
1

Semantic Brokering over Dynamic
Heterogeneous Web Resources

Anne H. H. Ngu
Department of Computer Science
Southwest Texas State University

November 2002

Novemberr 2002 2

Overview

Objectives of data integration in InfoSleuth
system.
InfoSleuth architecture
Role of brokering and ontology in data
integration
Multibrokering design and implementation
Performance evaluation of multibrokering
system
Dynamic integration and coordination of
services

2

Novemberr 2002 3

Goals of InfoSleuth

Development of technologies and tools to support
concept-based access to information sources in a
dynamically changing web environment through
mediated interoperation of agents.

•It allows concept-based search, retrieval and fusion of related
information from changing set of web resources.
•It monitors dynamic information sources for relevant changes
and aggregates changes to multiple level of abstraction and
notification.
•It provides for easy evolution by allowing plug-in of new
users, new resources and new services.

Novemberr 2002 4

InfoSleuth Architecture

Information
Services

Subscription agents

Ontology agents

User
Agent

User
Agent

Resource
Agent

Resource
Agent

Resource
Agent

Ontologies

Broker agents

Text, Images,
Video

Structured
Databases

Query agents

Monitor agent

3

Novemberr 2002 5

InfoSleuth Architecture (Cont.)

Core agents collaborate to service requests
over a common ontology.
Resource agents serve as mediators to
external information sources such as
structured DBMS, semi-structured web pages,
multimedia sources etc.
User agents act as proxies for individual users
or group of users.

Novemberr 2002 6

Overview of how agents collaborate

As each agent comes online, it advertises its
capabilities.

Broker
Agent

Joe’s User
Agent

MRQ Agent DB1 Resource
Agent

DB2 Resource
Agent

User Joe
Multiresource
Query
processing
(SQL)

DB Resource
(SQL,
classes C1,
C2)

DB Resource
(SQL,
classes C2,
C3)

4

Novemberr 2002 7

Overview of how agents collaborate
(Cont.)

User Joe submits SQL query select * from C2
to his user agent

Broker
Agent

Joe’s User
Agent

MRQ Agent

DB1 Resource
Agent

DB2 Resource
AgentWho has

multiresource
query processing
(SQL)?

MRQ Agent

Select * from C2

Novemberr 2002 8

Overview of how agents collaborate
(Cont.)

MRQ agent looking for resource agents that
can answer an SQL query involving class C2.

Broker
Agent

Joe’s User
Agent

MRQ Agent
DB1 Resource
Agent

DB2 Resource
Agent

Who has
resources for
class C2 (SQL)?

DB1 Resource
Agent and DB2
Resource Agent

Select *
from C2

Select *
from C2

5

Novemberr 2002 9

Broker Agent Functions

Repository
accepts and stores agent advertisments
maintains the state of the system, periodically
prunning non responding agents

Matchmaker
reasons over agent capabilities and their
information contents
recommends only potentially relevant agents
for a task

Novemberr 2002 10

Focused Ontology and Ontology
Fragments

One single global ontology
relationships among different aspects of agent
capabilities can be represented

0 difficult to manage inter-domain relationships
and to add new ontological concepts

Multiple, focused ontologies
adding a new ontology is easy
capabilities of agents can be composed easily
in terms of ontology fragments

6

Novemberr 2002 11

Agent Capabilities, Advertisements and
Queries

.

.

.

Capability 1

Capability 2

Capability n

or

or

Any subset of
{

Ontology
Fragment 1A

Ontology
Fragment 1B

…..
…..
Ontology

Fragment 1M
}

Query Capability

Ontology
Fragment 1A

and
Ontology

Fragment 1B
and

……..
……..

