Optimization and Processing in Multidatabase Systems, in ‘Proc. of Workshop on

Next Generation Information Technologies and Systems’. Naharia, Israel.

Freytag, J. C. [1987], A rule-based view of query optimization, in U. Dayal and

I. Traiger, eds, ‘Proceedings of the ACM SIGMOD Annual Conference’, acm,

ACM Press, San Francisco, CA, pp. 173–180.

BIBLIOGRAPHY 283

Gardalin, G., Gruser, J. R. and Tang, Z. H. [1995], A Cost Model for Clus-

tered Object-Oriented Databases, in ‘Proceedings of the 21st VLDB Conference’,

Zürich, Switzerland, pp. 323–334.

Gardarin, G., Gruser, J.-R. and Tang, Z.-H. [1996], Cost-based Selection of Path

Expression Processing Algorithms in Object-Oriented Databases Database Sys-

tems, in ‘International Conference on Very Large DataBase, VLDB’96’. Bombay,

India.

Gardy, D. and Puech, C. [1989], ‘On the Effect of Join Operations on Relation Sizes’,

ACM Transactions on Database Systems 14(4), 574–603.

Grichting, W. L. [1995], ‘Bootstrapping and Resampling Stats: what are the dif-

ferences ?’, A news-net article in reply to the question. Author’s address: Social

Science, University of Tasmania, Launceston, Tasmania, Australia.

Gruser, J. R., Florescu, D., Naacke, H., Tang, Z. H. and Ziane, M. [1996], ‘Flora

- a Query Optimizer for OODBMSs’, Ingineering of Information Systems (ISI),

AFCET .

Haas, L. M., Freytag, J. C., Lohman, G. M. and Pirahesh, H. [1989], ‘Extensive

query processing in starburst’, SIGMOD Record (ACM Special Interest Group on

Management of Data) 18(2), 377–388.

Haas, P. J., Naughton, J. F., Seshadri, S. and Stokes, L. [1995], Sampling-based

Estimation of the Number of Distinct Values of an Attribute, in ‘Proceedings of

the 21st VLDB Conference’, pp. 311–322. Zurich, Switzerland.

Haas, P. J., Naughton, J. F., Seshadri, S. and Swami, A. N. [1993], Fixed-Precision

Estimation of Join Selectivity, in ‘Proc. 12th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems’, pp. 190–201.

Haas, P. J., Naughton, J. F., Seshadri, S. and Swami, A. N. [1996], ‘Selectivity and

Cost Estimation for Joins Based on Random Sampling’, Journal of Computer and

System Sciences 52(3), 550–569.

Haas, P. J. and Swami, A. N. [1992], Sequential Sampling Procedures for Query

BIBLIOGRAPHY 284

Size Estimation, in ‘ACM SIGMOD Conference on the Management of Data’,

pp. 341–350.

Haas, P. J. and Swami, A. N. [1995], Sampling-Based Selectivity Estimation for Joins

Using Augmented Frequency Value Statistics, in ‘The International Confererence

on Data Engineering’, pp. 522–531.

Harangsri, B., Shepherd, J. A. and Ngu, A. H. H. [1996a], Query Classification in

Multidatabase Systems, in ‘Seventh Australian Database Conference’, Australian

Computer Society, pp. 147–156. Melbourne, Australia.

Harangsri, B., Shepherd, J. and Ngu, A. [1996b], Query Optimisation in Multi-

database Systems using Query Classification, in ‘11th Annual ACM Symposium

ON Applied Computing (SAC’96)’, ACM, pp. 173–177. Marriott Hotel, Philadel-

phia, Pennsylvania.

Harangsri, B., Shepherd, J. and Ngu, A. [1996c], Query Size Estimation using Sys-

tematic Sampling, in ‘International Symposium on Cooperative Database Systems

for Advanced Applications’, pp. 400–403. December 5–7, Heian Shrine, Kyoto,

Japan.

