
CS-5395 Independent Study

Optimizing Real-Time Fall

Detection: Integrating

NATS.io for Low-Latency

IoT Edge Applications

Submitted by

Sayali Pathak (A05295714)

Under the guidance of

Dr. Anne Ngu

1. Abstract

This independent study explores the integration of NATS.io, a lightweight messaging broker,

into the server-based architecture of SmartFall—a real-time fall detection application using

accelerometer data from smartwatches. While Kafka— a distributed event streaming platform

is commonly used in large-scale systems with complex and persistent data needs, NATS excels

in edge computing environments that demand real-time, transient messaging, making it well-

suited for SmartFall’s low-latency requirements.

The study evaluates the NATS.io-enabled architecture against a traditional handshaking-based

model with higher latency, using four key metrics: battery consumption, data loss, machine

learning prediction accuracy, and inference latency. Results show that NATS.io significantly

reduces latency, conserves battery life, and minimizes data loss without sacrificing prediction

accuracy. This highlights NATS.io as a reliable and efficient solution for IoT edge applications,

improving system performance while addressing real-time demands.

2. Motivation

IoT applications like fall detection (SmartFall System) require rapid data processing and timely

predictions to safeguard user well-being. Current approaches face several challenges:

• Real-Time Predictions: Latency impacts the ability to provide immediate responses,

which is critical for safety. Delayed responses can cause confusion and may lead to

false positive alerts, resulting in incorrect feedback.

• Battery Life Concerns: Running the prediction model on an IoT device can lead to

increased battery consumption, so offloading the task to a server can help conserve

battery life.

This necessitates exploring innovative solutions such as NATS.io (Messaging Broker) to

enhance performance and ensure real-time communication without compromising battery

efficiency.

3. Introduction to NATS.io

NATS.io is an open-source, lightweight, high-performance messaging system designed for

distributed systems. It facilitates communication between various components of a system

through a publish-subscribe, request-reply, and queue groups model. NATS allows both

asynchronous and synchronous communication. NATS.io is widely recognized for its

simplicity, scalability, and low-latency messaging, making it suitable for use in microservices

architectures, IoT systems, edge computing, and real-time analytics.

NATS.io Architecture and Model

NATS.io operates on a client-server model with the following key components:

1. NATS Server

The server acts as the central hub for message routing. It listens for incoming connections from

clients, routes messages to appropriate subscribers, and ensures efficient communication

between distributed system components.

The NATS server acts as a central hub, connecting multiple clients where publishers send

messages to specified subjects, and subscribers receive those messages. This message delivery

system allows for efficient communication between publishers and subscribers, and the NATS

server ensures that messages are routed to the correct subscribers based on the subjects they

are subscribed to.

2. NATS Clients

Applications communicate with the NATS server via client libraries available for various

programming languages, such as Java, Python, Go, C++, and more. Clients can:

• Publish Messages: Send data to specific topics (subjects) within the NATS server.

• Subscribe to Topics: Listen for messages published to certain topics.

• Request-Reply: Exchange messages in a synchronous manner.

3. Messaging Patterns

• Subjects: Messages are categorized by subjects, which act like channels or topics.

Clients publish or subscribe to these subjects for communication.

• Wildcard Subscriptions: Supports flexible subscription patterns using wildcards to

match multiple subjects.

In the SmartFall system, two-way communication is essential as we require a response back

from the server. Therefore, we utilize the NATS request-reply model, which enables

synchronous interactions between the client and the server. This model ensures that the client

can send data (e.g., accelerometer data) to the server and receive a response (e.g., prediction

results) in real-time, facilitating efficient and reliable communication within the system.

Both synchronous + asynchronous approaches are used for handling a NATS message request

and response. The CompletableFuture allows for an asynchronous request

(NatsManager.nc.request) to be sent without blocking the main thread, ensuring that the system

remains responsive. The synchronous part, future.get(1, TimeUnit.SECONDS), is used to wait

for the response with a defined timeout, providing control over how long to wait for the

operation to complete. This combination leverages the non-blocking nature of asynchronous

requests while ensuring that the client application does not hang indefinitely waiting for a

response.

4. Steps to integrate NATS.io in the SmartFall system

Software Requirement

1. Install NATS Server on your machine

The below steps can be used on both Windows and Mac OS

Follow the official installation guide from NATS documentation.

Example command to download and set up the NATS server:

curl -sf https://binaries.nats.dev/nats-io/nats-server/v2@v2.10.22 | sh

This command will download the nats-server folder to your specified directory. The

folder includes the executable file nats-server.exe.

OR

Install via a Package Manager

On Windows:

choco install nats-server

On Mac OS:

brew install nats-server

https://docs.nats.io/running-a-nats-service/introduction/installation

2. Run the NATS Server

• Open a command prompt or terminal.

• Navigate to the directory where the NATS folder is located.

• Start the server by running the following command:

nats-server

3. Once the command is executed, the NATS server will start running.

Project Architecture:

1. Android Application

• build.gradle (wear)

Add the following dependency to install the NATS client library:

implementation 'io.nats:jnats:2.20.2'

The wear application will function as the NATS client.

• NatsManager.java

Create this file within the Android application at the following path:

java/com.example.wear/

This file is responsible for establishing the connection between the wear application

and the NATS server. Update the IP address in the URL as required:

Options options = new

Options.Builder().server("nats://192.168.164.217:4222").build();

On successful connection, a success message will appear in the logs:

"Connected to NATS server".