Ontology
Fragment 1M

Agent Capabilities and Advertisments Agent Capabilities and Queries

Novemberr 2002 12

Example of an advertisement
<advertisement>

<capability NAME-”ResourceAgent5Cap”>
<ontology_fragment NAME=“_infoSleuth” VERSION=“1.0”

<class NAME=“agent”
<slot NAME=“agent address” VALUE=“tcp:research.telcordia.com:7000”</slot>
<slot NAME=“agent name” VALUE=“ResourceAgent5”></slot>
<slot NAME=“type” VALUE=“resourceagent”></slot>

</class>
</ontology_fragment>
<ontology_fragment NAME=“_conversation” VERSION=“1.0”>

….
</ontology_fragment>
<ontology_fragment NAME=“sql” VERSION=“1.0”>

<class NAME=“select-statement”></class>
<ontology_fragment>
<ontology_fragment NAME=“healthcare” VERSION=“1.0”>

<class NAME=“diagnosis”>
<slot NAME=“diagnosis-code”> </slot> </class>

<class NAME=“patient”>
<slot NAME=“patient-age”></slot>

<constraint> <set_interval> MIN_VALUE=“43” MAX_VALUE=“75” </set_interval></constraint>
<key NAME=“patient-id”></key>

</class>
…

</capability> </advertisement>

7

Novemberr 2002 13

Example of a Query
<query>
<capability NAME=“_generic_query_capability”>

<ontology_fragment NAME=“_infosleuth” RETURN_CLASSES=“false”>
<class NAME=“agent” RETURN_KEYS=“false” RETURN_SLOTS=“false” SLOT_SEMANTICS=“all”

<slot NAME=“agent name” RETURN_CONSTRAINTS=“true”></slot>
<slot NAME=“agent address” RETURN_CONSTRAINTS=“true”></slot>
<constraint_conjunct> </constraint_disjunct>

<slot NAME=“type” VALUE=“resourceagent”></slot>
</constraint_disjunct></constraint_conjunct></class>
…

<ontology_fragment NAME=“healthcare” RETURN_CLASSES=“true” CLASS_SEMANTICS=“any”>
<class NAME=“patient” RETURN_KEYS=“true” RETURN_SLOTS=“true” SLOT_SEMANTICS=“any”>

<constraint_conjunct><slot NAME=“patient-age” RETURN_CONSTRAINTS=“true”>
<set_interval> MIN_VALUE=“45” MAX_VALUE=“65” </set_interval>

</constraint_conjunct>
</class>
……

</query>

Novemberr 2002 14

Problems with Single Broker Architecture

A single point of failure
Represent a hard limit to scalability
The reasoning engine degrades as the
broker’s repository grows bigger

8

Novemberr 2002 15

Principle for Scalable Multibrokering

Peer-to-Peer Architecture (not hierarchical)
brokers may freely advertise or unadvertise to
any broker

Non-broker agents must advertise to more
than one broker

robustness increases if agents advertise
redundantly to several brokers

Brokers should specialize
helps in limiting search space when broker
specialities are known and advertised.

Novemberr 2002 16

Multibroker Architecture

Broker
Agent1

Broker
Agent2

Broker
Agent4

Broker
Agent3

Resource
Agent 5

Resource
Agent 6

Resource
Agent 7

Resource
Agent 1

Resource
Agent 2

Resource
Agent 3

Resource
Agent 4

Resource
Agent 8

Query
Agent

User
Agent 2

User
Agent 1

9

Novemberr 2002 17

Implementation of Multibrokering

Collaborative Reasoning
how to ensure that brokers process queries
collaboratively and thoroughly

Integrating new broker and non-broker agents
how new broker find other brokers
how non-broker agents find the brokers

Maintaining Connectivity
how to ensure that all brokers and agents
remain interconnected

Novemberr 2002 18

Collaborative Reasoning

Each broker can forward queries to other
brokers that may have other matching agents.
Inter-broker search is initiated based on the
nature of the request and a search policy.

Recommend-one - brokers are searched one by one in a
breadth-first manner until a match is found.
Recommend-all - brokers are searched in parallel until all
accessible brokers have been queried.
Hop count - defines how many hops should be traversed for a
given query.
broker trail - prevents cyclical propagation of search.

10

Novemberr 2002 19

Integrating new agents and brokers

New broker is configured with a list of other
brokers, or a well known port it should advertised
to.
New broker advertises its location information
and capabilities to other brokers.
Non-broker agent is configured with a list of
known brokers to connect to on startup.
Non-broker agent can re-configure to a different
broker or a different set of brokers later by
monitoring quality of service of current brokers.