Harangsri, B., Shepherd, J. and Ngu, A. [1997], Query Size Estimation using Ma-

chine Learning, in ‘Database Systems for Advanced Applications 1997 (DAS-

FAA’97)’. Melbourne, Australia.

Harangsri, B., Shepherd, J. and Ngu, A. [1998], Building More Efficient Histograms

by Systematic Sampling, in ‘International Workshop on Issues and Applications

of Database Technology (IADT’98)’, Berlin, Germany, July 6–9. Accepted for

publication.

Hellerstein, J. M. and Stonebraker, M. [1993], Predicate Migration: Optimizing

Queries with Expensive Predicates, in ‘Proc. ACM SIGMOD Conf.’.

Hevner, A. R. and Yao, S. [1979], ‘Query Processing in Distributed Database Sys-

tems’, IEEE Transactions on Software Engineering 5(3), 177–187.

Holland, J. H. [1975], Adaptation in natural and artificial systems, Technical report,

University of Michigan Press.

BIBLIOGRAPHY 285

Hou, W.-C. and Ozsoyoglu, G. [1991], ‘Statistical Estimators for Aggregate Rela-

tional Algebra Queries’, ACM Transactions on Database Systems 16(4), 600–654.

Hou, W.-C., Özsoyoğlu, G. and Dogdu, E. [1991a], ‘Error-constrained COUNT query

evaluation in relational databases’, SIGMOD Record (ACM Special Interest Group

on Management of Data) 20(2), 278–287.

Hou, W., Ozsoyoglu, G. and Dogdu, E. [1991b], Error Constrained COUNT Query

Evaluation in Relational Databases, in ‘ACM-SIGMOD Conference on the Man-

agement of Data’, pp. 278–287.

Hou, W., Ozsoyoglu, G. and Taneja, B. K. [1988], Statistical Estimators for Re-

lational Algebra Expressions, in ‘Proceedings of the 7th ACM Symposium on

Principles of Database Systems’, pp. 276–287.

Hou, W., Ozsoyoglu, G. and Taneja, B. K. [1989], Processing Aggregates Relational

Queries with Hard Time Constraints, in ‘ACM-SIGMOD Conference on the Man-

agement of Data’, pp. 68–77.

INGRES, U. [1988], ‘INGRES version 8.9’, Public domain source code from Univer-

sity of California, Berkeley.

InterBase [1998]. InterBase Software Corporation, [http://www.interbase.com].

Ioannidis, Y. [1993], Universality of Serial Histograms, in ‘Proceedings of the 19th

Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA),

Dublin’.

Ioannidis, Y. E. and Christodoulakis, S. [1991], On the Propagation of Errors in

the Size of Join Results, in ‘Proceedings of the ACM-SIGMOD Intl. Conf. on

Management of Data’, pp. 268–277.

Ioannidis, Y. E. and Christodoulakis, S. [1993], ‘Optimal Histograms for Limiting

Worst-case Error Propagation in the Size of the Join Results’, ACM Transactions

on Database Systems 18(4), 709–748.

Ioannidis, Y. E. and Kang, Y. C. [1990], Randomized Algorithms for Optimiz-

ing Large Join Queries, in ‘Proceedings of the 1990 ACM-SIGMOD Conference’,

pp. 312–321.

BIBLIOGRAPHY 286

Ioannidis, Y. E., Ng, R. T., Shim, K. and Sellis, T. K. [1992], Parametric query pro-

cessing, in ‘Proceedings of the 18th Conference on Very Large Databases, Morgan

Kaufman pubs. (Los Altos CA), Vancouver’.

Ioannidis, Y. E. and Poosala, V. [1995], Balancing Histogram Optimality and Prac-

ticality for Query Result Size Estimation, in ‘ACM SIGMOD International Con-

ference on Management of Data’, pp. 233–244.