If the connection fails, a message will appear in the logs:

“Failed to connect to NATS server”

• PersonalizedPredictionLSTM.java

Modify the makeInference() function within this file to send accelerometer data to the

NATS server for predictive calculations. The function will also handle returning the

prediction value from the server.

• MainActivity.java

This file initializes the connection to the NATS server by invoking the connect()

function from the NatsManager class. The connection ensures seamless

communication between the Android application/smartwatch and the NATS server.

2. Python Script

This Python script is created to load and serve the prediction model.

1. Connect to the NATS server for communication between the prediction model

and the Smartwatch.

2. Receive accelerometer data from the NATS server.

3. Input data to prediction model and calculate prediction.

4. Send back the predicted value to the NATS server.

• LoadPredictionModel.py

This script loads the predictive model and serves accelerometer data to it. Update the

machine's IP address in the connection string to ensure proper communication:

await nc.connect("nats:// 192.168.164.217:4222", error_cb=error_cb)

This setup connects the Android application (smartwatch) to the NATS server, enabling

the transfer of accelerometer data for real-time prediction processing.

5. Result of integrating NATS.io in the SmartFall system

The SmartFall system was re-evaluated with NATS.io integrated into its architecture.

Comparative results highlighted the improvements:

Battery Life:

• Offloading prediction operations to NATS servers reduced device-side resource

consumption by 20%, significantly extending battery life.

Data Latency:

• Eliminated the delays caused by traditional handshaking processes, reducing latency by

37%.

Data Loss:

• NATS’s "at most once" delivery model resulted in occasional data loss due to:

• Lack of acknowledgment mechanisms.

• Timeouts in high-throughput scenarios.

• Non-persistent messages dropped during network disruptions.

Model Accuracy:

• Maintained the same level of accuracy as the current architecture.

6. Conclusion

Integrating NATS.io addressed the key performance challenges of current SmartFall

architecture:

• Reduced Latency: The new architecture achieved lower inference times essential for

real-time predictions.

• Battery Optimization: Resource efficiency improved device usability for extended

periods.

• Prediction Accuracy: The new system maintains the same level of accuracy as the

current architecture.

Nats.io can be used as a communication broker in real-time edge computing applications.

7. Future Scope

Scalability:

Expand the architecture by incorporating more NATS servers to handle increasing data loads

without requiring extensive reconfiguration.

Use the NATS Queue Group model to improve the scalability.

https://docs.nats.io/nats-concepts/core-nats/queue

Refer below resources to see how the implementation of queue groups will help in load

balancing and scalability.

1. https://dev.to/karanpratapsingh/distributed-communication-patterns-with-nats-g17

https://docs.nats.io/nats-concepts/core-nats/queue
https://dev.to/karanpratapsingh/distributed-communication-patterns-with-nats-g17

2. https://github.com/kamauwashington/nats-queue-api-python

Data Security:

Authenticate the NATS connection and users' data by utilizing NATS

authentication/authorization features.

For example,

• Token Authentication

• TLS Certificate

• Decentralized JWT Authentication/Authorization

https://docs.nats.io/running-a-nats-service/configuration/securing_nats/auth_intro

Steps to add Security features in the open server –

1. Login to production/open server

2. Create a NATS server configuration file in the server

3. For TLS encryption use below certificate and key provided by the university
 cert_file: "/etc/certificates/live/cssmartfallqa1.cose.qual.txstate.edu/fullchain.pem"
 key_file: "/etc/certificates/live/cssmartfallqa1.cose.qual.txstate.edu/privkey.pem"

4. For Authentication use the below snippet in nats configuration file.
authorization {
 token: "<provide token>"
}

 The client should provide the same token for authentication when attempting to connect

to the NATS server.

Example,

await nc.connect("nats://localhost:4222", token="<provide same token mention in config

file> ", error_cb=error_cb)

To enhance authentication, implement Decentralized JWT Authentication.

5. Run the NATS server with the created config file –

./nats-server -c <config_file_path>

https://github.com/kamauwashington/nats-queue-api-python
https://docs.nats.io/running-a-nats-service/configuration/securing_nats/auth_intro/tokens
https://docs.nats.io/running-a-nats-service/configuration/securing_nats/auth_intro/tls_mutual_auth
https://docs.nats.io/running-a-nats-service/configuration/securing_nats/auth_intro/jwt
https://docs.nats.io/running-a-nats-service/configuration/securing_nats/auth_intro

8. References

[1] https://docs.nats.io/running-a-nats-service/introduction/installation

[2] https://docs.nats.io/nats-concepts/what-is-nats

[3] Yasmin, A., Mahmud, T., Debnath, M. and Ngu, A.H., 2024, July. An Empirical Study on

AI-Powered Edge Computing Architectures for Real-Time IoT Applications. In 2024 IEEE

48th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1422-

1431). IEEE.

[4]https://docs.nats.io/nats-concepts/core-nats

[5] https://docs.nats.io/nats-concepts/security

[6] https://www.codementor.io/@emqtech/mqtt-with-kafka-supercharging-iot-data-

integration-2638gbqd5s

https://docs.nats.io/running-a-nats-service/introduction/installation
https://docs.nats.io/nats-concepts/what-is-nats
https://docs.nats.io/nats-concepts/security
https://docs.nats.io/nats-concepts/security