Novemberr 2002 20

Maintaining Connectivity

Redundant advertising
all agents keep a known-broker-list and a connected-
broker-list
each agent or broker advertised to the known-broker-
list, until the connect-broker-list reaches its max
configured parameter

Robust connectivity
broker periodically pings all agents
agent periodically ping all its connected brokers.
re-advertise when the connected-broker-list is less
than the max configured number.

11

Novemberr 2002 21

Scalability Experiments

Novemberr 2002 22

Experimental Query Streams

QUERY TEST STREAM NUMBER OF RESOURCE AGENTS
SA (single agent) 1
DA (double agent) 2
4A (four agent) 4
VF (vertical fragmentation) 4
CH (class hierarchy) 4
FH(fragmentation & class hierarchy) 4

12

Novemberr 2002 23

Experimental configurations

EXPERIMENT 4A DA SA VF FH CH # RESOURCE AGENTS

A X 4

B X X X 4

C X X X X 8

D X X X X X 12

E X X X X X X 16

F X X X X X X 16

Experiment F is used to check the effect of broker specialization. Thus resource agents
that pertain to a particular query stream are kept with the same broker

Novemberr 2002 24

Experimental Results

In an underloaded system, a single broker system has a
slightly better response time than a multi-broker system.

1:1.1
In an overloaded system, a multi-broker system has an
improved response time. As the load grows, the
difference is significant

1:0.3
Specialized brokers out perform replicated brokers
Simulation experiments were also carried out which
further confirmed the scalability of the multibrokering
system.

13

Novemberr 2002 25

Good brokering principles

Brokering should encompass both syntactic and semantic properties
of services.
Common ontology need to be established for semantic brokering. The
focused ontologies approach allows different aspects of agent
functionality to be specified and composed.
Multibrokering enables scalable multi-agents system to be built
Principles of robust multibrokering and implementation issues:

How brokers are connected
How brokers discover other brokers
How agents discover other agents
When to initiate inter-broker search
How to maintain connectivity

Novemberr 2002 26

Related Work

Multidatabases approach:
SIMS (Ariadne) at ISI
TSIMMIS at Stanford
Information Manifold at ATT labs
DISCO at INRIA

Component-based approach:
CORBA trading object service

Other agent based approach:
RETSINA at CMU
COOL at Toronto University

14

Novemberr 2002 27

Agent-approach towards Integration of
Services

New on-line economy requires the ability to
efficiently and effectively share business
processes and data across the Web and
across organization boundaries.
Multi-agent system has shown to be a viable
technology for data integration.
However, there is a need to move from data
to process or service integration.

Novemberr 2002 28

Example of service integration

Customer

Services are accessible on the web

Flight booking Hotel booking Car renting

Driving time calculate

Driving time > ?

Driving time <= ?

Start

End

Attraction Searching Bike renting

Start

15

Novemberr 2002 29

From Data to Service Discovery

Service ontology (e.g. WSDL, DAML+S)
defines the basic concepts and terminologies which will be
used by all the participants in a specific domain

Service registering/advertising (e.g. UDDI, portal, advertising)
a tool for service providers to register their services using a
consistent ontology

Service Selection based on:
semantic-brokering
negotiation
auction

WebService Agents (service interface and proxy)

Novemberr 2002 30

Agent-based Approach to Dynamic
Composition of Services

Resource
Agent

WebService
Agent

WebService
Agent

Process
Agent

Broker
Agent

Broker
Agent

Ontology
Agent

User
Agent

User
Agent

User can submit a workflow through the User Agent which will first ask the broker agent for
a process agent. The process agent upon receiving the workflow definition will parse it and
for each task query the broker for a suitable service agent to execute the task.