Ioannidis, Y. E. and Wong, E. [1987], Query Optimization by Simulated Annealing,

in ‘Proceedings of the 1987 ACM-SIGMOD Conference’, pp. 9–22. San Francisco,

CA, June 1987.

Jarke, M. [1984], Common subexpression isolation in multiple query optimization,

in W. Kim, D. S. Reiner and D. S. Batory, eds, ‘Query Processing in Database

Systems’, Springer Verlag, pp. 191–205.

Kang, Y. C. [1991], Randomized Algorithms for Query Optimization, PhD thesis,

Computer Sciences, University of Wisconsin, Madison, Wisconsin.

Kibler, D., Aha, D. W. and Albert, M. K. [1989], ‘Instance-Based Prediction of

Real-Valued Attributes’, Computational Intelligence 5, 51–57.

Kirkpatrick, S., Jr., C. D. G. and Vecchi, M. P. [1983], ‘Optimization by Simulated

Annealing’, Science 220, 671–680.

Korth, H. F. and Silberschatz, A. [1991], Database System Concepts, McGraw-Hill,

New York.

Krisnamurthy, R., Boral, H. and Zaniolo, C. [1986], Optimization of Nonrecursive

Queries, in ‘Proceedings of the 12th Int. Conf. on Very Large Data Bases’, pp. 128–

137.

Laarhoven, P. J. M. V. and Aarts, E. H. L. [1988], Simulated Annealing: Theory

and Applications, D. Reidel Publishing Company, Dordrecht, Holland.

Lanzelotte, R. S. G. [1990], OPUS: An Extensible OPtimizer for Up-to-date

Database Systems, PhD thesis, Computer Science, La Pontificia University.

BIBLIOGRAPHY 287

Ling, Y. and Sun, W. [1995], An Evaluation of Sampling-Based Size Estimation

Methods for Selections in Database Systems, in ‘The International Confererence

on Data Engineering’, pp. 532–539.

Lipton, R. J. and Naughton, J. F. [1989], Estimating the Size of Generalized Tran-

sitive Closures, in ‘Proceedings of the Fifteenth International Conference on Very

Large Data Bases’, Amsterdam, pp. 165–171.

Lipton, R. J. and Naughton, J. F. [1990], Query Size Estimation by Adaptive Sam-

pling, in ACM, ed., ‘Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems: April 2–4, 1990, Nashville, Ten-

nessee’, pp. 40–46.

Lipton, R. J., Naughton, J. F. and Schneider, D. A. [1990], Practical Selectivity Esti-

mation through Adaptive Sampling, in ‘Proceedings of ACM SIGMOD’, pp. 1–12.

Loader, C. R. [1997a], ‘Bandwidth Selection’, [http://cm.bell-

labs.com/stat/project/locfit/index.html]. Chapter 9 on the web page.

Loader, C. R. [1997b], ‘Locfit: An Introduction’. To appear in Statistical Computing

and Graphics Newsletter.

Loader, C. R. [1997c], Software Package for Local Regression. [http://cm.bell-

labs.com/stat/project/locfit].

Loader, C. R. [1997d], ‘Univariate Local Regression’, [http://cm.bell-

labs.com/stat/project/locfit/index.html]. Chapter 2 on the web page. There are

many other useful chapters, e.g., Local regression, Multivariate local regression,

Methods and visualization, Local Likelihood Estimation, Density Estimation,

Bandwidth Selection and Adaptive Fitting.

Makinouchi, A., Tezuka, M., Kitakami, H. and Adachi, S. [1981], The optimiza-

tion strategy for query evaluation in RDB/V1, in ‘Proceedings of the Seventh

International Conference on Very Large Data Bases’, pp. 518–529.

Manber, U. [1989a], Introduction to Algorithms: A Creative Approach, Addison-

Wesley, chapter 4, pp. 61–90. A brief introduction to data structures.

BIBLIOGRAPHY 288

Manber, U. [1989b], Introduction to Algorithms: A Creative Approach, Addison-

Wesley, chapter 3, pp. 37–60. Analysis of algorithms.

Mandelbrot, B. B. [1983], The Fractal Geometry of Nature, updated and augmented

[ed.] edn, W.H. Freeman, New York. First published as Fractals. in 1977.

Mannino, M. V., Chu, P. and Sager, T. [1988], ‘Statistical profile estimation

in database systems’, ACM Computing, Springer Verlag (Heidelberg, FRG and

NewYork NY, USA)-Verlag Surveys 20(3).

Melli, G. [1997], ‘SCDS - a Synthetic Classification Data Set Generator: program to

generate data sets’, [http://fas.sfu.ca/cs/people/GradStudents/melli/SCDS/]. email

melli@cs.sfu.ca.

Merz, C. J. and Murphy, P. M. [1996], ‘UCI Repository of Machine Learning

Databases’, [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and Computer Science.

Mishra, P. and Eich, M. [1992], ‘Join Processing in Relational Databases’, compsurv

24(1), 63–113.

Mitchell, G. A. [1993], Extensible Query Processing in an Object-Oriented Database,

CS-93-16, Department of Computer Science, Brown University, Providence, Rhode

Island, 02912.

Morzy, T., Matysiak, M. and Salza, S. [1994], Tabu Search Optimization of Large

Join Queries, in ‘Advances in Database Technology – EDBT’94’, pp. 311–322.

Munoz, A. [1994], An Extensible Query Optimizer Architecture for the TIGUKAT

Objectbase Management System, TR94-01, Department of Computing Science,

University of Alberta, Edmonton, Alberta, Canada.

Muralikrishna, M. [1988], Optimization of Multiple-Disjunct Queries in a Relational

Database System, PhD thesis, Computer Sciences, University of Wisconsin, Madi-

son.

Muralikrishna, M. and DeWitt, D. [1988], Equi-depth Histograms for Estimating

Selectivity Factors for Multi-Dimensional Queries, in ‘Proceedings of the ACM

SIGMOD Conf. on Management of Data’, pp. 28–36.

BIBLIOGRAPHY 289

Murthy, M. N. and Rao, T. J. [1988], Systematic Sampling with Illustrative Exam-

ples, Vol. 6, Elsevier Science Publishers, chapter 7, pp. 147–185. Handbook of

Statistics.

Ngu, A. H. H., Yan, L.-L. and Wong, L. [1993], Heterogeneous Query Optimization

using Maximal Sub-Queries, in S. C. Moon and H. I. (Eds.), eds, ‘Proceedings of

the 3rd International Conference on Database Systems for Advanced Applications

(DASFAA)’, World Scientific Press, Singapore, pp. 413–420. Daejon, Korea.

Olken, F. [1993], Random Sampling from Databases, PhD thesis, Computer Science,

University of California at Berkeley.

Oracle [1996a], Oracle7 Server Concepts Manual. Release 7, Oracle Corporation.

Oracle [1996b], Oracle7 Server Tuning. Release 7, Oracle Corporation.

Ozcan, F., Nural, S., Koksal, P., Evrendilek, C. and Dogac, A. [1996], Dynamic

Query Optimization on a Distributed Object Management Platform, in ‘Proc.

of Fifth International Conference on Information and Knowledge Management

(CIKM ’96)’. Maryland, USA.

Ozkan, C., Dogac, A. and Altinel, M. [1996], ‘A Cost Model for Path Expressions in

Object-Oriented Queries’, Journal of Database Management 7(3), unknown page

numbers.

Ozsu, M. and Valduriez, P. [1991], Principles of Distributed Database Systems,

Prentice-Hall, New Jersey.

Park, J. and Segev, A. [1988], Using common subexpressions to optimize multiple

queries, in ‘Proc. IEEE Int’l. Conf. on Data Eng.’, Los Angeles, CA, p. 311.