Need to add service
focused ontology

Need to map
agent conversation
to Web service
invocation

Set up workflow

16

Novemberr 2002 31

UML class diagram for service ontology

Service Ontology

Domain Service class

Operation Operation NameSynonyms

ParameterSpecification

input output

1

*

*

*
1

* *

Novemberr 2002 32

Example of a Service Ontology
<advertisement>

<capability NAME-”ServiceAgent5Cap”>
<ontology_fragment NAME=“_infoSleuth” VERSION=“1.0”

<class NAME=“agent”
<slot NAME=“agent address” VALUE=“tcp:research.telcordia.com:7000”</slot>
<slot NAME=“agent name” VALUE=“ServiceAgent5”></slot>
<slot NAME=“type” VALUE=“serviceagent”></slot></class>

</ontology_fragment>
<ontology_fragment NAME=“_conversation” VERSION=“1.0”>

<class NAME=“conversation”>
<slot NAME=“type”>
<set_constraint><![CDATA[“ask-all”, “ask-one”, “subscribe”]]></set_constraint>
<slot NAME=“message” VALUE=“SOAP”></slot</class></ontology_fragment>

<ontology_fragment NAME=“_trip_planning _services” VERSION=“1.0”>
<class NAME=“domain”>

<slot NAME=“domainSynonym” VALUE=“travel”></slot>
<slot NAME=“rootDomain” VALUE=“tourism”></slot>/class>

<class NAME=“booking-flight-ticket”></class>
<slot NAME=“operation” VALUE=“Find-Ticket”></slot>
<slot NAME=“INPARAM1” VALUE=“DepartingAirport” TYPE=“String”></slot>

<constraint><states><value>Texas</value>
<value>California</value> </states></constraints>

<slot NAME=“INPARAM2” VALUE=“ArrivalAirport” TYPE=“String”></slot>
<slot NAME=“OUTPARMA1” VALUE=“Preice” TYPE=“float”></slot>
<slot NAME=“operation” VALUE=“Book-Ticket”></slot>

……
</class>

<ontology_fragment>

17

Novemberr 2002 33

WebService Agents need to support
Conversational Interactions

Process specification
Obtain-SP-FQDN

Obtain-SP-FQDN

Init Cable Modem
Init Cable Modem

Reset Cable Modem

Map Features

Service interface Service proxy

Proxy
implementation

Input parameters Output parameters

State machine with application-dependent
states and operations

Pointer to the
proxy

implementation
(a Java class)

External system implementing
desired service

Control and monitoring
interactions

WebService Agent

• Service interface captures abstractions of external applications using state machine
• The service proxy is an adapter to external systems
• States and operations defined in the interface are used to control and converse with
the external service

• Service interface captures abstractions of external applications using state machine
• The service proxy is an adapter to external systems
• States and operations defined in the interface are used to control and converse with
the external service

WebService Agent

Novemberr 2002 34

Agent-based Approach to Data and
Process Integration

Company
Database Database

Resource

Company
Ontology

Hoovers
Online Web Site

Resource
US Patent

Office Web Site
Resource

News
Feed Web Site

Resource
Query

Sub-
scription

events

Virtual
Blackboard

Database
Resource

Intermediate
and stored
knowledge

Complex
Event

Detector

Analysis

Deviation
Detector

Analysis

User Agent
Set up processes/workflow

Process
Agent

Process
Ontology

Examine results

18

Novemberr 2002 35

Process Agent

T3

T1

T4

X > ?

X <= ?

Start

EndT2

??

??

??

??

Web
services

Process Agent

T3

T1

X > a

X <= a

Start

EndT2

s3

s7

s9

s4

T4

Process Template

Process Instance

Process Agent

Result

Step 1
Service Selection

Step 2
Process Execution

User profile
input

Novemberr 2002 36

Dynamic generation of composite Web
Service (workflow)

One of the fundamental assumptions in WFMS is that
workflow schema or process must be predefined.
It is a daunting task to predefined every possible
workflows with every possible possibilities.
Due to frequent changing business conditions, it is
necessary to alter or modify business processes on the
fly.
This implies the need for dynamic generation of workflow.
One approach is to define business rules and business
objective and generate workflow dynamically by using
backward chain rules, forward chain rules, service
selection rules and data flow rules.

19

Novemberr 2002 37

Other Research Projects

Process-based approach to semantic B2B
Integration
Peer-to-peer provisioning of dynamic web
services
Multimedia databases

modeling and querying of moving objects
indexing scheme to support fast and accurate
retrieval of multimedia data