Pearl, J. [1984], Heuristics – Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley Publishing Co., Reading, MA.

Piatetsky-Shapiro, G. and Connell, C. [1984], Accurate Estimation of the Number of

Tuples Satisfying a Condition, in ‘Proceedings of the ACM SIGMOD Conference’,

pp. 256–276. Boston, Mass, June, ACM, New York.

BIBLIOGRAPHY 290

Pongpinigpinyo, S. [1996], Distributed Query Optimisation using Two Stage Simu-

lated Annealing, Master’s thesis, Department of Computer Science, University of

Tasmania, GPO Box 252C, Hobart, Tasmania, 7001, Australia.

Poosala, V. [1997], Histogram-Based Estimation Techniques in Database Systems,

PhD thesis, Computer Science, University of Wisconsin.

Poosala, V. and Ioannidis, Y. E. [1997], Selectivity Estimation without the Attribute

Value Independence Assumption, in ‘VLDB’97, Proceedings of 23rd International

Conference on Very Large Data Bases’, pp. 486–495.

Poosala, V., Ioannidis, Y. E., Haas, P. J. and Shekita, E. J. [1996], Improved His-

tograms for Selectivity Estimation of Range Predicates, in H. V. Jagadish and I. S.

Mumick, eds, ‘Proceedings of the 1996 ACM SIGMOD International Conference

on Management of Data’, Montreal, Quebec, Canada, pp. 294–305.

Quinlan, J. R. [1992], Learning with Continuous Classes, in ‘Proceedings AI’92,

Adams and Sterling, Eds’, World Scientific, Singapore, pp. 343–348.

Quinlan, J. R. [1993a], C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, California.

Quinlan, J. R. [1993b], Combining Instance-Based and Model-Based Learning, in

‘Proceedings of Machine Learning’, Morgan Kaufmann.

Quinlan, J. R. [1996], ‘Why choosing 3 queries other than other numbers ?’, Private

communication.

Rumelhart, D. E., McClelland, J. L. and the PDP research group. [1986], Parallel

distributed processing: Explorations in the microstructure of cognition, Volume 1:

Foundations, MIT Press.

Salzberg, B. [1988], File Structures: An Analytic Approach, Prentice-Hall Interna-

tional.

Scheaffer, R. L., Mendenhall, W. and Ott, L. [1990], Elementary Survey Sampling,

fourth edn, PWS-KENT Publishing Company.

BIBLIOGRAPHY 291

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G.

[1979a], Access Path Selection in a Relational Database Management System, in

‘Proc. ACM-SIGMOD International Conference on Management of Data’, ACM,

Boston New York, pp. 23–34.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G.

[1979b], Access Path Selection in a Relational Database Management System,

Technical Report RJ2429, IBM Research Laboratory, San Jose.

Sellis, T. K. [1988], ‘Multiple query optimization’, ACM Transactions on Database

Systems 13(1).

Shapiro, L. D. [1986], ‘Join Processing in Database Systems with Large Main Mem-

ories’, ACM Transactions on Database Systems 11(3), 239–264.

URL: http://www.acm.org/pubs/toc/Abstracts/tods/6315.html

Simon, J. L. and Bruce, P. [1997], ‘Probability and statistics the resampling way’,

http://www.statistics.com/. An article on the Resampling Stats home page.

Singh, K. [1981], ‘On the Asymtotic Accuracy of Efron’s Bootstrap’, Annals of

Statistics 9, 1187–1195.

Smith, E. P. and Belle, G. V. [1984], ‘Nonparametric Estimation of Species Richness’,

Biometrics 40, 119–129.

Software AG Americas, I. [1998], ‘Cost based optimizer vs. rule based optimizer’.

[http://www.sagus.com].

SOLID [1998]. Solid Information Technology LTD., [http://www.solidtech.com].

Stillger, M. and Spiliopoulou, M. [1996], Genetic Programming in Database Query

Optimization, in ‘1st Annual Conference on Genetic Programming’, Standard.

Straube, D. D. [1990], Queries and Query Processing in Object-Oriented Database

Systems, TR90-33, Department of Computing Science, University of Alberta, Ed-

monton, Alberta, Canada.

BIBLIOGRAPHY 292

Sun, W., Ling, Y., Rishe, N. and Deng, Y. [1993], An Instant and Accurate Size

Estimation Method for Joins and Selection in a Retrieval-Intensive Environment,

in ‘Proceedings of ACM SIGMOD’, pp. 79–88.

Swami, A. [1989a], Optimization of Large Join Queries, PhD thesis, Standard Uni-

versity.

Swami, A. [1989b], Optimization of Large Join Queries: Combining Heuristics and

Combinatorial Techniques, in ‘Proceedings of the 1989 ACM-SIGMOD Confer-

ence’, pp. 367–376.

Swami, A. and Gupta, A. [1988], Optimization of Large Join Queries, in ‘Proceedings

of the 1988 ACM-SIGMOD Conference’, pp. 8–17. Chicago, IL, June 1988.

Swami, A. and Schiefer, K. B. [1994], On the Estimation of Join Result

Sizes, in ‘Proc. International Confererence on Extending Database Technology

(EDBT’94)’, Springer-Verlag, Berlin.

Thomson, S. [1992], Sampling, John Wiley & Sons, Inc. Basic and Advanced Sam-

pling Methods.

Turney, P. and Jankulak, M. [1993], ‘Summary Table of Database Statis-

tics’, File can be obtained from ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/SUMMARY-TABLE. The analysis of 64 real-world databases donated

by the authors.

Ullman, J. D. [1988a], Principles of Database and Knowledge-base Systems, Vol. 2,

Computer Science Press.

Ullman, J. D. [1988b], Principles of Database and Knowledge-base Systems, Vol. 1,

Computer Science Press.

Winston, P. H. [1984], Artificial Intelligence, Second Edition, Addison-Wesley. A

good introductory book on artificial intelligence. Winston introduces the reader

to many of the different facets of AI. Very readable.

Wong, E. and Youssefi, K. [1976], ‘Decomposition—a Strategy for Query Processing’,

ACM Transactions on Database Systems 1(3), 223–241.

BIBLIOGRAPHY 293

Yoo, H. [1990], Intelligent Search in Query Optimization, PhD thesis, Department

of Electrical Engineering and Computer Science, The University of Michigan, Ann

Arbor, Michigan, 48109-2122 USA.

Zhu, Q. [1992], Query Optimization in Multidatabase Systems, in ‘Proceedings of

the 1992 CAS Conference’, Vol. 2, Toronto, Canada, pp. 111–127.

Zhu, Q. [1993], An Integrated Method for Estimating Selectivities in a Multi-

database System, in ‘Proceedings of Distributed Computing (CASCON’ 93)’,

Vol. 2, Toronto, Ontario, Canada, pp. 832–847.

Zhu, Q. and Larson, P. A. [1994], A Query Sampling Method for Estimating Local

Cost Parameters in a Multidatabase System, in ‘Data Engineering’, pp. 144–153.

Ziarko, W. [1991], The Discovery, Analysis, and Representation of Data Dependen-

cies in Databases, AAAI Press / The MIT Press, 445 Burgess Drive, Menlo PArk,

California 94025, chapter 11, pp. 107–123. Knowledge Discovery in Databases,

edited by Gregory Piatetsky-Shapiro and William J. Frawley.

Zipf, G. K. [1949], Human behaviour and the principle of least effort, Addison-

Wesley, Reading, MA.

Author Index

Aha et al. [1991], 66, 192, 279

Aha [1990], 192, 279

Aho et al. [1985], 3, 279

Anderberg [1973], 96, 279

Antoshenkov [1993], 236, 279

Bayer and McCreight [1972], 99, 279

Belussi and Faloutsos [1995], 34, 279

Bennett et al. [1991], 17, 280

Bickel and Freedman [1981], 177, 280

Breiman et al. [1984], 76, 280

Chakravarthy [1991], 6, 280

Chao and Egyhazy [1986], 32, 280

Chen and Roussopoulos [1994], 13, 22,

25, 32, 52, 61, 67, 187, 188,

194, 218, 236, 280

Choenni et al. [1996], 6, 280

Christodoulakis [1983a], 31–33, 280

Christodoulakis [1983b], 25, 30, 280

Christodoulakis [1984], 10, 38, 152, 242,

263, 280

Cleveland and Devlin [1988], 186, 281

Cleveland and Grosse [1991], 186, 281

Cleveland and Loader [1996], 41, 186,

188, 189, 194, 197, 209, 218,

281

Cleveland [1979], 13, 21, 186, 281

Cochran [1963], 98, 102, 115, 117, 120,

281

Cosar et al. [1993], 6, 281

Cox [1952], 85, 143, 281

Dasarathy [1991], 76, 281

Dayal [1984], 94, 281

DeWitt et al. [1984], 91, 237, 281

Delobel et al. [1995], 5, 281

Dogac et al. [1996], 6, 282

Draper and Smith [1966], 66, 282

Du et al. [1992], 94, 95, 282

Du et al. [1995], 94, 282

Duda and Hart [1974], 76, 282

Efron [1979], 20, 169, 282

Elmasri and Navathe [1991], 3, 4, 239,

282

Epstein and Stonebraker [1980], 31, 33,

282

294

AUTHOR INDEX 295

Evrendilek et al. [1995], 94, 282

Freytag [1987], 22, 282

Gardalin et al. [1995], 6, 282

Gardarin et al. [1996], 6, 283

Gardy and Puech [1989], 34, 283

Grichting [1995], 169, 172, 283

Gruser et al. [1996], 6, 283

Haas and Swami [1992], 12, 26, 82, 83,

86, 87, 101, 126, 144, 283

Haas and Swami [1995], 12, 20, 26, 82,

83, 86, 87, 101, 107, 284

Haas et al. [1989], 22, 283

Haas et al. [1993], 86, 87, 101, 283

Haas et al. [1995], 169, 283

Haas et al. [1996], 84, 86, 87, 101, 283

Harangsri et al. [1996a], 94, 96, 284

Harangsri et al. [1996b], 96, 284

Harangsri et al. [1996c], 14, 67, 77, 98,

152, 284

Harangsri et al. [1997], 18, 25, 66, 67,

77, 192, 201, 216, 284

Harangsri et al. [1998], 20, 44, 47, 210,

284

Hellerstein and Stonebraker [1993], 239,

284

Hevner and Yao [1979], 251, 284

Holland [1975], 6, 284

Hou and Ozsoyoglu [1991], 84, 284

Hou et al. [1988], 12, 25, 82–84, 285

Hou et al. [1989], 12, 25, 82–84, 285

Hou et al. [1991a], 85, 285

Hou et al. [1991b], 26, 83, 143, 285

INGRES [1988], 2, 285

InterBase [1998], 22, 285

Ioannidis and Christodoulakis [1991],

10, 11, 285

Ioannidis and Christodoulakis [1993],

10, 39, 285

Ioannidis and Kang [1990], 17, 42, 233,

285

Ioannidis and Poosala [1995], 22, 25,

39, 236, 286

Ioannidis and Wong [1987], 17, 233,

286

Ioannidis et al. [1992], 22, 285

Ioannidis [1993], 22, 25, 39, 236, 285

Jarke [1984], 6, 286

Kang [1991], 17, 286

Kibler et al. [1989], 192, 286

Kirkpatrick et al. [1983], 6, 286

Korth and Silberschatz [1991], 152, 286

Krisnamurthy et al. [1986], 6, 17, 286

Laarhoven and Aarts [1988], 16, 286

Lanzelotte [1990], 4, 5, 286

Ling and Sun [1995], 14, 87, 286

Lipton and Naughton [1989], 85, 287

Lipton and Naughton [1990], 85, 99,

144, 287

Lipton et al. [1990], 12, 25, 82, 83, 85,

86, 126, 287

Loader [1997a], 213, 287

Loader [1997b], 194, 212, 218, 287

Loader [1997c], 212, 287

Loader [1997d], 188, 194, 195, 287

AUTHOR INDEX 296

Makinouchi et al. [1981], 25, 30, 34,

287

Manber [1989a], 78, 287

Manber [1989b], 79, 287

Mandelbrot [1983], 34, 288

Mannino et al. [1988], 12, 288

Melli [1997], 152, 288

Merz and Murphy [1996], 15, 66, 288

Mishra and Eich [1992], 237, 288

Mitchell [1993], 5, 288

Morzy et al. [1994], 17, 288

Munoz [1994], 5, 288

Muralikrishna and DeWitt [1988], 38,

39, 47, 82, 191, 210, 288

Muralikrishna [1988], 38, 47, 191, 288

Murthy and Rao [1988], 98, 117, 120,

123, 288

Ngu et al. [1993], 94, 289

Olken [1993], 85, 236, 289

Oracle [1996a], 23, 289

Oracle [1996b], 23, 289

Ozcan et al. [1996], 94, 289

Ozkan et al. [1996], 6, 289

Ozsu and Valduriez [1991], 239, 289

Park and Segev [1988], 6, 289

Pearl [1984], 6, 289

Piatetsky-Shapiro and Connell [1984],

20, 21, 32, 38, 39, 45, 47, 189,

210, 289

Pongpinigpinyo [1996], 17, 289

Poosala and Ioannidis [1997], 28, 42,

82, 152, 189, 191, 192, 213, 290

Poosala et al. [1996], 42, 189, 213, 290

Poosala [1997], 15, 21, 25, 28, 38, 39,

187, 189, 191–193, 209, 215,

226, 228, 290

Quinlan [1992], 66, 192, 290

Quinlan [1993a], 70, 290

Quinlan [1993b], 15, 66, 69, 70, 77, 192,

290

Quinlan [1996], 76, 290

Rumelhart et al. [1986], 66, 191, 199,

290

SOLID [1998], 22, 291

Salzberg [1988], 99, 290

Scheaffer et al. [1990], 106, 117, 120,

123, 290

Selinger et al. [1979a], 6, 16, 21, 25, 30,

34, 35, 189, 241, 290

Selinger et al. [1979b], 31, 291

Sellis [1988], 6, 291

Shapiro [1986], 237, 291

Simon and Bruce [1997], 167, 291

Singh [1981], 177, 291

Smith and Belle [1984], 168, 291

Software AG Americas [1998], 23, 291

Stillger and Spiliopoulou [1996], 17, 291

Straube [1990], 4, 5, 291

Sun et al. [1993], 13, 14, 25, 52, 82,

187, 188, 190, 194, 218, 291

Swami and Gupta [1988], 6, 17, 42,

233, 292

Swami and Schiefer [1994], 241, 292

Swami [1989a], 17, 233, 291

AUTHOR INDEX 297

Swami [1989b], 17, 233, 292

Thomson [1992], 117, 120, 292

Turney and Jankulak [1993], 128, 292

Ullman [1988a], 6, 239, 292

Ullman [1988b], 49, 292

Winston [1984], 6, 292

Wong and Youssefi [1976], 17, 31, 292

Yoo [1990], 6, 17, 292

Zhu and Larson [1994], 94–96, 293

Zhu [1992], 94, 292

Zhu [1993], 94–96, 98, 293

Ziarko [1991], 27, 293

Zipf [1949], 127, 213, 293

